Supporting Information

2 Development and integration of an ultra-miniaturized Gas Chromatograph

prototype based on Lab-on-a-chip Micro Electro Mechanical Systems for space exploration missions

5 Malak RIZK-BIGOURD^{1*}, Cyril SZOPA¹, David COSCIA¹, Jean-Pierre PINEAU¹, Vincent GUERRINI¹,
 6 Frederic FERREIRA¹, Fabrice BERTRAND¹, Arnaud PHILIPPART², Audrey BOCO¹, Guillaume RIOLAND³,

- 7 Valérie PEULON-AGASSE², Arnaud BUCH⁴, Pascal CARDINAEL²
- ¹LATMOS/IPSL, CNRS, UVSQ Université Paris-Saclay, Sorbonne Université., 11bd d'Alembert, 78280
 Guyancourt, France
- 10 ²Normandie Univ, UNI ROUEN, SMS EA3233, 76000 Rouen, France
- 11 ³Centre National d'Etudes Spatiales, 31400 Toulouse, France
- 12 ⁴Laboratoire Génie des Procédés et Matériaux, CentraleSupelec, Université Paris-Saclay, 8-10 rue
- 13 Joliot Curie, 91190, Gif-sur-Yvette, France
- 14 *Corresponding author: <u>malak.bigourd@latmos.ipsl.fr</u>
- 15

1

Page Numbers	Content	Title
Page S1	Table S1-S1	Chromatographic results obtained with 2.2.4- trimethylpenatne and methane tests performed on the MEMS column used at different pressure relative to P _{atm}
Page S2	Calculation S2-S1	Calculation method of the quantity of injected compounds using the different sampling loop volumes
Page S2	Figure S2-S1	Obtained chromatographs with μ -TCD detector using the sampling loops of 5, 10 and 15 μ L coupled to the column
Page S3	Table S3-S2	Results obtained with μ -TCD detector using three different loop injection with the column.
Page S3	Figure S3-S2	Temperature profile for the preconcentrator

17 Table S1-S1: Chromatographic results obtained with 2.2.4-trimethylpenatne and methane tests

18	performed on the MEMS colu	nn used at different	pressure relative to Patm
----	----------------------------	----------------------	---------------------------

lulat		2	.2.4-trimeth	ylpentan	e		Mobile	e phase
Iniet	Retentio	n Time T _r	e T _r N HETP (mm) velo	velocity	city u (cm.s ⁻¹)			
(kPa)	Average (n=3)	1σ (n=3)	Average (n=3)	1σ (n=3)	Average (n=3)	1σ (n=3)	Average (n=3)	1σ (n=3)
40	0.69	2.52E-04	2682	3.8	1.9	0.003		
50	0.55	8.39E-04	2920	12	1.7	0.007		
75	0.37	4.62E-04	3355	8.5	1.5	0.004	26	5.86E-01
100	0.28	5.77E-05	3881	67	1.3	0.022	35	8.60E-02
125	0.22	3.00E-04	4495	9.3	1.1	0.002	44	2.69E-01
150	0.19	0.00E+00	5381	80	0.93	0.014	53	1.94E-01
175	0.16	1.15E-04	7487	596	0.67	0.056	61	2.62E-01
200	0.14	5.77E-05	7684	385	0.65	0.034	70	2.62E-01
225	0.13	1.15E-04	8275	43	0.60	0.003	79	8.73E-01
250	0.12	5.77E-05	8164	100	0.61	0.008	89	5.50E-01
300	0.10	0.00E+00	7414	121	0.67	0.011	108	2.81E+00
350	0.09	3.61E-04	5192	102	0.96	0.019	126	1.91E+00
400	0.08	5.66E-04	4292	857	1.2	0.266	140	1.36E+00

19 The mobile phase velocity u is also presented.

Calculation S2-S1: Calculation method of the quantity of injected compounds using the different sampling loop volumes

PV = nRT

- 23 This calculation was done using the ideal gas law:
- 24
- 25 P is the pressure in the loop set at atmospheric pressure (100000Pa)
- 26 V is the loop volume (m3)
- 27 n is the number of mols (nmol)
- 28 R is the ideal gaz constant (8.3144 J·K⁻¹·mol⁻¹)
- 29 T is the ambient temperature (K)
- 30 Given the concentration of each compound in the gas mixture (100 ppm), $n = C(ppm) \times \frac{PV}{RT}$

31

Figure S2-S1: Obtained chromatographs with μ-TCD detector using the sampling loops of 5, 10 and
 15 μL coupled to the column.

34 T = 0 corresponds to the injection time of analytes in the column (following the preconcentrator 35 desorption. We observe that the retention time are lower than those obtained with NGD. This 36 difference is maybe due to a lower gas velocity in NGD because the column outlet was coupled to the 37 TCD inlet using 1/32" inox tube (ID=0.12mm). However, the TCD was coupled to NGD inlet using fused 38 silica capillary tubes with lower internal diameters (there is no different way to connected the NGD 39 detector). This reduced internal diameter has an effect on a lower gas velocity before the NGD and 40 therefore the retention time will be delayed for NGD comparing to TCD. Further tests should be done 41 with the TCD uncoupled to NGD to confirm the obtained retention times.

42 Table S3-S2: Results obtained with μ -TCD detector using three different loop injection with the

43 *column*.

Sampling loop volume (ut)	Commound	Deal haight (14/ m-1 K-1)	N/ (and)
Sampling loop volume (µL)	Compound	Peak neight (w.mK -)	vv _{1/2} (sec)
	Pentane	0.11	0.40
F	Hexane	0.13	0.50
5	Benzene	0.10	0.64
	Toluene	0.08	0.82
	Pentane	0.25	0.42
10	Hexane	0.28	0.46
10	Benzene	0.21	0.60
-	Toluene	0.16	0.56
	Pentane	0.25	0.84
45	Hexane	0.22	0.73
15	Benzene	0.14	0.72
-	Toluene	0.12	1.12

45 46

Figure S3-S2: Temperature profile for the preconcentrator.

T₀ is the time corresponding to the trap heating. We observe an oscillation during the first 20 seconds
because the PID regulation is done over few seconds after a flash heating and the heaters take 20 sec
to stabilize the plateau value.

S3