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Abstract: Aerosols in the atmosphere significantly reduce the solar radiation reaching the Earth’s
surface through scattering and absorption processes. Knowing their properties becomes essential
when we are interested in measuring solar radiation at a given location on the ground. The commonly
used parameters that characterize their effects are the Aerosol Optical Depth τ, the Angstrom
exponent α, and the Angstrom coefficient β. One method for estimating these parameters is to fit
ground-based measurements of clear-sky direct solar radiation using a model on which it depends.
However, the choice of model depends on its suitability to the atmospheric conditions of the site
considered. Eleven empirical solar radiation models depending on α and β were thus chosen
and tested with solar radiation measurements recorded between 2005 and 2014 in Tamanrasset in
southern Algeria. The results obtained were compared to measurements made with the AERONET
solar photometer on the same site during the same period. Among the 11 models chosen, the best
performing ones are REST2 and CPCR2. They proved to be the best suited to estimate β with
approximately the same RMSE of 0.05 and a correlation coefficient R with respect to AERONET of
0.95. The results also highlighted good performances of these models for the estimation of τ with an
RMSE of 0.05 and 0.04, and an R of 0.95 and 0.96, respectively. The values of α obtained from the
fitting of these models were, however, less good, with R around 0.38. Additional treatments based
on a Recurrent Neural Network (RNN) were necessary to improve its estimation. They provided
promising results showing a significant improvement in α estimates with R reaching 0.7 when
referring to AERONET data. Furthermore, this parameter made it possible to identify different types
of aerosols in Tamanrasset such as the presence of maritime, dust, and mixed aerosols representing,
respectively, 31.21%, 3.25%, and 65.54%, proportions calculated over the entire period studied. The
seasonal analysis showed that maritime aerosols are predominant in the winter in Tamanrasset but
decrease with the seasons to reach a minimum in the summer (JJA). Dust aerosols appear in February
and persist mainly in the spring (MAM) and summer (JJA), then disappear in September. These
results are also consistent with those obtained from AERONET.

Keywords: solar radiation; aerosol optical depth; Angstrom coefficient; Angstrom exponent;
clear-sky models

1. Introduction

Radiation reaching the Earth’s surface under all sky conditions is highly dependent
on multiple atmospheric factors that introduce various absorption and scattering processes.
Gases and aerosols are the key parameters that govern solar radiation reaching the ground
under clear skies. The main absorbing gases are ozone, oxygen, water vapor, and carbon
dioxide, while all other atmospheric gases scatter solar radiation at all wavelengths [1,2].
The presence of aerosols in the atmosphere in the liquid or solid phase also decreases the
amount of solar radiation reaching the Earth’s surface [3] through absorption and scattering
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processes. The loss will be approximately 25–35% for a PhotoVoltaic (PV) energy conversion
system. This justifies the importance of quantifying and studying the temporal properties of
aerosol effects on solar radiation, particularly in areas considered suitable for the exploita-
tion of solar energy using PV conversion systems. More generally, aerosols play a crucial
role in the radiation budget of the Earth by affecting its temperature at different time and
space scales. Generally, ground-based active and passive remote sensing instruments offer
reliable measurements to study aerosol properties. Their long-term, continuous observa-
tions enhance our understanding of both global and regional properties and their impact on
the Earth’s climate. Among the passive methods, sun-photometers and sky-radiometers are
recognized as particularly effective for aerosol measurements [4–6]. Consequently, various
global and regional observation networks, such as AERONET, have been established. For
the active method, LIDAR and RADAR remote sensing instruments are widely used due to
their advantages of detecting the vertical distribution of aerosols [6,7].

Aerosols have different shapes, size distributions, and residence times. They come
from different sources such as the condensation of gases, the action of the wind on the
surface of the Earth, volcanoes, fires, and human activity. Aerosol turbidity or atmospheric
turbidity can define the state of the atmosphere with suspended aerosols [8,9]. The Aerosol
Optical Depth τ (AOD), the Angstrom exponent α, and the Angstrom coefficient β are the
parameters usually used to characterize them. The AOD, which is wavelength-dependent,
measures the extinction of sunlight due to scattering and absorption by aerosols in the
atmosphere [4], while the Angstrom coefficient β is related to their quantity [1]. The
parameter β is normally between 0.0 and 0.5 but can exceed this upper limit in the case of a
highly charged atmosphere. The Angstrom turbidity equation given hereafter expresses
the dependence of AOD τ with the wavelength λ, the number of particles (β), and their
sizes (α):

τ = βλ−α (1)

where the wavelength λ is in micrometers.
The Angstrom coefficient β therefore corresponds to AOD at 1 µm wavelength. AOD

is related to the Angstrom coefficient through Equation (1) for other wavelengths. The
Angstrom coefficient can be obtained from aerosol spectral transmissions at two wave-
lengths [10] and appears to be independent of air mass [11]. The experimental determi-
nation of β can be obtained from spectral measurements of direct solar radiation (sun-
photometer) but measurements are generally not easy to implement. Several authors have
proposed different parametric models to obtain β from integrated measurements of solar
irradiance [12,13].

The Angstrom exponent α is a reliable index of the particle size distribution of aerosols,
i.e., it is a good indicator of the dominant size of atmospheric particles [14,15]. Its values
vary from 0 to 4. It takes values around 4 when the aerosol particles are very small, of the
order of air molecules, while it approaches 0 for large particles. The Angstrom formula
(Equation (1)) applied to two AOD measurements allows one to obtain this indicator by

α = −
log( τ1

τ2
)

log( λ1
λ2
)

(2)

where τ1 and τ2 are the AOD values obtained, respectively, at the two wavelengths λ1
and λ2.

Knowing the properties of aerosols through these parameters is very useful in the field
of renewable energies because, depending on their nature, they affect the propagation of
solar energy in the atmosphere differently. Indeed, aerosols coming from various sources
have different optical and physicochemical properties, in addition to being wavelength-
dependent [16]. The classification of aerosols therefore proves to be an important step
in quantifying these effects. For this reason, many studies were conducted to classify
aerosols [14,17,18]. The correlation between aerosol properties facilitates their characteri-
zation, although, in the majority of cases, well-mixed aerosol types are quite difficult to
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classify [19]. The most common scatter plot for discriminating aerosol types is between
the AOD τ and Angstrom exponent α [20]. Other techniques have also been used, such as
the wavelength dependence of Single Scattering Albedo (SSA), the correlation between the
fine-mode fraction and SSA [21], and the correlation between the absorption and extinction
of the Angstrom exponent [22]. Most research studies classify aerosols in the atmosphere
into four main types, namely biomass-burning aerosols, urban aerosols, maritime aerosols,
and dust aerosols [16,21,23–25]. The remaining cases that do not belong to the threshold
proposed in the literature are characterized as mixed type (MT or undetermined aerosols).
These aerosols have different physicochemical, optical, and radiative characteristics de-
pending on their origin. Certain types of aerosols can interact with cloud droplets and,
therefore, modify their micro-physical properties, influencing the radiative properties and
precipitation processes. Thus, the relationship between τ and α will be used in this paper to
classify aerosol types for the studied site. High values of τ are affected by biomass burning,
dust, or urban aerosols where α values close to zero correspond to sea spray and dust, and
values above 1.5 indicate the significant presence of smokes or urban aerosols [22].

This paper has two main parts. The first concerns the estimation of aerosol parameters
(τ, β, and α) from measurements of direct solar radiation recorded during the period
2005–2014 at Tamanrasset, in the south of Algeria, and different empirical clear-sky models
of direct solar radiation. Eleven empirical models based on the parameters of interest
were chosen and tested to select the best one(s) relative to the measurements. The results
obtained were then compared to AERONET (AErosol RObotic NETwork) data to select
the model best suited to the Tamanrasset site. The second part of the article discusses and
presents the method to improve the results, mainly the poor estimate of α obtained from
the model fitting. An innovative method based on a Recurrent Neural Network (RNN) was
therefore developed to improve its estimation thanks to AERONET measurements. This
method will be presented, as well as the results obtained, which now make it possible to
classify the aerosols present in the atmosphere of Tamanrasset.

2. Materials and Methods

This section presents the data and models used in this work and, then, the methods
developed to estimate the Angstrom parameters.

2.1. Materials
2.1.1. Ground Measurements of Solar Radiation

Solar radiation data were collected between 2005 and 2014 at the Regional Meteorolog-
ical Center (Direction Régionale de la Météo Sud, National Meteorological Office, ONM,
Dar El Beida, Algeria) located in Tamanrasset (22.79◦N, 5.53◦E, 1377 m altitude) in southern
Algeria (see Figure 1 on the left). The data correspond to direct, global, and diffuse solar
radiation measurements. Instruments and methods for data collection are the same as those
described in detail by Zaiani et al. (2021) [9].

The measurement of the direct, global, and diffuse components of solar radiation was
carried out with EKO-type instruments (see Figure 1 on the right). They are calibrated
every three years and cleaned two to three times a week depending on weather conditions.
The dataset used in this work corresponds to 3287 days of solar radiation measurements.
However, only clear days were considered to study the aerosols’ properties. They were
selected from the dataset with an appropriate method [26]. The number of useful days was
thus reduced after selection to 1369, i.e., 42% of the weather conditions in Tamanrasset
were clear days.
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Figure 1. (Left): Tamanrasset location. (Right): radiometric station for measuring the global,
direct, and diffuse solar radiation: (1) Pyranometer for measuring the global solar irradiance.
(2) Pyranometer for measuring the diffuse irradiance component. (3) Peryheliometer for measuring
the direct irradiance component. (4) The ball is used to permanently hide the pyranometer (2). (5) The
two-axis solar tracker.

2.1.2. AERONET and MODIS Data

Photometer spectral measurements of the direct (collimated) solar radiation from
the AERONET network (http://AERONET.gsfc.nasa.gov, accessed on 1 March 2021) pro-
vided the information to calculate the columnar Aerosol Optical Depth (τ) at different
wavelengths (λ). τ and λ are used to calculate the Angstrom turbidity (α exponent and β
coefficient) thanks to the Angstrom relationship (Equation (1)). Two data versions (1 and 2)
and three levels (1.0, 1.5, and 2.0) exist for each AERONET product. The highest quality
data can be found in version 2, level 2.0, after a delay of 12 months or more (due to final cal-
ibration and manual inspection). This product exists for Tamanrasset, where an AERONET
station is installed and operational. It was, therefore, used in this work to obtain τ at differ-
ent wavelengths for the Tamanrasset region. There are 2828 measurements over the period
from 1 January 2006 to 31 December 2014, except for 2010, where no measurements are
available. This study also used MOD07 products created from measurements of the MODIS
instrument onboard the TERRA satellite. These are level 2.0 products of column-integrated
total ozone at a 10 km resolution. They cover the period between 2005 and 2014.

2.1.3. Clear-Sky Models

Eleven clear-sky models were considered for this study. They were selected from
various studies providing their complete formulation and validation [27–30]. The main
criterion for model selection was primarily its dependence on Angstrom parameters α and β.
Table 1 gives the selected clear-sky models with the other required variables, namely solar
constant Esc [W/m2], zenith angle sza [degrees], the elevation of the site above sea level
alt [m], local barometric pressure p [mb], surface albedo ρg, the total amount of ozone uO3
[atm-cm], the total amount of nitrogen-dioxide uNO2 [atm-cm] (a value of 0.0002 atm-cm
was taken when the measurement was not available), the total precipitable water vapor wv
[cm], the Angstrom exponent α, and the Angstrom coefficient β. All these variables were
relevant for clear-sky modeling of direct normal irradiances (DNIcs) and diffuse horizontal
irradiances (DIFcs), except ρg, which was only useful for determining DNIcs.

The models selected are empirical models that translate atmospheric attenuation
processes by a simplified parameterization. They express solar radiation in clear skies with
analytical expressions, taking atmospheric components as input (Table 1). Each empirical
model expresses the atmospheric transmittance relative to solar radiation, i.e., the ratio
between what impinges the top of the atmosphere and what remains at ground level. It
can be parameterized in terms of air mass and concentration or amount of constituents

http://AERONET.gsfc.nasa.gov
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present in the atmosphere. The components of solar radiation are calculated from the total
atmospheric transmittance T, defined as the product of the different transmittance terms:

T = To.Tg.Tw.Tr.Ta (3)

where To, Tg, Tw, Tr, and Ta are, respectively, the different transmittances due to stratospheric
ozone, optical properties of gases, water vapor, Rayleigh scattering, and aerosol properties.

Table 1. Clear-sky models and their required inputs. The variables displayed are the solar constant
Esc [W/m2], zenith angle sza [degrees], site elevation above sea level alt [m], surface albedo ρg, local
barometric pressure p [mb], Angstrom exponent α, Angstrom coefficient β, total ozone amount uO3

[atm-cm], total nitrogen dioxide amount uNO2 [atm-cm], and total precipitable water vapor wv [cm].

Models Inputs References

Ecs sza alt p ρg uO3 α β wv uNO2

Bashahu x x x x x x [27,31]
Ideriah x x x x x [27,32]
Dai x x x x x [27,33]
Janjai x x x x x x x [27,34]
MAC2 x x x x x x x [27,35]
Bird x x x x x x x [29,36]
IqbalA x x x x x x x x [27,37]
Iqbal C x x x x x x x x [27,37]
CPCR2 x x x x x [38]
MIqbal C x x x x x x x [27,30]
REST2 V5 x x x x x x x x [38]

2.2. Methods
2.2.1. Estimation of Angstrom Parameters Using Model Fitting

The first objective of the study was the estimation of Angstrom parameters from
ground-based measurements of direct solar radiation under clear skies and one of the
chosen models. This means that the aerosol parameters β and α were obtained by least-
squares fitting of the clear-sky model to the selected solar radiation measurements, i.e.,
clear-sky measurements. The AOD parameter τ was then calculated from Equation (1).

The different steps of the methodology that was implemented to achieve this objective
are presented in Algorithm 1.

Algorithm 1 Different steps of the methodology.
Step 1: Construct the solar radiation dataset from 2006 to 2014 with 10 min sampling as well

as the ozone data with the same sampling over the same period.
Step 2: Selection of solar radiation data corresponding to clear-sky conditions according to

the method proposed by Zaiani et al., (2020) [26]
Step 3: Using the least-squares algorithm to fit solar radiation measurements with the selected

model to obtain the Angstrom parameters.
Step 4: Comparison of the results to those measured with the solar photometer AERONET
Step 5: Conclusions on model performance with respect to the best estimation of

Angstrom parameters.

Several metric parameters were used for comparison purposes, since this study fo-
cused on the performance of radiation models under clear-sky conditions to estimate
Angstrom parameters. These are the root mean square error (RMSE), the mean absolute per-
centage error (MAPE), the dependence of model error (MBE), and the correlation coefficient
(R) (see Zaiani et al. (2017) [39] for definitions).
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2.2.2. Prediction Model Using RNN

Machine Learning techniques were also applied to regression tasks to improve the
results if needed. Indeed, the integration of a Recurrent Neural Network (RNN) model can
be useful if the least-squares fitting method of the clear-sky model to the data does not give
conclusive results (see Section 2.2.1). This option was possible thanks to the AERONET
measurements of the aerosol parameters that we wanted to obtain on the same site. The
RNN model took the Angstrom coefficient β as input to provide a better estimate of the
Angstrom exponent α as output. The database that contained β and α obtained from the
AERONET measurements was split for this purpose in order to create the predicted model.
A total of 70% of the database was used for training and 30% for testing. Figure 2 shows
the steps of creating this predicted model.

Figure 2. Diagram of creating the predicted model.

3. Results

The solar radiation measurements described in Section 2.1.1 were processed using
the eleven clear-sky models (see Section 2.1.3). The methodology for the estimation of
the Angstrom parameters α and β for Tamanrasset (see Algorithm 1) was implemented to
process data corresponding to direct solar radiation.

3.1. Estimation of Angstrom Coefficient (β)

The model fitting method was used with direct solar radiation measurements and
the eleven models. The obtained Angstrom coefficient was then compared to what
AERONET measured.

3.1.1. Model Pre-Ranking

The histograms giving the distribution of the Angstrom coefficient β obtained are a
good indicator to evaluate, as a first approach, how close the results from the different
models were to the measurements. Indeed, Figure 3 plots the histograms of the eleven
models and clearly shows the differences between the distributions. An obvious bias is
observed between the β values, as confirmed by the shape and maximum occurrence of
the different histograms. These histograms are then used to classify the models, since the
differences essentially reflect their performance in estimating the Angstrom coefficient.



Remote Sens. 2024, 16, 3365 7 of 18

Thus, the BASHAHU, CPCR2, IDERIAH, JANJAI, MIQBALC, and REST2 models, which
have approximately the same distribution shape, were retained, unlike the other models,
BIRD, DAI, IQBALA, IQBALC, and MAC2, which can now be rejected. The histogram of
AERONET β measurements confirms the hypothesis of choice by shape, as can be seen at
the bottom-right of Figure 3.

Figure 3. Histograms of Angstrom coefficients (β) obtained with the 11 models from direct solar
radiation measurements recorded during the period 2005–2014. The histogram of AERONET β

measurements made on the same site and during the same period is also plotted on the bottom-right.

3.1.2. Evaluation of Pre-Selected Models

The second selection step consisted of comparing the values of β obtained from the
six models selected previously with the measurements of β carried out on the same site
and during the same period with the AERONET solar photometer. Figure 4, on the left,
shows the temporal variation of the Angstrom parameter β obtained from AERONET and
three models selected from the six according to their a priori quality (from good to less
good). The correlation between daily β measurements from AERONET and from clear-sky
models is plotted in Figure 4 on the right. A good correlation can already be observed
in the figures on which the regression line allowing the statistical errors to be obtained is
calculated. They are given in Table 2 in descending order according to the performance of
the fitting models, i.e., the overall goodness of fit, defined as the sum of all the absolute
values of statistical errors plus (1 − R). The models are thus classified by the values of the
overall goodness of fit, from the lowest to the highest. The obtained ranking shows that
CPCR2 and REST2 are the clear-sky models best suited to estimate the Angstrom coefficient
β at Tamanrasset. The left plot of Figure 4 indeed shows that β estimated with the CPCR2
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model presents temporal variations similar to those of AERONET and that there is also a
very good correlation between them compared to other models (Figure 4, on the right).

The estimation of the Angstrom coefficient β therefore requires no additional processing.

Table 2. Statistical errors on β estimated using clear-sky models and AERONET measurements. The
overall goodness of fit is inferred from statistical errors and used for model ranking (see text).

Models RMSE MAPE MBE R Overall Goodness of Fit

CPCR2 0.03 0.31 0.01 0.95 0.40
REST2 V5 0.04 0.32 0.00 0.91 0.45

Janjai 0.05 0.33 −0.01 0.88 0.51
Bashahu 0.04 0.47 0.02 0.94 0.59
Ideriah 0.04 0.62 0.03 0.94 0.75

MIqbal C 0.06 0.59 0.03 0.88 0.80
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Figure 4. (Left): temporal variation of Angstrom coefficient β obtained from radiometric (red line)
and AERONET (black line) measurements. (Right): correlation between daily values of Angstrom
coefficient estimated using clear-sky models and AERONET.

3.2. Estimation of Angstrom Exponent (α)

The same method as for β, comparing the results of the six models with the AERONET
measurements, was used for the estimation of the Angstrom exponent α.

Figure 5, on the left, shows the temporal variation of α obtained from three models and
AERONET where the wavelengths 440 and 870 nm were used to calculate it with Equation (2).
The three models are CPCR2 and REST2, which gave the best estimates of β and JANJAI,
which has the best overall goodness of fit for α (see Table 3). The correlation between
the daily values of α estimated with the three models and measured with AERONET is
illustrated in Figure 5, on the right. These curves show that α is poorly estimated, regardless
of the model. There is just a weak correlation with AERONET for α obtained from CPCR2
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and REST2, which is 0.38 and 0.35, respectively. Table 3 gives the statistical errors of the six
models and confirms the poor estimation of the Angstrom exponent.

Table 3. Statistical errors between α obtained from AERONET and estimated with clear-sky models.

Models RMSE MAPE MBE R Overall Goodness of Fit

Janjai 0.95 6.14 0.43 −0.30 8.22
Modified Iqbal C 1.37 6.97 1.07 0.17 10.24

Ideriah 1.29 7.18 1.03 0.26 10.24
Bashahu 1.61 8.81 1.47 0.31 12.58
CPCR2 1.74 9.91 1.55 0.38 13.82

REST2 V5 1.89 11.00 1.72 0.35 15.26
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Figure 5. (Left): temporal variation of the Angstrom exponent α from radiometric (red) and
AERONET (black) measurements. (Right): correlation between daily values of Angstrom expo-
nent obtained from AERONET and estimated using three clear-sky models.

The difficulty in estimating the Angstrom exponent largely arises from the complexity
and reliability of the fitting method, particularly the nonlinear least-squares algorithm. In
addition, the clear-sky model used in this estimation involves at least three parameters (as
shown in Table 1). This complexity can lead to overfitting, as the algorithm may struggle to
find the global minimum during the optimization process, often settling for local minima,
resulting in the observed deviations. Additional treatments are, therefore, necessary to
improve the results in order to make them more significant. Figure 6, on the left, plots, in
red again, the Angstrom exponent α, which is poorly estimated with the fitting method
using the CPCR2 model and, in black, the AERONET measurements of α.
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Figure 6, on the right, shows the same parameters but with α obtained from the model
predicted with RNN using β estimated from the CPCR2 model (red line). We can clearly
see a notable improvement in the values of this estimated parameter. Indeed, the predicted
Angstrom exponent follows the same trend as AERONET measurements, with a calculated
correlation factor (R) of 0.60.
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Figure 6. (Left): Angstrom exponent α measured by AERONET (black line) superposed to that
estimated from radiometric data using the model CPCR2 (red line). (Right): the same plot with α

obtained with the model predicted with RNN (red line).

4. Discussion

This section will discuss the results obtained in comparison with AERONET measure-
ments as well as other aerosol parameters derived from them (AOD and types).

4.1. Comparison of β and α Obtained from Radiometric and AERONET Measurements

The monthly variations of the Angstrom coefficient obtained at Tamanrasset from
AERONET and from radiometric measurements with the two selected models CPCR2 and
REST2 are shown in Figure 7. We note that the monthly curves obtained from the models
are very similar to each other, as expected, and also to that of AERONET. They have the
same trend throughout the year, with maximum values in June. A similar result had already
been obtained in a previous study on turbidity in Tamanrasset covering the same period [9].
The explanation put forward for the peak of aerosols observed in June is the winds coming
from the southern sectors (Sirocco) during the summer season that characterizes the Sahara
of North Africa. Indeed, this kind of wind brings particles of dust and sand with it, which
increases the Angstrom coefficient [9]. Seasonal variations of the Angstrom coefficient can
be explained by high temperatures in June in Tamanrasset (around 30 ◦C) combined with
low values of humidity (around 10%) and also the presence of dust storms during that
month.

Concerning the Angstrom exponent, the use of the RNN algorithm has allowed a clear
improvement in the estimation of this parameter (see Section 3.2). However, discrepancies
between the estimated and measured values were still observed, which required the
improvement of the RNN model. So, the strategy adopted for this was to take data
selection windows of 1 or 2 years in order to carry out the training. The final result was
then the concatenation of the outputs of all the models created over each of the selected
periods. Figure 8 shows the results when using 1- (left) and 2-year periods (right) in the
AERONET dataset to perform the training of the used model. We note that the results
obtained were more consistent than those presented in the right plot of Figure 6. Indeed,
the variations of the extremum values of α are clearly visible, unlike the previous results,
when the training was carried out using the entire dataset. A better correlation factor R
between alpha estimates and AERONET measurements is observed, reaching 0.66 using
the 1-year selection window and 0.69 for 2 years (Figure 9).
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Figure 7. Monthly average of estimated Angstrom coefficients (β) for the period 2005–2014 super-
posed to those obtained from AERONET.
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Figure 8. Predicted Angstrom exponent using 1- (left) and 2-year (right) periods in AERONET
dataset for training.

Figure 9. Regression of estimated α with the measured one when using 1 (left) and 2 (right) years of
AERONET data in training.

4.2. Estimation of Aerosol Optical Depth (τ)

The spectral AOD τ was calculated with the Angstrom relation (Equation (1)) and the
parameters β and α obtained with the CPCR2-RNN models using direct solar radiation.
The wavelengths 0.870 µm, 0.675 µm, 0.500 µm, and 0.440 µm of AERONET were used in
Equation (1). The results obtained were then compared to the AOD measurements made
with AERONET. Figure 10 shows the daily variation of τ obtained from the CPCR2-RNN
models at the selected wavelengths superimposed on the spectral AOD measurements
of AERONET.
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Figure 10. AOD τ estimated using direct solar radiation (red) superimposed to AERONET τ mea-
surements (black) for each AERONET wavelength

We see, in this figure, that all the curves have the same trend regardless of the wave-
length, as also clearly shown in Figure 11 with the regression lines plotted in the scatter plot
of the AOD τ estimated with the CPCR2-RNN models for the selected wavelengths versus
τ measurements made with AERONET. These regression lines then allow us to calculate the
statistical errors and the correlation factors R for each wavelength (see Table 4). We can see
that it is at 0.870 µm that the estimated AOD τ and that measured with AERONET are the
closest compared to the other wavelengths. Indeed, we obtain RMSE = 0.05, MAPE = 0.36,
and MBE = 0.02 for the wavelength of 0.870 µm with a strong correlation R of 0.95 between
the estimates and the measurements.
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Figure 11. AOD τ estimated from the CPCR2-RNN models using direct solar radiation versus τ

measured with AERONET: the regression lines (red) allow the calculation of statistical errors and the
correlation factor R.
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Table 4. Statistical error between estimated τ and τ obtained from AERONET.

λ (nm) 870 675 500 440 BAOD

RMSE 0.05 0.07 0.11 0.13 0.02
MAPE 0.31 0.48 0.62 0.70 0.24
MBE 0.02 0.04 0.07 0.08 −0.002

R 0.95 0.94 0.94 0.93 0.93

Radiometric measurements are obtained from the integration of solar radiation over
the large part of the solar spectrum permitted by the instrument. The aerosol parameters
deduced from the models are, therefore, primarily linked to a broad spectral range. It
therefore makes sense to calculate the Broadband Aerosol Optical Depth, i.e., the BAOD.
Gueymard (1998) [40] developed a model to calculate this parameter but it was obtained
here by integrating the AOD spectral data on the part of the solar spectrum in which they
were acquired or calculated. In this case, BAOD was calculated by applying a numerical
integration technique of the AOD values over the spectral range from 440 to 870 nm. This
consisted of using a mathematical method to estimate the area under the curve of the
AOD values measured at different wavelengths in this range. AOD spectral data from
AERONET and their estimates obtained with the CPCR2-RNN models and the Angstrom
relationship were thus used for this purpose. Figure 12, on the left, shows the temporal
variation of BAOD obtained from the CPCR2-RNN models (red line) and AERONET (black
line). The curves are very similar, as confirmed by Figure 12, on the right, showing a strong
correlation between the two BAODs (R = 0.93). Statistical errors given in Table 4 also
consolidate the BAOD calculation obtained by spectral integration. However, as before for
the AOD spectral study, we also find that BAODs obtained from radiometric measurements
are very close to the AODs τ measured with AERONET at 0.870 µm with the same very
strong correlation (R = 0.95).
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Figure 12. (Left): estimated BAOD τBAOD obtained from direct solar radiation measurements (red)
superposed to that from AERONET (black). (Right): correlation between τBAOD estimated with
CPCR2 model using radiometric measurements and from AERONET.

4.3. Aerosol Types in Tamanrasset Region

Four main types of aerosols can be classified in the atmosphere, namely biomass-
burning aerosols, urban aerosols, maritime aerosols, and dust aerosols (see Section 1). The
most commonly used method to discriminate them is based on the relationship between the
values of the AOD τ and the Angstrom exponent α. Dust aerosols exhibit the characteristic
of high τ in longer wavelengths due to low values of α, which is then very useful in
identifying this type. Unlike dust aerosols, urban and biomass-burning aerosols are better
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identified by short wavelengths. According to the frequency distribution of α, a threshold
value is usually chosen to separate coarse and fine aerosols. Many studies in the literature
have used different thresholds of α versus τ for the cluster analysis approach, as shown in
Table 5 [17,23–25,41–44].

Table 5. Thresholds for aerosol cluster analysis.

Aerosol Types τ α

Maritime <0.3 0.5–1.7
Dust >0.4 <1.0

Urban 0.2–0.4 >1.0
Biomass-burning >0.7 >1.0

Mixed type Remaining Remaining

The Angstrom exponent α as a function of the Aerosol Optical Depth τ is shown in
Figure 13. We have calculated from the data in Figure 13, on the left, which correspond to
the entire period studied, that the presence of maritime, dust, and mixed aerosols represents,
respectively, 31.21%, 3.25%, and 65.54%. The same types of aerosols were identified using
the AERONET data (Figure 13 on the right), which give, respectively, 34.33%, 3.01%, and
62.66% of maritime, dust, and mixed aerosols. These aerosol percentages are very similar
to those obtained from radiometric data.
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Figure 13. Identification of aerosol types in Tamanrasset.

Figure 14, on the top, shows the monthly occurrences of the different aerosol types
(maritime, dust, and mixed) found over the period from 2006 to 2014 from radiometric
data (left) and AERONET (right). We see that the two bar graphs are also very similar.
The aerosols detected are the same but with some differences in the percentiles, probably
due to the different number of samples in the month. The seasonal occurrences were,
therefore, calculated and present a greater similarity, as shown at the bottom of Figure 14.
This bar graph shows that mixed aerosols are present during all seasons but have a slightly
lower occurrence in the winter (DJF). In contrast, maritime aerosols are more important
but decrease during the other seasons to reach their minimum in the summer (JJA). Dust
aerosols start their appearance in February to be mainly present in the spring (MAM) and
summer (JJA), then disappear in September. Table 6 summarizes the seasonal occurrences
of the different aerosol types obtained from radiometric and AERONET data.



Remote Sens. 2024, 16, 3365 15 of 18

Occurrences of Aerosol Types for Model estimation 2006-2014

Ja
n

Feb
M

ar
A

pr
M

ay Ju
n

Ju
l

A
ug

Sep O
ct

N
ov D

ec

Months

0

10

20

30

40

50

60

70

80

90

100

O
cc

u
rr

en
ce

s 
(%

)

Maritime Aerosols

Dust Aerosols

Mixed Type

Occurrences of Aerosol Types for AERONET data 2006-2014

Ja
n

Feb
M

ar
A

pr
M

ay Ju
n

Ju
l

A
ug

Sep O
ct

N
ov D

ec

Months

0

10

20

30

40

50

60

70

80

90

O
cc

u
rr

en
ce

s 
(%

)

Maritime Aerosols

Dust Aerosols

Mixed Type

Occurrences of Aerosol Types for Model estimation 2006-2014

DJF MAM JJA SON

Season

0

10

20

30

40

50

60

70

80

90

O
cc

u
rr

en
ce

s 
(%

)

Maritime Aerosols

Dust Aerosols

Mixed Type

Occurrences of Aerosol Types for AERONET data 2006-2014

DJF MAM JJA SON

Season

0

10

20

30

40

50

60

70

80

90

O
cc

u
rr

en
ce

s 
(%

)

Maritime Aerosols

Dust Aerosols

Mixed Type

Figure 14. Monthly (top) and seasonal (bottom) occurrences of identified aerosol types in Tamanrasset.

Table 6. Seasonal percentiles of each aerosol type.

Aerosol Types
Seasonal Percentiles (%)

Winter Spring Summer Autumn

Maritime AERONET 54.4 27.4 13.5 30.7
Model 54.4 25.0 8.3 24.8

Dust AERONET 1.5 6.6 4.9 0
Model 0.8 7.1 6.3 0.5

Mixed Types AERONET 44.0 66.0 81.3 69.3
Model 44.9 67.9 85.4 74.8

5. Conclusions

This article dealt with the estimation of aerosol parameters (Angstrom coefficient β,
Angstrom exponent α, and Aerosol Optical Depth AOD τ) in cloudless conditions using
clear-sky models and ground measurements of direct solar radiation. The radiometric
measurements used were those collected in Tamanrasset, in southern Algeria, during the
period from 2005 to 2014. AERONET measurements carried out on the same site were used
for comparison and validation purposes. The Tamanrasset radiometric measurements were
first processed by considering eleven clear-sky models to estimate the aerosol parameters
on which they depend, mainly β and α. A least-squares fitting method was used to find the
best-suited model to approximate the solar radiation measurements. The best estimate of
the two parameters β and α was then used to calculate the spectral and Broadband Aerosol
Optical Depth using the Angstrom relationship.
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The study first focused on the estimation of the Angstrom coefficient β considering
the 11 models and the direct solar radiation measurements. The best estimation of this
parameter was obtained with the REST2 or CPCR2 models with, respectively, 0.04 and 0.03
for RMSE and 0.91 and 0.95 for the correlation factor R. Moreover, the monthly variation
of β plotted throughout the year showed a maximum value in June, which is consistent
with AERONET data and the result found in a previous study on turbidity in Tamanrasset
covering the same period [9].

The second step of this work then continued with the estimation of the Angstrom
exponent α. The results were not conclusive with the method of fitting the model to the
data when the comparison was made with the AERONET data, even in the case of using
the best models that provided the best estimate for β. There was just a weak correlation
with the AERONET measurements, which did not exceed 0.38 at best. A complement to the
fitting method was, therefore, necessary. This led us to employ and exploit an unsupervised
predicted algorithm, namely the Recurrent Neural Network (RNN). The model predicted
with RNN used the Angstrom coefficient β as input and the Angstrom exponent α as output.
The results obtained revealed that the predicted Angstrom exponent was more conclusive
with a correlation R of 0.69 with AERONET data.

The spectral AOD τ was then calculated using the Angstrom relation and the values es-
timated with the CPCR2 model and the RNN complement. The Angstrom parameters used
showed good consistency of the estimated spectral AOD with AERONET measurements
taken at different wavelengths. The closest coherence was obtained at the wavelength
0.870 µm, at which low statistical errors (RMSE = 0.05, MAPE = 0.36, and MBE = 0.02)
were observed with a strong correlation (R = 0.95). The radiometric observations were
performed over a wide spectral range, so the integration of the spectral AOD data was cal-
culated to estimate the Broadband Aerosol Optical Depth, the BAOD. A strong correlation
between data obtained from CPCR2-RNN models and AERONET measurements was also
found (R = 0.93), confirming the reliability of these models for estimating aerosols’ optical
properties. However, we found, as for the spectral AOD, that BAODs obtained from the
radiometric measurements were very close to the AODs τ measured with AERONET at
0.870 µm, with the same very strong correlation (R = 0.95).

Finally, a classification of aerosol types was carried out from the estimated parameters
(τ and α) and those measured by the AERONET photometer. We observed in Tamanras-
set the presence of maritime, dust, and mixed aerosols, both with radiometric data or
AERONET. We found that mixed aerosols are present during all seasons, but with a slightly
lower occurrence in the winter (DJF), when maritime aerosols are predominant but decrease
with the other seasons to reach a minimum in the summer (JJA). Dust aerosols begin their
appearance in February to be mainly present in the spring (MAM) and summer (JJA), then
disappear in September.
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