

Aerosol background concentrations influence aerosol-cloud interactions as much as the choice of aerosol-cloud parameterization

Louis Marelle, Gunnar Myhre, Jennie L Thomas, Jean-Christophe Raut

▶ To cite this version:

Louis Marelle, Gunnar Myhre, Jennie L Thomas, Jean-Christophe Raut. Aerosol background concentrations influence aerosol-cloud interactions as much as the choice of aerosol-cloud parameterization. 2024. insu-04693090

HAL Id: insu-04693090 https://insu.hal.science/insu-04693090

Preprint submitted on 10 Sep 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Aerosol background concentrations influence aerosol-cloud interactions as much as the choice of aerosol-cloud parameterization

Louis Marelle¹, Gunnar Myhre², Jennie L Thomas³, and Jean-Christophe Raut⁴

¹Laboratoire Atmospheres Milieux Observations Spatiales Site Paris-Jussieu ²CICERO, Norway ³L'Institut des Géosciences de l'Environnement (IGE) ⁴UPMC

August 22, 2024

Abstract

We use an independent observational estimate of aerosol-cloud interactions (ACI) during the 2014 Holuhraun volcanic eruption in Iceland to evaluate 4 ACI parameterizations in a regional model. All parameterizations reproduce the observed pattern of liquid cloud droplet size reduction during the eruption, but strongly differ on its magnitude and on the resulting effective radiative forcing (ERF). Our results contradict earlier findings that this eruption could be used to constrain liquid water path (LWP) adjustments in models, except to exclude extremely high LWP adjustments of more than 20 g/m2. The modeled ERF is very sensitive to the non-volcanic background aerosol concentration: doubling the non-volcanic aerosol background weakens the ACI ERF by ~30%. Since aerosol biases in climate models can be an order of magnitude or more, these results suggest that aerosol background concentrations could be a major and under-examined source of uncertainty for modeling ACI.

Hosted file

Supplement_ACI_volcano.docx available at https://authorea.com/users/564186/articles/1216636-aerosol-background-concentrations-influence-aerosol-cloud-interactions-as-much-as-the-choice-of-aerosol-cloud-parameterization

Aerosol background concentrations influence aerosol-cloud interactions as much as the choice of aerosol-cloud parameterization

Louis Marelle¹, Gunnar Myhre², Jennie L. Thomas³, Jean-Christophe Raut¹

¹Sorbonne Université, UVSQ, CNRS, LATMOS, Paris, France ²Center for International Climate Research, Oslo, Norway ³Université Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, Grenoble, France

Key Points:

1

2

3

4

5 6 7

8

9	• 4 aerosol-cloud parameterizations tested in a regional model are consistent with
10	observed cloud changes during the 2014 Holuhraun eruption
11	• Liquid water path (LWP) observations during the eruption are not enough to ex-
12	clude large LWP adjustments in models
13	• Aerosol radiative impacts are as sensitive to background aerosols as to aerosol-cloud
14	interactions parameterization choice

Corresponding author: Louis Marelle, louis.marelle@latmos.ipsl.fr

15 Abstract

We use an independent observational estimate of aerosol-cloud interactions (ACI) dur-16 ing the 2014 Holuhraun volcanic eruption in Iceland to evaluate 4 ACI parameterizations 17 in a regional model. All parameterizations reproduce the observed pattern of liquid cloud 18 droplet size reduction during the eruption, but strongly differ on its magnitude and on 19 the resulting effective radiative forcing (ERF). Our results contradict earlier findings that 20 this eruption could be used to constrain liquid water path (LWP) adjustments in mod-21 els, except to exclude extremely high LWP adjustments of more than 20 g m^{-2} . The mod-22 eled ERF is very sensitive to the non-volcanic background aerosol concentration: dou-23 bling the non-volcanic aerosol background weakens the ACI ERF by $\sim 30\%$. Since aerosol 24 biases in climate models can be an order of magnitude or more, these results suggest that 25 aerosol background concentrations could be a major and under-examined source of un-26 certainty for modeling ACI. 27

²⁸ Plain Language Summary

Particles suspended in the atmosphere (aerosols) play a key role in cloud forma-29 tion. These aerosol-cloud interactions have a major but uncertain influence on climate. 30 We compare 4 different ways to calculate aerosol-cloud interactions in a numerical at-31 mospheric model. We compare model results to observed changes in clouds measured 32 from satellites during the Holuhraun eruption in Iceland in 2014, which released large 33 amounts of volcanic gases forming atmospheric aerosols. We find that all 4 approaches 34 reproduce the observed reduction in cloud droplet sizes during the eruption, but that they 35 disagree on its intensity and its impacts on the Earth's energy budget. An earlier study 36 found that aerosol-cloud interactions did not significantly increase the amount of liquid 37 water in the clouds; using a more recent version of the satellite observations we find that 38 large increases are possible. We also show that the eruption's impacts on the Earth's en-39 ergy budget strongly depend on non-volcanic aerosols already present in the atmosphere: 40 doubling non-volcanic aerosols reduces the impacts by $\sim 30\%$. Aerosol biases in climate 41 models can be far greater, indicating that this could be a major source of uncertainty 42 for aerosol-cloud interactions and for understanding past, present and future climates. 43

44 1 Introduction

In Earth's atmosphere, a liquid cloud droplet can only form on a preexisting aerosol 45 serving as a cloud condensation nucleus (CCN). As a result, the abundance and prop-46 erties of aerosols have a direct influence on the physical and optical properties of clouds, 47 and ultimately on the radiative budget of the Earth, through a range of processes called 48 aerosol-cloud interactions (ACI, e.g. Lohmann & Feichter, 2005). The effective radia-49 tive forcing of ACI is currently estimated at -0.8 W m^{-2} , with likely values ranging from 50 -1.45 to -0.25 W m⁻² (IPCC, 2023). Despite the importance of ACI forcing for climate, 51 this very wide uncertainty range has not been reduced significantly in recent years, and 52 ACI remain the main source of uncertainty for quantifying anthropogenic radiative forc-53 ing, and a key physical uncertainty in climate projections. 54

Aerosols have a cooling effect on the global climate, but clean air policies have helped 55 reduce aerosol pollution in recent years. There is evidence that improvements in air qual-56 ity have also reduced aerosol cooling globally, revealing more of the underlying green-57 house gas warming trend (Quaas et al., 2022; Hodnebrog et al., 2024). In the Arctic, a 58 region particularly sensitive to climate change, this "unmasking" of greenhouse warm-59 ing may have been responsible for +0.8 °C of additional warming from 1990 to 2015, half 60 of the anthropogenic warming trend during the same period (von Salzen et al., 2022). 61 These trends will likely continue in the future because of further emission reductions. 62 In order to improve climate projections and to understand past changes, and to inform 63 the policies that consider the trade-offs between short term and long term climate strate-64

gies, it is thus critical to better constrain the ACI forcing and the main causes of uncertainty between models.

The impacts of ACI are hard to constrain in models because of the complexity of 67 the processes involved, from the underlying microphysical changes to the interactions with 68 cloud-scale and large-scale dynamics (e.g., Lohmann et al., 2016). To the first order, in-69 creasing aerosol concentrations increases liquid cloud droplet numbers and reduces cloud 70 droplet size, forming optically thicker clouds than in aerosol-poor conditions (Twomey, 71 1974). In order to represent this process, climate models use ACI parameterizations of 72 73 varying complexities, but it is unclear how much this range of parameterizations influences the predicted ACI radiative forcing uncertainty (Ekman, 2014), or how to best eval-74 uate them against observations. 75

In fact, modeled ACI are also difficult to evaluate because the effects of ACI are 76 very hard to observe directly. It is possible to compare observations of polluted clouds 77 from unpolluted clouds, but attributing the differences to ACI requires very large datasets 78 for controlling for all other causes of variability. Satellites could provide such a dataset, 79 but they have limited sensitivity to cloud microphysics and are not currently able to es-80 timate vertically resolved aerosol concentrations inside clouds (Quaas et al., 2020). Fur-81 thermore, due to the magnitude of anthropogenic and natural emissions of aerosols and 82 their precursors, it is not feasible either to conduct controlled field experiments, such as 83 emitting large enough amounts of aerosols during a long enough period. Large volcanic 84 eruptions can be thought of as rare natural opportunistic experiments that can help us 85 circumvent this problem (Christensen et al., 2022). 86

The Holuhraun fissure eruption in Iceland, from late August 2014 to February 2015, 87 emitted the equivalent of 2 years of the European Union's anthropogenic SO_2 emissions 88 in just 6 months (Pfeffer et al., 2018; EEA, 2014), with most of the emissions occurring 89 during the first two months of the eruption. During this time, observed cloud droplet 90 sizes in the North Atlantic were reduced far outside the range of natural variability, due 91 to ACI from volcanic aerosols. This independent observational estimate of ACI was com-92 pared previously to the predictions of climate models, showing that several models were 93 inconsistent with observations (Malavelle et al., 2017). 94

In this study, we compare observed ACI in liquid clouds during the Holuhraun erup-95 tion against the predictions of 4 different ACI parameterizations in the same model frame-96 work. Specifically, we evaluate how well the different ACI parameterizations reproduce 97 observed liquis cloud changes during the 2014 Holuhraun eruption, we quantify the un-98 certainty range in ACI radiative effect resulting from the choice of parameterization, and 99 we compare this parameterization uncertainty to the uncertainty due to aerosol biases 100 in the model. We show that the background aerosol concentration is a critical factor for 101 102 modeling ACI accurately, and we discuss the wider implications for radiative forcing and climate modeling in the conclusion. 103

104 2 Methods

105

2.1 WRF-Chem 4.3.3 model

We perform simulations with the Weather Research and Forecasting model including chemistry (WRF-Chem, Grell et al., 2005), starting on 2014-08-15 and ending on 2014-11-01, allowing for 2 weeks of initial spin-up before the start of the eruption on 2014-08-29. The simulation domain is approximately $6000 \text{ km} \times 6000 \text{ km}$ in size, and centered on Iceland. The horizontal resolution is 50 km × 50 km with 72 vertical levels between the surface and 50 hPa. All simulations are performed with WRF-Chem version 4.3.3, including optimizations for polar regions described in Marelle et al. (2017). New model updates since Marelle et al. (2017) are described below, including ACI developments presented in Section 2.1.4.

2.1.1 WRF-Chem chemistry-aerosol setup

Within WRF-Chem, we use the MOZART gas-phase chemistry mechanism (Emmons 116 et al., 2010), and the MOSAIC-4bin sectional aerosol model (Zaveri et al., 2008) includ-117 ing aqueous chemistry (a setup called MOZART-MOSAIC-4BIN-AQ in WRF-Chem). 118 Initial and time-varying boundary conditions for trace gases and aerosols are from the 119 CAM-Chem model (Tilmes et al., 2022). For this study, we also update the dimethyl-120 sulfide (DMS) chemistry scheme in MOZART-MOSAIC-4bin-AQ to von Glasow and Crutzen 121 (2004). The updated DMS mechanism includes MSA aerosols and the associated het-122 erogeneous chemistry. It was partly implemented in WRF-Chem for the CBM-Z and CRIMECH 123 mechannisms by Archer-Nicholls et al. (2014); we include it fully in MOZART-MOSAIC-124 4BIN-AQ. 125

126

115

2.1.2 WRF-Chem meteorological setup

In our simulations, grid-scale cloud microphysics are modeled by the 2-moment Thomp-127 son Aerosol-Aware scheme (Thompson & Eidhammer, 2014), and subgrid clouds by the 128 Grell-3 cumulus scheme (Grell & Dévényi, 2002). We modified the cloud fraction diag-129 nosis in WRF-Chem to follow Xu and Randall (1996). Initial and time-varying (6 hours) 130 boundary conditions for meteorology are taken from the ERA5 reanalysis (Copernicus 131 Climate Change Service, 2017), and spectral nudging to ERA5 is also applied for wind 132 and temperature features over the 700 km scale. The full meteorological setup is pro-133 vided in Table S1. 134

135

151

152

153

2.1.3 Emissions used in WRF-Chem simulations

Daily varying volcanic SO₂ emissions and plume emission heights for the Holuhraun eruption are from Pfeffer et al. (2018). Emissions are injected in WRF-Chem as a uniform source from the provided plume bottom altitude to plume top, at the location of the eruption (64.87°N, 16.84°W). 1% of SO₂ emissions are emitted as primary sulfate (Ilyinskaya et al., 2017).

Anthropogenic emissions are from the CAMSv4.2 inventory, applying sector-dependent daily and hourly emission variations and vertical profiles (Denier van der Gon et al., 2011; Archer-Nicholls et al., 2014). 3% of anthropogenic SO_x is emitted as primary sulfate (Alexander et al., 2009). Open biomass burning emissions are from FINNv1.5 (Wiedinmyer et al., 2014).

Natural sea spray emissions from open oceans follow Ioannidis et al. (2023) but do
not include experimental emissions of marine organics. Dust emissions are included (Chin
et al., 2002), but are very low in the domain. Terrestrial biogenic emissions are from MEGANv2.1
(Guenther et al., 2012), and DMS emissions use the ocean climatology of Lana et al. (2011)
with the sea-air flux from Nightingale et al. (2000).

2.1.4 Aerosol-cloud parameterizations implemented and compared in WRF-Chem

We compare 4 aerosol-cloud interaction parameterizations in the WRF-Chem model:

• TE14: The ACI parameterization of the Thompson aerosol-aware cloud model (Thompson & Eidhammer, 2014) calculates cloud droplet formation based on the thermodynamical conditions in the clouds and 2 aerosol parameters, the water-friendly and

157	ice-friendly aerosol number concentrations. In the base version of the model, TE14
158	initializes these aerosol numbers from a fixed climatology. Here, TE14 uses aerosol
159	numbers predicted by WRF-Chem. The water-friendly aerosol is set as the hy-
160	drophilic volume fraction (sulfate, nitrate, ammonium, sea salt, MSA) of the to-
161	tal WRF-Chem aerosol number in each size bin. To eliminate a source of variabil-
162	ity between simulations, ice-friendly aerosol numbers are set to the fixed minimum
163	model value of 5 L^{-1} . This is consistent with the negligible emission of ice-active
164	volcanic dust in the eruption, and with the low ice nucleating particle numbers
165	at high latitudes (Li et al., 2022).
166	• ARG02: The parameterization of Abdul-Razzak and Ghan (2002) calculates aerosol
167	activation and cloud droplet numbers based on aerosol size, number, and hygro-
168	scopicity in each size bin. It was already included in the WRF-Chem chemistry
169	code as part of the Morrison and Lin microphysic schemes. We reimplemented ARG02
170	into Thompson microphysics, consistently with TE14. For consistency, both TE14
171	and ARG02 include the same sub-grid distribution of updraft velocity from Ghan
172	et al. (1997).
173	• BL95: The parameterization of Boucher and Lohmann (1995) predicts cloud droplet
174	number concentrations as a function of accumulation-mode sulfate mass. We in-
175	clude it in WRF-Chem by overwriting the cloud droplet number passed by Thomp-
176	son microphysics to the radiation code by the BL95-predicted value.
177	• LMDZ6: This parameterization, based on BL95, is used in the LMDZ6 climate
178	model (Madeleine et al., 2020), and predicts cloud droplet number concentrations
179	as a function of accumulation-mode soluble mass. The implementation is the same
180	as in BL95, using the WRF-Chem mass of sulfate, ammonium, and sea salt. The
181	LMDZ6 model does not include nitrate or MSA, so these were not used for the
182	calculation.
183	By design, LMDZ6 and BL95 only represent the effect of aerosols on cloud droplet
184	number and radiation, the so-called "first indirect effect" (Twomey, 1974), while ARG02

¹⁸³ By design, LMDZ6 and BL95 only represent the effect of aerosols on cloud droplet
¹⁸⁴ number and radiation, the so-called "first indirect effect" (Twomey, 1974), while ARG02
¹⁸⁵ and TE14 are also able to represent microphysical adjustments of clouds to ACI, influ¹⁸⁶ encing precipitation, cloud dynamics and lifetime, and liquid water path, the "second
¹⁸⁷ indirect effect" (Albrecht, 1989).

For each of these 4 ACI parameterizations, we perform a control simulation (VOLC) 188 that includes volcanic emissions, and a counterfactual simulation (noVOLC) without vol-189 canic emissions, for a total of 8 simulations. The difference VOLC-noVOLC is used to 190 estimate the effect of ACI due to volcanic aerosols. In order to further reduce differences 191 between simulations, only the ARG02 simulation is run as a fully coupled WRF-Chem 192 simulation with prognostic aerosols. TE14, LMDZ6 and BL95 aerosols are instead forced 193 by the 3-hourly aerosol fields produced by ARG02. Furthermore, to remove the contri-194 bution of direct aerosol-radiation interactions (ARI) from the VOLC-noVOLC signal, 195 all 8 simulations include simplified ARI from identical climatological aerosol fields (Tegen 196 et al., 1997), instead of using prognostic WRF-Chem aerosols. This workflow also has 197 the advantage of speeding up the calculations significantly, allowing for the sensitivity 198 simulations presented in Section 3.4. But the main advantage is that all 4 ACI setups 199 use the exact same meteorological setup, ARI, ice nucleation scheme, and aerosol fields 200 for liquid cloud ACI, ensuring that the only difference between them is the choice of the 201 liquid-cloud ACI parameterization. 202

203

2.2 MODIS observations of clouds for evaluating modeled ACI

We estimate the effect of the eruption on cloud properties using observations from the MODIS instruments on board of the Aqua and Terra satellites, using the 1°×1° monthly gridded cloud products MYD08_M3_6_1 and MOD08_M3_6_1. Specifically, we compute

Figure 1. Cloud liquid droplet effective radius response to volcanic aerosols. a) MODIS-AQUA and b) MODIS-Terra liquid cloud droplet effective radius anomaly in October 2014, 2002-2022 baseline. c-d-e-f) WRF-Chem liquid cloud droplet effective radius anomaly due to volcanic emissions (VOLC - noVOLC anomaly, October 2014 average) using the c) ARG02 d) TE14 e) BL95 and f) LMDZ6 ACI parameterizations. Above each panel, $r_{eff,avg}$ gives the regionally averaged r_{eff} in October 2014, observed or modeled in the Volc simulation.

the October 2014 MODIS liquid effective radius (r_{eff}) and liquid water path (LWP) anomalies from the October 2002-2022 climatological baseline (excluding 2014).

For a like-for-like comparison of MODIS and WRF-Chem, WRF-Chem r_{eff} and 209 LWP are postprocessed to follow the MODIS monthly L3 product procedure (Hubanks 210 et al., 2016). Cloud properties are extracted from the 3-hourly WRF-Chem output, keep-211 ing only daytime scenes with solar zenith angles less than 81.373°, producing daily maps, 212 which are then aggregated to monthly gridded maps of r_{eff} and LWP. MODIS in-cloud 213 LWP is compared with WRF-Chem's grid-scale LWP by multiplying the in-cloud val-214 ues with the liquid cloud fraction. Regionally averaged comparisons in Section 3 are taken 215 over ocean points only, from latitudes 47°N to 77°N, longitudes 60°W to 30°E, with area-216 weighted averaging. 217

218 **3 Results**

219 220

3.1 Effect of the eruption on the cloud droplet radius, and sensitivity to ACI parameterization

In October 2014, during the Holuhraun eruption, the MODIS cloud r_{eff} was significantly smaller than usual. On average in the North Atlantic, the effective radius anomaly $\Delta r_{eff} = -1.48 \mu m$ (Figure 1), outside 2 standard deviations of the climatology ($2\sigma =$ 1.14 μm). This is a consequence of ACI from the additional volcanic aerosols (Malavelle et al., 2017).

Figure 2. Liquid water path response to volcanic aerosols. a) MODIS-AQUA and b) MODIS-Terra liquid water path radius anomaly observed in October 2014, 2002-2022 baseline. c-d-e-f) WRF-Chem liquid water path anomaly due to volcanic emissions (VOLC - NOVOLC anomaly), October 2014 average, using the b) ARG02 c) TE14 d) BL95 and e) LMDZ6 ACI parameterizations. BL95 and LMDZ6 do not include the second indirect effect.

The 4 ACI parameterizations predict a strong r_{eff} reduction in the domain, and 226 reproduce the overall geographical pattern of this change. The modeled Δr_{eff} is sen-227 sitive to the choice of ACI parameterization, with -1.20 μm , -1.63 μm , -1.09 μm and -228 $0.66 \ \mu m$ for ARG02, TE14, BL95, and LMDZ6 respectively (Table S2). The simple BL95 229 parameterization predicts a reasonable Δr_{eff} anomaly, but strongly underestimates the 230 observed absolute r_{eff} by -47%. Conversely, LMDZ6 reproduces the observed r_{eff} but 231 strongly underestimates the observed Δr_{eff} by -55%. Implications for radiative forcing 232 in LMDZ6 are discussed in Section 3.3. 233

3 of the 4 parameterizations underestimate Δr_{eff} . This could be a limitation of 234 the ACI parameterizations themselves, or it could be due to underestimated aerosols in 235 the volcanic plume. During the eruption, the WRF-ARG02 simulation reproduces the 236 observations of fine particle mass concentration $(PM_{2.5})$ at European surface sites very 237 well (Figure S1a). Before the start of the eruption, background aerosol sulfate is also well 238 represented, but after the eruption begins in late August, the model underestimates sul-239 fate at surface sites (Figure S1b). To our knowledge, the vertical distribution of aerosols 240 in the Holuhraun plume was not observed, so it is not clear if the same bias is present 241 at higher altitudes where aerosols interact with clouds, or if it could be due to errors in 242 the downward mixing of the volcanic plume into the boundary layer. In the following, 243 we will focus on the sensitivity of ACI to parameterizations and aerosols in the model. 244

3.2 Effect of the eruption on the liquid water path, and sensitivity to ACI parameterization

Figure 2 compares the observed and modeled LWP anomaly due to the eruption 247 in October 2014. WRF-ARG02 and WRF-TE14 show a weak regionally-averaged ΔLWP 248 response of $+3.9 \text{ g m}^{-2}$ and $+6.8 \text{ g m}^{-2}$) respectively (Table S2), well below the thresh-249 old of observed natural variability ($2\sigma = 19.3 \text{ g m}^{-2}$). It is important to note that BL95 250 and LMDZ6 do not include cloud microphysical adjustments to the r_{eff} change (the sec-251 ond indirect effect). For BL95 and LMDZ6, LWP changes are then only due to random 252 variability and small dynamical adjustments to the first indirect effect, and are as ex-253 pected close to zero. The absolute regionally-averaged LWP is close to 110 g m^{-2} with 254 all parameterizations, significantly lower than MODIS observations ($\sim 180 \text{ g m}^{-2}$), but 255 higher than the climate model simulations in Malavelle et al. (2017) (mean LWP \sim 60 g m⁻²). 256

Using MODIS products from version 5.1, Malavelle et al. (2017) found that the impact of the eruption on LWP was very limited, and could not exceed 9 g m⁻². They concluded that large LWP adjustments in climate models were inconsistent with these observations. Using revised LWP from MODIS version 6.1, and a longer climatological period (2002-2022 excluding 2014 instead of 2002-2013) we find a much larger significance threshold $2\sigma = 19.3$ g m⁻², which is consistent with even the largest climate model ΔLWP of 16.3 g m⁻² from Malavelle et al. (2017).

A recent study suggested that the cloud response to the Holuhraun eruption could be dominated by cloud fraction adjustment, instead of changes in LWP or r_{eff} (Chen et al., 2022). This is not the case here, and WRF-ARG02 and WRF-TE14 predict positive but very small cloud fraction adjustments of +0.4 and +0.8 percentage points respectively (Figure S2 and Table S2).

269 270

245

246

3.3 Sensitivity of the aerosol radiative impact to the ACI parameterization

The regionally averaged radiative effect of ACI on the net shortwave flux at top-271 of-atmosphere (ERF_{aci}^{SW}) in October 2014 is -1.12, -1.97, -1.08 and -0.34 W m⁻² for ARG02, 272 TE14, BL95, and LMDZ6 respectively (Table S2). The weak -0.34 W m $^{-2}$ ERF_{aci}^{SW} in 273 LMDZ6 is consistent with its low Δr_{eff} response. This could explain why the IPSL-CM6 274 climate model, where LMDZ6 is hosted, has the weakest ACI effective radiative forcing 275 among CMIP6 models (Zelinka et al., 2023). Despite very different approaches and com-276 plexities, ARG02 and BL95 predict a similar ERF_{aci}^{SW} . TE14, which best reproduces the 277 observed r_{eff} and Δr_{eff} , also predicts the strongest forcing, nearly 2 times stronger than 278 ARG02 and BL95. 279

280

288

3.4 Sensitivity of the modeled cloud response to the aerosol background

Aerosol-cloud interactions are strongly non-linear. For this reason, the modeled radiative impact of an aerosol perturbation is sensitive to the absolute aerosol concentrations in the background state (Carslaw et al., 2013; Lohmann et al., 2000). In order to estimate the sensitivity of the modeled ACI to the non-volcanic aerosol background, we perform sensitivity experiments in the WRF-Chem model by perturbing the non-volcanic aerosol climatology *aer* (units $\mu g \ kg^{-1}$ and kg^{-1}) used to force the TE14, LMDZ6, and BL95 parameterizations by a factor $\alpha = 0.5, 0.75, 1.5, \text{ or } 2.$

$$aer_{NoVolc, perturbed} = \alpha \times aer_{NoVolc}$$
 (1)

$$aer_{Volc,perturbed} = \alpha \times aer_{NoVolc} + (aer_{Volc} - aer_{NoVolc})$$

$$\tag{2}$$

For each sensitivity simulation, we calculate the VOLC-noVOLC Δr_{eff} and ERF_{aci}^{SW} and compare it to the value from the unperturbed reference run, as a function of the perturbation anomaly $\alpha - 1.0$, which is equal to zero for the unperturbed case. Aerosols

Figure 3. Sensitivity of volcanic aerosol-cloud-interactions to the non-volcanic aerosol background concentration. (left) effective radius anomaly during the eruption (right) indirect shortwave radiative effect of the eruption at top-of-atmosphere. All values are given as percentage changes from the unperturbed reference simulations.

cannot be perturbed directly in ARG02, because they are not forced but computed prognostically in the model. In order to estimate the sensitivity of ARG02 to background aerosol
concentrations, we perturb instead the marine emissions of sea spray and DMS. Since
these sensitivity simulations are fully coupled, they are computationally costly, and we
only perform 2 sensitivity simulations with emissions multiplied by 0.5 and 2.

Figure 3 shows that the droplet effective radius and the aerosol forcing are very sen-297 sitive to the non-volcanic aerosol background. When the background aerosol concentra-298 tion is doubled (+100%), the Δr_{eff} is ~30 to 35% weaker than in the reference run, and 299 the ERF_{aci}^{SW} is ~25 to 35% weaker, even though the volcanic aerosol perturbation is ex-300 actly the same. When the background is divided by 2 (-50%), the Δr_{eff} is ~10 to 30% stronger than in the reference run, and the ERF_{aci}^{SW} is ~10 to 40% larger. Since local 301 302 biases in aerosol background concentrations can often be an order of magnitude or more 303 in climate models (e.g. Lapere et al., 2023; Bian et al., 2024), this effect could be a ma-304 jor source of uncertainty for radiative forcing calculations. 305

4 Discussion, conclusions, and recommendations for climate modeling

In this study, we compare 4 ACI parameterizations in the same regional modeling framework during a large volcanic eruption. We calculate the sensitivity of the cloud response and the aerosol radiative forcing to the choice of parameterization, and the sensitivity of volcanic ACI to the non-volcanic aerosol background.

All 4 ACI parameterizations reproduce the pattern and overall magnitude of the 312 observed change in liquid cloud droplet effective radius during the eruption, but LMDZ6 313 underestimates this change. Modeled ACI are sensitive to ACI parameterization in terms 314 of effective radius and radiative impacts. The ACI radiative impact is very weak for the 315 LMDZ6 ACI parameterization, and we believe that this choice of parameterization could 316 explain the low aerosol ERF in the associated IPSL-CM6 climate model. We did not test 317 the full parameterization panel from CMIP6 models, and our results certainly underes-318 timate the full range of sensitivity to ACI parameterization; however, the types of pa-319 rameterizations tested are representative of this generation of climate models. 320

Our study disagrees with one of the main conclusions of Malavelle et al. (2017): 321 we find that this volcanic case study cannot be used to constrain the ACI LWP adjust-322 ment in climate models, except to rule out very high regional LWP changes of more than 323 $\sim 20 \text{ g m}^{-2}$. These values are much larger than the magnitude of the LWP change due 324 to ACI in WRF-Chem in either ARG02 or TE14 ($\sim 5 \text{ g m}^{-2}$), and consistent with even 325 the largest LWP changes predicted by climate models in Malavelle et al. (2017). Our sim-326 ulations and those of Malavelle et al. (2017) underestimate the observed LWP in the re-327 gion, so further work is needed to fully understand LWP adjustments in models. 328

329 We find that the modeled cloud response to the eruption is also very sensitive to the non-volcanic background aerosol concentration: a doubling of the aerosol background 330 translates into a $\sim -30\%$ change in ACI radiative forcing. This sensitivity is worrying 331 because biases in aerosol mixing ratio in climate models can be far greater. Allen and 332 Landuyt (2014) found that model spread for black carbon aerosols in CMIP5 is up to 333 2 orders of magnitude in the free troposphere, and Lapere et al. (2023); Bian et al. (2024) 334 showed that aerosol differences between models in the remote marine and polar tropo-335 sphere, respectively, can be 1 or 2 orders of magnitude. 336

Nearly 25 years ago, Lohmann et al. (2000) showed that aerosol-cloud radiative forc-337 ing in the ECHAM4 climate model was sensitive to the pre-industrial aerosol burden. 338 Based on this result, Lohmann and Feichter (2005) suggested that the large differences 339 in ERF_{ACI} between models could be due to "the dependence of the indirect aerosol ef-340 fect on the background aerosol concentration". Carslaw et al. (2013) later found that 341 uncertainties in natural emissions could account for 45% of the ERF_{ACI} uncertainty in 342 a single global model. However, to our knowledge, the precise contribution of these er-343 rors to the large CMIP multimodel RF_{ACI} uncertainty has not been investigated since, 344 and was not identified as a major issue in recent efforts for understanding aerosol ERF 345 (Fiedler et al., 2023; Bellouin et al., 2020; Quaas et al., 2020; Mülmenstädt & Feingold. 346 2018; Seinfeld et al., 2016). In light of our results and of earlier literature, we recommend 347 a systematic analysis of how the natural aerosol background influences the ERF_{ACI} spread 348 in climate models. If background aerosols are indeed important, improving the repre-349 sentation of natural aerosols such as sea-spray, sulfate from oceanic DMS, and biomass 350 burning could be a more efficient pathway for reducing ACI uncertainties than difficult 351 improvements in complex aerosol-cloud processes. 352

For this purpose, a detailed evaluation of aerosols in climate models is critical. ACI 353 are determined by aerosol properties within clouds, and are especially sensitive to aerosol 354 concentrations and aerosol size (Dusek et al., 2006). However, aerosols in climate mod-355 els are usually evaluated in terms of vertically integrated bulk properties such as Aerosol 356 Optical Depth (AOD), which is also the usual CCN proxy for observational estimates 357 of the aerosol ERF (Bellouin et al., 2020; Gryspeerdt et al., 2023). This is concerning, 358 because large errors in aerosol concentrations, vertical distributions, water uptake, and 359 size distributions can compensate to give a reasonable AOD in models (Quaas et al., 2020). 360 In this context, we also recommend routine evaluations and comparisons of aerosol ver-361 tical distributions in climate models, for example using the now extensive LiDAR and 362 aircraft measurement datasets. 363

The sensitivity of ACI to aerosol background is not just important in the pre-industrial period and for quantifying ERF_{ACI} in climate models, which has been the focus until now. Our results suggest that tackling these issues and improving the representation of background aerosols in models could also help us better understand the effect of ACI at shorter time scales, including the influence of ACI on specific extreme events, its effect on meteorological forecasts, and the effect of recent and future clean air policies on climate.

³⁷¹ Open Research Section

The updated WRF-Chem 4.3.3 model version used in this study can be found at 372 https://doi.org/10.5281/zenodo.12544534. The WRF preprocessing system 373 (WPS) is available at https://archive.softwareheritage.org/swh:1:dir:2122 374 7ff84043afa53bb870245da4061fe7f0c7ab;origin=https://github.com/wrf-mod 375 el/WPS;visit=swh:1:snp:096256316e752343901abad92a7dd9c2529f48cb;anchor= 376 swh:1:rev:5a2ae63988e632405a4504cfb143ce7f0230a7a0. WRF-Chem preproces-377 sor tools (mozbc, fire_emiss and bio_emiss) are available at https://www2.acom.uca 378 379 r.edu/wrf-chem/wrf-chem-tools-community. WRF-Chem run and setup scripts, preprocessing codes, and post-processing codes created for this study can be found at 380 https://doi.org/10.5281/zenodo.12544354. 381

ERA5 input data on pressure and surface levels for WRF can be obtained at ht 382 tps://doi.org/10.24381/cds.143582cf. CAM-Chem input data for initial and 383 boundary conditions is available at https://doi.org/10.5065/NMP7-EP60.. CAMSv4.2 384 emissions are available at https://ads.atmosphere.copernicus.eu/cdsapp#!/ 385 dataset/cams-global-emission-inventories FINNv1.5 emissions are distributed 386 at https://www.acom.ucar.edu/Data/fire/. The Lana DMS climatology can be 387 found at https://www.bodc.ac.uk/solas_integration/implementation_product 388 s/group1/dms/documents/dmsclimatology.zip. 389

MODIS satellite observations from the MYD08_M3_6_1 and MOD08_M3_6_1 products can be retrieved from https://doi.org/10.5067/MODIS/MYD08_M3.061 and https://doi.org/10.5067/MODIS/MOD08_M3.061. Observations of atmospheric composition used in the supplement are from https://ebas.nilu.no/.

394 Acknowledgments

This project has received funding from Horizon Europe programme under Grant Agree-395 ment No 101137680 via project CERTAINTY (Cloud-aERosol inTeractions & their im-396 pActs IN The earth system); from the European Union's Horizon 2020 research and innovation programme under Grant agreement No 101003826 via project CRiceS (Climate 398 Relevant interactions and feedbacks: the key role of sea ice and Snow in the polar and 399 global climate system); and from the project SUPER (no. 250573) funded through the 400 Research Council of Norway. This research has been partly funded by French National 401 Research Agency (ANR) via the project MPC2 (n° ANR-22-CEA01-0009-02). Computer 402 analyses benefited from access to IDRIS HPC resources (GENCI allocations A011017141 403 and A013017141), and from the IPSL mesocenter ESPRI facility which is supported by 101 CNRS, UPMC, Labex L-IPSL, CNES and Ecole Polytechnique. We acknowledge use of the WRF-Chem preprocessor tools mozbc, fire_emiss and bio_emiss provided by the At-406 mospheric Chemistry Observations and Modeling Lab (ACOM) of NCAR. We acknowl-407 edge ECCAD for the archiving and distribution of the CAMS emissions data. 408

409 **References**

- 410Abdul-Razzak, H., & Ghan, S. J.(2002).A parameterization of aerosol ac-411tivation 3. sectional representation.Journal of Geophysical Research:412Atmospheres, 107(D3), AAC 1-1-AAC 1-6.Retrieved from https ://
- 413
 agupubs .onlinelibrary .wiley .com/doi/abs/10 .1029/2001JD000483

 414
 doi: https://doi.org/10.1029/2001JD000483
- 415Albrecht, B. A.(1989, September).Aerosols, Cloud Microphysics, and Frac-416tional Cloudiness.Science, 245 (4923), 1227–1230.Retrieved 2024-03-19,417from https://www.science.org/doi/10.1126/science.245.4923.1227418(Publisher: American Association for the Advancement of Science)doi:41910.1126/science.245.4923.1227

420	Alexander, B., Park, R. J., Jacob, D. J., & Gong, S. (2009). Transition metal-
421	catalyzed oxidation of atmospheric sulfur: Global implications for the sulfur
422	budget. Journal of Geophysical Research: Atmospheres, $114(D2)$. Retrieved
423	from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/
424	2008JD010486 doi: https://doi.org/10.1029/2008JD010486
425	Allen, R. J., & Landuyt, W. (2014). The vertical distribution of black carbon in
426	cmip5 models: Comparison to observations and the importance of convective
427	transport. Journal of Geophysical Research: Atmospheres, 119(8), 4808-4835.
428	Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/
429	10.1002/2014 JD021595 doi: https://doi.org/10.1002/2014 JD021595
430	Archer-Nicholls, S., Lowe, D., Utembe, S., Allan, J., Zaveri, R. A., Fast, J. D.,
431	McFiggans, G. (2014). Gaseous chemistry and aerosol mecha-
432	nism developments for version 3.5.1 of the online regional model, wrf-
433	chem. Geoscientific Model Development, 7(6), 2557–2579. Retrieved
434	from https://gmd .copernicus .org/articles/7/2557/2014/ doi:
435	10.5194/gmd-7-2557-2014
436	Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson-Parris, D.,
437	Stevens, B. (2020). Bounding global aerosol radiative forcing of
438	climate change. Reviews of Geophysics, 58(1), e2019RG000660. Re-
439	trieved from https :// agupubs .onlinelibrary .wiley .com / doi / abs /
440	10.1029/2019RG000660 (e2019RG000660 10.1029/2019RG000660) doi:
441	https://doi.org/10.1029/2019RG000660
442	Bian, H., Chin, M., Colarco, P. R., Apel, E. C., Blake, D. R., Froyd, K., Zhu,
443	J. (2024). Observationally constrained analysis of sulfur cycle in the ma-
444	rine atmosphere with nasa atom measurements and aerocom model simula-
445	tions. Atmospheric Chemistry and Physics, 24(3), 1717–1741. Retrieved
446	from https://acp.copernicus.org/articles/24/1717/2024/ doi:
447	10.5194/acp-24-1717-2024
448	Boucher, O., & Lohmann, U. (1995, Jan). The sulfate-ccn-cloud albedo effect: A
449	sensitivity study with two general circulation models. Tellus B: Chemical and
450	Physical Meteorology. doi: 10.3402/tellusb.v47i3.16048
451	Carslaw, K. S., Lee, L. A., Reddington, C. L., Pringle, K. J., Rap, A., Forster,
452	P. M., Pierce, J. R. (2013, November). Large contribution of natural
453	aerosols to uncertainty in indirect forcing. Nature, 503(7474), 67–71. Re-
454	trieved 2024-04-18, from https://www.nature.com/articles/nature12674
455	(Publisher: Nature Publishing Group) doi: 10.1038/nature12674
456	Chen, Y., Haywood, J., Wang, Y., Malavelle, F., Jordan, G., Partridge, D.,
457	Lohmann, U. (2022, August). Machine learning reveals climate forcing from
458	aerosols is dominated by increased cloud cover. Nature Geoscience, 15(8),
459	609-614. Retrieved from https://doi.org/10.1038/s41561-022-00991-6
460	doi: 10.1038/s41561-022-00991-6
461	Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N.,
462	Nakajima, T. (2002). Tropospheric aerosol optical thickness from the
463	gocart model and comparisons with satellite and sun photometer mea-
464	surements. J. Atmos. Sci., 59(3), 461–483. Retrieved from http://
465	dx.doi.org/10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2 doi:
466	10.1175/1520-0469(2002)059(0461:TAOTFT)2.0.CO:2
467	Christensen, M. W., Gettelman, A., Cermak, J., Dagan, G., Diamond, M. Douglas
468	A Yuan, T. (2022). Opportunistic experiments to constrain aerosol ef-
469	fective radiative forcing. Atmospheric Chemistry and Physics, 22(1) 641–674
470	Retrieved from https://acp.copernicus.org/articles/22/641/2022/ doi:
471	10.5194/acp-22-641-2022
472	Copernicus Climate Change Service. (2017). ERA5: Fifth generation of ECMWF at-
473	mospheric reanalyses of the global climate. Retrieved from http://doi.org/

475	Store (CDS), last accessed May 11^{th} 2021)
476	Denier van der Gon, H., Hendriks, C., Kuenen, J., Segers, A. A., & Visschedijk, A.
477	(2011). Description of current temporal emission patterns and sensitivity of
478	predicted AQ for temporal emission patterns, TNO Report, EU FP7 MACC de-
479	liverable report D_DEMIS_1.3 (Tech. Rep.). Princetonlaan 6, 3584 CB Utrecht,
480	The Netherlands: TNO.
481	Dusek, U., Frank, G. P., Hildebrandt, L., Curtius, J., Schneider, J., Walter, S.,
482	Andreae, M. O. (2006). Size matters more than chemistry for cloud-nucleating
483	ability of aerosol particles. Science, 312(5778), 1375-1378. Retrieved from
484	https://www.science.org/doi/abs/10.1126/science.1125261 doi:
485	10.1126/science.1125261
486	EEA. (2014). Emission trends of sulphur oxides [Data Visualization]. Retrieved
487	$2024-04-17,from\;https://www\;.eea\;.europa\;.eu/data\;-and\;-maps/daviz/$
488	emission-trends-of-sulphur-oxides#tab-chart_1
489	Ekman, A. M. L. (2014). Do sophisticated parameterizations of aerosol-
490	cloud interactions in CMIP5 models improve the representation of re-
491	cent observed temperature trends? Journal of Geophysical Research:
492	Atmospheres, 119(2), 817–832. Retrieved 2024-04-17, from https://
493	onlinelibrary .wiley .com/doi/abs/10 .1002/2013JD020511 (_eprint:
494	nttps://onlineilorary.wiley.com/doi/pdf/10.1002/2013JD020511) doi: 10.1002/2013JD020511
495	10.1002/2013JD020311
496	Emmons, L. K., Walters, S., Hess, P. G., Lamarque, JF., Pinster, G. G., Filimore, New York, S. (2010) December of the Model for Ozono
497	and Balated abamical Tracers version $4 (MOZAPT 4)$ Casacientific Model
498	Development 3(1) 43-67 doi: 10.5104/gmd-3-43-2010
499	Fiedler S van Noije T Smith C I Boucher O Dufresne I-L Kirkevåg A
500	Schulz M (2023) Historical changes and reasons for model differences in
502	anthropogenic aerosol forcing in cmip6 Geophysical Research Letters 50(15)
502	e2023GL104848. Retrieved from https://agupubs.onlinelibrary.wilev
504	.com/doi/abs/10.1029/2023GL104848 (e2023GL104848 2023GL104848) doi:
505	https://doi.org/10.1029/2023GL104848
506	Ghan, S. J., Leung, L. R., Easter, R. C., & Abdul-Razzak, H. (1997). Prediction
507	of cloud droplet number in a general circulation model. Journal of Geophysi-
508	cal Research: Atmospheres, 102(D18), 21777-21794. Retrieved from https://
509	agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/97JD01810 $ m doi$:
510	https://doi.org/10.1029/97JD01810
511	Grell, G. A., & Dévényi, D. (2002). A generalized approach to parameterizing con-
512	vection combining ensemble and data assimilation techniques. Geophysical Re-
513	search Letters, $29(14)$, $38-1-38-4$. doi: $10.1029/2002$ GL015311
514	Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock,
515	W. C., & Eder, B. (2005). Fully coupled "online" chemistry within
516	the wrf model. Atmospheric Environment, 39(37), 6957-6975. Re-
517	trieved from https://www.sciencedirect.com/science/article/pii/
518	Commendation F. Derver, A. C. Chain and B. C. Handlaum, O. Han, N. C. Malanhar
519	Gryspeerut, E., Povey, A. C., Granger, R. G., Hasekamp, O., Hsu, N. C., Mulcany,
520	is driven by clean conditions Atmospheric Chemistry and Physica 99(7)
521	$4115-4122$ Retrieved from https://acn_conernicus_org/articles/23/
523	4115/2023/ doi: 10.5194/acp-23-4115-2023
524	Guenther, A. B., Jiang, X., Heald C. L. Sakulvanontvittava T. Duhl T. Em-
525	mons. L. K., & Wang, X. (2012). The Model of Emissions of Gases and
526	Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated
527	framework for modeling biogenic emissions. <i>Geoscientific Model Development</i> .
528	5(6), 1471–1492. doi: 10.5194/gmd-5-1471-2012
529	Hodnebrog, O., Myhre, G., Jouan, C., Andrews, T., Forster, P. M., Jia, H.,

530	Schulz, M. (2024, April). Recent reductions in aerosol emissions have
531	increased Earth's energy imbalance. Communications Earth & Environ-
532	ment, 5(1), 1-9. Retrieved 2024-04-17, from https://www .nature .com/
533	articles/s43247-024-01324-8 (Publisher: Nature Publishing Group) doi:
534	10.1038/s43247-024-01324-8
535	Hubanks, P., Platnick, S., King, M., & Ridgway, B. (2016). MODIS Atmosphere
536	L3 Gridded Product Algorithm Theoretical Basis Document (ATBD) & Users
537	Guide (Tech. Rep.). NASA EOS.
538	Ilyinskaya, E., Schmidt, A., Mather, T. A., Pope, F. D., Witham, C., Baxter, P.,
539	Edmonds, M. (2017). Understanding the environmental impacts of large
540	fissure eruptions: Aerosol and gas emissions from the 2014–2015 holuhraun
541	eruption (iceland). Earth and Planetary Science Letters, 472, 309-322. Re-
542	trieved from https://www .sciencedirect .com/science/article/pii/
543	S0012821X17302911 doi: https://doi.org/10.1016/j.epsl.2017.05.025
544	Ioannidis, E., Law, K. S., Raut, JC., Marelle, L., Onishi, T., Kirpes, R. M.,
545	Pratt, K. A. (2023). Modelling wintertime sea-spray aerosols under arctic
546	haze conditions. Atmospheric Chemistry and Physics, 23(10), 5641–5678. Re-
547	trieved from https://acp.copernicus.org/articles/23/5641/2023/ doi:
548	10.5194/acp-23-5641-2023
549	IPCC. (2023). The earth's energy budget, climate feedbacks and climate sensitivity.
550	In Climate change 2021 – the physical science basis: Working group i contri-
551	bution to the sixth assessment report of the intergovernmental panel on climate
552	change (p. 923–1054). Cambridge University Press.
553	Lana, A., Bell, T. G., Simó, R., Vallina, S. M., Ballabrera-Poy, J., Kettle, A. J.,
554	Liss. P. S. (2011). An updated climatology of surface dimethlysulfide concen-
555	trations and emission fluxes in the global ocean. <i>Global Biogeochemical Cucles</i> .
556	25(1), doi: 10.1029/2010GB003850
557	Lapere, R., Thomas, J. L., Marelle, L., Ekman, A. M. L., Frey, M. M., Lund,
558	M. T Zieger, P. (2023). The representation of sea salt aerosols
559	and their role in polar climate within cmip6. Journal of Geophysical Re-
560	search: Atmospheres, 128(6), e2022JD038235. Retrieved from https://
561	agupubs .onlinelibrary .wiley .com/doi/abs/10 .1029/2022JD038235
562	(e2022JD038235 2022JD038235) doi: https://doi.org/10.1029/2022JD038235
563	Li, G., Wieder, J., Pasquier, J. T., Henneberger, J., & Kanii, Z. A. (2022). Predict-
564	ing atmospheric background number concentration of ice-nucleating particles
565	in the arctic. Atmospheric Chemistry and Physics, 22(21), 14441–14454. Re-
566	trieved from https://acp.copernicus.org/articles/22/14441/2022/ doi:
567	10.5194/acp-22-14441-2022
568	Lohmann U & Feichter J (2005 March) Global indirect aerosol effects: a re-
569	view. Atmospheric Chemistry and Physics, 5(3), 715–737. Retrieved 2024-04-
570	17. from https://acp.copernicus.org/articles/5/715/2005/ (Publisher:
571	Copernicus GmbH) doi: 10.5194/acp-5-715-2005
572	Lohmann II Feichter I Penner I & Leaitch B (2000) Indirect effect of sul-
573	fate and carbonaceous aerosols: A mechanistic treatment <i>Journal of Geophys</i> -
574	ical Research: Atmospheres 105(D10) 12193-12206 Betrieved from https://
575	agunubs.onlinelibrary.wiley.com/doi/abs/10.1029/1999.ID901199_doi
576	https://doi.org/10.1029/1999.ID901199
577	Lohmann II Lijond F & Mahrt F (2016) An Introduction to Clouds: From
579	the Microscale to Climate Cambridge: Cambridge University Press Re-
570	trieved 2024-04-17 from https://www.cambridge.org/core/books/
580	an -introduction -to -clouds / F5A8096E7A3RD5C8FFD9208248DD1839 doi:
581	10.1017/CBO9781139087513
501	Madeleine J-B Hourdin F Grandneix J-V Rio C Dufresne J-L Vignon
583	E Bonazzola, M. (2020) Improved representation of clouds in the
584	atmospheric component Imdz6a of the insl-cm6a earth system model
-	I I I I I I I I I I I I I I I I I I I

585	nal of Advances in Modeling Earth Systems, $12(10)$, $e2020MS002046$. Re-
586	trieved from https :// agupubs .onlinelibrary .wiley .com / doi / abs /
587	10.1029/2020MS002046 (e2020MS002046 10.1029/2020MS002046) doi:
588	https://doi.org/10.1029/2020MS002046
589	Malavelle, F. F., Haywood, J. M., Jones, A., Gettelman, A., Clarisse, L., Bauduin,
590	S., Thordarson, T. (2017, June). Strong constraints on aerosol-cloud in-
591	teractions from volcanic eruptions. <i>Nature</i> , 546(7659), 485–491. Retrieved
592	2024-04-17, from https://www.nature.com/articles/nature22974 (Pub-
593	lisher: Nature Publishing Group) doi: 10.1038/nature22974
594	Marelle, L., Raut, JC., Law, K. S., Berg, L. K., Fast, J. D., Easter, B. C.,
505	Thomas J. L. (2017) Improvements to the wrf-chem 3.5.1 model for quasi-
595	hemispheric simulations of aerosols and ozone in the arctic <i>Geoscientific Model</i>
590	$Development 10(10) 3661-3677$ Betrieved from https://gmd_copernicus
597	org/articles/10/3661/2017/ doi: 10.5194/gmd-10-3661-2017
590	Mülmonstödt I & Foingold C (2018 March) The Padiative Foreing of
599	Acrossel Cloud Interactions in Liquid Clouds: Wrestling and Embracing
600	Heroson-Cloud Interactions in Liquid Clouds: wresting and Embracing
601	Uncertainty. Current Cumule Change Reports, $4(1)$, 25–40. Retrieved
602	2024-04-18, from fittps :// doi .org/10.1007/s40641-018-0089-y doi: 10.1007/s40641.018.0080
603	10.1007/\$40041-018-0089-y
604	Nightingale, P. D., Malin, G., Law, C. S., Watson, A. J., Liss, P. S., Liddi-
605	coat, M. I., Upstill-Goddard, R. C. (2000). In situ evaluation of air-
606	sea gas exchange parameterizations using novel conservative and volatile
607	tracers. Global Biogeochemical Cycles, 14(1), 373–387. Retrieved from
608	http://dx.doi.org/10.1029/1999GB900091 doi: 10.1029/1999GB900091
609	Pfeffer, M. A., Bergsson, B., Barsotti, S., Stefánsdóttir, G., Galle, B., Arellano, S.,
610	Mereu, L. (2018). Ground-based measurements of the 2014–2015 holuhraun
611	volcanic cloud (iceland). Geosciences, 8(1). Retrieved from https://
612	www.mdpi.com/2076-3263/8/1/29 doi: 10.3390/geosciences8010029
613	Quaas, J., Arola, A., Cairns, B., Christensen, M., Deneke, H., Ekman, A. M. L.,
614	Wendisch, M. (2020). Constraining the twomey effect from satellite observa-
615	tions: issues and perspectives. Atmospheric Chemistry and Physics, $20(23)$,
616	15079-15099. Retrieved 2024-04-17, from https://acp.copernicus.org/
617	articles / 20 / 15079 / 2020 / (Publisher: Copernicus GmbH) doi:
618	10.5194/acp-20-15079-2020
619	Quaas, J., Jia, H., Smith, C., Albright, A. L., Aas, W., Bellouin, N., Schulz, M.
620	(2022). Robust evidence for reversal of the trend in aerosol effective climate
621	forcing. Atmospheric Chemistry and Physics, 22(18), 12221–12239. Retrieved
622	from https://acp.copernicus.org/articles/22/12221/2022/ doi:
623	10.5194/acp-22-12221-2022
624	Seinfeld, J. H., Bretherton, C., Carslaw, K. S., Coe, H., DeMott, P. J., Dunlea,
625	E. J., Wood, R. (2016). Improving our fundamental understanding
626	of the role of aerosol-cloud interactions in the climate system. Proceed-
627	ings of the National Academy of Sciences, 113(21), 5781-5790. Retrieved
628	from https://www.pnas.org/doi/abs/10.1073/pnas.1514043113 doi:
629	10.1073/pnas.1514043113
630	Tegen, I., Hollrig, P., Chin, M., Fung, I., Jacob, D., & Penner, J. (1997). Con-
631	tribution of different aerosol species to the global aerosol extinction opti-
632	cal thickness: Estimates from model results. Journal of Geophysical Re-
633	search: Atmospheres, 102(D20), 23895-23915. Retrieved from https ://
634	agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/97JD01864 doi:
635	https://doi.org/10.1029/97JD01864
636	Thompson, G., & Eidhammer, T. (2014). A study of aerosol impacts on clouds
637	and precipitation development in a large winter cyclone. Journal of the
638	Atmospheric Sciences, 71(10), 3636 - 3658. Retrieved from https ://
639	journals.ametsoc.org/view/journals/atsc/71/10/jas-d-13-0305.1.xml

640	doi: 10.1175/JAS-D-13-0305.1
641	Tilmes, S., Emmons, L., Buchholz, R., & Team, T. C. D. (2022). [data set]
642	cesm2.2/cam-chem output for boundary conditions. ucar/ncar - atmospheric
643	chemistry observations and modeling laboratory. (Accessed 01 FEB 2024) doi:
644	https://doi.org/10.5065/XS0R-QE86
645	Twomey, S. (1974, December). Pollution and the planetary albedo. Atmospheric
646	Environment (1967), 8(12), 1251–1256. Retrieved 2024-03-19, from https://
647	www.sciencedirect.com/science/article/pii/0004698174900043 $ m doi: 10$
648	.1016/0004- $6981(74)90004$ - 3
649	von Glasow, R., & Crutzen, P. J. (2004). Model study of multiphase dms oxidation
650	with a focus on halogens. Atmospheric Chemistry and Physics, $4(3)$, 589–608.
651	Retrieved from https://acp.copernicus.org/articles/4/589/2004/ doi:
652	10.5194/acp-4-589-2004
653	von Salzen, K., Whaley, C. H., Anenberg, S. C., Van Dingenen, R., Klimont, Z.,
654	Flanner, M. G., Winter, B. (2022, October). Clean air policies are key
655	for successfully mitigating Arctic warming. Communications Earth \mathcal{B} Envi-
656	ronment, 3(1), 1-11. Retrieved 2024-03-19, from https://www.nature.com/
657	articles/s43247-022-00555-x (Publisher: Nature Publishing Group) doi:
658	10.1038/s43247-022-00555-x
659	Wiedinmyer, C., Yokelson, R. J., & Gullett, B. K. (2014). Global Emissions of Trace
660	Gases, Particulate Matter, and Hazardous Air Pollutants from Open Burning
661	of Domestic Waste. Environmental Science & Technology, 48(16), 9523–9530.
662	doi: 10.1021/es502250z
663	Xu, KM., & Randall, D. A. (1996). A semiempirical cloudiness parameteriza-
664	tion for use in climate models. Journal of Atmospheric Sciences, 53(21), 3084
665	- 3102. Retrieved from https://journals.ametsoc.org/view/journals/
666	$atsc/53/21/1520=0409_1996_053_3084_ascpiu_2_0_co_2.xm1 = 001: 10.1170/1500 0400(1000)052/2004.4SCDEU(2.0.00.2)$
667	1520-0409(1996)053(3084:ASOPFU)2.0.CU;2
668	Laveri, R. A., Easter, R. C., Fast, J. D., & Peters, L. K. (2008). Model for Simu-
669	Research, Atmospheres, 112(D12), doi: 10.1020/2007 ID008782
670	Zalinka M.D. Smith C. I. Oin V. & Taylon K.E. (2022) Companian of
671	methods to estimate percent affective radiative foreings in alimate mod
b72	als Atmospheric Chemistry and Physics 92(15) 8870, 8808 Detrioyod
0/3	from $https://acp_concernicus_org/articles/23/8870/2023/doi:$
0/4	$10.5104/_{2}$ = 22.8870-2023
0/5	10.0134/ acp-20-0017-2020

Aerosol background concentrations influence aerosol-cloud interactions as much as the choice of aerosol-cloud parameterization

Louis Marelle¹, Gunnar Myhre², Jennie L. Thomas³, Jean-Christophe Raut¹

¹Sorbonne Université, UVSQ, CNRS, LATMOS, Paris, France ²Center for International Climate Research, Oslo, Norway ³Université Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, Grenoble, France

Key Points:

1

2

3

4

5 6 7

8

9	• 4 aerosol-cloud parameterizations tested in a regional model are consistent with
10	observed cloud changes during the 2014 Holuhraun eruption
11	• Liquid water path (LWP) observations during the eruption are not enough to ex-
12	clude large LWP adjustments in models
13	• Aerosol radiative impacts are as sensitive to background aerosols as to aerosol-cloud
14	interactions parameterization choice

Corresponding author: Louis Marelle, louis.marelle@latmos.ipsl.fr

15 Abstract

We use an independent observational estimate of aerosol-cloud interactions (ACI) dur-16 ing the 2014 Holuhraun volcanic eruption in Iceland to evaluate 4 ACI parameterizations 17 in a regional model. All parameterizations reproduce the observed pattern of liquid cloud 18 droplet size reduction during the eruption, but strongly differ on its magnitude and on 19 the resulting effective radiative forcing (ERF). Our results contradict earlier findings that 20 this eruption could be used to constrain liquid water path (LWP) adjustments in mod-21 els, except to exclude extremely high LWP adjustments of more than 20 g m^{-2} . The mod-22 eled ERF is very sensitive to the non-volcanic background aerosol concentration: dou-23 bling the non-volcanic aerosol background weakens the ACI ERF by $\sim 30\%$. Since aerosol 24 biases in climate models can be an order of magnitude or more, these results suggest that 25 aerosol background concentrations could be a major and under-examined source of un-26 certainty for modeling ACI. 27

²⁸ Plain Language Summary

Particles suspended in the atmosphere (aerosols) play a key role in cloud forma-29 tion. These aerosol-cloud interactions have a major but uncertain influence on climate. 30 We compare 4 different ways to calculate aerosol-cloud interactions in a numerical at-31 mospheric model. We compare model results to observed changes in clouds measured 32 from satellites during the Holuhraun eruption in Iceland in 2014, which released large 33 amounts of volcanic gases forming atmospheric aerosols. We find that all 4 approaches 34 reproduce the observed reduction in cloud droplet sizes during the eruption, but that they 35 disagree on its intensity and its impacts on the Earth's energy budget. An earlier study 36 found that aerosol-cloud interactions did not significantly increase the amount of liquid 37 water in the clouds; using a more recent version of the satellite observations we find that 38 large increases are possible. We also show that the eruption's impacts on the Earth's en-39 ergy budget strongly depend on non-volcanic aerosols already present in the atmosphere: 40 doubling non-volcanic aerosols reduces the impacts by $\sim 30\%$. Aerosol biases in climate 41 models can be far greater, indicating that this could be a major source of uncertainty 42 for aerosol-cloud interactions and for understanding past, present and future climates. 43

44 1 Introduction

In Earth's atmosphere, a liquid cloud droplet can only form on a preexisting aerosol 45 serving as a cloud condensation nucleus (CCN). As a result, the abundance and prop-46 erties of aerosols have a direct influence on the physical and optical properties of clouds, 47 and ultimately on the radiative budget of the Earth, through a range of processes called 48 aerosol-cloud interactions (ACI, e.g. Lohmann & Feichter, 2005). The effective radia-49 tive forcing of ACI is currently estimated at -0.8 W m^{-2} , with likely values ranging from 50 -1.45 to -0.25 W m⁻² (IPCC, 2023). Despite the importance of ACI forcing for climate, 51 this very wide uncertainty range has not been reduced significantly in recent years, and 52 ACI remain the main source of uncertainty for quantifying anthropogenic radiative forc-53 ing, and a key physical uncertainty in climate projections. 54

Aerosols have a cooling effect on the global climate, but clean air policies have helped 55 reduce aerosol pollution in recent years. There is evidence that improvements in air qual-56 ity have also reduced aerosol cooling globally, revealing more of the underlying green-57 house gas warming trend (Quaas et al., 2022; Hodnebrog et al., 2024). In the Arctic, a 58 region particularly sensitive to climate change, this "unmasking" of greenhouse warm-59 ing may have been responsible for +0.8 °C of additional warming from 1990 to 2015, half 60 of the anthropogenic warming trend during the same period (von Salzen et al., 2022). 61 These trends will likely continue in the future because of further emission reductions. 62 In order to improve climate projections and to understand past changes, and to inform 63 the policies that consider the trade-offs between short term and long term climate strate-64

gies, it is thus critical to better constrain the ACI forcing and the main causes of uncertainty between models.

The impacts of ACI are hard to constrain in models because of the complexity of 67 the processes involved, from the underlying microphysical changes to the interactions with 68 cloud-scale and large-scale dynamics (e.g., Lohmann et al., 2016). To the first order, in-69 creasing aerosol concentrations increases liquid cloud droplet numbers and reduces cloud 70 droplet size, forming optically thicker clouds than in aerosol-poor conditions (Twomey, 71 1974). In order to represent this process, climate models use ACI parameterizations of 72 73 varying complexities, but it is unclear how much this range of parameterizations influences the predicted ACI radiative forcing uncertainty (Ekman, 2014), or how to best eval-74 uate them against observations. 75

In fact, modeled ACI are also difficult to evaluate because the effects of ACI are 76 very hard to observe directly. It is possible to compare observations of polluted clouds 77 from unpolluted clouds, but attributing the differences to ACI requires very large datasets 78 for controlling for all other causes of variability. Satellites could provide such a dataset, 79 but they have limited sensitivity to cloud microphysics and are not currently able to es-80 timate vertically resolved aerosol concentrations inside clouds (Quaas et al., 2020). Fur-81 thermore, due to the magnitude of anthropogenic and natural emissions of aerosols and 82 their precursors, it is not feasible either to conduct controlled field experiments, such as 83 emitting large enough amounts of aerosols during a long enough period. Large volcanic 84 eruptions can be thought of as rare natural opportunistic experiments that can help us 85 circumvent this problem (Christensen et al., 2022). 86

The Holuhraun fissure eruption in Iceland, from late August 2014 to February 2015, 87 emitted the equivalent of 2 years of the European Union's anthropogenic SO_2 emissions 88 in just 6 months (Pfeffer et al., 2018; EEA, 2014), with most of the emissions occurring 89 during the first two months of the eruption. During this time, observed cloud droplet 90 sizes in the North Atlantic were reduced far outside the range of natural variability, due 91 to ACI from volcanic aerosols. This independent observational estimate of ACI was com-92 pared previously to the predictions of climate models, showing that several models were 93 inconsistent with observations (Malavelle et al., 2017). 94

In this study, we compare observed ACI in liquid clouds during the Holuhraun erup-95 tion against the predictions of 4 different ACI parameterizations in the same model frame-96 work. Specifically, we evaluate how well the different ACI parameterizations reproduce 97 observed liquis cloud changes during the 2014 Holuhraun eruption, we quantify the un-98 certainty range in ACI radiative effect resulting from the choice of parameterization, and 99 we compare this parameterization uncertainty to the uncertainty due to aerosol biases 100 in the model. We show that the background aerosol concentration is a critical factor for 101 102 modeling ACI accurately, and we discuss the wider implications for radiative forcing and climate modeling in the conclusion. 103

104 2 Methods

105

2.1 WRF-Chem 4.3.3 model

We perform simulations with the Weather Research and Forecasting model including chemistry (WRF-Chem, Grell et al., 2005), starting on 2014-08-15 and ending on 2014-11-01, allowing for 2 weeks of initial spin-up before the start of the eruption on 2014-08-29. The simulation domain is approximately $6000 \text{ km} \times 6000 \text{ km}$ in size, and centered on Iceland. The horizontal resolution is 50 km × 50 km with 72 vertical levels between the surface and 50 hPa. All simulations are performed with WRF-Chem version 4.3.3, including optimizations for polar regions described in Marelle et al. (2017). New model updates since Marelle et al. (2017) are described below, including ACI developments presented in Section 2.1.4.

2.1.1 WRF-Chem chemistry-aerosol setup

Within WRF-Chem, we use the MOZART gas-phase chemistry mechanism (Emmons 116 et al., 2010), and the MOSAIC-4bin sectional aerosol model (Zaveri et al., 2008) includ-117 ing aqueous chemistry (a setup called MOZART-MOSAIC-4BIN-AQ in WRF-Chem). 118 Initial and time-varying boundary conditions for trace gases and aerosols are from the 119 CAM-Chem model (Tilmes et al., 2022). For this study, we also update the dimethyl-120 sulfide (DMS) chemistry scheme in MOZART-MOSAIC-4bin-AQ to von Glasow and Crutzen 121 (2004). The updated DMS mechanism includes MSA aerosols and the associated het-122 erogeneous chemistry. It was partly implemented in WRF-Chem for the CBM-Z and CRIMECH 123 mechannisms by Archer-Nicholls et al. (2014); we include it fully in MOZART-MOSAIC-124 4BIN-AQ. 125

126

115

2.1.2 WRF-Chem meteorological setup

In our simulations, grid-scale cloud microphysics are modeled by the 2-moment Thomp-127 son Aerosol-Aware scheme (Thompson & Eidhammer, 2014), and subgrid clouds by the 128 Grell-3 cumulus scheme (Grell & Dévényi, 2002). We modified the cloud fraction diag-129 nosis in WRF-Chem to follow Xu and Randall (1996). Initial and time-varying (6 hours) 130 boundary conditions for meteorology are taken from the ERA5 reanalysis (Copernicus 131 Climate Change Service, 2017), and spectral nudging to ERA5 is also applied for wind 132 and temperature features over the 700 km scale. The full meteorological setup is pro-133 vided in Table S1. 134

135

151

152

153

2.1.3 Emissions used in WRF-Chem simulations

Daily varying volcanic SO₂ emissions and plume emission heights for the Holuhraun eruption are from Pfeffer et al. (2018). Emissions are injected in WRF-Chem as a uniform source from the provided plume bottom altitude to plume top, at the location of the eruption (64.87°N, 16.84°W). 1% of SO₂ emissions are emitted as primary sulfate (Ilyinskaya et al., 2017).

Anthropogenic emissions are from the CAMSv4.2 inventory, applying sector-dependent daily and hourly emission variations and vertical profiles (Denier van der Gon et al., 2011; Archer-Nicholls et al., 2014). 3% of anthropogenic SO_x is emitted as primary sulfate (Alexander et al., 2009). Open biomass burning emissions are from FINNv1.5 (Wiedinmyer et al., 2014).

Natural sea spray emissions from open oceans follow Ioannidis et al. (2023) but do
not include experimental emissions of marine organics. Dust emissions are included (Chin
et al., 2002), but are very low in the domain. Terrestrial biogenic emissions are from MEGANv2.1
(Guenther et al., 2012), and DMS emissions use the ocean climatology of Lana et al. (2011)
with the sea-air flux from Nightingale et al. (2000).

2.1.4 Aerosol-cloud parameterizations implemented and compared in WRF-Chem

We compare 4 aerosol-cloud interaction parameterizations in the WRF-Chem model:

• TE14: The ACI parameterization of the Thompson aerosol-aware cloud model (Thompson & Eidhammer, 2014) calculates cloud droplet formation based on the thermodynamical conditions in the clouds and 2 aerosol parameters, the water-friendly and

157	ice-friendly aerosol number concentrations. In the base version of the model, TE14
158	initializes these aerosol numbers from a fixed climatology. Here, TE14 uses aerosol
159	numbers predicted by WRF-Chem. The water-friendly aerosol is set as the hy-
160	drophilic volume fraction (sulfate, nitrate, ammonium, sea salt, MSA) of the to-
161	tal WRF-Chem aerosol number in each size bin. To eliminate a source of variabil-
162	ity between simulations, ice-friendly aerosol numbers are set to the fixed minimum
163	model value of 5 L^{-1} . This is consistent with the negligible emission of ice-active
164	volcanic dust in the eruption, and with the low ice nucleating particle numbers
165	at high latitudes (Li et al., 2022).
166	• ARG02: The parameterization of Abdul-Razzak and Ghan (2002) calculates aerosol
167	activation and cloud droplet numbers based on aerosol size, number, and hygro-
168	scopicity in each size bin. It was already included in the WRF-Chem chemistry
169	code as part of the Morrison and Lin microphysic schemes. We reimplemented ARG02
170	into Thompson microphysics, consistently with TE14. For consistency, both TE14
171	and ARG02 include the same sub-grid distribution of updraft velocity from Ghan
172	et al. (1997).
173	• BL95: The parameterization of Boucher and Lohmann (1995) predicts cloud droplet
174	number concentrations as a function of accumulation-mode sulfate mass. We in-
175	clude it in WRF-Chem by overwriting the cloud droplet number passed by Thomp-
176	son microphysics to the radiation code by the BL95-predicted value.
177	• LMDZ6: This parameterization, based on BL95, is used in the LMDZ6 climate
178	model (Madeleine et al., 2020), and predicts cloud droplet number concentrations
179	as a function of accumulation-mode soluble mass. The implementation is the same
180	as in BL95, using the WRF-Chem mass of sulfate, ammonium, and sea salt. The
181	LMDZ6 model does not include nitrate or MSA, so these were not used for the
182	calculation.
183	By design, LMDZ6 and BL95 only represent the effect of aerosols on cloud droplet
184	number and radiation, the so-called "first indirect effect" (Twomey, 1974), while ARG02

¹⁸³ By design, LMDZ6 and BL95 only represent the effect of aerosols on cloud droplet
¹⁸⁴ number and radiation, the so-called "first indirect effect" (Twomey, 1974), while ARG02
¹⁸⁵ and TE14 are also able to represent microphysical adjustments of clouds to ACI, influ¹⁸⁶ encing precipitation, cloud dynamics and lifetime, and liquid water path, the "second
¹⁸⁷ indirect effect" (Albrecht, 1989).

For each of these 4 ACI parameterizations, we perform a control simulation (VOLC) 188 that includes volcanic emissions, and a counterfactual simulation (noVOLC) without vol-189 canic emissions, for a total of 8 simulations. The difference VOLC-noVOLC is used to 190 estimate the effect of ACI due to volcanic aerosols. In order to further reduce differences 191 between simulations, only the ARG02 simulation is run as a fully coupled WRF-Chem 192 simulation with prognostic aerosols. TE14, LMDZ6 and BL95 aerosols are instead forced 193 by the 3-hourly aerosol fields produced by ARG02. Furthermore, to remove the contri-194 bution of direct aerosol-radiation interactions (ARI) from the VOLC-noVOLC signal, 195 all 8 simulations include simplified ARI from identical climatological aerosol fields (Tegen 196 et al., 1997), instead of using prognostic WRF-Chem aerosols. This workflow also has 197 the advantage of speeding up the calculations significantly, allowing for the sensitivity 198 simulations presented in Section 3.4. But the main advantage is that all 4 ACI setups 199 use the exact same meteorological setup, ARI, ice nucleation scheme, and aerosol fields 200 for liquid cloud ACI, ensuring that the only difference between them is the choice of the 201 liquid-cloud ACI parameterization. 202

203

2.2 MODIS observations of clouds for evaluating modeled ACI

We estimate the effect of the eruption on cloud properties using observations from the MODIS instruments on board of the Aqua and Terra satellites, using the 1°×1° monthly gridded cloud products MYD08_M3_6_1 and MOD08_M3_6_1. Specifically, we compute

Figure 1. Cloud liquid droplet effective radius response to volcanic aerosols. a) MODIS-AQUA and b) MODIS-Terra liquid cloud droplet effective radius anomaly in October 2014, 2002-2022 baseline. c-d-e-f) WRF-Chem liquid cloud droplet effective radius anomaly due to volcanic emissions (VOLC - noVOLC anomaly, October 2014 average) using the c) ARG02 d) TE14 e) BL95 and f) LMDZ6 ACI parameterizations. Above each panel, $r_{eff,avg}$ gives the regionally averaged r_{eff} in October 2014, observed or modeled in the Volc simulation.

the October 2014 MODIS liquid effective radius (r_{eff}) and liquid water path (LWP) anomalies from the October 2002-2022 climatological baseline (excluding 2014).

For a like-for-like comparison of MODIS and WRF-Chem, WRF-Chem r_{eff} and 209 LWP are postprocessed to follow the MODIS monthly L3 product procedure (Hubanks 210 et al., 2016). Cloud properties are extracted from the 3-hourly WRF-Chem output, keep-211 ing only daytime scenes with solar zenith angles less than 81.373°, producing daily maps, 212 which are then aggregated to monthly gridded maps of r_{eff} and LWP. MODIS in-cloud 213 LWP is compared with WRF-Chem's grid-scale LWP by multiplying the in-cloud val-214 ues with the liquid cloud fraction. Regionally averaged comparisons in Section 3 are taken 215 over ocean points only, from latitudes 47°N to 77°N, longitudes 60°W to 30°E, with area-216 weighted averaging. 217

218 **3 Results**

219 220

3.1 Effect of the eruption on the cloud droplet radius, and sensitivity to ACI parameterization

In October 2014, during the Holuhraun eruption, the MODIS cloud r_{eff} was significantly smaller than usual. On average in the North Atlantic, the effective radius anomaly $\Delta r_{eff} = -1.48 \mu m$ (Figure 1), outside 2 standard deviations of the climatology ($2\sigma =$ 1.14 μm). This is a consequence of ACI from the additional volcanic aerosols (Malavelle et al., 2017).

Figure 2. Liquid water path response to volcanic aerosols. a) MODIS-AQUA and b) MODIS-Terra liquid water path radius anomaly observed in October 2014, 2002-2022 baseline. c-d-e-f) WRF-Chem liquid water path anomaly due to volcanic emissions (VOLC - NOVOLC anomaly), October 2014 average, using the b) ARG02 c) TE14 d) BL95 and e) LMDZ6 ACI parameterizations. BL95 and LMDZ6 do not include the second indirect effect.

The 4 ACI parameterizations predict a strong r_{eff} reduction in the domain, and 226 reproduce the overall geographical pattern of this change. The modeled Δr_{eff} is sen-227 sitive to the choice of ACI parameterization, with -1.20 μm , -1.63 μm , -1.09 μm and -228 $0.66 \ \mu m$ for ARG02, TE14, BL95, and LMDZ6 respectively (Table S2). The simple BL95 229 parameterization predicts a reasonable Δr_{eff} anomaly, but strongly underestimates the 230 observed absolute r_{eff} by -47%. Conversely, LMDZ6 reproduces the observed r_{eff} but 231 strongly underestimates the observed Δr_{eff} by -55%. Implications for radiative forcing 232 in LMDZ6 are discussed in Section 3.3. 233

3 of the 4 parameterizations underestimate Δr_{eff} . This could be a limitation of 234 the ACI parameterizations themselves, or it could be due to underestimated aerosols in 235 the volcanic plume. During the eruption, the WRF-ARG02 simulation reproduces the 236 observations of fine particle mass concentration $(PM_{2.5})$ at European surface sites very 237 well (Figure S1a). Before the start of the eruption, background aerosol sulfate is also well 238 represented, but after the eruption begins in late August, the model underestimates sul-239 fate at surface sites (Figure S1b). To our knowledge, the vertical distribution of aerosols 240 in the Holuhraun plume was not observed, so it is not clear if the same bias is present 241 at higher altitudes where aerosols interact with clouds, or if it could be due to errors in 242 the downward mixing of the volcanic plume into the boundary layer. In the following, 243 we will focus on the sensitivity of ACI to parameterizations and aerosols in the model. 244

3.2 Effect of the eruption on the liquid water path, and sensitivity to ACI parameterization

Figure 2 compares the observed and modeled LWP anomaly due to the eruption 247 in October 2014. WRF-ARG02 and WRF-TE14 show a weak regionally-averaged ΔLWP 248 response of $+3.9 \text{ g m}^{-2}$ and $+6.8 \text{ g m}^{-2}$) respectively (Table S2), well below the thresh-249 old of observed natural variability ($2\sigma = 19.3 \text{ g m}^{-2}$). It is important to note that BL95 250 and LMDZ6 do not include cloud microphysical adjustments to the r_{eff} change (the sec-251 ond indirect effect). For BL95 and LMDZ6, LWP changes are then only due to random 252 variability and small dynamical adjustments to the first indirect effect, and are as ex-253 pected close to zero. The absolute regionally-averaged LWP is close to 110 g m^{-2} with 254 all parameterizations, significantly lower than MODIS observations ($\sim 180 \text{ g m}^{-2}$), but 255 higher than the climate model simulations in Malavelle et al. (2017) (mean LWP \sim 60 g m⁻²). 256

Using MODIS products from version 5.1, Malavelle et al. (2017) found that the impact of the eruption on LWP was very limited, and could not exceed 9 g m⁻². They concluded that large LWP adjustments in climate models were inconsistent with these observations. Using revised LWP from MODIS version 6.1, and a longer climatological period (2002-2022 excluding 2014 instead of 2002-2013) we find a much larger significance threshold $2\sigma = 19.3$ g m⁻², which is consistent with even the largest climate model ΔLWP of 16.3 g m⁻² from Malavelle et al. (2017).

A recent study suggested that the cloud response to the Holuhraun eruption could be dominated by cloud fraction adjustment, instead of changes in LWP or r_{eff} (Chen et al., 2022). This is not the case here, and WRF-ARG02 and WRF-TE14 predict positive but very small cloud fraction adjustments of +0.4 and +0.8 percentage points respectively (Figure S2 and Table S2).

269 270

245

246

3.3 Sensitivity of the aerosol radiative impact to the ACI parameterization

The regionally averaged radiative effect of ACI on the net shortwave flux at top-271 of-atmosphere (ERF_{aci}^{SW}) in October 2014 is -1.12, -1.97, -1.08 and -0.34 W m⁻² for ARG02, 272 TE14, BL95, and LMDZ6 respectively (Table S2). The weak -0.34 W m $^{-2}$ ERF_{aci}^{SW} in 273 LMDZ6 is consistent with its low Δr_{eff} response. This could explain why the IPSL-CM6 274 climate model, where LMDZ6 is hosted, has the weakest ACI effective radiative forcing 275 among CMIP6 models (Zelinka et al., 2023). Despite very different approaches and com-276 plexities, ARG02 and BL95 predict a similar ERF_{aci}^{SW} . TE14, which best reproduces the 277 observed r_{eff} and Δr_{eff} , also predicts the strongest forcing, nearly 2 times stronger than 278 ARG02 and BL95. 279

280

288

3.4 Sensitivity of the modeled cloud response to the aerosol background

Aerosol-cloud interactions are strongly non-linear. For this reason, the modeled radiative impact of an aerosol perturbation is sensitive to the absolute aerosol concentrations in the background state (Carslaw et al., 2013; Lohmann et al., 2000). In order to estimate the sensitivity of the modeled ACI to the non-volcanic aerosol background, we perform sensitivity experiments in the WRF-Chem model by perturbing the non-volcanic aerosol climatology *aer* (units $\mu g \ kg^{-1}$ and kg^{-1}) used to force the TE14, LMDZ6, and BL95 parameterizations by a factor $\alpha = 0.5, 0.75, 1.5, \text{ or } 2.$

$$aer_{NoVolc, perturbed} = \alpha \times aer_{NoVolc}$$
 (1)

$$aer_{Volc,perturbed} = \alpha \times aer_{NoVolc} + (aer_{Volc} - aer_{NoVolc})$$

$$\tag{2}$$

For each sensitivity simulation, we calculate the VOLC-noVOLC Δr_{eff} and ERF_{aci}^{SW} and compare it to the value from the unperturbed reference run, as a function of the perturbation anomaly $\alpha - 1.0$, which is equal to zero for the unperturbed case. Aerosols

Figure 3. Sensitivity of volcanic aerosol-cloud-interactions to the non-volcanic aerosol background concentration. (left) effective radius anomaly during the eruption (right) indirect shortwave radiative effect of the eruption at top-of-atmosphere. All values are given as percentage changes from the unperturbed reference simulations.

cannot be perturbed directly in ARG02, because they are not forced but computed prognostically in the model. In order to estimate the sensitivity of ARG02 to background aerosol
concentrations, we perturb instead the marine emissions of sea spray and DMS. Since
these sensitivity simulations are fully coupled, they are computationally costly, and we
only perform 2 sensitivity simulations with emissions multiplied by 0.5 and 2.

Figure 3 shows that the droplet effective radius and the aerosol forcing are very sen-297 sitive to the non-volcanic aerosol background. When the background aerosol concentra-298 tion is doubled (+100%), the Δr_{eff} is ~30 to 35% weaker than in the reference run, and 299 the ERF_{aci}^{SW} is ~25 to 35% weaker, even though the volcanic aerosol perturbation is ex-300 actly the same. When the background is divided by 2 (-50%), the Δr_{eff} is ~10 to 30% stronger than in the reference run, and the ERF_{aci}^{SW} is ~10 to 40% larger. Since local 301 302 biases in aerosol background concentrations can often be an order of magnitude or more 303 in climate models (e.g. Lapere et al., 2023; Bian et al., 2024), this effect could be a ma-304 jor source of uncertainty for radiative forcing calculations. 305

4 Discussion, conclusions, and recommendations for climate modeling

In this study, we compare 4 ACI parameterizations in the same regional modeling framework during a large volcanic eruption. We calculate the sensitivity of the cloud response and the aerosol radiative forcing to the choice of parameterization, and the sensitivity of volcanic ACI to the non-volcanic aerosol background.

All 4 ACI parameterizations reproduce the pattern and overall magnitude of the 312 observed change in liquid cloud droplet effective radius during the eruption, but LMDZ6 313 underestimates this change. Modeled ACI are sensitive to ACI parameterization in terms 314 of effective radius and radiative impacts. The ACI radiative impact is very weak for the 315 LMDZ6 ACI parameterization, and we believe that this choice of parameterization could 316 explain the low aerosol ERF in the associated IPSL-CM6 climate model. We did not test 317 the full parameterization panel from CMIP6 models, and our results certainly underes-318 timate the full range of sensitivity to ACI parameterization; however, the types of pa-319 rameterizations tested are representative of this generation of climate models. 320

Our study disagrees with one of the main conclusions of Malavelle et al. (2017): 321 we find that this volcanic case study cannot be used to constrain the ACI LWP adjust-322 ment in climate models, except to rule out very high regional LWP changes of more than 323 ~ 20 g m⁻². These values are much larger than the magnitude of the LWP change due 324 to ACI in WRF-Chem in either ARG02 or TE14 ($\sim 5 \text{ g m}^{-2}$), and consistent with even 325 the largest LWP changes predicted by climate models in Malavelle et al. (2017). Our sim-326 ulations and those of Malavelle et al. (2017) underestimate the observed LWP in the re-327 gion, so further work is needed to fully understand LWP adjustments in models. 328

329 We find that the modeled cloud response to the eruption is also very sensitive to the non-volcanic background aerosol concentration: a doubling of the aerosol background 330 translates into a $\sim -30\%$ change in ACI radiative forcing. This sensitivity is worrying 331 because biases in aerosol mixing ratio in climate models can be far greater. Allen and 332 Landuyt (2014) found that model spread for black carbon aerosols in CMIP5 is up to 333 2 orders of magnitude in the free troposphere, and Lapere et al. (2023); Bian et al. (2024) 334 showed that aerosol differences between models in the remote marine and polar tropo-335 sphere, respectively, can be 1 or 2 orders of magnitude. 336

Nearly 25 years ago, Lohmann et al. (2000) showed that aerosol-cloud radiative forc-337 ing in the ECHAM4 climate model was sensitive to the pre-industrial aerosol burden. 338 Based on this result, Lohmann and Feichter (2005) suggested that the large differences 339 in ERF_{ACI} between models could be due to "the dependence of the indirect aerosol ef-340 fect on the background aerosol concentration". Carslaw et al. (2013) later found that 341 uncertainties in natural emissions could account for 45% of the ERF_{ACI} uncertainty in 342 a single global model. However, to our knowledge, the precise contribution of these er-343 rors to the large CMIP multimodel RF_{ACI} uncertainty has not been investigated since, 344 and was not identified as a major issue in recent efforts for understanding aerosol ERF 345 (Fiedler et al., 2023; Bellouin et al., 2020; Quaas et al., 2020; Mülmenstädt & Feingold. 346 2018; Seinfeld et al., 2016). In light of our results and of earlier literature, we recommend 347 a systematic analysis of how the natural aerosol background influences the ERF_{ACI} spread 348 in climate models. If background aerosols are indeed important, improving the repre-349 sentation of natural aerosols such as sea-spray, sulfate from oceanic DMS, and biomass 350 burning could be a more efficient pathway for reducing ACI uncertainties than difficult 351 improvements in complex aerosol-cloud processes. 352

For this purpose, a detailed evaluation of aerosols in climate models is critical. ACI 353 are determined by aerosol properties within clouds, and are especially sensitive to aerosol 354 concentrations and aerosol size (Dusek et al., 2006). However, aerosols in climate mod-355 els are usually evaluated in terms of vertically integrated bulk properties such as Aerosol 356 Optical Depth (AOD), which is also the usual CCN proxy for observational estimates 357 of the aerosol ERF (Bellouin et al., 2020; Gryspeerdt et al., 2023). This is concerning, 358 because large errors in aerosol concentrations, vertical distributions, water uptake, and 359 size distributions can compensate to give a reasonable AOD in models (Quaas et al., 2020). 360 In this context, we also recommend routine evaluations and comparisons of aerosol ver-361 tical distributions in climate models, for example using the now extensive LiDAR and 362 aircraft measurement datasets. 363

The sensitivity of ACI to aerosol background is not just important in the pre-industrial period and for quantifying ERF_{ACI} in climate models, which has been the focus until now. Our results suggest that tackling these issues and improving the representation of background aerosols in models could also help us better understand the effect of ACI at shorter time scales, including the influence of ACI on specific extreme events, its effect on meteorological forecasts, and the effect of recent and future clean air policies on climate.

³⁷¹ Open Research Section

The updated WRF-Chem 4.3.3 model version used in this study can be found at 372 https://doi.org/10.5281/zenodo.12544534. The WRF preprocessing system 373 (WPS) is available at https://archive.softwareheritage.org/swh:1:dir:2122 374 7ff84043afa53bb870245da4061fe7f0c7ab;origin=https://github.com/wrf-mod 375 el/WPS;visit=swh:1:snp:096256316e752343901abad92a7dd9c2529f48cb;anchor= 376 swh:1:rev:5a2ae63988e632405a4504cfb143ce7f0230a7a0. WRF-Chem preproces-377 sor tools (mozbc, fire_emiss and bio_emiss) are available at https://www2.acom.uca 378 379 r.edu/wrf-chem/wrf-chem-tools-community. WRF-Chem run and setup scripts, preprocessing codes, and post-processing codes created for this study can be found at 380 https://doi.org/10.5281/zenodo.12544354. 381

ERA5 input data on pressure and surface levels for WRF can be obtained at ht 382 tps://doi.org/10.24381/cds.143582cf. CAM-Chem input data for initial and 383 boundary conditions is available at https://doi.org/10.5065/NMP7-EP60.. CAMSv4.2 384 emissions are available at https://ads.atmosphere.copernicus.eu/cdsapp#!/ 385 dataset/cams-global-emission-inventories FINNv1.5 emissions are distributed 386 at https://www.acom.ucar.edu/Data/fire/. The Lana DMS climatology can be 387 found at https://www.bodc.ac.uk/solas_integration/implementation_product 388 s/group1/dms/documents/dmsclimatology.zip. 389

MODIS satellite observations from the MYD08_M3_6_1 and MOD08_M3_6_1 products can be retrieved from https://doi.org/10.5067/MODIS/MYD08_M3.061 and https://doi.org/10.5067/MODIS/MOD08_M3.061. Observations of atmospheric composition used in the supplement are from https://ebas.nilu.no/.

394 Acknowledgments

This project has received funding from Horizon Europe programme under Grant Agree-395 ment No 101137680 via project CERTAINTY (Cloud-aERosol inTeractions & their im-396 pActs IN The earth system); from the European Union's Horizon 2020 research and innovation programme under Grant agreement No 101003826 via project CRiceS (Climate 398 Relevant interactions and feedbacks: the key role of sea ice and Snow in the polar and 399 global climate system); and from the project SUPER (no. 250573) funded through the 400 Research Council of Norway. This research has been partly funded by French National 401 Research Agency (ANR) via the project MPC2 (n° ANR-22-CEA01-0009-02). Computer 402 analyses benefited from access to IDRIS HPC resources (GENCI allocations A011017141 403 and A013017141), and from the IPSL mesocenter ESPRI facility which is supported by 101 CNRS, UPMC, Labex L-IPSL, CNES and Ecole Polytechnique. We acknowledge use of the WRF-Chem preprocessor tools mozbc, fire_emiss and bio_emiss provided by the At-406 mospheric Chemistry Observations and Modeling Lab (ACOM) of NCAR. We acknowl-407 edge ECCAD for the archiving and distribution of the CAMS emissions data. 408

409 **References**

- 410Abdul-Razzak, H., & Ghan, S. J.(2002).A parameterization of aerosol ac-411tivation 3. sectional representation.Journal of Geophysical Research:412Atmospheres, 107(D3), AAC 1-1-AAC 1-6.Retrieved from https ://
- 413
 agupubs .onlinelibrary .wiley .com / doi / abs / 10 .1029 / 2001JD000483

 414
 doi: https://doi.org/10.1029/2001JD000483
- 415Albrecht, B. A.(1989, September).Aerosols, Cloud Microphysics, and Frac-416tional Cloudiness.Science, 245 (4923), 1227–1230.Retrieved 2024-03-19,417from https://www.science.org/doi/10.1126/science.245.4923.1227418(Publisher: American Association for the Advancement of Science)doi:41910.1126/science.245.4923.1227

420	Alexander, B., Park, R. J., Jacob, D. J., & Gong, S. (2009). Transition metal-
421	catalyzed oxidation of atmospheric sulfur: Global implications for the sulfur
422	budget. Journal of Geophysical Research: Atmospheres, $114(D2)$. Retrieved
423	from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/
424	2008JD010486 doi: https://doi.org/10.1029/2008JD010486
425	Allen, R. J., & Landuyt, W. (2014). The vertical distribution of black carbon in
426	cmip5 models: Comparison to observations and the importance of convective
427	transport. Journal of Geophysical Research: Atmospheres, 119(8), 4808-4835.
428	Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/
429	10.1002/2014 JD021595 doi: https://doi.org/10.1002/2014 JD021595
430	Archer-Nicholls, S., Lowe, D., Utembe, S., Allan, J., Zaveri, R. A., Fast, J. D.,
431	McFiggans, G. (2014). Gaseous chemistry and aerosol mecha-
432	nism developments for version 3.5.1 of the online regional model, wrf-
433	chem. Geoscientific Model Development, 7(6), 2557–2579. Retrieved
434	from https://gmd .copernicus .org/articles/7/2557/2014/ doi:
435	10.5194/gmd-7-2557-2014
436	Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson-Parris, D.,
437	Stevens, B. (2020). Bounding global aerosol radiative forcing of
438	climate change. Reviews of Geophysics, 58(1), e2019RG000660. Re-
439	trieved from https :// agupubs .onlinelibrary .wiley .com / doi / abs /
440	10.1029/2019RG000660 (e2019RG000660 10.1029/2019RG000660) doi:
441	https://doi.org/10.1029/2019RG000660
442	Bian, H., Chin, M., Colarco, P. R., Apel, E. C., Blake, D. R., Froyd, K., Zhu,
443	J. (2024). Observationally constrained analysis of sulfur cycle in the ma-
444	rine atmosphere with nasa atom measurements and aerocom model simula-
445	tions. Atmospheric Chemistry and Physics, 24(3), 1717–1741. Retrieved
446	from https://acp.copernicus.org/articles/24/1717/2024/ doi:
447	10.5194/acp-24-1717-2024
448	Boucher, O., & Lohmann, U. (1995, Jan). The sulfate-ccn-cloud albedo effect: A
449	sensitivity study with two general circulation models. Tellus B: Chemical and
450	Physical Meteorology. doi: 10.3402/tellusb.v47i3.16048
451	Carslaw, K. S., Lee, L. A., Reddington, C. L., Pringle, K. J., Rap, A., Forster,
452	P. M., Pierce, J. R. (2013, November). Large contribution of natural
453	aerosols to uncertainty in indirect forcing. Nature, 503(7474), 67–71. Re-
454	trieved 2024-04-18, from https://www.nature.com/articles/nature12674
455	(Publisher: Nature Publishing Group) doi: 10.1038/nature12674
456	Chen, Y., Haywood, J., Wang, Y., Malavelle, F., Jordan, G., Partridge, D.,
457	Lohmann, U. (2022, August). Machine learning reveals climate forcing from
458	aerosols is dominated by increased cloud cover. Nature Geoscience, 15(8),
459	609-614. Retrieved from https://doi.org/10.1038/s41561-022-00991-6
460	doi: 10.1038/s41561-022-00991-6
461	Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N.,
462	Nakajima, T. (2002). Tropospheric aerosol optical thickness from the
463	gocart model and comparisons with satellite and sun photometer mea-
464	surements. J. Atmos. Sci., 59(3), 461–483. Retrieved from http://
465	dx.doi.org/10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2 doi:
466	10.1175/1520-0469(2002)059(0461:TAOTFT)2.0.CO:2
467	Christensen, M. W., Gettelman, A., Cermak, J., Dagan, G., Diamond, M. Douglas
468	A Yuan, T. (2022). Opportunistic experiments to constrain aerosol ef-
469	fective radiative forcing. Atmospheric Chemistry and Physics, 22(1) 641–674
470	Retrieved from https://acp.copernicus.org/articles/22/641/2022/ doi:
471	10.5194/acp-22-641-2022
472	Copernicus Climate Change Service. (2017). ERA5: Fifth generation of ECMWF at-
473	mospheric reanalyses of the global climate. Retrieved from http://doi.org/

475	Store (CDS), last accessed May 11^{th} 2021)
476	Denier van der Gon, H., Hendriks, C., Kuenen, J., Segers, A. A., & Visschedijk, A.
477	(2011). Description of current temporal emission patterns and sensitivity of
478	predicted AQ for temporal emission patterns, TNO Report, EU FP7 MACC de-
479	liverable report D_DEMIS_1.3 (Tech. Rep.). Princetonlaan 6, 3584 CB Utrecht,
480	The Netherlands: TNO.
481	Dusek, U., Frank, G. P., Hildebrandt, L., Curtius, J., Schneider, J., Walter, S.,
482	Andreae, M. O. (2006). Size matters more than chemistry for cloud-nucleating
483	ability of aerosol particles. Science, 312(5778), 1375-1378. Retrieved from
484	https://www.science.org/doi/abs/10.1126/science.1125261 doi:
485	10.1126/science.1125261
486	EEA. (2014). Emission trends of sulphur oxides [Data Visualization]. Retrieved
487	$2024-04-17,from\;https://www\;.eea\;.europa\;.eu/data\;-and\;-maps/daviz/$
488	emission-trends-of-sulphur-oxides#tab-chart_1
489	Ekman, A. M. L. (2014). Do sophisticated parameterizations of aerosol-
490	cloud interactions in CMIP5 models improve the representation of re-
491	cent observed temperature trends? Journal of Geophysical Research:
492	Atmospheres, 119(2), 817–832. Retrieved 2024-04-17, from https://
493	onlinelibrary .wiley .com/doi/abs/10 .1002/2013JD020511 (_eprint:
494	nttps://onlineilorary.wiley.com/doi/pdf/10.1002/2013JD020511) doi: 10.1002/2013JD020511
495	10.1002/2013JD020311
496	Emmons, L. K., Walters, S., Hess, P. G., Lamarque, JF., Pinster, G. G., Filimore, New York, S. (2010) December of the Model for Ozono
497	and Balated abamical Tracers version $4 (MOZAPT 4)$ Casacientific Model
498	Development 3(1) 43-67 doi: 10.5104/gmd-3-43-2010
499	Fiedler S van Noije T Smith C I Boucher O Dufresne I-L Kirkevåg A
500	Schulz M (2023) Historical changes and reasons for model differences in
502	anthropogenic aerosol forcing in cmip6 Geophysical Research Letters 50(15)
502	e2023GL104848. Retrieved from https://agupubs.onlinelibrary.wilev
504	.com/doi/abs/10.1029/2023GL104848 (e2023GL104848 2023GL104848) doi:
505	https://doi.org/10.1029/2023GL104848
506	Ghan, S. J., Leung, L. R., Easter, R. C., & Abdul-Razzak, H. (1997). Prediction
507	of cloud droplet number in a general circulation model. Journal of Geophysi-
508	cal Research: Atmospheres, 102(D18), 21777-21794. Retrieved from https://
509	agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/97JD01810 $ m doi$:
510	https://doi.org/10.1029/97JD01810
511	Grell, G. A., & Dévényi, D. (2002). A generalized approach to parameterizing con-
512	vection combining ensemble and data assimilation techniques. Geophysical Re-
513	search Letters, $29(14)$, $38-1-38-4$. doi: $10.1029/2002$ GL015311
514	Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock,
515	W. C., & Eder, B. (2005). Fully coupled "online" chemistry within
516	the wrf model. Atmospheric Environment, 39(37), 6957-6975. Re-
517	trieved from https://www.sciencedirect.com/science/article/pii/
518	Commendation F. Derver, A. C. Chain and B. C. Handlaum, O. Han, N. C. Malanhar
519	Gryspeerut, E., Povey, A. C., Granger, R. G., Hasekamp, O., Hsu, N. C., Mulcany,
520	is driven by clean conditions Atmospheric Chemistry and Physica 99(7)
521	$4115-4122$ Retrieved from https://acn_conernicus_org/articles/23/
523	4115/2023/ doi: 10.5194/acp-23-4115-2023
524	Guenther, A. B., Jiang, X., Heald C. L. Sakulvanontvittava T. Duhl T. Em-
525	mons. L. K., & Wang, X. (2012). The Model of Emissions of Gases and
526	Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated
527	framework for modeling biogenic emissions. <i>Geoscientific Model Development</i> .
528	5(6), 1471–1492. doi: 10.5194/gmd-5-1471-2012
529	Hodnebrog, O., Myhre, G., Jouan, C., Andrews, T., Forster, P. M., Jia, H.,

530	Schulz, M. (2024, April). Recent reductions in aerosol emissions have
531	increased Earth's energy imbalance. Communications Earth & Environ-
532	ment, 5(1), 1-9. Retrieved 2024-04-17, from https://www .nature .com/
533	articles/s43247-024-01324-8 (Publisher: Nature Publishing Group) doi:
534	10.1038/s43247-024-01324-8
535	Hubanks, P., Platnick, S., King, M., & Ridgway, B. (2016). MODIS Atmosphere
536	L3 Gridded Product Algorithm Theoretical Basis Document (ATBD) & Users
537	Guide (Tech. Rep.). NASA EOS.
538	Ilyinskaya, E., Schmidt, A., Mather, T. A., Pope, F. D., Witham, C., Baxter, P.,
539	Edmonds, M. (2017). Understanding the environmental impacts of large
540	fissure eruptions: Aerosol and gas emissions from the 2014–2015 holuhraun
541	eruption (iceland). Earth and Planetary Science Letters, 472, 309-322. Re-
542	trieved from https://www .sciencedirect .com/science/article/pii/
543	S0012821X17302911 doi: https://doi.org/10.1016/j.epsl.2017.05.025
544	Ioannidis, E., Law, K. S., Raut, JC., Marelle, L., Onishi, T., Kirpes, R. M.,
545	Pratt, K. A. (2023). Modelling wintertime sea-spray aerosols under arctic
546	haze conditions. Atmospheric Chemistry and Physics, 23(10), 5641–5678. Re-
547	trieved from https://acp.copernicus.org/articles/23/5641/2023/ doi:
548	10.5194/acp-23-5641-2023
549	IPCC. (2023). The earth's energy budget, climate feedbacks and climate sensitivity.
550	In Climate change 2021 – the physical science basis: Working group i contri-
551	bution to the sixth assessment report of the internovernmental panel on climate
552	change (p. 923–1054). Cambridge University Press.
552	Lana A Bell T G Simó B Vallina S M Ballabrera-Poy I Kettle A I
555	Liss P. S. (2011) An undated climatology of surface dimethlysulfide concen-
554	trations and emission fluxes in the global ocean <u>Global Biogeochemical Cycles</u>
555	25(1) doi: 10.1029/2010GB003850
550	Lapere B. Thomas I.L. Marelle L. Ekman A. M.L. Frey M. M. Lund
557	M T Zieger P (2023) The representation of sea salt aerosols
550	and their role in polar climate within cmin6
559	search: Atmospheres 128(6) e2022.ID038235 Betrieved from https://
500	agunubs onlinelibrary wiley com/doi/abs/10 1029/2022DD038235
501	(e2022.ID038235.2022.ID038235) doi: https://doi.org/10.1029/2022.ID038235
502	Li C Wieder I Pasquier I T Henneberger I & Kanii Z A (2022) Predict-
505	ing atmospheric background number concentration of ice-nucleating particles
504	in the arctic Atmospheric Chemistry and Physics $22(21)$ 14441–14454 Be-
505	trieved from https://acn_congrnicus_org/articles/22/14441/2022/_doi:
500	10 5194/acp-22-14441-2022
507	Lohmann II & Faichter I (2005 March) Clobal indirect aerosol effects: a re-
508	view Atmospheric Chemistry and Physics 5(3) 715-737 Batriaved 2024-04-
509	17 from https://acp_congranicus_org/articles/5/715/2005/ (Publisher:
570	Constructions $CmbH$ doi: 10.5104/acn-5-715-2005
5/1	Lohmonn II Foighter I Penner I & Logitch P (2000) Indirect effect of sul
572	fate and earbonacous acrossls: A mechanistic treatment Lowrad of Combus
573	ical Research: Atmospheres, 105(D10), 12102, 12206. Betrioved from https://
574	agupubs onlinelibrary uiloy com/doi/abs/10.1029/1999 ID901199 doi:
575	https://doi.org/10.1020/1000 ID001100
570	Lohmonn II Lüönd E ℓ_r Mohrt E (2016) An Introduction to Clouder From
577	the Microscele to Climate Combridge Combridge University Press
578	twieved 2024 04 17 from https://www.combridge.com/comp./
579	an -introduction -to -clouds / E60006E702DECOEED0000200D1920
580	an introduction to crodus/rokovaor/kobbacorrbaz00240bb1039 (IOI: $10.1017/CRO0781130087513$
581	Madalaina I R. Houndin F. Chandrain I V. Dia C. Dufnama I I. Vinnen
582	F Bonggolo M (2020) Improved representation of clouds in the
583	atmospheric component Indefe of the incloseft conthe system model
584	atmospheric component muzza or the ipsi-chiba earth system model. Jour-

585	nal of Advances in Modeling Earth Systems, $12(10)$, $e2020MS002046$. Re-
586	trieved from https :// agupubs .onlinelibrary .wiley .com / doi / abs /
587	10.1029/2020MS002046 (e2020MS002046 10.1029/2020MS002046) doi:
588	https://doi.org/10.1029/2020MS002046
589	Malavelle, F. F., Haywood, J. M., Jones, A., Gettelman, A., Clarisse, L., Bauduin,
590	S., Thordarson, T. (2017, June). Strong constraints on aerosol-cloud in-
591	teractions from volcanic eruptions. <i>Nature</i> , 546(7659), 485–491. Retrieved
592	2024-04-17, from https://www.nature.com/articles/nature22974 (Pub-
593	lisher: Nature Publishing Group) doi: 10.1038/nature22974
594	Marelle, L., Raut, JC., Law, K. S., Berg, L. K., Fast, J. D., Easter, B. C.,
505	Thomas J. L. (2017) Improvements to the wrf-chem 3.5.1 model for quasi-
595	hemispheric simulations of aerosols and ozone in the arctic <i>Geoscientific Model</i>
590	$Development 10(10) 3661-3677$ Betrieved from https://gmd_copernicus
597	org/articles/10/3661/2017/ doi: 10.5194/gmd-10-3661-2017
590	Mülmonstödt I & Foingold C (2018 March) The Padiative Foreing of
599	Acrossel Cloud Interactions in Liquid Clouds: Wrestling and Embracing
600	Heroson-Cloud Interactions in Liquid Clouds: wresting and Embracing
601	Uncertainty. Current Cumule Change Reports, $4(1)$, 25–40. Retrieved
602	2024-04-18, from fittps :// doi .org/10.1007/s40641-018-0089-y doi: 10.1007/s40641.018.0080
603	10.1007/\$40041-018-0089-y
604	Nightingale, P. D., Malin, G., Law, C. S., Watson, A. J., Liss, P. S., Liddi-
605	coat, M. I., Upstill-Goddard, R. C. (2000). In situ evaluation of air-
606	sea gas exchange parameterizations using novel conservative and volatile
607	tracers. Global Biogeochemical Cycles, 14(1), 373–387. Retrieved from
608	http://dx.doi.org/10.1029/1999GB900091 doi: 10.1029/1999GB900091
609	Pfeffer, M. A., Bergsson, B., Barsotti, S., Stefánsdóttir, G., Galle, B., Arellano, S.,
610	Mereu, L. (2018). Ground-based measurements of the 2014–2015 holuhraun
611	volcanic cloud (iceland). Geosciences, 8(1). Retrieved from https://
612	www.mdpi.com/2076-3263/8/1/29 doi: 10.3390/geosciences8010029
613	Quaas, J., Arola, A., Cairns, B., Christensen, M., Deneke, H., Ekman, A. M. L.,
614	Wendisch, M. (2020). Constraining the twomey effect from satellite observa-
615	tions: issues and perspectives. Atmospheric Chemistry and Physics, $20(23)$,
616	15079-15099. Retrieved 2024-04-17, from https://acp.copernicus.org/
617	articles / 20 / 15079 / 2020 / (Publisher: Copernicus GmbH) doi:
618	10.5194/acp-20-15079-2020
619	Quaas, J., Jia, H., Smith, C., Albright, A. L., Aas, W., Bellouin, N., Schulz, M.
620	(2022). Robust evidence for reversal of the trend in aerosol effective climate
621	forcing. Atmospheric Chemistry and Physics, 22(18), 12221–12239. Retrieved
622	from https://acp.copernicus.org/articles/22/12221/2022/ doi:
623	10.5194/acp-22-12221-2022
624	Seinfeld, J. H., Bretherton, C., Carslaw, K. S., Coe, H., DeMott, P. J., Dunlea,
625	E. J., Wood, R. (2016). Improving our fundamental understanding
626	of the role of aerosol-cloud interactions in the climate system. Proceed-
627	ings of the National Academy of Sciences, 113(21), 5781-5790. Retrieved
628	from https://www.pnas.org/doi/abs/10.1073/pnas.1514043113 doi:
629	10.1073/pnas.1514043113
630	Tegen, I., Hollrig, P., Chin, M., Fung, I., Jacob, D., & Penner, J. (1997). Con-
631	tribution of different aerosol species to the global aerosol extinction opti-
632	cal thickness: Estimates from model results. Journal of Geophysical Re-
633	search: Atmospheres, 102(D20), 23895-23915. Retrieved from https ://
634	agupubs .onlinelibrary .wiley .com/doi/abs/10 .1029/97JD01864 doi:
635	https://doi.org/10.1029/97JD01864
636	Thompson, G., & Eidhammer, T. (2014). A study of aerosol impacts on clouds
637	and precipitation development in a large winter cyclone. Journal of the
638	Atmospheric Sciences, 71(10), 3636 - 3658. Retrieved from https://
639	journais.ametsoc.org/view/journais/atsc//i/i0/jas-d-13-0305.1.xml

640	doi: 10.1175/JAS-D-13-0305.1
641	Tilmes, S., Emmons, L., Buchholz, R., & Team, T. C. D. (2022). [data set]
642	cesm2.2/cam-chem output for boundary conditions. ucar/ncar - atmospheric
643	chemistry observations and modeling laboratory. (Accessed 01 FEB 2024) doi:
644	https://doi.org/10.5065/XS0R-QE86
645	Twomey, S. (1974, December). Pollution and the planetary albedo. Atmospheric
646	Environment (1967), 8(12), 1251–1256. Retrieved 2024-03-19, from https://
647	www.sciencedirect.com/science/article/pii/0004698174900043 $ m doi: 10$
648	.1016/0004- $6981(74)90004$ - 3
649	von Glasow, R., & Crutzen, P. J. (2004). Model study of multiphase dms oxidation
650	with a focus on halogens. Atmospheric Chemistry and Physics, $4(3)$, 589–608.
651	Retrieved from https://acp.copernicus.org/articles/4/589/2004/ doi:
652	10.5194/acp-4-589-2004
653	von Salzen, K., Whaley, C. H., Anenberg, S. C., Van Dingenen, R., Klimont, Z.,
654	Flanner, M. G., Winter, B. (2022, October). Clean air policies are key
655	for successfully mitigating Arctic warming. Communications Earth & Envi-
656	ronment, 3(1), 1-11. Retrieved 2024-03-19, from https://www.nature.com/
657	articles/s43247-022-00555-x (Publisher: Nature Publishing Group) doi:
658	10.1038/s43247-022-00555-x
659	Wiedinmyer, C., Yokelson, R. J., & Gullett, B. K. (2014). Global Emissions of Trace
660	Gases, Particulate Matter, and Hazardous Air Pollutants from Open Burning
661	of Domestic Waste. Environmental Science & Technology, $48(16)$, $9523-9530$.
662	doi: 10.1021/es502250z
663	Xu, KM., & Randall, D. A. (1996). A semiempirical cloudiness parameteriza-
664	tion for use in climate models. Journal of Atmospheric Sciences, $53(21)$, 3084
665	- 3102. Retrieved from https://journals.ametsoc.org/view/journals/
666	atsc/53/21/1520-0469_1996_053_3084_ascpfu_2_0_co_2.xml doi: 10.1175/
667	1520-0469(1996)053(3084:ASCPFU)2.0.CO;2
668	Zaveri, R. A., Easter, R. C., Fast, J. D., & Peters, L. K. (2008). Model for Simu-
669	lating Aerosol Interactions and Chemistry (MOSAIC). Journal of Geophysical
670	Research: Atmospheres, 113(D13). doi: 10.1029/2007JD008782
671	Zelinka, M. D., Smith, C. J., Qin, Y., & Taylor, K. E. (2023). Comparison of
672	methods to estimate aerosol effective radiative forcings in climate mod-
673	els. Atmospheric Chemistry and Physics, 23(15), 8879–8898. Retrieved
674	from https://acp.copernicus.org/articles/23/8879/2023/ doi:
675	10.5194/acp-23-8879-2023