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ABSTRACT

We use analytical and N-body methods to study the capture of field stars by gravitating substructures moving across a galactic
environment. The majority of stars captured by a substructure move on temporarily bound orbits that are lost to galactic tides
after a few orbital revolutions. In numerical experiments where a substructure model is immersed into a sea of field particles
on a circular orbit, we find a population of particles that remain bound to the substructure potential for indefinitely long times.
This population is absent from substructure models, initially placed outside the galaxy on an eccentric orbit. We show that
gravitational capture is most efficient in dwarf spheroidal galaxies (dSphs) on account of their low velocity dispersions and high
stellar phase-space densities. In these galaxies, ‘dark’ sub-subhaloes, which do not experience in situ star formation, may capture
field stars and become visible as stellar overdensities with unusual properties: (i) they would have a large size for their luminosity,
(i1) contain stellar populations indistinguishable from the host galaxy, and (iii) exhibit dark matter (DM)-dominated mass-to-
light ratios. We discuss the nature of several ‘anomalous’ stellar systems reported as star clusters in the Fornax and Eridanus
IT dSphs that exhibit some of these characteristics. DM sub-subhaloes with a mass function dN /dM, ~ M;* are expected to
generate stellar systems with a luminosity function, dN /dM, ~ M, where B = (2a + 1)/3 = 1.6 for @ = 1.9. Detecting and
characterizing these objects in dSphs would provide unprecedented constraints on the particle mass and cross-section of a large
range of DM particle candidates.

Key words: Galaxy: kinematics and dynamics — galaxies: evolution — Cosmology: dark matter.

2017, and references therein). Hence, detecting this truncation would

1 INTRODUCTION provide a direct constraint on the DM particle mass.

One of the strongest predictions from cold dark matter (CDM)
cosmology is the existence of self-gravitating haloes devoid of
visible matter (i.e. ‘dark’). Such objects arise because star formation
becomes inefficient in haloes with virial masses below ~ 107-
10° Mg (White & Rees 1978; Bullock, Kravtsov & Weinberg 2000;
Bovill & Ricotti 2009; Benitez-Llambay & Frenk 2020, Pereira-
Wilson et al. 2023), while the minimum subhalo mass associated
with the free-streaming length of ‘cold’ particles with masses above
~ 1GeV/c?is atleast ~ 13 orders of magnitude smaller, < 107° Mg,
(e.g. Schmid, Schwarz & Widerin 1999; Hofmann, Schwarz &
Stocker 2001; Green, Hofmann & Schwarz 2005; Loeb & Zaldarriaga
2005; Diemand, Moore & Stadel 2005). Below this scale, fluctuations
of the power spectrum are heavily suppressed, de facto imposing
a truncation at the low end of the halo mass function (e.g. Benson

* E-mail: jorpega@roe.ac.uk
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The lack of visible matter, together with their tiny masses, make the
detection of dark subhaloes extremely difficult. Current observational
efforts range from searching for gamma-ray annihilation signals
(e.g. Ackermann et al. 2014; Bringmann et al. 2014) to modelling
substructure in strongly lensed galaxies (Koopmans 2005; Vegetti &
Koopmans 2009; Li et al. 2013; Vegetti et al. 2014). In the Milky
Way, encounters with individual subhaloes can induce significant
perturbations in cold tidal streams (Ibata et al. 2002; Johnston
et al. 2002; Yoon, Johnston & Hogg 2011; Carlberg 2013; Ngan
et al. 2016, Erkal et al. 2016). For example, Bonaca et al. (2019)
find that some observed features in the GD-1 stream, including
a gap and an off-stream spur of stars, are best reproduced by
the past encounter with a dark subhalo with a mass M, ~ 10°—
108 My, and a scale radius ¢, < 10 pc. Puzzlingly, these constraints
imply a matter density comparable to the stellar density in globular
clusters, p, = M,/(2rc?) 2, 10> Mg pc3, which is several orders of
magnitude denser than CDM subhaloes with similar masses found in

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,

provided the original work is properly cited.

20z Joquisydag 6| uo sasn dINGI AQ LOLEELL/EIZE/E/EES/AI0ILE/SEIUW/WOO dNO OIWaPEIE//:SARY WOl papeojumoq


http://orcid.org/0000-0003-2496-1925
http://orcid.org/0000-0002-9716-1868
http://orcid.org/0000-0002-6911-6584
mailto:jorpega@roe.ac.uk
https://creativecommons.org/licenses/by/4.0/

3264  J. Periarrubia et al.

cosmological simulations of structure formation (e.g. Moliné et al.
2017; Diemer & Joyce 2019).

Inferring the existence of dark subhaloes using dynamical probes is
complicated by the unknown number of baryonic compact objects —
such as stellar black holes, neutron stars, white dwarfs, free-floating
planets, giant molecular clouds, etc. — lurking in the Galaxy. In
general, it is not straightforward to isolate perturbations arising from
different populations of gravitating objects (Pefiarrubia 2018). In this
regard, dwarf spheroidal galaxies (dSphs) provide relatively clean
targets, as their gravitational potentials appear to be fully dominated
by dark matter (e.g. Mateo 1998).

This paper challenges the common assumption that DM subhaloes
that do not form stars in situ remain ‘dark’. Here we show that dark
subhaloes can capture' baryonic matter as they orbit around the
host galaxy, becoming ‘visible’ as localized substructures of co-
moving bodies with high mass-to-light ratios and extended sizes.
Dark subhaloes that are massive enough to capture field stars would
bear resemblance to stellar clusters, but with atypical properties, e.g.
their stellar populations would be chemically and chronologically
identical to the local galactic field, and they would be DM dom-
inated. As we will show below, these properties are akin to those
of the ‘anomalous’ clusters detected in some Milky Way dSphs,
suggesting the intriguing possibility that these systems may be in fact
agglomerates of field stars captured by dark substructures orbiting in
the host galaxies. This possibility is explored below in some detail.

Capture processes in the classical® restricted three-body problem
have been studied for a long time. For example, the pioneering work
of Szebehely (1967) showed that a finite number of solutions exists
where the lightest particle is transferred from one distinct mode of
motion around the most massive point-mass to another distinct mode
around the intermediate-mass one. Hunter (1967), Heppenheimer
(1975) and Heppenheimer & Porco (1977) pointed out that Jupiter’s
outer satellites could have been captured in this way. More recently,
Suetsugu & Ohtsuki (2013) study temporary capture of planetesimals
by a giant planet, while Jilkové et al. (2015) consider the scenario
where the inner Oort Cloud was captured from another star during a
close encounter in their birth cluster. Recently, three-body captures
in accretion discs have also gained attention as a possible source of
black-hole binaries. E.g. Li, Lai & Rodet (2022), Boekholt, Rowan &
Kocsis (2023) and Rowan et al. (2023) show that close encounters
between two black holes orbiting around a supermassive black hole
can form bound pairs.

The dynamics of three-body capture events is extremely complex.
Using a combination of numerical and analytical methods, Petit &
Hénon (1986) showed that (i) captures in a three-body system
are temporary events that ultimately induce the dissolution of the
bound pair, and (ii) capture only happens for extremely fined-tuned
combinations of impact parameters and relative velocities which
exhibit a self-similar, Cantor-like structure. More recent work of
Boekholt et al. (2023) confirmed these results and found that the
phase space structure that leads to capture resembles a Cantor set
with a fractal dimension of >~ 0.4.

Pefarrubia (2023, hereafter Paper I) studies three-body captures
in a galactic environment, where the intermediate and lighter bodies
(both point masses) follow orbits in a massive (extended) potential.
Using numerical experiments, Paper I shows that encounters between

'n this paper, the word ‘capture’ is broadly used to describe any dynamical
process wherein a field particles undergoes a transition from galaxy orbit to
an orbit around a substructure.

2Two point masses on circular orbits, plus a mass-less tracer
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a massive object and field particles can be locally described as sling-
shot manoeuvres, in which the lighter body can increase/decrease its
speed or redirect its path. For a capture event to happen, the galactic
tidal field must decelerate an approaching lighter body to a degree
where it temporarily orbits the intermediate one. Crucially, a point-
mass moving through a sea of lighter particles generates a localized
overdensity — or ‘halo’ — of tidally trapped particles,® which reaches
a steady state as the rate of bodies captured from the field becomes
comparable to those being lost to galactic tides.

The reverse process by which stars escape from the intermediate
potential in a restricted three-body system is not fully understood. For
example, Fukushige & Heggie (2000) show that stars with energies
above the energy of escape can remain inside the tidal radius of the
intermediate body for very long times, and some do not escape at
all. These particles are typically dubbed ‘potential escapers’ (see e.g.
Kiipper et al. 2010; Daniel, Heggie & Varri 2017).

In this work, we expand the analysis of Paper I to intermediate
bodies with an extended (i.e. not point-like) mass distribution. As
an application, we study capture of field stars by DM subhaloes
in a wide range of galactic environments. The paper is arranged as
follows. Section 2 extends the statistical method outlined in Paper I to
model gravitational captures by point-mass objects to substructures
an extended size. Section 3 presents numerical experiments that test
the accuracy of the theoretical equations. Section 4 discusses these
results in the context of dark matter particle physics and outlines
future follow-up work. Finally, in Section 5, we summarize our main
results.

2 STATISTICAL THEORY

This section summarizes the main techniques applied in this paper to
construct a statistical theory that describes the spatial and kinematical
distribution of tracer particles temporarily bound to self-gravitating
substructures moving in a host galaxy.

Section 2.1 follows the steps outlined in Paper I to compute the
average number of field particles that have negative binding energies
E =v?/2+ ®,(r) < 0 within a spherical volume V =4mr3/3,
where r and v are measured relative to the substructure, as well
as their number density (n,) and velocity dispersion (o) profiles in
dynamical equilibrium within a generic potential ®,. Here, we will
focus on capture of field szars, although this analysis can be extended
to other tracers moving in the host galaxy potential, including gas
particles.*

To gain further physical insight, we will inspect the case of dark
substructures sourcing a Hernquist (1990) potential

GM,
r4c,

which recovers the results derived in Paper I for point-masses if the
profile scale-length is set to ¢, = 0. Note that the density profile
associated with the potential (1) has a centrally divergent cusp, p ~
r~latr < c,, as the universal profile found in CDM simulations of
structure formation (e.g. Navarro, Frenk & White 1997).

Section 2.2 applies our results to Milky Way dwarf spheroidal
galaxies, which, due to their intrinsic properties and relatively close

Q.(r) = —

)

3 A massive perturber also deflects stars into an overdense ‘wake’ that trails
behind it (e.g. Kalnajs 1971; Weinberg 1986). In contrast, this work focuses
on field stars that become temporarily bound to the perturber.

4To model the dynamics of gaseous particles, a pressure term must be included
in the equations of motion presented in Section 3.1.
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distances, appear to be the most interesting objects to test the
existence of dark substructures via captured field stars.

Section 2.3 analyses the cosmologically motivated case of a
large population of extended substructures with a power-law mass
function.

2.1 Distribution of trapped particles

2.1.1 Weak perturbations

The number of field stars temporarily bound to a moving substructure
sourcing a potential ®, can be estimated statistically from the (local)
distribution function under the following simplifying assumptions:
(i) field stars move on uncorrelated (random) trajectories within a
small volume element V, (ii) their number density is roughly constant
within the volume V, such that n(R, +r) ~n(R,)=n=N/V,
where R, is the 3D position vector of the substructure within the
host galaxy, and r = |R — R,| is the relative distance of a star
from the centre of the potential ®,. This is known as the local
approximation, and holds insofar as the (local) density profile rolls
slowly,i.e.r « d = |Vn/n|™'. (iii) The relative velocity distribution
of particles within the volume element V = 4mr3/3 follows a
Maxwellian distribution displaced by the reflex velocity of the point-
mass p(v) = 2mo?) "2 exp[—(v + V,)*/(25?) where o = o(R,)
is the local, one-dimensional velocity dispersion of field stars.
Under the Maxwellian approximation, the mean-squared (relative)
velocity between the background particles and the substructure is
(v?) = 302 + V2, where V, is the velocity vector of the substructure
with respect to the host galaxy centre.

Under these conditions, the average number of stars in the volume
V with negative specific energy E = v?/2 + &, < 0 can be derived
from the local phase space density of field stars as

/d3rn(r)/ v p(v)
\4 E<0

1 2 2
_ ,\ﬁze—v./ao%% / Er () + O, /o)’
3Vnw o° Jy

_ 32ﬁ(GM.)3/2 Ve L
9 o3
r2 —dc,r + 8¢3%(r + ¢,)'/? — 8¢?
X

(r+c)lP

Ny(r)

, (@3]

for r « d and v,/o < 1. To gain physical intuition, the last ex-
pression adopts a Hernquist potential (1) with a escape speed
v.(r) = /2|®,] = /2GM,/(r +c,). It is trivial to show equa-
tion (2) recovers equation (11) of Paper I for a point-mass with
¢, = 0. Note that the number of stars with negative energies within
the volume V is proportional to the local mean phase-space density
of the field, Q = n/o>, and that N, drops for substructures that are
not at rest with the background (V, > 0).

The approximation that field stars move on uncorrelated trajec-
tories is accurate insofar as the number of stars perturbed by ®,
represents a small fraction of the total number of stars within the
volume element, N = n V. From equation (2), it is straightforward
to show that the fraction of bound stars within the volume V scales
as Np/N ~ (v./o)} e=V+/%") at r > ¢, hence field particles can be
treated independently from each other when the escape velocity is
low, v, < o, or the substructure velocity is high, V, > o.

The orbits of field stars captured by the potential &, exhibit
chaotic fluctuations of energy and angular momentum, as shown in
Section 3.2. Statistically, one can count how many stars are bound to
the substructure potential (i.e. E < 0) at any given time and compare

Capture of stars by dark substructures 3265

that number against the value estimated in equation (2). Petit &
Hénon (1986) found that captured particles moving on chaotic orbits
only remain trapped within the potential ®, over a finite amount of
time before being lost to galactic tides. As shown in Paper I, this
leads to a population of bound field stars that reaches a steady state
as the capture rate (defined as the net number of field particles with
E flipping from positive to negative values) equals the loss rate (i.e
the net number of field particles with E flipping from negative to
positive values). Paper I finds that steady state is typically reached
over Smoluchowski’s (1916) ‘fluctuation mean life’

_ [2r  r
T(@r)= ?W’ (3)

which roughly corresponds to the time that a particle moving on
a straightline trajectory takes to cross the volume element, i.e. the
so-called ‘crossing’ time. Typically, this time-scale is much shorter
than the orbital time of the substructure around the host galaxy. Paper
I shows that in steady-state, the average number of field stars with
E < 0 can be estimated from equation (2) as N = o N,,, where «
is the so-called abundance parameter, which is set by the ‘dynamical
survival time’> that trapped objects remain bound to the potential
®,. Numerical experiments shown in Paper I show that « is close
to unity. The estimates shown below set the abundance parameter
a=1.

2.1.2 Strong perturbations

The statistical theory presented above assumes that the substructure
potential ¢, induces weak perturbations on the trajectories of field
stars as they move across the volume V = 47r3/3. One can easily
show that this approximation breaks down close to the substructure,
where the potential well |®,| may become deeper than the specific
kinetic energy of field particles, K = 302/2.

To derive the distribution of captured stars at small distances from
the substructure we use two empirical results found in Paper I (see
also Section 3): (i) the phase-space density of captured stars becomes
approximately constant in the vicinity of the substructure, such that
fi(r, v) = fo, and (ii) the population of captured stars reaches a
steady state on time scales comparable to Smoluchowski’s (1916)
“fluctuation mean life’ defined by equation (3).

The density profile of an equilibrium ensemble of stars moving in
the potential &, can be derived from the local distribution function
without a priori knowledge of their orbital trajectories. That means,
we do not need to specify whether orbits are regular (permanently
bound) or chaotic (temporarily bound), as long as the distribution of
these objects is homogeneous in phase-space. Under this condition,

n,[®.(r)] = / duf(r, v)
E<0

| Do
=4n f, / dE[2(E — ®,)]'/?
0

_ 8/2m
-3
To find the normalization of the local phase-space density, fy, we

match the number density (4) against the steady-state profile derived
from equation (2) at low escape velocities (v, < o), such that n, =

fol® P2 “)

SDefined as the time over which a trapped particle continuously has E < 0
before being lost to galactic tides.

MNRAS 533, 3263-3282 (2024)
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d Ng/d*r = a d N,/d*r. This yields

- n -V2/@20%)
fo= & Dot ¢ . (%)
which corresponds to a local Maxwellian distribution function
multiplied by abundance parameter «. The density enhancement
induced by the population of energetically bound stars within the
volume V can be found by inserting (5) into (4), which yields

5.0r) = n,(r)
n
4 7V2/(2 2) 3/2
=q— i @,
W —|®,]
4 (GM,)? —V2/20?) 1 ©)
3f o3 (r +c¢o)¥?’

Notice that the density profile converges to a centrally divergent
‘density spike’ 8, ~ r~3/2 (Gondolo & Silk 1999) in the point-
mass limit ¢, — 0. For extended haloes (¢, > 0) the profile becomes
flat for r < ¢,. For generic potentials, we find that the density en-
hancement (6) scales as §, ~ |®,|*2, which allows a straightforward
analysis of a wide range of substructure models.

The isotropic 1D velocity dispersion can be derived from the local
distribution function as

2 _ 1 3.2
ol [P.(r)] = 30 E<0d v~ fi(r, V)
_ 47T fo | @ 3
RETRS dE[2(E — @,)]
= 2|<I> | 7
- g ol ( )

which is a constant fraction of the escape velocity at all radii, o, /v, =
(1/5)!/2 ~ 0.45. 1t is important to emphasize that equation (7) is
independent of the speed of the dark object across the host galaxy
(V,) as well as of the normalization of the distribution function ( fj).

By construction, combining equations (6) and (7) returns a mean
phase-space density of bound stars that remains constant across the
volume element
n;(r) — aé &e—v.z/(%z) 0. 8)
ol(r) 3V
equation (8) highlights two interesting results. First, Q, solely
depends on the potential &, through the value of the abundance
parameter, «, and second the phase-space density of captured stars
drops exponentially for a potential ®, that is not at rest with the
background (V, > 0).In Section 3.1, we carry a number of numerical
experiments that inspect the accuracy of the theoretical profiles
derived above.

Of particular relevance for this paper is the distance at which the
density of bounds stars is equal to that of the field. For reasons that
become clear below, it is convenient to examine the point-mass limit
first. Solving 8(r¢) = 1 in equation (6) withc, — O and o = 1 yields

16\'° GM,
u:(;) A ©)
T o2

which is dubbed the ‘thermal’ critical radius in Paper I owing to the
Maxwellian velocity dependence exp[—V?2/(30%)] multiplying the
critical radius ro = 2G M,/ o2 in (9). Thus, the density of field stars
bound to an object with mass M, will exceed that of the galactic
background on scales below the thermal critical radius, i.e. §, > 1 at
r<Tre.

For objects with an extended mass distribution, 8,(r&*') =1
happens at r™ =r. — ¢, = k1, where k = 1 — ¢, /1 is the com-

Q*E
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pactness of the substructure. It is straightforward to show that the
condition §, > 1 requires ¥ > 0 (or ¢, < r.), which means that
only substructures that are sufficiently compact can contain an
overdense region of captured field stars. We inspect this issue in
next Section with the aid of N-body tools.

In what follows, we assume that a dark substructure becomes
‘visible’ — i.e. it can be detected as a localized stellar overdensity—
if the volume V, = 4””3 /3 > 0 contains at least one bound star,
i.e. Np(re) > 1. This condition can only be satisfied by dark objects
above a certain mass threshold, M, > M. Using (6) with ¢, =0
and (9) and setting « = 1, we find

37l/3 2 Do?
My = ——— /0 2 10
min 4 G ( )
here D = (27 n)~'/3 is a measure of the average separation of stars

in the volume element V (Pefiarrubia 2018). Notice again that the
formation of stellar overdensities is strongly suppressed in dark
objects moving at high speed (V, > o) with respect to the galactic
background.

2.2 Application: Milky Way dwarf spheroidals

The above analytical expressions can be used to inspect the effi-
ciency of gravitational captures in different galactic environments.
According to our statistical theory, capture of field stars is most
likely in regions where the stellar phase-space density Q = n/o> =
(2mn D3¢~ is high, that is the intra-stellar separation D is small
and the velocity dispersion is low (i.e. ‘cold’). Upper panel of Fig. 1
shows that the galaxies with the highest phase-space densities are the
ultrafaint dwarf spheroidals, which also are the smallest, coldest and
most metal-poor galaxies in the known Universe (e.g. Simon 2019).
References for the data shown are given in footnote 5.

In what follows, we assume that the stellar component of satellite
galaxies follow a Plummer profile, n9SP(r) = dSp "1+ (r/a)?1752,
with a central density n) " = No°P/(47a3/3), and a (3d) half- hght
radius r,‘fs = 1.305a. The average inter-stellar separation is esti-
= (27ny™)~'/3. The number of stars in a dSph galaxy
is calculated from the total stellar mass as N, dsph = M /{m.),
where, (m,) is the average mass of a single star. Given that dSphs
have approximately flat velocity dispersion profiles, we seto = ¢ 945Ph
(Walker et al. 2007).

Dwarf galaxies with multiple chemo-dynamical components are
particularly interesting in this context. In these systems, the proba-
bility to capture field stars strongly depends on stellar metallicity.
For example, the Fornax dSph contains two prominent chemo-
dynamical populations (Battaglia et al. 2006; Walker & Pefiarrubia
2011; Amorisco & Evans 2012) with metallicities [Fe/H] = —1.8
and —0.65 and ages > 10Gyr, and ~ 0.2-2 Gyr, respectively
(Rusakov et al. 2021). The metal-rich (MR) component contains
more stars NMR ~ 3 x 107, is more centrally concentrated, rM® ~
530pc and has a colder velocity dispersion, oMR ~ 10kms~!,
than the metal-poor (MP) population, which has NMP ~ 2 x 107,
r}l"ﬂj ~ 1070 pc and oMP ~~ 14.4kms~! (Walker & Pefiarrubia 2011).
Thus, MR stars have much higher phase-space densities than MP
stars,

MR MR MP \ 3 MR / .MP  MP 3
N
QizL(L) * ( h_ O ) ~ 33, an

QM nMP \ 4 MR NMP MR oMR

Middle panel of Fig. 1 shows estimates of My, derived from
equation (10) for the MW satellites in our sample. To simplify the
analysis, substructures are placed at rest within the host galaxies

mated as D =

o~}

202 Joquieydas 6 U0 Josn dNdl A LOLEELL/EIZE/E/EES/I0IE/SEIUW /W00 dNO"0jWapede//:SdNy WOy papeojumoq



T o . . . . .

w0

P C ° MR

E C 088 580 0 o g For

& 5L CR) % - © For MP n
o © Erime °

2, °

= [

<&

-10 o -
=} - MW halo
6D [

° ——t——
= &L i
—~ 8 -
= i MW halo
At L
£6 -
E For MP
= | - o Erillg o For® &

& L o

= ° aodb) L]

ap 4 e %o %ngpn For MR -

o | °@§ °
—ttt
15[ ]
g E °
~ 1F N o
P F ° MW halo
Ev & o .
~ 05 080 OO For MP E
=) o B%a%&og rdl e for @
oo ° ° o 1
S orp ° ° o @ E
EL Poe MYy . §
1 2 3 4

log,, (ry%"/pec)

Figure 1. Upper panel: Stellar phase-space density Q =n/o> =
1/(2m D363) of MW dSphs as a function of their half-light radii. References
for the data shown are given in footnote 5. Notice that the phase-space density
of the MW stellar halo at R = 20kpc is = 6 orders of magnitude lower
than in dSphs. This difference grows at larger Galactocentric radii. Middle
panel: Minimum substructure mass (Mpin) derived from equation (10).
Substructures with M, > Mp;, are expected to contain stellar overdensities
(8, > 1) with at least one bound field star (N, > 1), see text. The metal-rich
(MR) and metal-poor (MP) components of the Fornax dSph are highlighted
with red and blue filled dots, respectively. Notice that the value of My, in
the MW halo is relatively large on account of its high velocity dispersion.
Lower panel: Minimum thermal critical radius ™" of substructures with a
mass Me = Mmin. Stellar overdensities made of capture stars have a physical
size comparable to the radii of globular clusters.

(V. = 0). For reference, we also plot the value of M, associated
with the stellar halo of the Milky Way at a Galactocentric distance
of R =20kpc using the stellar density and velocity dispersion
measured by Deason, Belokurov & Evans (2011). This panel
reveals a number of interesting points. Notice first that the mass
threshold (M) is lowest in the smallest dSphs, which simply
reflects the tight correlation between half-light radius and phase-
space density shown in the upper panel. If the goal is to detect
‘dark’ substructures that contain a stellar population of captured
field stars, then ultrafaint dSphs with half-light radii ri>"" ~ 30 pc
are the best targets, as they may be sensitive to the presence of
dark substructures with masses above M, > 10* M. In contrast, the
mass threshold increases by an order of magnitude, M, > 10° Mg,
in the ‘classical’ dwarf galaxies with r;,iSph 2 300 pc. In the case of
the Fornax dSph, the MR stellar component a mass threshold My,
that is approximately an order-of-magnitude lower than for the MP
population.

Stars trapped in dark substructures can lead to the formation of
localized stellar overdensities (6, > 1) in the host galaxy. Bottom
panel of Fig. 1 shows that the size of the overdense regions lies in
the range r. = 1-10 pc, thus being comparable to the size of stellar
clusters. This leads to the intriguing possibility that some of the
‘anomalous’ stellar systems detected in MW dSphs may actually
correspond to stars temporarily trapped in dark substructures. We
discuss this scenario in Section 4.1.
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Overdensities of trapped stars are expected to have high mass-to-
light ratios. This can be shown by measuring the substructure mass
within the overdensity volume as M = M,(< r.) = M.r?/(r. +
c.)?, and comparing it to the bound stellar mass L = N,(r.) (m,).
For the point-mass case c, = 0, applying (2) and (9) returns a
dimensionless mass-to-light ratio
M M(< re) M

T = Nytrom) ~ MEimy)’ 2

where M, is given by equation (10). According to the estimates
plotted in Fig. 1, field stars bound to susbtructures with a mass M, ~
M i, will appear as extremely DM-dominated objects, M /L =
Min/{m,) ~ 10*~10 for an average stellar mass (m,) = 1 M. In
substructures with larger masses, M, > My, the mass-to-light ratio
of captured stars drops as M/L ~ M7 2. Note that equation (12)
should not be applied to substructures, where M /L < 1, as the theory
outlined in Section 2.1 ignores the contribution of trapped stars to
the underlying potential.

In the MW halo, capture of field stars is inefficient on account
of their high velocity dispersion. For illustration, here we adopt
oMV ~ 124kms™" and MY = 10*pc3 at R = 20kpc from the
MW centre (e.g. Deason et al. 2011), noting in passing that capture of
field stars in this particular stellar halo model becomes systematically
less efficient at larger distances. Note that the velocity dispersion
of the MW stellar halo is approximately one order-of-magnitude
higher than in the classical dSphs. As a result, the minimum
substructure mass needed to capture stars from the field increases
up to My, > 108 Mg, which is > 3 orders of magnitude larger
than in the MW dwarf spheroidals. Crucially, this mass threshold
is lower than the virial mass of the classical dSphs, which appear
to be embedded in DM haloes with virial masses 10°-10'" Mg
(e.g. Pefiarrubia et al. 2008a; Errani, Pefiarrubia & Walker 2018),
suggesting that dSphs may contain a population of captured MW
halo stars. However, field haloes in this mass range have scale radii
that are a factor 2> 100 larger than the thermal critical radius plotted in
the bottom panel of Fig. 1, ¢, > 10% pc (e.g. Diemar & Joyce 2019),
which implies a negative compactness parameter, k < 0. Therefore,
field stars trapped in dSphs will appear as a diffuse envelope of co-
moving stars with subdominant densities with respect to the local
MW background (8, <« 1). The detection of this stellar population
will be challenging, and may require simultaneous modelling of the
kinematic and chemical composition of a large sample of stars at
the locations of dSphs. This problem will be explored in a separate
contribution.

2.3 Sub-subhalo populations in a CDM framework

According to CDM models of structure formation, all galaxies are
expected to contain a large population of DM subhaloes with a
power-law mass function dN /dM, ~ M_* and aslope o =~ 1.9 (e.g.
Giocoli, Tormen & van den Bosch 2008; Springel et al. 2008). In the
classical fluid limit, the number of subhaloes diverges at low masses.
In contrast, if DM is made of cold massive particles a truncation
at a minimum subhalo mass My, is expected to arise on scales
comparable to the particle free-streaming length. For WIMPS with
masses above ~ 1GeV/c? the truncation lies below planet-mass
scales, Mpi, < 107°Mg, (e.g. Schmid et al. 1999; Hofmann et al.
2001).

Within a CDM context, dark subhaloes hosting a population of
captured field stars are expected to follow a luminosity function
dictated by the underlying halo mass function. To illustrate this,
let us define N, = Nj(roy) Within a volume size larger than the
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Figure2. Left-hand panel: mass M, and scale radius c, of DM sub-subhaloes colour-coded according to the number of captured dwarf galaxy stars, N, = Np(r¢),
equation (2), where r is the thermal critical radius, equation (9). In this model, the host galaxy has properties similar to the Fornax dSph: it follows a Plummer

profile with a total luminosity of N9Ph = 5 x 107, a half-light radius rﬁSph

= 0.89kpc and it has an average velocity dispersion 9P = 12.2kms~!. White

solid and dotted lines respectively show the virial mass-size relation of haloes and subhaloes taken from the Aquarius simulations (Springel et al. 2008, fig. 26)
extrapolated down to the mass scales of interest (see text). Middle panel Compactness k = 1 — ¢, /r¢ of the left-and panel models. Only models with k > 0 lead
to overdensities of captured stars with 8, > 1. Right-hand panel: Mass-to-light rations of the left-hand and middle-panel models derived from equation (12).
Stellar systems trapped in subhaloes with masses M, < 107 My will exhibit dark-matter dominated kinematics.

substructure scale radius, 7oy, > ¢,. From equation (2)

N
9

n
N. (GM.)? efv,z/(zwg rslf fOr Fog 3> Co. (13)
To combine equation (13) with the subhalo mass function, we apply
the chain rule (dN/dM,)dM, ~ N:(z"”")ﬁdN\H which leads to a
luminosity function

dN M —Qa+1)/3
— = A — , (14)
dM, (m.)

where M, = N, (m,) is the mass of a stellar clump, and Ay is an
arbitrary normalization. Thus, the luminosity function of stellar
substructures also follows a power-law dN/dM, ~ M[#, albeit
with a shallower index than the underlying subhalo mass function,
B=QRa+1)/3=16fora=1.9.

Whether or not the these objects can be detected as localized stellar
overdensities mainly depends on the compactness of DM haloes that
capture them (see Section 2). To illustrate this point, Fig. 2 shows the
mean properties of field stars trapped in dark substructures covering
a wide range of masses and scale radii. For this plot, we adopt the
same dwarf galaxy model as outlined in Section 3.1. Namely, field
stars follow a Plummer profile with a total luminosity of N95P! =
5 x 107, a half-light radius of rsSPh = 0.89 kpc and a mean velocity
dispersion o%5Ph = 12.2kms ™!, similar to the overall properties of
the Fornax dSph (see Section 2.2). For simplicity, we assume that
dark substructures are at rest with the field (V, = 0).

Left-hand panel of Fig. 2 shows models colour-coded according
to the number of bound stars enclosed within their thermal critical
radius, N,(r¢) calculated from equations (2) and (9). As shown in
Fig. 1, point-mass objects with M, > 10° Mg, contain N, > 1 stars
trapped within their thermal critical radius. In extended substructures,
the mass threshold for capture increases mildly.

MNRAS 533, 3263-3282 (2024)

Only substructures with positive compactness (k = 1 — ¢, /r.) can
become visible as localized stellar overdensities (8, > 1). Middle
panel shows that the condition ¥ > 0 (or ¢, < r¢) translates into a
linear relation ¢, < 0.83 GM, /o2, which is steeper than the shallow
mass-scale radius relation of Aquarius subhaloes, ¢, ~ M2, As
a result, Aquarius subhaloes with masses M, <5 x 100 Mg would
be ‘flufty’ (k < 0). In these objects, trapped stars would have sub-
dominant densities with respect to the field (6, < 1), complicating
their detection in photometric surveys. However, in spectroscopic
surveys these objects may appear as localized regions with distinct
kinematics, i.e. a low velocity dispersion o, < o, and/or a significant
velocity offset Av.

It is important to stress that the mass-size relation of field haloes
and subhaloes contain a significant amount of scatter that is not
plotted in Fig. 2 (e.g. the concentration of field haloes has a
standard deviation of ~ 0.15dex at a fixed mass, Ludlow et al.
2016). Crucially, a low-probability, high-density tail in the mass-
size distribution would lead to a population of low-luminosity
overdensities with the size of stellar clusters. This is of particular
relevance as the existence of such a high-density, low-probability
tail of substructures is a strong prediction from the CDM paradigm
(Penarrubia et al. 2010; Errani & Pefarrubia 2020; Errani & Navarro
2021). Unfortunately, given the poor theoretical understanding of the
mass function and the density profile of sub-subhaloes in dSphs, at
present it is not possible to make predictions on the number of stellar
overdensities of captured field stars. We will discuss this issue in
Section 4.1.

Right-hand panel of Fig. 2 shows the mass-to-light ratio (12)
for the models shown in previous panels. As expected, we
find that field stars trapped in low-mass (M, < 107 My) sub-
structures exhibit DM-dominated kinematics (M /L > 1). As a
note of caution, recall that the analytical equations derived in
Section 2.1 neglect the self-gravity of captured stars, which
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is not a valid assumption in systems with mass-to-light ratios
M/L < 1.

In summary, Fig. 2 suggests that field stars captured by dark sub-
subhaloes may resemble stellar clusters with anomalous properties:
(1) they would have a large size for their luminosity, (ii) contain stellar
populations with ages and metallicities indistinguishable from the
host galaxy, and (iii) exhibit DM-dominated mass-to-light ratios.

3 STATISTICAL EXPERIMENTS

This section carries a suite of numerical experiments that help us to
test the accuracy of the theoretical equations derived in Section 2.1,
and shed light on the dynamics of stars trapped by a substructure
orbiting in a Fornax-like dSph galaxy. The section goes as follows

Section 3.1 provides a brief overview of the properties of the
galactic field particles and the numerical set-up used to solve the
equations of motion. We refer interested readers to appendix A of
Paper I for a detailed description of the integration tools.

Section 3.2 injects a static substructure potential ®, in a pre-
existing field of particles in dynamical equilibrium within ®%SP, This
set-up is similar to the analytical conditions adopted in Section 2.1,
and we can therefore anticipate a close match between theoretical
predictions and the numerical results. Interestingly, we will see
that the dynamics of field particles trapped in ®, can be broadly
separated in two families: (i) permanent captures, which become
bound immediately after the substructure is placed in the field
at + =0, and remain bound for indefinitely long times, and (ii)
temporary captures, which as the name indicates only remain bound
for a finite amount of time.

Section 3.3 explores a physically motivated case where a substruc-
ture mass grows while moving along a circular orbit, thus sourcing
a time-dependent potential ®,(z). We will see that these models also
capture particles trapped on permanent orbits around ®,, and that one
time-scales ¢ > |®,/®,|”! the phase-space distribution of particles
with £ < 0 become indistinguishable from the static case explored
in Section 3.2.

In Section 3.4 we analyse capture of field stars by a substructure
accreted onto a dwarf galaxy on an eccentric orbit. The potential
d, is initially placed at orbital apocentre in a region populated by
no field particles (therefore it contains no permanent captures by
construction), with a small orbital pericentre that reaches the inner-
most regions of the dSph.

Section 3.5 considers substructure models with a fixed mass
and different scale radii. The numerical results stress that only
substructures that are sufficiently compact generate overdensities
of captured field stars.

3.1 Initial conditions & set-up

We generate realizations of N = 5 x 10° stellar tracer particles in
dynamical equilibrium within a Dehnen (1993) potential ®%P" with
a total mass of MP" = 3 x 10° M, and a scale radius c4"" = 2 kpc.
We run experiments with cuspy (y = 1) and cored (y = 0) profiles.
Given that the stellar luminosity of the Fornax dSph is ~ 5 x 107 L
(e.g. Rusakov et al. 2021), the particle luminosity in our models is
10Lg.

Field particles in this potential follow an «a-B-y profile (Zhao
1996)

no
(R/Ro)"/[1 + (R/Ro)*s 1 Br=rpes’

n(R) = 5)
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with n( chosen such that 47 fooc dr r?n(r) = N. We consider two
tracer models: (i) a spherical Plummer-like (1911) profile® with a
scale radius Ry = 690 pc and slopes (s, By, ¥¢) = (2,5,0.1), and
(ii) a truncated model with (af, Bf, y¢) = (2,30,0.2) and a scale
radius Ry = 460 pc. To guarantee dynamical equilibrium, orbital ve-
locities are assigned using Eddington (1916) inversion (see Errani &
Pefiarrubia 2020). For the Plummer profile, this returns a luminosity-
averaged 1D velocity dispersion (v?)!/2/3 = 12.2kms~!. This is our
reference model, which approximately matches the overall phase-
space density, size and luminosity of the Fornax dSph plotted in
Fig. 1. The luminosity-averaged velocity dispersion of the truncated
model is (v2)/2/3 = 11.7kms~.

The motion of individual tracer particles are solutions to two
sets of differential equations. The first set describes the orbit of
the substructure in the dSph potential

R, = —VOS(R,). (16)

The second set describes the trajectories of tracer particles in the
galactocentric frame

R=-VOB™"(R) -~ VO,(R - R.) + Fea, (17)

where R — R, is the relative distance of the particle to the substruc-
ture, and F oo = ZlN:dl" ™ f is the net force induced by Nejymp clumps
orbiting in the substructure potential ®, (for example, these could
be planets orbiting the Sun in Paper I, or sub-subhaloes in the DM
halo of dSphs in the current work). For simplicity, here we assume
that the substructure potential is ‘smooth’ by setting F.o; = 0. We
will analyse the effect of random encounters with clumps on the
dynamics of captured particles in follow-up work.

In Sections 3.2 and 3.3, substructures are placed on circu-
lar orbits around a cored DM halo (y = 0) at a galactocentric
radius R, = 0.5kpc with a tangential velocity V, = V.(R,) =
14.35kms~'. The local dynamical time is therefore Q! = R, /V, =
500 pc/14.35kms™! ~ 34 Myr. Field stars follow a Plummer (1911)
profile, have a local velocity dispersion of o(R,) = 11.2kms~!, and
are separated by an average distance D(R,) = 4.8 pc.

For illustration, we choose a substructure mass M, = 10° M.
To estimate the thermal critical radius we adopt o = (v?)!/2/3 =
12.2km s~ in equation (9), which returns 7. = 18.9 pc. Note that this
size is comparable to that of the extended stellar clusters discussed
in the Introduction. We consider a ‘compact’ substructure with k =
+0.8, which translates into a scale radius ¢, = (1 — k) r. = 3.78 pc
(notice that this value is smaller than the typical scale radius of
field haloes with a vitial mass M,;(z = 0) ~ 10° M, in the Aquarius
simulation, see Fig. 2). The time-scale needed to cross the overdensity
size by a random field particle is much shorter than the orbital
time, T(r.) = r./o = 18.9pc/(12.2kms™") >~ 1.5 Myr. As aresult,
in these models the population of captured particles reaches steady
state quickly.

‘We choose a volume size around ®, which matches the local tidal
radius derived below from equation (20), 7oy = r; =~ 190 pc. The vol-
ume V = 4xr?,/3 contains approximately N = n V = 42530 field
stars. From equation (2), we expect that approximately N (rou) =
2000 stars will have negative energies.

®We notice in order to generate a positive distribution function via an
Eddington inversion, the inner slope y; can be small but not exactly zero.

MNRAS 533, 3263-3282 (2024)

202 Joquieydas 6 U0 Josn dNdl A LOLEELL/EIZE/E/EES/I0IE/SEIUW /W00 dNO"0jWapede//:SdNy WOy papeojumoq



3270  J. Periarrubia et al.

integration time

T 3
— _ _t/T=10
t/T=50

log,, (T AN/At,)

llilllilllllllllllill

0.5
log,, (t./T)

Figure 3. Distribution of capture times (f. = t — fpound) defined as the time
spanned since a particle becomes bound (fpound), i-€. the energy E flips from
positive to negative, until the present integration time (¢). Time is measured in
units Smoluchowski’s time scale (7') for convenience. Here, we only include
particles within a volume size equal to the local tidal radius, rou = 11 (see
text). Notice the presence of a substantial number of particles that become
bound at ¢ ~ 0, which result in a a strong peak in the distribution at 7. ~ ¢
shifting towards the right as the integration time increases.

3.2 Static substructures potential on circular orbits

In this section, we place a substructure potential ®, ata galactocentric
radius R, with a circular velocity V, = V.(R,) in a sea of tracer
particles with an extended profile (see Section 3.1) in dynamical
equilibrium. By chance, at the initial snapshot (+ = 0) a number of
tracer particles are found within a volume element V = 47r2, /3
centred at @, with a relative velocity below the escape velocity,
v < v,, which implies a negative energy, E < 0. In what follows, we
refer to these particles as ‘immediate captures’ in order to distinguish
them from ‘chaotic 3-body captures’ (e.g. Petit & Hénon 1986),
which take place during the dynamical integration of their orbits as a
result of the interplay between the tracer particle and the substructure
and host galaxy potentials.

Next, we follow the motions of the substructure and the field
particles by solving equations (16) and (17). At each time-step, we
identify particles located within the volume V whose energy flips
from positive to negative, label them as ‘captured’, and mark their
ID’s and the time when this happens (fpound)-

As the simulation proceeds, we notice that orbits with £ < 0
can be broadly separated into two families. The first group is made
of ‘permanent’ captures, which correspond to particles that remain
bound for arbitrarily long times and were already bound at# = 0 (i.e.
these are immediate captures that survive until the final snapshot of
the simulation). Here, it is worth stressing that not all immediate
captures are permanently bound, as some of them become tidally
stripped by the galactic potential. We will come back to this point
below. The second group corresponds to ‘temporary’ captures. As the
name indicates, these particles were unbound (£ > 0) at the initial
snapshot + = 0. At some point during the integration their energy
sign flips from positive to negative, and back to positive, as these
particles only remain bound for a finite amount of time.

The presence of particles on permanently bound orbits can be
easily identified in the distribution of capture times plotted in Fig. 3
at three different snapshots of the simulation. Independently of the
time of the measurement, we find a very prominent spike centred
atf. =t — tyouna = ¢. This spike is populated by particles that were
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Figure4. Examples of permanent and temporary captures. Left-hand panels:
Motion of captured particles in a coordinate frame centred at the potential @,
of a ‘compact’ Hernquist substructure with M, = 10° M, and a compactness
x = 0.2 (see Section 2.1 for details), which leads to a scale radius c, =
(1 —x)re =3.78 pc. Notice how the temporary capture eventually leaves
the volume of observation as it becomes gravitationally unbound. Upper and
lower right panels: Time-evolution of the specific energy E = v?/2 + @, and
angular momentum |L| = |r x v|, respectively. Energy is measured in units
of the mean kinetic energy of field stars, K = 302/2, and angular momentum
in units of Ly = r¢ o. Time is measured in units of Smoluchowski’s (1916)
fluctuation mean-life (3). In contrast to temporary captures, particles on
permanent orbits exhibit negative binding energies (E < 0) during the entire
time span of the integration.

already bound att = 0 (fpouna = 0). Away from the spike, we observe
a broad distribution of capture times, which is populated by particles
that were initially unbound and become captured at a later time of
the simulation, such that fpoung > 0. Their distribution of capture
times peaks at #. ~ 2 T, although in this experiment we also find a
significant number of temporary captures that remain bound for as
longast, ~ 50 T. In our models, all particles captured with tyoyng > O
are temporary events that ultimately lead to the tracer particle being
released back to the galactic potential.

Since we know the particle ID’s, we can follow the trajectories
of permanent and temporary captures individually. For illustration,
Fig. 4 shows the motion of two field particles captured by the potential
®,, with orange and blue lines showing temporary and permanent
captures, respectively. Temporary captures are transient events that
inevitably result in the field particle escaping from the potential
®, after a finite amount of time. In the example plotted in Fig. 4,
the specific energy of the field particle E = v?/2 + @, flips from
positive to negative t >~ 2T and remains negative until t ~ 47T,
which yields a survival time tg,y ~ 45 T. Afterz = 47 T, the particle
goes through a short period of rapid energy oscillations in which the
orbit becomes bound and unbound repeatedly over short time-scales,
tsuv ~ T, until it finally becomes fully unbound and escapes from
the volume element V at ¢ ~ 60 T'. In contrast, permanent captures
have E < 0 at all times and show milder variations of energy. It is
important to emphasize that none of these particles conserve energy
or angular momentum (L = r x v), which greatly complicates an
analytical description of their motion. For example, their orbits are
not typically restricted to a constant orbital plane —even when &,
is spherical & static— and exhibit time-varying orbital parameters
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Figure 5. Upper panel: Radial phase-space location of bound particles in
a co-rotating frame, x" — v, measured at the end of the simulation (1 = #y).
Only particles within a narrow plane |Ay’| < 0.2r and |Az'| < 0.2r¢ are
shown here. The dwarf galaxy centre is located at x’/re ~ —25. We identify
‘permanent’ captures as those particles that remain bound for the whole span
of the simulation z, = ¢ (Or fyouna = 0) and plot them with red dots, whereas
temporary captures become bound at fpound > 0 and are plotted in blue. Note
that permanent captures have negative binding energies measured in a co-
rotating frame, E;o; < 0, and are confined within the tidal radius |x'| < r; =~
10r, with r; given by equation (20). Notice also the lack of permanent
captures at very small distances from the substructure, r < re. Lower panel:
Energy and angular momentum of the particles plotted above given in the
same units as in the right-hand panels of Fig. 4. Black-solid line shows the
circular velocity of the Hernquist substructure. Notice that permanent and
temporary particles appear segregated in the integral-of-motion space. In
particular, temporary captures can be rarely found on circular orbits. Note
also that this division blurs close to the ‘fringe’ region, E ~ 0.

(such as peri, apo-centres and orbital eccentricity) that change in an
apparently random fashion over short time scales.

As noted above, only a fraction of particles with £ < O at ¢t =0
(the so-called immediate captures) remain bound for an indefinite
amount of time. Fig. 5 shows that only immediate captures that were
initially located within the local tidal radius become permanently
bound. This plot shows particles in a co-rotating coordinate system
centred at the substructure, with the x’-axis pointing at the host galaxy
centre, and the z’-axis aligned with the angular vector = (0, 0, Q).
In this frame, the effective potential can be written as (cf. equation 12
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of Renaud, Gieles & Boily 2011)

1
Defr = Py — E(Mx,z-f-)»z Y2+ 132, (18)
where A; are the 3 eigen-values of the local tidal tensor. For a Dehnen

(1993) sphere with y = 0 they can be expressed analytically using
equation (17) of Renaud et al. (2011) as

G M4Sph 3R,
(A1, A2, A3) = (R. & ctSmys <R, g 0, —1). (19)
The tidal radius can be estimated from (19) as
GM. 1/3 M. CdSph 1/3
ry = ( )\‘1 ) = |:73Md5ph (1 + R. >:| R., (20)

which recovers the academic point-mass case for ¢c3Ph = 0. Inserting

the parameters of the experiments run in this section into (20) yields
r, =~ 190pc ~ 10r..

Dotted and solid lines in the upper panel of Fig. 5 show phase-space
surfaces that obey the conditions £ = vf /2+ ®,(x',0,0) =0 and
Eo = vf /2 + Dege(x’, 0, 0) = 0, respectively, with primes denoting
quantities measured in a co-rotating frame. By definition, temporary
captures (shown in blue) populate a phase-space region, where £ < 0
over a wide range of distances. Interestingly, permanent captures
are more confined in phase space. In particular, we find that all
permanent captures obey E;,; < 0 and can only be found at distances
r < r; =~ 10r, from the substructure. Notice also the apparent lack
of permanent captures at distances smaller than the thermal critical
radius, |x| < r.. As discussed below, this is likely due to the finite
number of particles in our models.

Lower panel of Fig. 5 shows the energy (E£) and angular mo-
mentum modulus (L = |r x v|) of the particles plotted in the upper
panel. For reference, the angular momentum of circular orbits at a
given energy is shown with a black-solid line. The first noteworthy
result is that permanent and temporary captures occupy different
regions of the integral-of-motion space. In particular, it is rare to find
permanent orbits with low angular momentum, which suggests that
orbits with high-eccentricity do not remain bound to the substructure
potential for an indefinite amount of time. In contrast, temporary
captures avoid orbits with low eccentricity. This result agrees with
the numerical experiments published in Paper I, which show that
particles trapped in the potential &, exhibit a ‘super-thermal’
eccentricity distribution with an excess of particles moving on very
eccentric orbits. Notice also that the division between temporary and
permanent captures blurs in the energy "fringe’, |E| < 0.2 K, where
K = 307?/2 is the average kinetic energy of field particles.

Given that captured particles do not conserve E or L, as shown in
Fig. 4, it is remarkable that temporary and permanent orbits remain
locked within their respective regions as they drift in E—L space.
This empirical result may serve as a starting point for follow up
theoretical work to better understand the dynamical mechanisms
that lead to gravitational capture.

Fig. 6 shows the density enhancement of bound particles, §, =
n,/n, as afunction of distance from the substructure for (i) permanent
captures (top panel), (ii) temporary captures (middle panel) and all
bound particles (bottom panel) at different snapshots of the simula-
tion. For ease of reference, the background density §, = 1 is marked
with horizontal dotted lines. As expected, in the static experiments
we find a very weak temporal variation of the profiles, suggesting
that the distribution of bound particles reaches steady state quickly.
Focusing first on the top panel, we find that permanent captures
do not generate overdensities, i.e. §, < 1. We also observe a sharp
truncation of the profile at r ~ 10r,, which roughly corresponds
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Figure 6. Density enhancement (8, = n./n) of particles with negative
binding energies E < 0 as a function of distance from the substructure.
Top, middle and bottom panels split bound particles according to whether
they are permanent, temporary or any kind of captures (see text). Horizontal
dotted lines mark the local density of the field §, = 1. Green dots show the
density enhancement derived from the equilibrium Initial Conditions (ICs)
by placing a substructure Hernquist potential ®, at 100 random locations in
the galaxy and identifying particles with £ < 0. Note that lack of permament
captures beyond the the tidal radius r;, equation (20), marked with vertical
arrows. Notice also that the density enhancement profiles do not evolve
with time, and that stellar overdensities (8, > 1) of field particles mainly
originate from temporary captures. Bottom panel shows that the theoretical
profiles accurately describe the distribution of all bound particles, that is the
superposition of permanent and temporary populations.

to the value estimated from (20) (marked with vertical arrows). At
small distances, r < re, we find no permanent captures. This is likely
a numerical artefact resulting from finite sampling. To prove this
point, we place a substructure potential ¢, at 100 random locations
within the galaxy and identify bound particles in the unperturbed
models at ¢t = 0. The averaged density enhancement profile is shown
with green dots. Recall that permanent captures are already bound
at + = 0, and given that their spatial distribution shows no temporal
variation it is not surprising that these objects follow a similar profile
as the one derived from random sampling the Initial Conditions (ICs).
However, there are two visible discrepancies: at large radii, r 2 r;,
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the profile derived from the ICs is not truncated, which indicates
that the truncation exhibited by permanent captures originates from
dynamical evolution. A second mismatch can be observed at small
radii, r < r., where we find that the profile derived from the ICs
extends well below that of permanent captures. This is because the
IC profile is generated by placing the substructure potential ®, at 100
random locations in the galaxy, which enlarges the statistical sample
of bound field stars, allowing us to measure their density at smaller
radii. Crucially, the density enhancement converges slowly to unity,
8, — linthelimitr/r. — 0, which again indicates that the presence
of permanent captures does not generate a stellar overdensity at the
substructure location.

The density enhancement generated by temporary captures is
plotted in the middle panel Fig. 6. In contrast to permanent cap-
tures, temporary captures generate an overdensity (8, > 1) at small
distances from the substructure. We also find that the enhancement
profile closely follows the theoretical curve (6) (black-dashed lines)
on scales r < r.. However, on larger scales r 2 r. the density of
temporary captures falls off more quickly than predicted by the
statistical theory. Beyond the tidal radius, r 2 r;, the profile of
temporary captures approaches again the theoretical curve (6).

Bottom panel show the profiles generated by all particles with
E < 0 at three different snapshots of the simulation. In agreement
with the theoretical predictions from Section 2.1.2, the theoretical
profile (6) matches the numerical result after we consider the entire
population of bound particles without specifying whether captures
are temporarily or permanently bound. Notice also that there is
no particular feature that marks the location of the tidal radius in
the distribution of bound stars, and that equation (6) is accurate
in the vicinity and beyond the tidal radius, which suggests that
the superposition of permanent and temporary orbits conspires to
generate a population of bound stars with a constant phase-space
density across the volume under observation. We come back to this
point below.

3.3 Growing substructures on a circular orbit

In the previous section, a static substructure potential ®, is instantly
injected in a sea of field particles in dynamical equilibrium. This
experimental set up is mathematically convenient because it removes
any explicit time dependence from the analytical estimates, but it has
limited physical applications.

In this section, we inspect a physically motivated scenario in which
a substructure has a mass that grows as it moves along a fixed orbit
across a sea of field particles (see discussion in Section 4). To this
aim, we re-run the ‘compact’ N-body models presented in Section 3.2
adopting a time-dependent substructure mass

M.(1) = M. [1 — exp(—1/7)], 20

with M, = 10° Mg and a fixed scale radius ¢, = 3.78 pc. Here,
is a parameter that controls the mass growth rate, T = | M,/ M.|,_:10.
The substructure potential ®, vanishes in the limit# — 0 for t > 0,
which allows us to easily modify the number of immediate captures
by choosing different values of the time-scale t. By construction, in
the limit # > 7 the time-dependent model approach the static case
explored in Section 3.2.

Fig. 7 shows the distribution of capture times, f, =t — fyounds
where fyoung 18 the integration time at which a particle becomes bound,
in models with three different mass-growth rates, t/7 = 0, 1 and 3.
Orange lines correspond to the same distribution plotted in Fig. 3
for static models (r = 0). Comparison between the panels from top
to bottom shows the emergence of prominent spike of particles with
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Figure 7. Upper panel: Distribution of capture times (¢.) defined as the
time since a particle becomes bound (energy flips from positive to negative)
to the current simulation time (7). In substructure models with different
growth rates (), we find a substantial number of particles captured at early
times (fpound S 27) that remain bound for the rest of the integration, the so-
called ‘permanent’ captures, which materialize as a peak in the distribution
at long capture times 7, ~ ¢, which shifts towards the right of this plot as
the integration time increases. Lower panel: Fraction of permanent captures
within a volume element ro,¢ = 190 pc as a function of integration time. The
fraction of permanent captures is roughly constant in the static case (r = 0),
and peaks around 7 ~ 7 for substructures with a time-dependent mass (21).
At time-scales ¢ > t, the three models show the same fraction of permanent
particles independently of <.
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t. ~ t, which is the telltale of the build-up of a permanent captures
trapped in the time-evolving substructure potential, ®,(¢). Focusing
on the models with a slow growth rate (r = 3 T, red lines) we find
that the spike is absent early on during the simulation (/T = 5, top
panel), and that it only starts to arise at #/T = 20 (second panel from
the top). At the end of the simulation at # = 50 T' (third panel from
the top), we find that all three models show a clear excess of captures
with long capture times, #. ~ ¢, with the peak of the distribution
broadening up for models with slow growth rates (r > 0). This
suggests that while in a static potential (r = 0) permanent captures
are trapped immediately at the start of the experiment, fyouna = 0,
this is not the case in substructures with a mass growth (21), which
capture particles onto permanent orbits over an extended period of
time, foound S 27.

Unfortunately, the theoretical conditions that determine whether a
field particle becomes permanently or temporarily bound to a time-
dependent potential ®,(7) are more difficult to study than in the static
case, because the energy measured in a co-rotating frame (E;q) is
not a conserved quantity in time-dependent systems. The results
shown in Fig. 7 call for a heuristic classification of orbits according
the the amount of time that they remain bound. In particular,
in what follows we identify permanent captures as particles that
become bound early on, fyouna < 27, and whose energy E remains
negative uninterruptedly until the end of the simulation.” These are
the particles that populate the spikes of the distributions plotted in
Fig. 3. With this empirical definition at hand, it is straightforward
to measure the fraction of bound particles that are captured on
permanent orbits as a function of time, which is shown in the bottom
panel. The first noteworthy result is that the fraction of permanent
captures is approxirnately constant in the static model,? fperm =

Nperm/(Nperm + Niemp) = Nperm/Np = 0.35 As expected, increasing
the time-scale t systematically decreases the number of permanent
captures at + = 0. In particular, the model with the slowest growth
(r = 3T, red line) contains no permanent captures initially. As time
proceeds, the number of permanent captures grows, peaking at? ~ t.
Once the substructure stops growing, the fraction of permanent
captures approaches the static value at ¢ > 7, independently of the
choice of 7. This suggests that the exact manner in which ®, is
inserted into the field does not affect the final distribution of bound
particles, insofar as the captured population has enough time to reach
steady state.

Fig. 8 plots the number of bound particles located within a fixed
spherical radius 7oy = 190 pc from the centre of ®,(7) as a function
of time (red lines) for three different values of the time-scale 7.
Recall that in the static case, this choice of r,, matches the local
tidal radius (20). We find that the total number of particles with
E = v?/2 + ®,(t) < 0 within the volume (N,) grows in proportion
to the substructure mass. The experimental values are in excellent
agreement with the values derived from equation (2) using a time-
dependent mass (21; black-dashed lines).

Fig. 8 also illustrates the process by which a population of captured
particles reaches steady state. Orange and green lines, respectively,
show the number of particles in the volume V that become bound
(E flips from positive to negative) and unbound (either E flips

"Notice that some temporary captures may also remain bound for relatively
long times. However, Fig. 3 suggests that the fraction of temporary captures
that form within tyoung < 27 is < 10 per cent

8The potential ®, moving across the galaxy heats up the population of field
particles. This translates into a capture rate that decreases with time (see also
Fig. 8), and to a slightly rising fraction of permanent captures at t 2 10 7.
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Figure 8. Upper panel: Distribution of capture times (7. ) defined as the time
since a particle becomes bound (energy flips from positive to negative) to
the current simulation time (¢). Notice the presence of a substantial number
of particles that become bound at ¢ ~ 0, which result in a a strong peak
in the distribution at 7. ~ ¢ shifting towards the right as the integration
time increases. Lower panel: Permanent-to-temporary ratio (or ptt in short)
of particles captured within a volume element rqy = 100 pc as a function
of integration time. Permanent captures are defined as particles with a
capture time f. ~ ¢, i.e. they remain bound during the whole integration
time. In contrast, temporary captures only remain bound for a fraction of the
integration time, i.e. 7, < 7. Notice that the ptt ration becomes approximately
constant at 7 2> 5, T, where T is Smoluchowski’s time scale.
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from negative to positive, or the particle leaves the volume under
observation) within a time interval Az = 0.1 T'. In models where ®,
is introduced suddenly (z = 0), we find that these two values become
approximately equal after a few snapshots. At this point, steady state
has been reached. In models where the potential ¢, grows slowly
(t > T) we observe two distinct regimes: (i) at t < 7, particles are
captured at a rate that overcomes the number of unbinding events,
which leads to a net growth of the population of captured particles.
(ii) On longer time-scales, ¢t 2 t, the number of bound particles
reaches a steady state, wherein the rate of capture becomes roughly
equal to the loss rate, ANpound ~ A Nunbound- From this time on, all
captures are temporarily bound, which leads to no net variation in
the average number of stars with £ < 0. It is worth to highlight that
in all models the capture rate and the loss rate conspire to yield an
average number of bound particles within the volume V that is very
close to the value derived from equation (2) with a time-dependent
mass (21) at all times.

Blue-dotted lines in Fig. 8 show the number of permanent
captures as a function of time. Notice that all particles trapped onto
permanent orbits are captured early on, ¢ < 27, and that at the end
of the simulation #; = 50 T all models contain a similar number of
permanent captures independently of the choice of 7. At early times,
the build up of permanently bound orbits leads to a capture rate
that exceeds the loss rate, ANyound > A Nunbound, and thus to a net
growth of the average number of bound particles, N,(¢). This may
suggest that permanent captures result from an impulsive response of
the galactic field to the growth of the substructure potential on short
time-scales |,/ ®,|”" = |M,/M.,|;}, = © ~ T. Further theoretical
work is need to understand how this capture mechanism works.

Fig. 9 shows that the final distribution of bound particles around
the potential @, at t = ¢, is not sensitive to the rate of growth of the
substructure potential (7). This result holds insofar as the simulation
time is longer than the time-scale on which the potential grows,
i.e. ty > 1. Let us focus first on the upper panel, which plots the
average phase-space density of captured particles as a function of
distance to the substructure, Q,(r) = n*(r)/af(r). As expected, we
find that Q, is approximately constant across the volume V, and
that the measured value of Q, approximately matches equation (8)
(marked with a black-dashed line) independently of the choice of
7. Section 2.1.2 predicts that bound particles with a constant phase-
space density in steady state follow the density profile (6) (black-
dashed line). The middle panel shows that this expectation is largely
correct. Regardless of whether @, is introduced gradually (z > 0)
or suddenly (r = 0), we find that the number density of captured
particles scales as 8, ~ |®,|*/2. Similarly, the lower panel of Fig. 9
shows that the velocity dispersion profile goes as o, ~ |®,|'/?, which
in the case of a Hernquist substructure potential ®, leads to the
velocity dispersion profile (7) plotted with a black-dashed line.

3.4 Accreted substructures on an eccentric orbit

In the previous sections, we carry out experiments where a sub-
structure is injected on a circular orbit either suddenly (r = 0), fast
(t =T),orslowly (v > T) into a pre-existing field of field particles
in dynamical equilibrium. This experiminental setup invariably leads
to a population of field particles that are captured on to permanent
orbits around the potential ®,(¢). In this section, we present models
where a static substructure potential is initially placed in a region
of the galaxy devoid of field stars on an eccentric orbit. By design,
these experiments contain no immediate or permanent captures.
The numerical set-up is slightly different from previous sections.
Here, we consider a dwarf galaxy sourcing a cuspy Dehnen (1993)
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Figure 9. Upper panel: Average phase-space density Q. = n, /(73 =
nd, /0‘3 as a function of distance from the potential ®, measured from the
models shown in Fig. 8. Distances are measured in units of the thermal
critical radius r¢, equation (9). Note that Q, remains approximately constant
within the volume element, and that its value agrees well with the theoretical
expectation (8; black-dashed line). Middle panel: Density enhancement pro-
file 8,(r) = n.(r)/n. The black-dashed line shows the theoretical curve (6).
For reference, we mark with a dotted line the background density value
8. = 1. Lower panel: Velocity dispersion profiles of the models shown above
normalized by the local velocity dispersion of the field, o, (r)/o . Black-dashed
line shows the theoretical profile (7).

potential (y = 1) with a mass M%P" =3 x 10° My and a scale
radius ¢®P" = 2kpc. For illustration, we show two experiments
where the substructure is inserted in the galactic potential at apocen-
tre, R,po = 1380 pc. The initial velocity is set to V, = 7.9km s,
which leads to a pericentre of Ry = 165pc. Thus, this orbit
penetrates the inner-most regions of the galaxy. We then follow
the motion of the substructure for two dynamical times measured at
apocentre, Q7' (Rupo) = Rapo/ Ve(Rapo) = 34 Myr, where V. (Rypo) =
39.4kms~! is the circular velocity. Before showing the outcome of
this experiment, it should be pointed out that we have explored several
combinations of apo- and peri-centres and number of orbital periods,
finding similar results as discussed below.

We consider two populations of tracer particles in equilibrium
within the galactic potential (see Section 3.1 for details). The
first population follows a ‘truncated’ density profile (o, B, yr) =
(2,30, 0.2) with a scale radius Ry = 460 pc, which falls off very
steeply beyond R 2= 600 pc. The luminosity-averaged velocity dis-
persion of these particles is (v?)'/2/3 = 11.7kms™!. The sec-
ond population follows an ‘extended’ Plummer-like profile with
(ay, Br,vs) =(2,5,0.1) and the same scale radius, Ry = 460 pc,
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Figure 10. Left-hand panels: Initial distribution of field particles (grey
dots) in dynamical equilibrium within a Dehnen potential with a total mass
MISPh — 3 % 10° Mg, a scale radius c9Ph = 2kpc and a central density
slope y95P" = 1. Right-hand panels: Distribution of particles that become
bound to a Hernquist potential with M, = 3 x 10’ My and a compactness
k = +0.9 (see text). Particles that become captured during the integration
time and have E < 0 (E > 0) at the final snapshot (1 = t) are highlighted
with red (black) dots. The trajectory of the substructure across the galaxy
is shown with a solid line. Black circles mark a volume size rqy = 300 pc
around the substructure potential. Inlets in the upper-right corner zooms in
at the substructure location (marked with a cyan dot for ease of reference).
Distances are given in kpc. Notice that particles captured from a truncated
galaxy exhibit a flattened shape roughly oriented along the orbital motion.

which leads to a slightly higher luminosity-averaged velocity disper-
sion (v?)1/2/3 = 19.9kms™".

The substructure sources a static Hernquist potential with a mass
M, =3 x 10" Mg, To set the scale radii of the models we use the
thermal critical radius at # = 0 as a reference. For illustration, we set
the compactness to k = +0.9 in both galaxy models, which leads to a
scale radius ¢, = (1 — «)re = 0.1 r. To find the thermal critical radii
of the two models we insert o = (v%)1/2/3 and V, in equation (9),
which yields r. = 390 pc and 980 pc for the extended and truncated
galaxy models, respectively.

Left-hand panels of Fig. 10 show the projected locations of tracer
particles with extended (top panel) and truncated (bottom panel)
profiles in equilibrium (¢ = 0). In the right-hand panels, we overplot
the trajectory of the substructure as it falls into the galaxy on an
eccentric orbit (solid lines), and mark its final location with a cyan
dot. Red dots show particles with E < 0 at the final snapshot (z;).
Black dots correspond to particles that have been captured for a finite
amount of time before being lost to galactic tides.

As expected, zooming in at the substructure location, we find that
particles with E < O generate a local overdensity of field particles.
Interestingly, their observed spatial distribution depends strongly on
the initial profile of the field. In the extended galaxy model (top
panel), the overdensity of bound particles has a close-to-spherical
shape and a relatively large size. In contrast, the overdensity in the
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Figure 11. Number of bound particles located within a volume size roy =
0.3 kpc as a function of time for the models plotted in Fig. 10. Dotted lines
show the total (bound plus unbound) number of field particles within the
volume, r < roy. Black-dashed lines show the theoretical prediction from
equation (2), with a time-dependent number density and velocity dispersion
of field particles measured at the location of the substructure, n(r) = n[R(t)]
and o(t) = o[R(t)]. Pericentric passages are marked with vertical dotted
lines.

bottom panel has a smaller size and a flattened shape, which appears
to be roughly oriented along the orbital motion.

The rate at which field particles are captured in these two models
is also strikingly different. Solid lines in Fig. 11 shows the number
of bound particles within a volume size roy, = 300 pc (marked with
black circles in Fig. 10 for reference) as a function time. In the top
panel, we can see that the substructure orbiting in the extended galaxy
contains N, ~ 3 x 103 at t = 0. By definition, these are immediate
captures. As the substructure falls into the inner regions of the galaxy,
the total number of field particles within the volume (dotted lines)
increases systematically until pericentre is reached at Q¢ >~ 1.4.
After the pericentre passage, the number of bound particles (solid
lines) grows slightly, reaching a plateau at apocentre, ¢ ~ 2.8.

MNRAS 533, 3263-3282 (2024)

This situation repeats throughtout the next orbital revolution. At the
last snapshot of the simulation, the number of bound particles is
Np(ty) ~ 4 x 10%, which is a factor ~ 10 increases with respect to
the value at = 0. Remarkably, the theoretical expectation given by
equation (2; black-dashed line) barely changes as a function of orbital
phase in spite of the large variation of galactocentric distances and
velocities. This reflects the counter balance between the variation
of the mean phase-space density of field particles along the orbit,
Q(R) = n(R)/o3(R), and the exponential suppression of captures
at high velocities, & = exp[—V?2/(20%(R))]. As the substructure
plunges into the inner regions of the galaxy the orbital velocity
increases, making capture less efficient. Simultaneously, the number
of field particles around the substructure grows, with both effects
nearly balancing out in equation (2). The reverse process takes place
from pericentre to apocentre.

The substructure model orbiting within a truncated galaxy ex-
periences a very different evolution. In this case, bottom panel of
Fig. 11 shows that capture does not occur until the substructure
is close to its first orbital pericentre. As expected, the number of
immediate captures is zero by construction. After each pericentric
passage, we observe a very rapid increase in the population of bound
particles, whose size can grow by ~ 3 orders of magnitude. However,
a large fraction of these particles are quickly lost to galactic tides.
At first apogalacticon, the number of bound particles has stabilized
at N, ~ 102, As it reaches its second pericentre, it grows again up to
N, ~ 5 x 103, falling back to N,(t7) ~ 107 at its second apocentre.
Comparison with the theoretical expectation (black-dashed lines)
shows that equation (2) cannot accurately describe this behaviour.
There are two main reasons for the mismatch. In the first place,
the statistical theory derived in Section 2.1 relies on the local
approximation, which assumes that the properties of the galactic field
do not vary strongly as a function of distance from the substructure.
This is clearly not the case in this particular galaxy model, which is
strongly truncated beyond R 2 600 pc. Furthermore, it assumes that
the properties of the field are time-invariant, and that the population
of captured particles is in steady state at all times. None of these
conditions apply to the the model shown in the bottom panel. The
latter approximation is particularly poor after the first pericentric
passage. Here, equation (2) predicts N, = 0 because the density of
field particles at this location is n(Ryp,) = 0 (see bottom-left panel
of Fig. 10). In contrast, our numerical experiment shows that the
substructure has captured N, ~ 10* particles after the first orbital
revolution. This mismatch arises again at the second apocentre, which
corresponds to the final snapshot of the simulation. Here, all particles
within the volume under observation (dotted line) are bound to the
substructure (solid line). It is worth stressing that region of the galaxy
was empty from field particles at + = 0. Looking the bottom-right
panel of Fig. 10, we find field particles beyond the original truncation
radius of the galaxy are either still bound to the substructure (red
dots), or were ‘scooped’ from the inner regions and released back to
the galaxy by tidal forces (black dots).

Fig. 12 shows that distribution of bound particles in the extended
and truncated galaxies plotted in Fig. 10 follow very different profiles.
For ease of comparison, we normalize the profiles to its central value,
ng = n,(r = 0), and measure distances in units of the substructure
scale radius (c,). Given the relative small number of particles with
E < 0 at the final snapshot, we reduce statistical noise by generating
200 and 600 realizations of the extended and truncated galaxy
models, respectively. This is done placing substructures at random
positions over the surface of a sphere with a radius R,,, = 1380 pc
and a tangential velocity V, =7.9kms™! at + = 0, such that all
individual realizations have a common pericentre of Ry = 165 pc.
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Figure 12. Number density profile of field particles bound to the substructure
models shown in Fig. 10. Distances are measured relative to the final
substructure location and given in units of the substructure scale radius
(cs). The profiles are averaged over 500 realizations of the model to
reduce statistical noise (see text). Notice that the model associated with an
extended galaxy model roughly follows the theoretical profile (6). In contrast,
substructures evolving in a truncated galaxy generate a local overdensity that
falls off steeply at large distances 8, ~ r > at r > c,.

Particles captured by the substructure model orbiting in an
extended galaxy exhibit a profile shape that roughly scales as
(1 +r/c,)~*?, which matches equation (6). This is a remarkable
result considering the strong strong temporal evolution of the field
along the substructure orbit, and that the statistical theory is derived
for static systems. However, the normalization of the profile is not so
well matched by the analytical formula. In particular, Fig. 11 shows
that equation (6) tends to underpredict the number of field particles
bound to the substructure at all points of the orbit.

This mismatch is considerably stronger in substructures orbiting a
in a truncated galaxy. In these objects, captured field particles show
a profile that falls off more steeply than predicted by equation (6)
at large distances, r 2 ¢,, whereas at small distances, r < c,, it
converges to the profile of the extended galaxy model. The different
behaviour may be traced back to the lack of permanent captures in
the truncated galaxy models, which tend to smooth out the overall
density enhancement profile (see Fig. 6).

In general, the numerical experiments in this Section indicate that
the distribution of field stars captured by substructures moving on
eccentric orbits vary as a function of time in different ways depending
on whether these objects are form in a pre-existing sea of field
particles, or are accreted from outside the galaxy.

3.5 Compact versus fluffy substructures

The statistical theory outlined Section 2.1 predicts that only dark
subhaloes that are sufficiently compact (« > 0) can become visible
as localized overdensities of field stars. To illustrate this result, this
section presents similar experiments as shown in Section 3.2 with
positive and negative compactness values.

Fig. 13 shows the projection onto the orbital plane of par-
ticles bound to a Hernquist substructure potential with a mass
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M, = 10° My, moving on a circular orbit R, = 0.5 kpc in the Fornax
dSph-like galaxy model introduced in Section 3.1. Recall that the
tidal radius given by equation (20) is r, &~ 190 pc. We consider two
models with k = +0.8 (upper panels) and k = —0.5 (lower panels),
with the negative sign of « implying that the number density of
captured field particle does not exceed the background (4, < 1)
at any distance from the substructure. Application of equation (9)
yields a thermal critical radius r. = 18.9 pc, which translates into
scale-radii ¢, = 3.78 pc and ¢, = 28.3pc for the ‘compact’ and
‘fluffy’ models, respectively. Notice that the time-scale needed
to cross the overdensity size by a random field particle is much
shorter than the orbital time around the dSph galaxy potential,
T. =r./o®"M = 18.9pc/(12.2kms™!) &~ 1.5 Myr. As a result, the
population of captured particles reaches steady state quickly. We
choose a volume size around the substructure equal to its tidal
radius (20), 7oy = 1 = 190 pc. We run both models from ¢ = 0 until
t=50T.

Fig. 13 highlights the impact of the substructure compactness
(k =1 — ¢, /rc) on the spatial and kinematic distribution of stars with
E < 0. As predicted in Section 2.1, at a fixed mass only compact
(k¢ > 0) objects lead to the formation of overdense regions of trapped
stars with a velocity dispersion that is systematically hotter than in
fluffy (¢ < 0) counterparts. These differences can be better quantified
in the middle-right and right-most panels, which compare the density
enhancement (6) and velocity dispersion (7) profiles derived analyt-
ically (black-solid lines) against the numerical values (orange dots).
For reference, Fig. 13 marks with vertical arrows the location of ¢, (in
blue) and r, (in red), respectively. At large distances r > c,, we find
that the density enhancement approaches the Keplerian behaviour
8, ~r~32 and the velocity dispersion drops off as o, ~ r~!/2,
whereas at small distances r < ¢, both profiles become roughly
constant. However, while in the compact model (¢« = +0.8) trapped
stars reach a relatively high density, 6,9 = 6,(r = 0) ~ 9.0, and a
hot velocity dispersion, o, /0 = o,(r = 0)/o =~ 1.9, stars captured
by the fluffy counterpart with a negative compactness (k = —0.5)
show subdominant densities, 8,0 = 0.44, and a cold dispersion,
0.0/0 =~ 0.69, with respect to the field. We discuss the relevance
of this result for the detection of dark substructures in Section 4.

An important property of the models plotted in Fig. 13 is that they
appear approximately spherical and show no signature of tidal tails.
This is in stark contrast with the substructures moving on eccentric
orbits plotted in Fig. 10, which are elongated and exhibit prominent
tidal tails roughly aligned with the orbit of the substructure. This
emphasizes the need to model the motion of the substructure in the
host potential and the distribution of field particles simultaneously,
as discussed in the following section.

4 DISCUSSION

4.1 Anomalous stellar clusters in dSphs

Several Milky Way dSphs contain stellar substructures that may
be good candidates for being composed of field stars captured by
dark substructures, i.e. they have a large size for their luminosity,
their stellar populations are indistinguishable from those of the host
galaxy, and they exhibit DM-dominated mass-to-light ratios.

For example, the Fornax dSph is known to contain 5 massive
(~ 10° M) globular clusters (e.g. Larsen, Brodie & Strader 2012).
There has been a long-standing debate in the literature about a
possible sixth cluster, named Fornax 6 (F6), which was first noted
by Shapley (1939). While early studies debated whether it was
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Figure 13. Upper left panels: Locations projected onto the orbital plane of stellar tracer-particles temporarily bound to a substructure with a mass M, = 10® Mg
moving on a circular orbit at a fixed distance R = 0.5kpc from the centre of the Fornax dSph (see Section 3.1). These models adopt two different scale-radii
(marked with black-solid circles for reference): ‘compact’ (k = +0.8, or ¢ = 0.2 7 (upper panels) and “fluffy’ (¢« = —0.5, or ¢, = 1.5 r¢ (lower panels), where
re = 18.9 pc is the thermal critical radius measured from (9) (black-dashed circle). Middle left panels: Velocity dispersion map for the models shown in the
left-hand panels. Middle right panels: Density enhancement as a function of distance to the substructure centre. Red and blue arrows mark the location of
the thermal critical radius and the scale length of the substructure, respectively. The theoretical profile predicted by equation (6) is shown with a black line.
Right-hand panels: Velocity dispersion profiles in spherical coordinates of the above models. Black lines show the profiles predicted by equation (7). Captured
particles have isotropic velocities on account of their chaotic motions in the dwarf potential (see text).

composed of stars or background galaxies (e.g. Stetson, Hesser &
Smecker-Hane 1998), recent ground-based and Gaia data show
that F6 is clearly an overdensity of stars (Wang et al. 2019). F6
has total stellar mass of M ® = (7.2 +2.2) x 10’ Mg, and a half-
light radius of rf® = 114 l.4pc (Wang et al. 2019). Crucially,
the metallicity [Fe/H] = —0.71 £ 0.05 and age ~ 2 Gyr of F6 are
very similar to the average metallicity and age of Fornax’s MR
stars (Pace et al. 2021). This is in stark contrast with the other
five globular clusters, which have much lower metallicities that
range between —2.5 < [Fe/H] < —1.4. With this data at hand, F6
members are therefore indistinguishable from MR stars in the Fornax
dSph. Importantly, the velocity dispersion of F6 is unexpectedly
high, 07® = 5.6 £ 2.0kms~!, which translates into an ‘anomalous’
mass-to-light ratio of 15 < M /L < 258 when virial equilibrium is
assumed (Pace et al. 2021). The inflated mass-to-light ratio has been
interpreted as a result of ongoing tidal disruption, although no tidal
tails originating from the cluster have been found.

Alternatively, the unusual properties of F6 can be explained if this
stellar system is made of field stars temporarily captured by a dark
substructure orbiting in the Fornax dSph potential. According to
Fig. 2 a stellar overdensity with N, ~ 10* members and a mass-
to-light ratio of M /L ~ 100 would require a minimum subhalo
mass of M, ~ 10° M, which lies significantly below the minimum
subhalo mass that can trigger star formation, and is consistent with
our working assumption that this object would be ‘dark’. To be
visible as an overdensity, it must be compact enough, i.e. k > 0 or
¢e S 1re ~ 20pe (for illustrative examples, see the numerical models
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presented Section 3.1). Interestingly, this size is smaller than the
average peak-velocity radius of field CDM haloes of comparable
masses, i.e. rmax ~ 100 pc for Mppp ~ 100 Mg at redshift z = 0. We
discuss the implications of this estimate in Section 4.3.

In addition, de Boer et al. (2013) report the presence of two
stellar overdensities in the Fornax dSph with lower luminosities
than F6. These stellar systems also have elongated shapes (see
their fig. 2a), high metallicities ([Fe/H] >~ —0.6) and young stellar
ages (~ 1.5Gyr), similar to those of the Metal Rich component
of the Fornax dSph. VST observations confirmed the presence of
those substructures, and revealed two additional overdensities that
share similar properties (Bate et al. 2015). More recently, using
DES data Wang et al. (2020) find several high-density regions of
high-metallicity & young stellar ages, some of which were new
and some of which were previously known (Coleman et al. 2004).
These substructures are therefore good candidates for being made
of MR field stars captured by a population of massive dark objects.
Spectroscopic measurements of their systemic velocity and proper
motions, together with their internal velocity dispersion are needed
in order to test this scenario.

The Eridanus II dSph is a dwarf spheroidal galaxy with low
luminosity, NS ~ (6 + 1) x 10* (Crnojevié et al. 2016), a half-
light radius of r,?Sph =299 £+ 12 pc (Simon et al. 2021), and low
velocity dispersion 0% = 6.9 & 1.1kms~!. Surprisingly for such
a faint galaxy, it contains a single stellar cluster located at R =
23 % 3 pc from its centre (Koposov et al. 2015). The cluster has very
unusual properties, e.g. itis ancient ~ 13.5 £ 0.3 Gyr, and extremely
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metal-poor [Fe/H] = —2.75 £ 0.2 (Weisz, Savino & Dolphin 2023).
It has a remarkably large size, r, = 15 £ 1 pc, for a cluster with
luminosity My = —2.7 + 0.3 (Simon et al. 2021; note that Crnojevié
et al. 2016 derive slightly different values). Like F6, Eri II cluster
is elongated, € ~ 0.31 £ 0.05, with a shape that is remarkably well
aligned with the ellipticity of the Eri II galaxy (Simon et al. 2021). An
elongated shape could be the telltale signature of these systems being
close to full tidal destruction and therefore in a disequilibrium state.
Yet N-body models that adopt this scenario struggle to reproduce
the extended size of these clusters, and predict bright tidal tails that
should have already been observed in the data currently available
(Orkney et al. 2022). Crucially in the context of this paper, the age
and metallicity of the Eri II cluster are statistically indistinguishable
from the dSph itself (Crnojevic et al. 2016; Simon et al. 2021; Weisz
et al. 2023), which makes this system a good candidate for being
composed of field stars captured by a dark substructure. Again,
spectroscopic follow-up measurements are needed to test the main
prediction from this scenario, i.e whether the Eridanus II cluster
exhibits anomalously high velocity dispersion compatible with being
a DM-dominated system.

As a cautionary note, it must be pointed out that the nature of
some of those stellar substructures is still debated. For example,
there were early claims that F6 is not a stellar cluster, but actually an
overdensity of unresolved background galaxies (Verner et al. 1981;
Demers, Irwin & Kunkel 1994; Stetson et al. 1998). Only recently,
DECam imaging and Gaia astrometric data have shown that F6 is
clearly an overdensity of stars (Wang et al. 2019), a conclusion later
supported by Magellan/M2FS spectroscopy, which helped to identify
~ 15-17 likely stellar members (Pace et al. 2021). Yet, the relatively
small size of the data set may be still prone to systematics arising
from low-number statistics.

The unknown physical separation between these substructures and
their host galaxies introduces additional uncertainty in the models.
For simplicity, it is common to assume that these objects are located
at a galactocentric distance equal to the projected separation on the
sky, which is the minimum distance allowed by the data. Given that
the phase-space density of field stars decreases with distance to the
host galaxy centre, this choice can potentially bias future model
constraints. For example, were these substructures located in the
outskirts of the dwarf galaxies, substructures would need to have
systematically larger masses in order to capture the same number of
field stars (see Section 2).

The results enclosed in this paper call for follow-up observational
efforts to measure the spatial distribution, kinematics & chemical
composition of stellar substructures in dSphs with better accuracy,
as they might provide unique constraints on the population of dark
objects orbiting in these galaxies, as well as on the particle nature of
dark matter, as briefly discussed in Section 4.3.

4.2 Theory: simplifications and current uncertainties

The theoretical models presented in this work rely on a number of
assumptions that are worth discussing here.

First, our substructure models source a spherical potential. Yet,
anomalous stellar systems detected in dSphs, such as F6 and the
lone cluster in Eridanus II, tend to exhibit elongated shapes that are
well aligned with the morphology of the host galaxy (Wang et al.
2019; Simon et al. 2021). In the scenario proposed in this paper, stars
trapped in a dark substructure may appear aspherical due to an intrin-
sic triaxial shape of the objects that captured them, and/or a triaxial
dwarf galaxy potential (e.g. Allgood et al. 2006; Despali, Giocoli &
Tormen 2014). Interestingly, the numerical experiments plotted in
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Fig. 10 show that spherical substructures accreted onto the galaxy
on eccentric orbits may also generate flattend spatial overdensities
that appear to be aligned with the orbital motion. Further theoretical
work is needed to understand the possible connection the elongated
shape of these stellar clusters and the expected triaxiality of dark
matter haloes as well as their formation history.

The statistical experiments in Section 3 adopt substructure models
with masses that are either constant, or grow with time. The latter
models can be applied for example to study the population of field
particles trapped around intermediate mass black holes (IMBHs) that
grow in disks surrounding supermassive black holes (e.g. McKernan
et al. 2012). However, our models do not cover the case of self-
gravitating subhaloes orbiting in a parent halo, which experience
tidal stripping and mass loss after each pericentre passage (e.g.
Pefiarrubia et al. 2010). This shortcoming may be addressed by
running live N-body simulations where substructures are modelled as
self-gravitating objects. Unfortunately, the numerical tools required
to explore this scenario are more complex and computationally
expensive than the ones used for this work. The results enclosed in
this paper suggest that the analytical expressions outlined in Section 2
can be applied to time-dependent substructures, ®,(¢), insofar as
its time-evolution is not impulsive, i.e.t it occurs on time scales
|d,/®,.|”" > T, and the local approximation is reasonably accurate.
Under these conditions, the population of bound field stars can be
assumed to be in steady state in a time-varying potential ®,(z), see
Fig. 8. For substructures moving on eccentric orbits around extended
galaxy models, numerical experiments in Section 3.4) show that
the steady-state approximation may be reasonably accurate away
from orbital pericentre. In truncated galaxy models, it is the local
approximation that fails away from pericentre (see Fig. 10).

Our experiments do not explore a cosmologically motivated
scenario in which field stars form in a dark matter halo that contains
a pre-existing population of dark matter clumps. By definition, dark
substructures orbiting in these galaxies would not host a population
of permanent captures, yet they may be able to trap field stars
onto temporary orbits. Given the numerical experiments shown in
Section 3, we expect a different distribution of captured field stars
compared to models where substructures grow in a pre-existing sea of
particles. Cosmological hydrodynamical simulations that incorporate
star formation/feedback are needed to tackle this issue.

The number, distribution and density profiles of dark matter sub-
subhaloes in the satellite galaxies of MW-like haloes are notoriously
uncertain. For illustrative purposes, it is useful to estimate how
many subhaloes that one would expect in a Fornax-like dwarf
spheroidal with a virial mass of M, ~ 10° Mg (e.g. Pefiarrubia,
McConnachie & Navarro 2008a; Errani et al. 2018). Adopting a mass
ratio between the Fornax dSph and the MW of ~ 10° My /102 Mg =
1073, and re-scaling CDM haloes of MW-like galaxies down three
orders of magnitude suggests that the Fornax dSph should contain
of the order of ~ 100 satellite sub-subhaloes with M, 2> 10° Mg

enclosed within its virial radius, r3P" ~ 30kpc (e.g. Weerasooriya

vir
et al. 2023 and references therein).
However, this naive scaling is only valid for field haloes. As
pointed out above, dwarf spheroidals tend to be accreted early onto
larger galaxies and lose a large fraction of their mass to Galactic tides
(e.g. Penarrubia & Benson 2005; Errani et al. 2017), which possibly
also removes a large fraction of the sub-subhalo population that fell
in embedded with the dSph, particularly those with large orbital
apocentres and long orbital periods (e.g Pefarrubia, Navarro &
McConnachie 2008b; Errani & Navarro 2021).
At present, it is not possible to turn to cosmological simulations
of structure formation for accurate predictions on the number of
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dark sub-subhaloes in dSphs. Current N-body methods struggle to
resolve objects with internal crossing times as short as 7 ~ 1 Myr in
Milky Way-like haloes. Furthermore, these simulations suffer from
well-known numerical artifacts (such as self-heating and artificial
disruption) on scales comparable to the resolution of the simulation
(e.g. van den Bosch & Ogiya 2018; Errani & Pefiarrubia 2020). These
issues call for dedicated high-resolution N-body simulations that
address these numerical shortcomings and provide reliable statistics
of ensembles of sub-subhaloes in dwarf spheroidal galaxies.

Alternatively, since the orbits of MW dSphs are relatively well
known thanks to the astrometry provided by the Gaia mission (e.g.
Battaglia, Taibi & Thomas 2022, and references therein), it is now
feasible to model the properties of the surviving population of dark
substructures in each individual MW dSph using constrained N-body
simulations that do not suffer from the abovementioned numerical
artifacts. We leave these questions to future work.

4.3 Dark matter particle constraints

The detection and characterization of dark sub-subhaloes in dSphs
may provide unprecedented constraints on the mass and self-
interacting cross-section of DM particle models. For example, the
vast majority of gaps in cold tidal streams around MW-like galaxies
are sensitive to subhaloes with masses in the range 10° < M,/ Mg <
10® (Erkal et al. 2016), while strong-lens observations are sensitive
to subhaloes with masses M, > 6 x 108 M, (e.g. O’Riordan et al.
2023). In contrast, Figs 1 and 2 show that dSphs may be able to probe
subhalo masses down to M, ~ 10*-10° M.

Measuring the masses of dark sub-subhaloes down to those scales
could significantly improve current bounds on the free-streaming
length of DM particles. This is best illustrated by quantifying the
half-mode mass my,,, defined as the mass scale where the WDM
power spectrum is suppressed by half with respect to CDM models
(Schneider et al. 2012)

MpM —3.33
=3x108Mg | =——— .
M = 3% © <3.3 keV)

Detecting field stars trapped in a dark subhalo with a mass of
M, ~ 10°Mg = myy, would imply a half-mass mode of myp, >
18keV, significantly tightening existing constraints from gravita-
tional lensing (mpyv 2 5keV; Gilman et al. 2020), Lyman-alpha
forest (mpym 2 3keV; Villasenor et al. 2022), or the combination
of strong gravitational lensing, the Ly-a forest, the number of
luminous satellites in the Milky Way, which put a lower particle
mass limit of mpy = 6keV (Enzi et al. 2021; Nadler et al. 2021a),
and mpy > 9.7 keV when the Milky Way satellite population is
combined with strong-lensing flux ratio statistics (Nadler et al.
2021b). Detecting objects with masses M, ~ 10° Mg > my,, would
push the constraints up to my;, 2> 37 keV.

In addition, the internal structure of these systems may also reveal
whether DM particles experience self-interactions. For example,
dark substructures with M, ~ 10°® My must be sufficiently compact,
¢e < 20pc, in order to generate a stellar overdensity of field stars in a
Fornax-like dSph (see middle panel of Fig. 2). This condition trans-
lates into a characteristic density p, = M,/Q2mc3) 2 20 Mg pc~3,
which is higher than CDM subhaloes with similar masses. More
precisely, field haloes with a mass of M,y = 10° M, at redshift
z = 0 have a mean peak velocity radius of rp, ~ 100 pc. equating
this radius to the substructure scale radius, ¢, = rmax, yields a con-
siderably lower characteristic density of p, ~ 0.1 Mg pc™ (Ludlow
et al. 2016).

MNRAS 533, 3263-3282 (2024)

On the one hand, the existence of DM sub-subhaloes with
abnormally high densities may point to interactions in the dark sector
(e.g. Kahlhoefer et al. 2019). On the other, it is not immediately clear
whether such a high density would necessarily be in conflict with
CDM predictions. First, because sub-subhaloes in satellite galaxies
are expected to be tidally processed, and more concentrated than
field haloes of the same mass (e.g. Pefiarrubia et al. 2010; Errani &
Navarro 2021). And second, because it is possible that the detection
of dense sub-subhaloes may be due to observational biases. Indeed,
compact substructures produce higher density enhancements in the
field (see Section 2), which can therefore be more easily detected as
localized overdensities (6, > 1). In this picture, anomalous objects
like F6 may be sampling the high-density, low-probability tail of the
sub-subhalo population. That is, they would represent the proverbial
‘tip of the iceberg’, pointing to the presence of a much larger popu-
lation of diffuse (8, < 1) substructures with a power-law luminosity
function (14). There are several ways to test this prediction, e.g. by
modelling statistical fluctuations of number counts in photometric
surveys (e.g. Scheuer 1957), or by searching for clumps with low-
velocity dispersion and/or significant velocity offsets in kinematic
surveys of dSphs (e.g. Pace et al. 2014).

Itis also worth noting that the presence of a large DM component in
clusters such as F6 and the Eri II would have important implications
for their survival in the host galaxy. For example, using collisional
N-body simulations Contenta et al. (2018) show that the Eri II cluster
(with no DM in the star cluster) quickly disrupt in a cuspy DM halo,
favouring dSph models with a cored DM profile. In addition, Brandt
(2016) shows that the survival of a stellar cluster near the centre
of a dwarf galaxy depends on the number of massive compact halo
objects populating the DM halo (see also Zoutendijk et al. 2020),
whereas Marsh & Niemeyer (2019) point out that the cluster could
also be used to test quantum fluctuations of ultralight DM models.
However, if these objects are embedded in dense DM haloes, they
would become resilient to tidal stripping and would also be protected
against collisions with nearby compact objects and rapid fluctuations
of the local tidal field by dynamical invariance (e.g. Weinberg 1994;
Pefiarrubia 2019), weakening the constraints derived from their very
survival.

5 SUMMARY

Substructures orbiting a larger galaxy can capture field stars that
pass nearby with low relative velocities. In this work, stars become
captured by the substructure potential &, when their gravitational
energy E = v?/2 + &,(r) flips from positive to negative. Our nu-
merical experiments show that the orbits of stars captured through
this mechanism can be separated into two families: (i) Temporary
captures. The majority of field stars trapped in the potential &,
move on chaotic orbits that orbit around the substructure for a finite
amount of time before being released back to the galactic potential.
This leads to a net number of temporary captures that converges to a
steady state as the rate of capture becomes roughly equal to the escape
rate. Stars captured on temporary orbits generate stellar overdensities
(8, > 1) atthe location of substructures that are sufficiently compact,
k =1—c,/re > 0, where r. and c, are the thermal critical radius (9)
and scale radius of ®,, respectively. (ii) Permanent captures. In
addition, we find that immersing a substructure potential in a galaxy
that is in dynamical equilibrium at ¢+ = 0 invariably results in a
population of field particles that remain bound to @, for arbitrarily
long times. In static models where ®, does not vary with time
and moves on a circular orbit around the host galaxy, we find that
particles on permanent orbits were already bound to the substructure
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potential at + = 0, and remain within its tidal radius indefinitely.
These particles are therefore reminiscent of the ‘potential escapers’
discussed by Fukushige & Heggie (2000). Our experiments also
show that substructures with a time-growing mass, M,(), can also
capture stars on permanent orbits at ¢ > 0, with a rate that peaks
at t ~ t, where t = |M,/ M.|,_:10 is the time-scale that determines
how fast the substructure mass varies. Importantly, we find that
stars on permanent orbits have a density that lies below the host
galaxy background (8, < 1), and therefore do not generate visible
overdensities.

The superposition of permanent and temporary orbits results in a
population of captured field stars with an homogeneous phase-space
distribution around the substructure potential, Q, = n, /0*3 A const.
In steady state, these stars follow number density and dispersion
profiles that scale as n, ~ |d>.|3/2, and o, ~ |d>.|1/2, respectively
(see Section 2.1). Experimental results show that these theoretical
predictions are accurate for substructures that source a static po-
tential and move on a circular orbit across a sea of field particles
initially in equilibrium. They become less accurate when applied to
permanent & temporary captures individually, or to substructures on
very eccentric orbits moving through a rapidly changing background.

In the current cosmological paradigm, galaxies are expected to
host a large number of DM subhaloes, many of which may contain
captured field stars. Here, we show that these objects would have a lu-
minosity function governed by the subhalo mass function. Adopting a
CDM-motivated mass function dN /dM, ~ M;* witha >~ 1.9 (e.g.
Springel et al. 2008) leads to stellar substructures with a power-law
luminosity function (14), which scales as dN /dM, ~ M:ﬁ , where
B = (2a + 1)/3 =~ 1.6. However, only subhaloes that are sufficiently
‘compact’ (¢ > 0) may materialize as localized stellar overdensities
in the galactic background (8, > 1).

In dwarf spheroidal galaxies, field stars captured by compact
substructures may resemble stellar ‘clusters’ with anomalous prop-
erties, e.g. they have extended sizes for their luminosity, contain
stellar populations indistinguishable from the field, and exhibit DM-
dominated mass-to-light ratios (M /L >> 1). In contrast, field stars
captured by ‘fluffly’ substructures (x < 0) have densities below the
background (8, < 1), and are therefore more difficult to detect. In
spectroscopic surveys they may appear as clumps of co-moving field
stars with low velocity dispersion ({c2)!/? < &) and/or a significant
velocity offset (V, # 0). In cluster models that contain no DM, the
presence of stellar systems with extended sizes and high mass-to-
light ratios is typically attributed to on-going tidal disruption, which
can be tested by searching for the associated tidal tails (Orkney et al.
2022). Yet, our experiments show that stars captured by substructures
moving on eccentric orbits are released back to the galactic potential
along tidal tails (see right-hand panels Fig. 10), which complicates a
clear-cut distinction between the two scenarios.

Capture models make a number of unique testable predictions.
E.g. stellar overdensities composed of captured field stars have
stellar ages and metallicities indistinguishable from those of the host
galaxy, and high mass-to-light ratios M /L >> 1 indicative of the
presence of a substantial DM component. In galaxies with multiple
chemo-dynamical populations, like the Fornax dSph, these models
also make predictions on the ratio of captured stars as a function of
metallicity. In addition, the density and velocity dispersion profiles of
captured stars provide simultaneous constraints on the substructure
mass profile, (M,, c,), as well as on its systemic velocity with
respect to the host galaxy, V,, which can be potentially measured
with a combination of accurate astrometric & spectroscopic data.
The numerical experiments outlined in Section 3 show that the
distribution of captured field stars also depends on the formation
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mechanism of the substructure, e.g. whether it grew within a pre-
existing sea of field particles, or it formed outside of the galaxy and
was accreted at a later time (see Fig. 12). This suggests that it may be
possible to constrain the formation history, mass profile and systemic
motion of the substructure simultaneously by fitting the distribution
and kinematics of stellar systems with anomalous properties.

We have given numerical and theoretical arguments that indicate
that ‘dark’ subhaloes that were not sufficiently massive to trigger
in situ star formation may become ‘visible’ by capturing baryonic
particles from the host galaxy field. The important implication of
this result is that dark subhaloes may not be completely invisible.
If they contain gravitationally bound baryonic matter, they must
emit and absorb radiation, which opens up a new avenue to test
CDM predictions on halo mass scales that have not been probed
to date. Follow-up work is needed to inspect the detectability of
‘dark’ subhaloes in dSphs with masses below the star formation
threshold, as well as observational campaigns aimed at detecting &
characterizing those objects. In Section 4.3 we discuss how the de-
tection and characterization of dark subhaloes may provide unique &
unprecedented constraints on the particle mass and cross section for
a large range of DM candidates.
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