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A B S T R A C T 

We use analytical and N -body methods to study the capture of field stars by gravitating substructures moving across a galactic 
environment. The majority of stars captured by a substructure mo v e on temporarily bound orbits that are lost to galactic tides 
after a few orbital revolutions. In numerical experiments where a substructure model is immersed into a sea of field particles 
on a circular orbit, we find a population of particles that remain bound to the substructure potential for indefinitely long times. 
This population is absent from substructure models, initially placed outside the galaxy on an eccentric orbit. We show that 
gravitational capture is most efficient in dwarf spheroidal galaxies (dSphs) on account of their low velocity dispersions and high 

stellar phase-space densities. In these galaxies, ‘dark’ sub-subhaloes, which do not experience in situ star formation, may capture 
field stars and become visible as stellar o v erdensities with unusual properties: (i) they would have a large size for their luminosity, 
(ii) contain stellar populations indistinguishable from the host galaxy, and (iii) exhibit dark matter (DM)-dominated mass-to- 
light ratios. We discuss the nature of several ‘anomalous’ stellar systems reported as star clusters in the Fornax and Eridanus 
II dSphs that exhibit some of these characteristics. DM sub-subhaloes with a mass function d N/ d M • ∼ M 

−α
• are expected to 

generate stellar systems with a luminosity function, d N/ d M � ∼ M 

−β
� , where β = (2 α + 1) / 3 = 1 . 6 for α = 1 . 9. Detecting and 

characterizing these objects in dSphs would provide unprecedented constraints on the particle mass and cross-section of a large 
range of DM particle candidates. 

Key words: Galaxy: kinematics and dynamics – galaxies: evolution – Cosmology: dark matter. 
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 I N T RO D U C T I O N  

ne of the strongest predictions from cold dark matter (CDM) 
osmology is the existence of self-gravitating haloes devoid of 
isible matter (i.e. ‘dark’). Such objects arise because star formation 
ecomes inefficient in haloes with virial masses below ∼ 10 7 –
0 9 M � (White & Rees 1978 ; Bullock, Kravtsov & Weinberg 2000 ;
ovill & Ricotti 2009 ; Benitez-Llambay & Frenk 2020 , Pereira- 
ilson et al. 2023 ), while the minimum subhalo mass associated 
ith the free-streaming length of ‘cold’ particles with masses abo v e
1 GeV / c 2 is at least ∼ 13 orders of magnitude smaller, < 10 −6 M �

e.g. Schmid, Schwarz & Widerin 1999 ; Hofmann, Schwarz & 

t ̈ocker 2001 ; Green, Hofmann & Schwarz 2005 ; Loeb & Zaldarriaga 
005 ; Diemand, Moore & Stadel 2005 ). Below this scale, fluctuations
f the power spectrum are heavily suppressed, de facto imposing 
 truncation at the low end of the halo mass function (e.g. Benson
 E-mail: jorpega@roe.ac.uk 
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017 , and references therein). Hence, detecting this truncation would 
rovide a direct constraint on the DM particle mass. 
The lack of visible matter, together with their tiny masses, make the 

etection of dark subhaloes extremely difficult. Current observational 
fforts range from searching for gamma-ray annihilation signals 
e.g. Ackermann et al. 2014 ; Bringmann et al. 2014 ) to modelling
ubstructure in strongly lensed galaxies (Koopmans 2005 ; Vegetti & 

oopmans 2009 ; Li et al. 2013 ; Vegetti et al. 2014 ). In the Milky
ay, encounters with individual subhaloes can induce significant 

erturbations in cold tidal streams (Ibata et al. 2002 ; Johnston
t al. 2002 ; Yoon, Johnston & Hogg 2011 ; Carlberg 2013 ; Ngan
t al. 2016 , Erkal et al. 2016 ). F or e xample, Bonaca et al. ( 2019 )
nd that some observed features in the GD-1 stream, including 
 gap and an off-stream spur of stars, are best reproduced by
he past encounter with a dark subhalo with a mass M • ∼ 10 6 –
0 8 M � and a scale radius c • � 10 pc . Puzzlingly, these constraints
mply a matter density comparable to the stellar density in globular
lusters, ρ• = M •/ (2 πc 3 •) � 10 2 M � pc −3 , which is several orders of
agnitude denser than CDM subhaloes with similar masses found in 
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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osmological simulations of structure formation (e.g. Molin ́e et al.
017 ; Diemer & Joyce 2019 ). 
Inferring the existence of dark subhaloes using dynamical probes is

omplicated by the unknown number of baryonic compact objects –
uch as stellar black holes, neutron stars, white dwarfs, free-floating
lanets, giant molecular clouds, etc. – lurking in the Galaxy. In
eneral, it is not straightforward to isolate perturbations arising from
ifferent populations of gravitating objects (Pe ̃ narrubia 2018 ). In this
egard, dwarf spheroidal galaxies (dSphs) provide relatively clean
argets, as their gravitational potentials appear to be fully dominated
y dark matter (e.g. Mateo 1998 ). 
This paper challenges the common assumption that DM subhaloes

hat do not form stars in situ remain ‘dark’. Here we show that dark
ubhaloes can capture 1 baryonic matter as they orbit around the
ost galaxy, becoming ‘visible’ as localized substructures of co-
oving bodies with high mass-to-light ratios and extended sizes.
ark subhaloes that are massive enough to capture field stars would
ear resemblance to stellar clusters, but with atypical properties, e.g.
heir stellar populations would be chemically and chronologically
dentical to the local galactic field, and they would be DM dom-
nated. As we will show below, these properties are akin to those
f the ‘anomalous’ clusters detected in some Milky Way dSphs,
uggesting the intriguing possibility that these systems may be in fact
gglomerates of field stars captured by dark substructures orbiting in
he host galaxies. This possibility is explored below in some detail. 

Capture processes in the classical 2 restricted three-body problem
ave been studied for a long time. F or e xample, the pioneering work
f Szebehely ( 1967 ) showed that a finite number of solutions exists
here the lightest particle is transferred from one distinct mode of
otion around the most massive point-mass to another distinct mode

round the intermediate-mass one. Hunter ( 1967 ), Heppenheimer
 1975 ) and Heppenheimer & Porco ( 1977 ) pointed out that Jupiter’s
uter satellites could have been captured in this way. More recently,
uetsugu & Ohtsuki ( 2013 ) study temporary capture of planetesimals
y a giant planet, while J ́ılkov ́a et al. ( 2015 ) consider the scenario
here the inner Oort Cloud was captured from another star during a

lose encounter in their birth cluster. Recently, three-body captures
n accretion discs have also gained attention as a possible source of
lack-hole binaries. E.g. Li, Lai & Rodet ( 2022 ), Boekholt, Rowan &
ocsis ( 2023 ) and Rowan et al. ( 2023 ) show that close encounters
etween two black holes orbiting around a supermassive black hole
an form bound pairs. 

The dynamics of three-body capture events is extremely complex.
sing a combination of numerical and analytical methods, Petit &
 ́enon ( 1986 ) showed that (i) captures in a three-body system

re temporary events that ultimately induce the dissolution of the
ound pair, and (ii) capture only happens for extremely fined-tuned
ombinations of impact parameters and relativ e v elocities which
xhibit a self-similar, Cantor-like structure. More recent work of
oekholt et al. ( 2023 ) confirmed these results and found that the
hase space structure that leads to capture resembles a Cantor set
ith a fractal dimension of � 0 . 4. 
Pe ̃ narrubia ( 2023 , hereafter Paper I ) studies three-body captures

n a galactic environment, where the intermediate and lighter bodies
both point masses) follow orbits in a massiv e (e xtended) potential.
sing numerical e xperiments, P aper I shows that encounters between
NRAS 533, 3263–3282 (2024) 

 In this paper, the word ‘capture’ is broadly used to describe any dynamical 
rocess wherein a field particles undergoes a transition from galaxy orbit to 
n orbit around a substructure. 
 Two point masses on circular orbits, plus a mass-less tracer 

3

b
o
4
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 massive object and field particles can be locally described as sling-
hot manoeuvres, in which the lighter body can increase/decrease its
peed or redirect its path. For a capture event to happen, the galactic
idal field must decelerate an approaching lighter body to a degree
here it temporarily orbits the intermediate one. Crucially, a point-
ass moving through a sea of lighter particles generates a localized
 v erdensity – or ‘halo’ – of tidally trapped particles, 3 which reaches
 steady state as the rate of bodies captured from the field becomes
omparable to those being lost to galactic tides. 

The reverse process by which stars escape from the intermediate
otential in a restricted three-body system is not fully understood. For
 xample, Fukushige & He ggie ( 2000 ) show that stars with energies
bo v e the energy of escape can remain inside the tidal radius of the
ntermediate body for very long times, and some do not escape at
ll. These particles are typically dubbed ‘potential escapers’ (see e.g.
 ̈upper et al. 2010 ; Daniel, Heggie & Varri 2017 ). 
In this work, we expand the analysis of Paper I to intermediate

odies with an extended (i.e. not point-like) mass distribution. As
n application, we study capture of field stars by DM subhaloes
n a wide range of galactic environments. The paper is arranged as
ollows. Section 2 extends the statistical method outlined in Paper I to
odel gravitational captures by point-mass objects to substructures

n extended size. Section 3 presents numerical experiments that test
he accuracy of the theoretical equations. Section 4 discusses these
esults in the context of dark matter particle physics and outlines
uture follow-up work. Finally, in Section 5 , we summarize our main
esults. 

 STATISTICAL  T H E O RY  

his section summarizes the main techniques applied in this paper to
onstruct a statistical theory that describes the spatial and kinematical
istribution of tracer particles temporarily bound to self-gravitating
ubstructures moving in a host galaxy. 

Section 2.1 follows the steps outlined in Paper I to compute the
verage number of field particles that have negative binding energies
 = v 2 / 2 + � •( r) < 0 within a spherical volume V = 4 πr 3 / 3,
here r and v are measured relative to the substructure, as well

s their number density ( n � ) and velocity dispersion ( σ� ) profiles in
ynamical equilibrium within a generic potential � •. Here, we will
ocus on capture of field stars , although this analysis can be extended
o other tracers moving in the host galaxy potential, including gas
articles. 4 

To gain further physical insight, we will inspect the case of dark
ubstructures sourcing a Hernquist ( 1990 ) potential 

 •( r) = − GM •
r + c •

, (1) 

hich reco v ers the results derived in Paper I for point-masses if the
rofile scale-length is set to c • = 0. Note that the density profile
ssociated with the potential ( 1 ) has a centrally divergent cusp, ρ ∼
 

−1 at r � c •, as the universal profile found in CDM simulations of
tructure formation (e.g. Navarro, Frenk & White 1997 ). 

Section 2.2 applies our results to Milky Way dwarf spheroidal
alaxies, which, due to their intrinsic properties and relatively close
 A massive perturber also deflects stars into an o v erdense ‘w ak e’ that trails 
ehind it (e.g. Kalnajs 1971 ; Weinberg 1986 ). In contrast, this work focuses 
n field stars that become temporarily bound to the perturber. 
 To model the dynamics of gaseous particles, a pressure term must be included 
n the equations of motion presented in Section 3.1 . 
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istances, appear to be the most interesting objects to test the 
xistence of dark substructures via captured field stars. 

Section 2.3 analyses the cosmologically moti v ated case of a 
arge population of extended substructures with a power-law mass 
unction. 

.1 Distribution of trapped particles 

.1.1 Weak perturbations 

he number of field stars temporarily bound to a moving substructure
ourcing a potential � • can be estimated statistically from the (local) 
istribution function under the following simplifying assumptions: 
i) field stars mo v e on uncorrelated (random) trajectories within a
mall volume element V , (ii) their number density is roughly constant
ithin the volume V , such that n ( R • + r ) ≈ n ( R •) = n = N/V ,
here R • is the 3D position vector of the substructure within the 
ost galaxy, and r = | R − R •| is the relative distance of a star
rom the centre of the potential � •. This is known as the local
pproximation , and holds insofar as the (local) density profile rolls
lowly, i.e. r � d = |∇n/n | −1 . (iii) The relative velocity distribution
f particles within the volume element V = 4 πr 3 / 3 follows a
axwellian distribution displaced by the reflex velocity of the point- 
ass p( v ) = (2 πσ 2 ) −3 / 2 exp [ −( v + V •) 2 / (2 σ 2 ) where σ = σ ( R •)

s the local, one-dimensional velocity dispersion of field stars. 
nder the Maxwellian approximation, the mean-squared (relative) 
elocity between the background particles and the substructure is 
 v 2 〉 = 3 σ 2 + V 

2 
• , where V • is the v elocity v ector of the substructure

ith respect to the host galaxy centre. 
Under these conditions, the average number of stars in the volume 

 with ne gativ e specific energy E = v 2 / 2 + � • < 0 can be derived
rom the local phase space density of field stars as 

 b ( r) = 

∫ 

V 

d 3 r n ( r ) 
∫ 

E< 0 
d 3 v p( v ) 

= 

1 

3 

√ 

2 

π
ze −V 2 • / (2 σ 2 ) n 

σ 3 

∫ 

V 

d 3 r v 3 e ( r ) + O( v e /σ ) 5 

= 

32 
√ 

π

9 
( GM •) 3 / 2 e −V 2 • / (2 σ 2 ) n 

σ 3 

× r 2 − 4 c •r + 8 c 3 / 2 • ( r + c •) 1 / 2 − 8 c 2 •
( r + c •) 1 / 2 

, (2) 

or r � d and v e /σ � 1. To g ain ph ysical intuition, the last ex-
ression adopts a Hernquist potential ( 1 ) with a escape speed
 e ( r) = 

√ 

2 | � •| = 

√ 

2 GM •/ ( r + c •) . It is trivial to show equa-
ion ( 2 ) reco v ers equation (11) of Paper I for a point-mass with
 • = 0. Note that the number of stars with ne gativ e energies within
he volume V is proportional to the local mean phase-space density 
f the field, Q ≡ n/σ 3 , and that N b drops for substructures that are
ot at rest with the background ( V • > 0). 
The approximation that field stars mo v e on uncorrelated trajec- 

ories is accurate insofar as the number of stars perturbed by � •
epresents a small fraction of the total number of stars within the
olume element, N = n V . From equation ( 2 ), it is straightforward
o show that the fraction of bound stars within the volume V scales
s N b /N ∼ ( v e /σ ) 3 e −V 2 • / (2 σ 2 ) at r � c •, hence field particles can be
reated independently from each other when the escape velocity is 
ow, v e � σ , or the substructure velocity is high, V • � σ . 

The orbits of field stars captured by the potential � • exhibit 
haotic fluctuations of energy and angular momentum, as shown in 
ection 3.2 . Statistically, one can count how many stars are bound to

he substructure potential (i.e. E < 0) at any given time and compare
hat number against the value estimated in equation ( 2 ). Petit &
 ́enon ( 1986 ) found that captured particles moving on chaotic orbits
nly remain trapped within the potential � • o v er a finite amount of
ime before being lost to galactic tides. As shown in Paper I , this
eads to a population of bound field stars that reaches a steady state
s the capture rate (defined as the net number of field particles with
 flipping from positive to negati ve v alues) equals the loss rate (i.e

he net number of field particles with E flipping from ne gativ e to
ositi ve v alues). Paper I finds that steady state is typically reached
 v er Smoluchowski’s ( 1916 ) ‘fluctuation mean life’ 

 ( r) = 

√ 

2 π

3 

r 

〈 v 2 〉 1 / 2 , (3) 

hich roughly corresponds to the time that a particle moving on
 straightline trajectory takes to cross the volume element, i.e. the
o-called ‘crossing’ time. Typically, this time-scale is much shorter 
han the orbital time of the substructure around the host galaxy. Paper
 shows that in steady-state, the average number of field stars with
 < 0 can be estimated from equation ( 2 ) as N ss = α N b , where α

s the so-called abundance parameter, which is set by the ‘dynamical
urvi v al time’ 5 that trapped objects remain bound to the potential
 •. Numerical experiments shown in Paper I show that α is close

o unity. The estimates shown below set the abundance parameter 
= 1. 

.1.2 Strong perturbations 

he statistical theory presented abo v e assumes that the substructure
otential � • induces weak perturbations on the trajectories of field 
tars as they move across the volume V = 4 πr 3 / 3. One can easily
how that this approximation breaks down close to the substructure, 
here the potential well | � •| may become deeper than the specific
inetic energy of field particles, K = 3 σ 2 / 2. 
To derive the distribution of captured stars at small distances from

he substructure we use two empirical results found in Paper I (see
lso Section 3 ): (i) the phase-space density of captured stars becomes
pproximately constant in the vicinity of the substructure, such that 
 � ( r , v ) � f 0 , and (ii) the population of captured stars reaches a
teady state on time scales comparable to Smoluchowski’s ( 1916 )
fluctuation mean life’ defined by equation ( 3 ). 

The density profile of an equilibrium ensemble of stars moving in
he potential � • can be derived from the local distribution function
ithout a priori knowledge of their orbital trajectories. That means, 
e do not need to specify whether orbits are regular ( permanently
ound) or chaotic ( temporarily bound), as long as the distribution of
hese objects is homogeneous in phase-space. Under this condition, 

 � [ � •( r)] = 

∫ 

E< 0 
d 3 vf � ( r , v ) 

= 4 πf 0 

∫ | � •| 

0 
d E[2( E − � •)] 1 / 2 

= 

8 
√ 

2 π

3 
f 0 | � •| 3 / 2 . (4) 

o find the normalization of the local phase-space density, f 0 , we
atch the number density ( 4 ) against the steady-state profile derived

rom equation ( 2 ) at low escape velocities ( v e � σ ), such that n � =
MNRAS 533, 3263–3282 (2024) 
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 N ss / d 3 r = α d N b / d 3 r . This yields 

 0 = α
n 

(2 πσ 2 ) 3 / 2 
e −V 2 • / (2 σ 2 ) . (5) 

hich corresponds to a local Maxwellian distribution function
ultiplied by abundance parameter α. The density enhancement

nduced by the population of energetically bound stars within the
olume V can be found by inserting ( 5 ) into ( 4 ), which yields 

� ( r) ≡ n � ( r) 

n 

= α
4 

3 
√ 

π
e −V 2 • / (2 σ 2 ) 1 

σ 3 
| � •| 3 / 2 

= α
4 

3 
√ 

π

( GM •) 3 / 2 

σ 3 
e −V 2 • / (2 σ 2 ) 1 

( r + c •) 3 / 2 
. (6) 

otice that the density profile converges to a centrally divergent
density spike’ δ� ∼ r −3 / 2 (Gondolo & Silk 1999 ) in the point-
ass limit c • → 0. For extended haloes ( c • > 0) the profile becomes
at for r � c •. For generic potentials, we find that the density en-
ancement ( 6 ) scales as δ� ∼ | � •| 3 / 2 , which allows a straightforward
nalysis of a wide range of substructure models. 

The isotropic 1D velocity dispersion can be derived from the local
istribution function as 

2 
� [ � •( r)] = 

1 

3 n � ( r) 

∫ 

E< 0 
d 3 v v 2 f � ( r , v ) 

= 

4 π f 0 

3 n � ( r) 

∫ | � •| 

0 
d E[2( E − � •)] 3 / 2 

= 

2 

5 
| � •| , (7) 

hich is a constant fraction of the escape velocity at all radii, σ� /v e =
1 / 5) 1 / 2 ≈ 0 . 45. It is important to emphasize that equation ( 7 ) is
ndependent of the speed of the dark object across the host galaxy
 V •) as well as of the normalization of the distribution function ( f 0 ).

By construction, combining equations ( 6 ) and ( 7 ) returns a mean
hase-space density of bound stars that remains constant across the
olume element 

 � ≡ n � ( r) 

σ 3 
� ( r) 

= α
5 

3 

√ 

10 

π
e −V 2 • / (2 σ 2 ) Q. (8) 

quation ( 8 ) highlights two interesting results. First, Q � solely
epends on the potential � • through the value of the abundance
arameter, α, and second the phase-space density of captured stars
rops exponentially for a potential � • that is not at rest with the
ackground ( V • > 0).In Section 3.1 , we carry a number of numerical
xperiments that inspect the accuracy of the theoretical profiles
eriv ed abo v e. 
Of particular rele v ance for this paper is the distance at which the

ensity of bounds stars is equal to that of the field. For reasons that
ecome clear below, it is convenient to examine the point-mass limit
rst. Solving δ( r ε) = 1 in equation ( 6 ) with c • → 0 and α = 1 yields 

 ε = 

(
16 

9 π

)1 / 3 

e −V 2 • / (3 σ 2 ) GM •
σ 2 

, (9) 

hich is dubbed the ‘thermal’ critical radius in Paper I owing to the
axwellian velocity dependence exp [ −V 

2 
• / (3 σ 2 )] multiplying the

ritical radius r 0 = 2 GM •/σ 2 in ( 9 ). Thus, the density of field stars
ound to an object with mass M • will exceed that of the galactic
ackground on scales below the thermal critical radius, i.e. δ� > 1 at
 < r ε . 

For objects with an extended mass distribution, δ� ( r ext 
ε ) = 1

appens at r ext 
ε = r ε − c • = κ r ε , where κ ≡ 1 − c •/r ε is the com-
NRAS 533, 3263–3282 (2024) 
actness of the substructure. It is straightforward to show that the
ondition δ� > 1 requires κ > 0 (or c • < r ε), which means that
nly substructures that are sufficiently compact can contain an
 v erdense re gion of captured field stars. We inspect this issue in
ext Section with the aid of N -body tools. 
In what follows, we assume that a dark substructure becomes

visible’ – i.e. it can be detected as a localized stellar o v erdensity–
f the volume V ε = 4 πr 3 ε / 3 > 0 contains at least one bound star,
.e. N b ( r ε) > 1. This condition can only be satisfied by dark objects
bo v e a certain mass threshold, M • > M min . Using ( 6 ) with c • = 0
nd ( 9 ) and setting α = 1, we find 

 min = 

3 π1 / 3 

4 
e V 

2 • / (3 σ 2 ) D σ 2 

G 

, (10) 

ere D = (2 π n ) −1 / 3 is a measure of the average separation of stars
n the volume element V (Pe ̃ narrubia 2018 ). Notice again that the
ormation of stellar o v erdensities is strongly suppressed in dark
bjects moving at high speed ( V • � σ ) with respect to the galactic
ackground. 

.2 Application: Milky Way dwarf spheroidals 

he abo v e analytical e xpressions can be used to inspect the effi-
iency of gravitational captures in different galactic environments.
ccording to our statistical theory, capture of field stars is most

ikely in regions where the stellar phase-space density Q = n/σ 3 =
2 πD 

3 σ 3 ) −1 is high, that is the intra-stellar separation D is small
nd the velocity dispersion is low (i.e. ‘cold’). Upper panel of Fig. 1
hows that the galaxies with the highest phase-space densities are the
ltraf aint dw arf spheroidals, which also are the smallest, coldest and
ost metal-poor galaxies in the kno wn Uni verse (e.g. Simon 2019 ).
eferences for the data shown are given in footnote 5 . 
In what follows, we assume that the stellar component of satellite

alaxies follow a Plummer profile, n dSph ( r) = n 
dSph 
0 [1 + ( r/a) 2 ] −5 / 2 ,

ith a central density n dSph 
0 = N 

dSph 
� / (4 πa 3 / 3), and a (3d) half-light

adius r dSph 
h = 1 . 305 a. The a verage inter -stellar separation is esti-

ated as D = (2 πn 
dSph 
0 ) −1 / 3 . The number of stars in a dSph galaxy

s calculated from the total stellar mass as N 

dSph 
� = M 

dSph 
� / 〈 m � 〉 ,

here, 〈 m � 〉 is the average mass of a single star. Given that dSphs
ave approximately flat velocity dispersion profiles, we set σ = σ dSph 

Walker et al. 2007 ). 
Dwarf galaxies with multiple chemo-dynamical components are

articularly interesting in this context. In these systems, the proba-
ility to capture field stars strongly depends on stellar metallicity.
 or e xample, the F ornax dSph contains two prominent chemo-
ynamical populations (Battaglia et al. 2006 ; Walker & Pe ̃ narrubia
011 ; Amorisco & Evans 2012 ) with metallicities [Fe / H] = −1 . 8
nd −0 . 65 and ages > 10 Gyr , and ∼ 0 . 2–2 Gyr , respectively
Rusakov et al. 2021 ). The metal-rich (MR) component contains
ore stars N 

MR 
� ∼ 3 × 10 7 , is more centrally concentrated, r MR 

h ≈
30 pc and has a colder velocity dispersion, σ MR ≈ 10 km s −1 ,
han the metal-poor (MP) population, which has N 

MP 
� ∼ 2 × 10 7 ,

 

MP 
h ≈ 1070 pc and σ MP ≈ 14 . 4 km s −1 (Walker & Pe ̃ narrubia 2011 ).
hus, MR stars have much higher phase-space densities than MP 

tars, 

Q 

MR 

Q 

MP 
= 

n MR 

n MP 

(
σ MP 

σ MR 

)3 

= 

N 

MR 
� 

N 

MP 
� 

(
r MP 
h 

r MR 
h 

σ MP 

σ MR 

)3 

∼ 33 . (11) 

Middle panel of Fig. 1 shows estimates of M min derived from
quation ( 10 ) for the MW satellites in our sample. To simplify the
nalysis, substructures are placed at rest within the host galaxies
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Figure 1. Upper panel : Stellar phase-space density Q = n/σ 3 = 

1 / (2 πD 

3 σ 3 ) of MW dSphs as a function of their half-light radii. References 
for the data shown are given in footnote 5 . Notice that the phase-space density 
of the MW stellar halo at R = 20 kpc is � 6 orders of magnitude lower 
than in dSphs. This dif ference gro ws at larger Galactocentric radii. Middle 
panel : Minimum substructure mass ( M min ) derived from equation ( 10 ). 
Substructures with M • > M min are expected to contain stellar overdensities 
( δ� > 1) with at least one bound field star ( N b > 1), see text. The metal-rich 
(MR) and metal-poor (MP) components of the Fornax dSph are highlighted 
with red and blue filled dots, respectively. Notice that the value of M min in 
the MW halo is relatively large on account of its high velocity dispersion. 
Lower panel : Minimum thermal critical radius r min 

ε of substructures with a 
mass M • = M min . Stellar o v erdensities made of capture stars have a physical 
size comparable to the radii of globular clusters. 
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 V • = 0). For reference, we also plot the value of M min associated
ith the stellar halo of the Milky Way at a Galactocentric distance
f R = 20 kpc using the stellar density and velocity dispersion
easured by Deason, Belokurov & Evans ( 2011 ). This panel 

eveals a number of interesting points. Notice first that the mass
hreshold ( M min ) is lowest in the smallest dSphs, which simply
eflects the tight correlation between half-light radius and phase- 
pace density shown in the upper panel. If the goal is to detect
dark’ substructures that contain a stellar population of captured 
eld stars, then ultrafaint dSphs with half-light radii r dSph 

h ∼ 30 pc 
re the best targets, as they may be sensitive to the presence of
ark substructures with masses abo v e M • � 10 4 M �. In contrast, the
ass threshold increases by an order of magnitude, M • � 10 5 M �,

n the ‘classical’ dwarf galaxies with r dSph 
h � 300 pc . In the case of

he Fornax dSph, the MR stellar component a mass threshold M min 

hat is approximately an order-of-magnitude lower than for the MP 

opulation. 
Stars trapped in dark substructures can lead to the formation of

ocalized stellar o v erdensities ( δ� > 1) in the host galaxy. Bottom
anel of Fig. 1 shows that the size of the o v erdense re gions lies in
he range r ε � 1–10 pc , thus being comparable to the size of stellar
lusters. This leads to the intriguing possibility that some of the 
anomalous’ stellar systems detected in MW dSphs may actually 
orrespond to stars temporarily trapped in dark substructures. We 
iscuss this scenario in Section 4.1 . 
Overdensities of trapped stars are expected to have high mass-to- 
ight ratios. This can be shown by measuring the substructure mass
ithin the o v erdensity volume as M = M •( < r ε) = M •r 2 ε / ( r ε +
 •) 2 , and comparing it to the bound stellar mass L = N b ( r ε) 〈 m � 〉 .
or the point-mass case c • = 0, applying ( 2 ) and ( 9 ) returns a
imensionless mass-to-light ratio 

M 

L 

≡ M( < r ε) 

N b ( r ε) 〈 m � 〉 = 

M 

3 
min 

M 

2 • 〈 m � 〉 , (12) 

here M min is given by equation ( 10 ). According to the estimates
lotted in Fig. 1 , field stars bound to susbtructures with a mass M • ∼
 min will appear as extremely DM-dominated objects, M/L = 

 min / 〈 m � 〉 ∼ 10 4 –10 5 for an average stellar mass 〈 m � 〉 = 1 M �. In
ubstructures with larger masses, M • > M min , the mass-to-light ratio
f captured stars drops as M/L ∼ M 

−2 
• . Note that equation ( 12 )

hould not be applied to substructures, where M/L � 1, as the theory
utlined in Section 2.1 ignores the contribution of trapped stars to
he underlying potential. 

In the MW halo, capture of field stars is inefficient on account
f their high v elocity dispersion. F or illustration, here we adopt
MW ∼ 124 km s −1 and n MW = 10 −4 pc −3 at R = 20 kpc from the
W centre (e.g. Deason et al. 2011 ), noting in passing that capture of

eld stars in this particular stellar halo model becomes systematically 
ess efficient at larger distances. Note that the velocity dispersion 
f the MW stellar halo is approximately one order-of-magnitude 
igher than in the classical dSphs. As a result, the minimum
ubstructure mass needed to capture stars from the field increases 
p to M min � 10 8 M �, which is � 3 orders of magnitude larger
han in the MW dwarf spheroidals. Crucially, this mass threshold 
s lower than the virial mass of the classical dSphs, which appear
o be embedded in DM haloes with virial masses 10 9 –10 10 M �
e.g. Pe ̃ narrubia et al. 2008a ; Errani, Pe ̃ narrubia & Walker 2018 ),
uggesting that dSphs may contain a population of captured MW 

alo stars. Ho we v er, field haloes in this mass range hav e scale radii
hat are a factor � 100 larger than the thermal critical radius plotted in
he bottom panel of Fig. 1 , c • � 10 3 pc (e.g. Diemar & Joyce 2019 ),
hich implies a ne gativ e compactness parameter, κ < 0. Therefore,
eld stars trapped in dSphs will appear as a diffuse envelope of co-
oving stars with subdominant densities with respect to the local 
W background ( δ� � 1). The detection of this stellar population 
ill be challenging, and may require simultaneous modelling of the 
inematic and chemical composition of a large sample of stars at
he locations of dSphs. This problem will be explored in a separate
ontribution. 

.3 Sub-subhalo populations in a CDM framework 

ccording to CDM models of structure formation, all galaxies are 
xpected to contain a large population of DM subhaloes with a
ower-law mass function d N/ d M • ∼ M 

−α
• and a slope α ≈ 1 . 9 (e.g.

iocoli, Tormen & van den Bosch 2008 ; Springel et al. 2008 ). In the
lassical fluid limit, the number of subhaloes diverges at low masses.
n contrast, if DM is made of cold massive particles a truncation
t a minimum subhalo mass M min is expected to arise on scales
omparable to the particle free-streaming length. For WIMPS with 
asses abo v e ∼ 1 GeV / c 2 the truncation lies below planet-mass 

cales, M min � 10 −6 M � (e.g. Schmid et al. 1999 ; Hofmann et al.
001 ). 
Within a CDM context, dark subhaloes hosting a population of 

aptured field stars are expected to follow a luminosity function 
ictated by the underlying halo mass function. To illustrate this, 
et us define N � = N b ( r out ) within a volume size larger than the
MNRAS 533, 3263–3282 (2024) 
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Figure 2. Left-hand panel: mass M • and scale radius c • of DM sub-subhaloes colour-coded according to the number of captured dwarf galaxy stars, N � = N b ( r ε ), 
equation ( 2 ), where r ε is the thermal critical radius, equation ( 9 ). In this model, the host galaxy has properties similar to the Fornax dSph: it follows a Plummer 
profile with a total luminosity of N 

dSph = 5 × 10 7 , a half-light radius r dSph 
h = 0 . 89 kpc and it has an average velocity dispersion σ dSph = 12 . 2 km s −1 . White 

solid and dotted lines respecti vely sho w the virial mass-size relation of haloes and subhaloes taken from the Aquarius simulations (Springel et al. 2008 , fig. 26) 
extrapolated down to the mass scales of interest (see text). Middle panel Compactness κ = 1 − c •/r ε of the left-and panel models. Only models with κ > 0 lead 
to o v erdensities of captured stars with δ� > 1. Right-hand panel : Mass-to-light rations of the left-hand and middle-panel models derived from equation ( 12 ). 
Stellar systems trapped in subhaloes with masses M • � 10 7 M � will exhibit dark-matter dominated kinematics. 
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ubstructure scale radius, r out � c •. From equation ( 2 ) 

 � = 

32 
√ 

π

9 
( GM •) 3 / 2 e −V 2 • / (2 σ 2 ) n 

σ 3 
r 

3 / 2 
out , for r out � c •. (13) 

o combine equation ( 13 ) with the subhalo mass function, we apply
he chain rule (d N / d M •)d M • ∼ N 

−(2 α+ 1) / 3 
� d N � , which leads to a

uminosity function 

d N 

d M � 

= A 0 

(
M � 

〈 m � 〉 
)−(2 α+ 1) / 3 

, (14) 

here M � = N � 〈 m � 〉 is the mass of a stellar clump, and A 0 is an
rbitrary normalization. Thus, the luminosity function of stellar
ubstructures also follows a power-law d N/ d M � ∼ M 

−β
� , albeit

ith a shallower index than the underlying subhalo mass function,
= (2 α + 1) / 3 = 1 . 6 for α = 1 . 9. 
Whether or not the these objects can be detected as localized stellar

 v erdensities mainly depends on the compactness of DM haloes that
apture them (see Section 2 ). To illustrate this point, Fig. 2 shows the
ean properties of field stars trapped in dark substructures co v ering
 wide range of masses and scale radii. For this plot, we adopt the
ame dwarf galaxy model as outlined in Section 3.1 . Namely, field
tars follow a Plummer profile with a total luminosity of N 

dSph =
 × 10 7 , a half-light radius of r dSph 

h = 0 . 89 kpc and a mean velocity
ispersion σ dSph = 12 . 2 km s −1 , similar to the o v erall properties of
he Fornax dSph (see Section 2.2 ). For simplicity, we assume that
ark substructures are at rest with the field ( V • = 0). 
Left-hand panel of Fig. 2 shows models colour-coded according

o the number of bound stars enclosed within their thermal critical
adius, N b ( r ε) calculated from equations ( 2 ) and ( 9 ). As shown in
ig. 1 , point-mass objects with M • � 10 5 M � contain N � � 1 stars

rapped within their thermal critical radius. In extended substructures,
he mass threshold for capture increases mildly. 
NRAS 533, 3263–3282 (2024) 
Only substructures with positive compactness ( κ ≡ 1 − c •/r ε) can
ecome visible as localized stellar o v erdensities ( δ� > 1). Middle
anel shows that the condition κ > 0 (or c • < r ε) translates into a
inear relation c • � 0 . 83 GM •/σ 2 , which is steeper than the shallow

ass-scale radius relation of Aquarius subhaloes, c • ∼ M 

0 . 46 
• . As

 result, Aquarius subhaloes with masses M • � 5 × 10 6 M � would
e ‘fluffy’ ( κ < 0). In these objects, trapped stars would have sub-
ominant densities with respect to the field ( δ� < 1), complicating
heir detection in photometric surv e ys. Ho we ver, in spectroscopic
urv e ys these objects may appear as localized regions with distinct
inematics, i.e. a low velocity dispersion σ� < σ , and/or a significant
elocity offset �v. 

It is important to stress that the mass-size relation of field haloes
nd subhaloes contain a significant amount of scatter that is not
lotted in Fig. 2 (e.g. the concentration of field haloes has a
tandard deviation of ∼ 0 . 15 dex at a fixed mass, Ludlow et al.
016 ). Crucially , a low-probability , high-density tail in the mass-
ize distribution would lead to a population of low-luminosity
 v erdensities with the size of stellar clusters. This is of particular
ele v ance as the existence of such a high-density, low-probability
ail of substructures is a strong prediction from the CDM paradigm
Pe ̃ narrubia et al. 2010 ; Errani & Pe ̃ narrubia 2020 ; Errani & Navarro
021 ). Unfortunately, given the poor theoretical understanding of the
ass function and the density profile of sub-subhaloes in dSphs, at

resent it is not possible to make predictions on the number of stellar
 v erdensities of captured field stars. We will discuss this issue in
ection 4.1 . 
Right-hand panel of Fig. 2 shows the mass-to-light ratio ( 12 )

or the models shown in previous panels. As expected, we
nd that field stars trapped in low-mass ( M • � 10 7 M �) sub-
tructures exhibit DM-dominated kinematics ( M/L � 1). As a
ote of caution, recall that the analytical equations derived in
ection 2.1 neglect the self-gravity of captured stars, which
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s not a valid assumption in systems with mass-to-light ratios 
/L � 1. 
In summary, Fig. 2 suggests that field stars captured by dark sub-

ubhaloes may resemble stellar clusters with anomalous properties: 
i) they would have a large size for their luminosity, (ii) contain stellar
opulations with ages and metallicities indistinguishable from the 
ost galaxy, and (iii) exhibit DM-dominated mass-to-light ratios. 

 STATISTICAL  EXPERIMENTS  

his section carries a suite of numerical experiments that help us to
est the accuracy of the theoretical equations derived in Section 2.1 ,
nd shed light on the dynamics of stars trapped by a substructure
rbiting in a Fornax-like dSph galaxy. The section goes as follows 
Section 3.1 provides a brief overview of the properties of the 

alactic field particles and the numerical set-up used to solve the 
quations of motion. We refer interested readers to appendix A of
aper I for a detailed description of the integration tools. 
Section 3.2 injects a static substructure potential � • in a pre- 

xisting field of particles in dynamical equilibrium within � 

dSph . This
et-up is similar to the analytical conditions adopted in Section 2.1 ,
nd we can therefore anticipate a close match between theoretical 
redictions and the numerical results. Interestingly, we will see 
hat the dynamics of field particles trapped in � • can be broadly
eparated in two families: (i) permanent captures, which become 
ound immediately after the substructure is placed in the field 
t t = 0, and remain bound for indefinitely long times, and (ii)
emporary captures, which as the name indicates only remain bound 
or a finite amount of time. 

Section 3.3 explores a physically moti v ated case where a substruc-
ure mass grows while moving along a circular orbit, thus sourcing 
 time-dependent potential � •( t). We will see that these models also
apture particles trapped on permanent orbits around � •, and that one
ime-scales t � | ̇� •/� •| −1 the phase-space distribution of particles 
ith E < 0 become indistinguishable from the static case explored 

n Section 3.2 . 
In Section 3.4 we analyse capture of field stars by a substructure

ccreted onto a dwarf galaxy on an eccentric orbit. The potential 
 • is initially placed at orbital apocentre in a region populated by

o field particles (therefore it contains no permanent captures by 
onstruction), with a small orbital pericentre that reaches the inner- 
ost regions of the dSph. 
Section 3.5 considers substructure models with a fixed mass 

nd different scale radii. The numerical results stress that only 
ubstructures that are sufficiently compact generate o v erdensities 
f captured field stars. 

.1 Initial conditions & set-up 

e generate realizations of N = 5 × 10 6 stellar tracer particles in
ynamical equilibrium within a Dehnen ( 1993 ) potential � 

dSph with 
 total mass of M 

dSph = 3 × 10 9 M � and a scale radius c dSph = 2 kpc .
e run experiments with cuspy ( γ = 1) and cored ( γ = 0) profiles.
iven that the stellar luminosity of the Fornax dSph is ∼ 5 × 10 7 L �

e.g. Rusakov et al. 2021), the particle luminosity in our models is
0 L �. 
Field particles in this potential follow an α- β- γ profile (Zhao 

996 ) 

 ( R ) = 

n 0 

( R /R 0 ) γf [1 + ( R/R 0 ) αf ] ( βf −γf ) /αf 
, (15) 
ith n 0 chosen such that 4 π
∫ ∞ 

0 d r r 2 n ( r) = N . We consider two
racer models: (i) a spherical Plummer-like (1911) profile 6 with a 
cale radius R 0 = 690 pc and slopes ( αf , βf , γf ) = (2 , 5 , 0 . 1), and
ii) a truncated model with ( αf , βf , γf ) = (2 , 30 , 0 . 2) and a scale
adius R 0 = 460 pc . To guarantee dynamical equilibrium, orbital ve-
ocities are assigned using Eddington ( 1916 ) inversion (see Errani &
e ̃ narrubia 2020 ). For the Plummer profile, this returns a luminosity-
v eraged 1D v elocity dispersion 〈 v 2 〉 1 / 2 / 3 = 12 . 2 km s −1 . This is our
eference model, which approximately matches the o v erall phase- 
pace density, size and luminosity of the Fornax dSph plotted in
ig. 1 . The luminosity-averaged velocity dispersion of the truncated 
odel is 〈 v 2 〉 1 / 2 / 3 = 11 . 7 km s −1 . 
The motion of individual tracer particles are solutions to two 

ets of differential equations. The first set describes the orbit of
he substructure in the dSph potential 

R̈ • = −∇� 

dSph ( R •) . (16) 

The second set describes the trajectories of tracer particles in the
alactocentric frame 

R̈ = −∇� 

dSph ( R ) − ∇� •( R − R •) + F coll , (17) 

here R − R • is the relative distance of the particle to the substruc-

ure, and F coll = 

∑ N clump 
i= 1 f i is the net force induced by N clump clumps

rbiting in the substructure potential � • (for example, these could 
e planets orbiting the Sun in Paper I , or sub-subhaloes in the DM
alo of dSphs in the current work). For simplicity, here we assume
hat the substructure potential is ‘smooth’ by setting F coll = 0. We
ill analyse the effect of random encounters with clumps on the
ynamics of captured particles in follow-up work. 
In Sections 3.2 and 3.3 , substructures are placed on circu-

ar orbits around a cored DM halo ( γ = 0) at a galactocentric
adius R • = 0 . 5 kpc with a tangential velocity V • = V c ( R •) =
4 . 35 km s −1 . The local dynamical time is therefore �−1 = R •/V • =
00 pc / 14 . 35 km s −1 � 34 Myr . Field stars follow a Plummer (1911)
rofile, have a local velocity dispersion of σ ( R •) = 11 . 2 km s −1 , and
re separated by an average distance D( R •) = 4 . 8 pc . 

For illustration, we choose a substructure mass M • = 10 6 M �.
o estimate the thermal critical radius we adopt σ = 〈 v 2 〉 1 / 2 / 3 =
2 . 2 km s −1 in equation ( 9 ), which returns r ε = 18 . 9 pc . Note that this
ize is comparable to that of the extended stellar clusters discussed
n the Introduction. We consider a ‘compact’ substructure with κ = 

 0 . 8, which translates into a scale radius c • = (1 − κ) r ε = 3 . 78 pc
notice that this value is smaller than the typical scale radius of
eld haloes with a vitial mass M vir ( z = 0) ∼ 10 6 M � in the Aquarius
imulation, see Fig. 2 ). The time-scale needed to cross the o v erdensity
ize by a random field particle is much shorter than the orbital
ime, T ( r ε) = r ε/σ = 18 . 9 pc / (12 . 2 km s −1 ) � 1 . 5 Myr . As a result,
n these models the population of captured particles reaches steady 
tate quickly. 

We choose a volume size around � • which matches the local tidal
adius deri ved belo w from equation ( 20 ), r out = r t � 190 pc . The vol-
me V = 4 πr 3 out / 3 contains approximately N = n V = 42530 field
tars. From equation ( 2 ), we expect that approximately N b ( r out ) =
000 stars will have negative energies. 
MNRAS 533, 3263–3282 (2024) 
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Figure 3. Distribution of capture times ( t c = t − t bound ) defined as the time 
spanned since a particle becomes bound ( t bound ), i.e. the energy E flips from 

positiv e to ne gativ e, until the present integration time ( t). Time is measured in 
units Smoluchowski’s time scale ( T ) for convenience. Here, we only include 
particles within a volume size equal to the local tidal radius, r out = r t (see 
text). Notice the presence of a substantial number of particles that become 
bound at t ≈ 0, which result in a a strong peak in the distribution at t c ≈ t 

shifting towards the right as the integration time increases. 
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Figure 4. Examples of permanent and temporary captures. Left-hand panels: 
Motion of captured particles in a coordinate frame centred at the potential � •
of a ‘compact’ Hernquist substructure with M • = 10 6 M � and a compactness 
κ = 0 . 2 (see Section 2.1 for details), which leads to a scale radius c • = 

(1 − κ) r ε = 3 . 78 pc . Notice how the temporary capture eventually leaves 
the volume of observation as it becomes gravitationally unbound. Upper and 
lower right panels : Time-evolution of the specific energy E = v 2 / 2 + � • and 
angular momentum | L | = | r × v | , respectively. Energy is measured in units 
of the mean kinetic energy of field stars, K = 3 σ 2 / 2, and angular momentum 

in units of L 0 = r ε σ . Time is measured in units of Smoluchowski’s ( 1916 ) 
fluctuation mean-life ( 3 ). In contrast to temporary captures, particles on 
permanent orbits exhibit negative binding energies ( E < 0) during the entire 
time span of the integration. 
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.2 Static substructures potential on circular orbits 

n this section, we place a substructure potential � • at a galactocentric
adius R • with a circular velocity V • = V c ( R •) in a sea of tracer
articles with an extended profile (see Section 3.1 ) in dynamical
quilibrium. By chance, at the initial snapshot ( t = 0) a number of
racer particles are found within a volume element V = 4 πr 3 out / 3
entred at � • with a relativ e v elocity below the escape velocity,
 < v e , which implies a ne gativ e energy, E < 0. In what follows, we
efer to these particles as ‘immediate captures’ in order to distinguish
hem from ‘chaotic 3-body captures’ (e.g. Petit & H ́enon 1986 ),
hich take place during the dynamical integration of their orbits as a

esult of the interplay between the tracer particle and the substructure
nd host galaxy potentials. 

Next, we follow the motions of the substructure and the field
articles by solving equations ( 16 ) and ( 17 ). At each time-step, we
dentify particles located within the volume V whose energy flips
rom positive to negative, label them as ‘captured’, and mark their
D’s and the time when this happens ( t bound ). 

As the simulation proceeds, we notice that orbits with E < 0
an be broadly separated into tw o f amilies. The first group is made
f ‘permanent’ captures, which correspond to particles that remain
ound for arbitrarily long times and were already bound at t = 0 (i.e.
hese are immediate captures that survive until the final snapshot of
he simulation). Here, it is worth stressing that not all immediate
aptures are permanently bound, as some of them become tidally
tripped by the galactic potential. We will come back to this point
elow. The second group corresponds to ‘temporary’ captures. As the
ame indicates, these particles were unbound ( E > 0) at the initial
napshot t = 0. At some point during the integration their energy
ign flips from positive to ne gativ e, and back to positive, as these
articles only remain bound for a finite amount of time. 
The presence of particles on permanently bound orbits can be

asily identified in the distribution of capture times plotted in Fig. 3
t three different snapshots of the simulation. Independently of the
ime of the measurement, we find a very prominent spike centred
t t c = t − t bound = t . This spike is populated by particles that were
NRAS 533, 3263–3282 (2024) 
lready bound at t = 0 ( t bound = 0). Away from the spike, we observe
 broad distribution of capture times, which is populated by particles
hat were initially unbound and become captured at a later time of
he simulation, such that t bound > 0. Their distribution of capture
imes peaks at t c ∼ 2 T , although in this experiment we also find a
ignificant number of temporary captures that remain bound for as
ong as t c ∼ 50 T . In our models, all particles captured with t bound > 0
re temporary events that ultimately lead to the tracer particle being
eleased back to the galactic potential. 

Since we know the particle ID’s, we can follow the trajectories
f permanent and temporary captures individually. For illustration,
ig. 4 shows the motion of two field particles captured by the potential
 •, with orange and blue lines showing temporary and permanent

aptures, respectively. Temporary captures are transient events that
nevitably result in the field particle escaping from the potential
 • after a finite amount of time. In the example plotted in Fig. 4 ,

he specific energy of the field particle E = v 2 / 2 + � • flips from
ositiv e to ne gativ e t � 2 T and remains ne gativ e until t � 47 T ,
hich yields a survi v al time t surv ∼ 45 T . After t � 47 T , the particle
oes through a short period of rapid energy oscillations in which the
rbit becomes bound and unbound repeatedly o v er short time-scales,
 surv ∼ T , until it finally becomes fully unbound and escapes from
he volume element V at t ∼ 60 T . In contrast, permanent captures
ave E < 0 at all times and show milder variations of energy. It is
mportant to emphasize that none of these particles conserve energy
r angular momentum ( L = r × v ), which greatly complicates an
nalytical description of their motion. For example, their orbits are
ot typically restricted to a constant orbital plane –even when � •
s spherical & static– and exhibit time-varying orbital parameters
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Figure 5. Upper panel: Radial phase-space location of bound particles in 
a co-rotating frame, x ′ – v ′ x measured at the end of the simulation ( t = t f ). 
Only particles within a narrow plane | �y ′ | < 0 . 2 r ε and | �z ′ | < 0 . 2 r ε are 
shown here. The dwarf galaxy centre is located at x ′ /r ε ≈ −25. We identify 
‘permanent’ captures as those particles that remain bound for the whole span 
of the simulation t c = t f (or t bound = 0) and plot them with red dots, whereas 
temporary captures become bound at t bound > 0 and are plotted in blue. Note 
that permanent captures have negative binding energies measured in a co- 
rotating frame, E rot < 0, and are confined within the tidal radius | x ′ | < r t � 

10 r ε , with r t given by equation ( 20 ). Notice also the lack of permanent 
captures at very small distances from the substructure, r � r ε . Lower panel: 
Energy and angular momentum of the particles plotted abo v e giv en in the 
same units as in the right-hand panels of Fig. 4 . Black-solid line shows the 
circular velocity of the Hernquist substructure. Notice that permanent and 
temporary particles appear se gre gated in the integral-of-motion space. In 
particular, temporary captures can be rarely found on circular orbits. Note 
also that this division blurs close to the ‘fringe’ region, E ≈ 0. 
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such as peri, apo-centres and orbital eccentricity) that change in an 
pparently random fashion o v er short time scales. 

As noted abo v e, only a fraction of particles with E < 0 at t = 0
the so-called immediate captures) remain bound for an indefinite 
mount of time. Fig. 5 shows that only immediate captures that were
nitially located within the local tidal radius become permanently 
ound. This plot shows particles in a co-rotating coordinate system 

entred at the substructure, with the x ′ -axis pointing at the host galaxy
entre, and the z ′ -axis aligned with the angular vector � = (0 , 0 , �).
n this frame, the ef fecti ve potential can be written as (cf. equation 12
f Renaud, Gieles & Boily 2011 ) 

 eff = � • − 1 

2 
( λ1 x 

′ 2 + λ2 y 
′ 2 + λ3 z 

′ 2 ) , (18) 

here λi are the 3 eigen-values of the local tidal tensor. For a Dehnen
 1993 ) sphere with γ = 0 they can be expressed analytically using
quation (17) of Renaud et al. ( 2011 ) as 

 λ1 , λ2 , λ3 ) = 

GM 

dSph 

( R • + c dSph ) 3 

(
3 R •

R • + c dSph 
, 0 , −1 

)
. (19) 

he tidal radius can be estimated from ( 19 ) as 

 t = 

(
GM •
λ1 

)1 / 3 

= 

[
M •

3 M 

dSph 

(
1 + 

c dSph 

R •

)]1 / 3 

R •, (20) 

hich reco v ers the academic point-mass case for c dSph = 0. Inserting
he parameters of the experiments run in this section into ( 20 ) yields
 t � 190 pc ≈ 10 r ε . 

Dotted and solid lines in the upper panel of Fig. 5 show phase-space
urfaces that obey the conditions E = v ′ 2 x / 2 + � •( x ′ , 0 , 0) = 0 and
 rot = v ′ 2 x / 2 + � eff ( x ′ , 0 , 0) = 0, respectively, with primes denoting
uantities measured in a co-rotating frame. By definition, temporary 
aptures (shown in blue) populate a phase-space region, where E < 0
 v er a wide range of distances. Interestingly, permanent captures
re more confined in phase space. In particular, we find that all
ermanent captures obey E rot < 0 and can only be found at distances
 < r t � 10 r ε from the substructure. Notice also the apparent lack
f permanent captures at distances smaller than the thermal critical 
adius, | x| � r ε . As discussed below, this is likely due to the finite
umber of particles in our models. 
Lower panel of Fig. 5 shows the energy ( E) and angular mo-
entum modulus ( L = | r × v | ) of the particles plotted in the upper

anel. For reference, the angular momentum of circular orbits at a
iven energy is shown with a black-solid line. The first noteworthy
esult is that permanent and temporary captures occupy different 
egions of the integral-of-motion space. In particular, it is rare to find
ermanent orbits with low angular momentum, which suggests that 
rbits with high-eccentricity do not remain bound to the substructure 
otential for an indefinite amount of time. In contrast, temporary 
aptures a v oid orbits with low eccentricity. This result agrees with
he numerical experiments published in Paper I , which show that
articles trapped in the potential � • exhibit a ‘super-thermal’ 
ccentricity distribution with an excess of particles moving on very 
ccentric orbits. Notice also that the division between temporary and 
ermanent captures blurs in the energy ’fringe’, | E| � 0 . 2 K , where
 = 3 σ 2 / 2 is the average kinetic energy of field particles. 
Given that captured particles do not conserve E or L , as shown in

ig. 4 , it is remarkable that temporary and permanent orbits remain
ocked within their respective regions as they drift in E–L space.
his empirical result may serve as a starting point for follow up

heoretical work to better understand the dynamical mechanisms 
hat lead to gravitational capture. 

Fig. 6 shows the density enhancement of bound particles, δ� = 

 � /n , as a function of distance from the substructure for (i) permanent
aptures (top panel), (ii) temporary captures (middle panel) and all 
ound particles (bottom panel) at different snapshots of the simula- 
ion. For ease of reference, the background density δ� = 1 is marked
ith horizontal dotted lines. As expected, in the static experiments 
e find a very weak temporal variation of the profiles, suggesting

hat the distribution of bound particles reaches steady state quickly. 
ocusing first on the top panel, we find that permanent captures
o not generate o v erdensities, i.e. δ� < 1. We also observe a sharp
runcation of the profile at r ≈ 10 r ε , which roughly corresponds
MNRAS 533, 3263–3282 (2024) 



3272 J. Pe ̃

 narrubia et al. 

M

Figure 6. Density enhancement ( δ� = n � /n ) of particles with ne gativ e 
binding energies E < 0 as a function of distance from the substructure. 
Top, middle and bottom panels split bound particles according to whether 
they are permanent, temporary or any kind of captures (see text). Horizontal 
dotted lines mark the local density of the field δ� = 1. Green dots show the 
density enhancement derived from the equilibrium Initial Conditions (ICs) 
by placing a substructure Hernquist potential � • at 100 random locations in 
the galaxy and identifying particles with E < 0. Note that lack of permament 
captures beyond the the tidal radius r t , equation ( 20 ), marked with vertical 
arrows. Notice also that the density enhancement profiles do not evolve 
with time, and that stellar o v erdensities ( δ� > 1) of field particles mainly 
originate from temporary captures. Bottom panel shows that the theoretical 
profiles accurately describe the distribution of all bound particles, that is the 
superposition of permanent and temporary populations. 

t  

s  

a  

p  

w  

m  

w  

a  

v  

a  

H  

t  

t  

d  

r  

e  

I  

r  

o  

r  

δ  

o  

s
 

p  

t  

d  

p  

o  

t  

s  

t
 

E  

w  

p  

p  

a  

n  

t  

i  

t  

g  

d  

p

3

I  

i  

e  

a  

l
 

a  

a  

a  

a

M

w
i  

T  

w  

b  

t  

e
 

w  

i  

O  

f  

t  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/533/3/3263/7733101 by IBM
P user on 19 Septem

ber 2024
o the value estimated from ( 20 ) (marked with vertical arrows). At
mall distances, r � r ε , we find no permanent captures. This is likely
 numerical artefact resulting from finite sampling. To pro v e this
oint, we place a substructure potential � • at 100 random locations
ithin the galaxy and identify bound particles in the unperturbed
odels at t = 0. The averaged density enhancement profile is shown
ith green dots. Recall that permanent captures are already bound

t t = 0, and given that their spatial distribution shows no temporal
ariation it is not surprising that these objects follow a similar profile
s the one derived from random sampling the Initial Conditions (ICs).
o we ver, there are two visible discrepancies: at large radii, r � r t ,
NRAS 533, 3263–3282 (2024) 
he profile derived from the ICs is not truncated, which indicates
hat the truncation exhibited by permanent captures originates from
ynamical evolution. A second mismatch can be observed at small
adii, r � r ε , where we find that the profile derived from the ICs
xtends well below that of permanent captures. This is because the
C profile is generated by placing the substructure potential � • at 100
andom locations in the galaxy, which enlarges the statistical sample
f bound field stars, allowing us to measure their density at smaller
adii. Crucially, the density enhancement converges slowly to unity,
� → 1 in the limit r/r ε → 0, which again indicates that the presence
f permanent captures does not generate a stellar o v erdensity at the
ubstructure location. 

The density enhancement generated by temporary captures is
lotted in the middle panel Fig. 6 . In contrast to permanent cap-
ures, temporary captures generate an o v erdensity ( δ� > 1) at small
istances from the substructure. We also find that the enhancement
rofile closely follows the theoretical curve ( 6 ) (black-dashed lines)
n scales r � r ε . Ho we ver, on larger scales r � r ε the density of
emporary captures falls off more quickly than predicted by the
tatistical theory. Beyond the tidal radius, r � r t , the profile of
emporary captures approaches again the theoretical curve ( 6 ). 

Bottom panel show the profiles generated by all particles with
 < 0 at three different snapshots of the simulation. In agreement
ith the theoretical predictions from Section 2.1.2 , the theoretical
rofile ( 6 ) matches the numerical result after we consider the entire
opulation of bound particles without specifying whether captures
re temporarily or permanently bound. Notice also that there is
o particular feature that marks the location of the tidal radius in
he distribution of bound stars, and that equation ( 6 ) is accurate
n the vicinity and beyond the tidal radius, which suggests that
he superposition of permanent and temporary orbits conspires to
enerate a population of bound stars with a constant phase-space
ensity across the volume under observation. We come back to this
oint below. 

.3 Gr owing substructur es on a cir cular orbit 

n the previous section, a static substructure potential � • is instantly
njected in a sea of field particles in dynamical equilibrium. This
xperimental set up is mathematically convenient because it remo v es
n y e xplicit time dependence from the analytical estimates, but it has
imited physical applications. 

In this section, we inspect a physically moti v ated scenario in which
 substructure has a mass that grows as it mo v es along a fix ed orbit
cross a sea of field particles (see discussion in Section 4 ). To this
im, we re-run the ‘compact’ N -body models presented in Section 3.2
dopting a time-dependent substructure mass 

 •( t) = M • [1 − exp ( −t/τ )] , (21) 

ith M • = 10 6 M � and a fixed scale radius c • = 3 . 78 pc . Here, τ
s a parameter that controls the mass growth rate, τ = | Ṁ •/M •| −1 

t= 0 .
he substructure potential � • vanishes in the limit t → 0 for τ > 0,
hich allows us to easily modify the number of immediate captures
y choosing different values of the time-scale τ . By construction, in
he limit t � τ the time-dependent model approach the static case
xplored in Section 3.2 . 

Fig. 7 shows the distribution of capture times, t c = t − t bound ,
here t bound is the integration time at which a particle becomes bound,

n models with three different mass-growth rates, τ/T = 0 , 1 and 3.
range lines correspond to the same distribution plotted in Fig. 3

or static models ( τ = 0). Comparison between the panels from top
o bottom shows the emergence of prominent spike of particles with
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Figure 7. Upper panel: Distribution of capture times ( t c ) defined as the 
time since a particle becomes bound (energy flips from positive to ne gativ e) 
to the current simulation time ( t). In substructure models with different 
growth rates ( τ ), we find a substantial number of particles captured at early 
times ( t bound � 2 τ ) that remain bound for the rest of the integration, the so- 
called ‘permanent’ captures, which materialize as a peak in the distribution 
at long capture times t c ∼ t , which shifts towards the right of this plot as 
the integration time increases. Lower panel: Fraction of permanent captures 
within a volume element r out = 190 pc as a function of integration time. The 
fraction of permanent captures is roughly constant in the static case ( τ = 0), 
and peaks around t ∼ τ for substructures with a time-dependent mass ( 21 ). 
At time-scales t � τ , the three models show the same fraction of permanent 
particles independently of τ . 

t  

t
o  

t  

p  

t  

t  

w  

b  

s  

a  

t  

c  

t

fi
d  

c  

n
s  

t  

i
b  

n  

t  

F  

t  

p  

p  

c
N  

t
c  

(  

p  

O
c  

c  

i  

p  

s
 

s  

o  

R  

t  

E  

t
a  

d
 

p
s  

(  

7

l
t
8

p
F

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/533/3/3263/7733101 by IBM
P user on 19 Septem

ber 2024
 c ≈ t , which is the telltale of the build-up of a permanent captures
rapped in the time-evolving substructure potential, � •( t). Focusing 
n the models with a slow growth rate ( τ = 3 T , red lines) we find
hat the spike is absent early on during the simulation ( t/T = 5, top
anel), and that it only starts to arise at t/T � 20 (second panel from
he top). At the end of the simulation at t = 50 T (third panel from
he top), we find that all three models show a clear excess of captures
ith long capture times, t c ∼ t , with the peak of the distribution
roadening up for models with slow growth rates ( τ > 0). This
uggests that while in a static potential ( τ = 0) permanent captures
re trapped immediately at the start of the experiment, t bound = 0,
his is not the case in substructures with a mass growth ( 21 ), which
apture particles onto permanent orbits o v er an extended period of
ime, t bound � 2 τ . 

Unfortunately, the theoretical conditions that determine whether a 
eld particle becomes permanently or temporarily bound to a time- 
ependent potential � •( t) are more difficult to study than in the static
ase, because the energy measured in a co-rotating frame ( E rot ) is
ot a conserved quantity in time-dependent systems. The results 
hown in Fig. 7 call for a heuristic classification of orbits according
he the amount of time that they remain bound. In particular,
n what follows we identify permanent captures as particles that 
ecome bound early on, t bound ≤ 2 τ , and whose energy E remains
e gativ e uninterruptedly until the end of the simulation. 7 These are
he particles that populate the spikes of the distributions plotted in
ig. 3 . With this empirical definition at hand, it is straightforward

o measure the fraction of bound particles that are captured on
ermanent orbits as a function of time, which is shown in the bottom
anel. The first noteworthy result is that the fraction of permanent
aptures is approximately constant in the static model, 8 f perm 

= 

 perm 

/ ( N perm 

+ N temp ) = N perm 

/N b � 0 . 35 As expected, increasing
he time-scale τ systematically decreases the number of permanent 
aptures at t = 0. In particular, the model with the slo west gro wth
 τ = 3 T , red line) contains no permanent captures initially. As time
roceeds, the number of permanent captures grows, peaking at t ≈ τ .
nce the substructure stops growing, the fraction of permanent 

aptures approaches the static value at t � τ , independently of the
hoice of τ . This suggests that the exact manner in which � • is
nserted into the field does not affect the final distribution of bound
articles, insofar as the captured population has enough time to reach
teady state. 

Fig. 8 plots the number of bound particles located within a fixed
pherical radius r out = 190 pc from the centre of � •( t) as a function
f time (red lines) for three different values of the time-scale τ .
ecall that in the static case, this choice of r out matches the local

idal radius ( 20 ). We find that the total number of particles with
 = v 2 / 2 + � •( t) < 0 within the volume ( N b ) grows in proportion

o the substructure mass. The experimental values are in excellent 
greement with the values derived from equation ( 2 ) using a time-
ependent mass ( 21 ; black-dashed lines). 
Fig. 8 also illustrates the process by which a population of captured

articles reaches steady state. Orange and green lines, respectively, 
how the number of particles in the volume V that become bound
 E flips from positive to negative) and unbound (either E flips
MNRAS 533, 3263–3282 (2024) 

 Notice that some temporary captures may also remain bound for relatively 
ong times. Ho we ver, Fig. 3 suggests that the fraction of temporary captures 
hat form within t bound ≤ 2 τ is � 10 per cent 
 The potential � • moving across the galaxy heats up the population of field 
articles. This translates into a capture rate that decreases with time (see also 
ig. 8 ), and to a slightly rising fraction of permanent captures at t � 10 T . 
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Figure 8. Upper panel: Distribution of capture times ( t c ) defined as the time 
since a particle becomes bound (energy flips from positive to negative) to 
the current simulation time ( t). Notice the presence of a substantial number 
of particles that become bound at t ≈ 0, which result in a a strong peak 
in the distribution at t c ≈ t shifting towards the right as the integration 
time increases. Lower panel: Permanent-to-temporary ratio (or ptt in short) 
of particles captured within a volume element r out = 100 pc as a function 
of integration time. Permanent captures are defined as particles with a 
capture time t c ≈ t , i.e. they remain bound during the whole integration 
time. In contrast, temporary captures only remain bound for a fraction of the 
integration time, i.e. t c � t . Notice that the ptt ration becomes approximately 
constant at t � 5 , T , where T is Smoluchowski’s time scale. 
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rom ne gativ e to positiv e, or the particle leaves the volume under
bservation) within a time interval �t = 0 . 1 T . In models where � •
s introduced suddenly ( τ = 0), we find that these two values become
pproximately equal after a few snapshots. At this point, steady state
as been reached. In models where the potential � • gro ws slo wly
 τ > T ) we observe two distinct regimes: (i) at t � τ , particles are
aptured at a rate that o v ercomes the number of unbinding events,
hich leads to a net growth of the population of captured particles.

ii) On longer time-scales, t � τ , the number of bound particles
eaches a steady state, wherein the rate of capture becomes roughly
qual to the loss rate, �N bound ≈ �N unbound . From this time on, all
aptures are temporarily bound, which leads to no net variation in
he average number of stars with E < 0. It is worth to highlight that
n all models the capture rate and the loss rate conspire to yield an
verage number of bound particles within the volume V that is very
lose to the value derived from equation ( 2 ) with a time-dependent
ass ( 21 ) at all times . 
Blue-dotted lines in Fig. 8 show the number of permanent

aptures as a function of time. Notice that all particles trapped onto
ermanent orbits are captured early on, t � 2 τ , and that at the end
f the simulation t f = 50 T all models contain a similar number of
ermanent captures independently of the choice of τ . At early times,
he build up of permanently bound orbits leads to a capture rate
hat exceeds the loss rate, �N bound > �N unbound , and thus to a net
rowth of the average number of bound particles, N b ( t). This may
uggest that permanent captures result from an impulsive response of
he galactic field to the growth of the substructure potential on short
ime-scales | ̇� •/� •| −1 = | Ṁ •/M •| −1 

t= 0 = τ ∼ T . Further theoretical
ork is need to understand how this capture mechanism works. 
Fig. 9 shows that the final distribution of bound particles around

he potential � • at t = t f is not sensitive to the rate of growth of the
ubstructure potential ( τ ). This result holds insofar as the simulation
ime is longer than the time-scale on which the potential grows,
.e. t f � τ . Let us focus first on the upper panel, which plots the
verage phase-space density of captured particles as a function of
istance to the substructure, Q � ( r) ≡ n � ( r ) /σ 3 

� ( r ). As expected, we
nd that Q � is approximately constant across the volume V , and

hat the measured value of Q � approximately matches equation ( 8 )
marked with a black-dashed line) independently of the choice of
. Section 2.1.2 predicts that bound particles with a constant phase-
pace density in steady state follow the density profile ( 6 ) (black-
ashed line). The middle panel shows that this expectation is largely
orrect. Regardless of whether � • is introduced gradually ( τ > 0)
r suddenly ( τ = 0), we find that the number density of captured
articles scales as δ� ∼ | � •| 3 / 2 . Similarly, the lower panel of Fig. 9
hows that the velocity dispersion profile goes as σ� ∼ | � •| 1 / 2 , which
n the case of a Hernquist substructure potential � • leads to the
elocity dispersion profile ( 7 ) plotted with a black-dashed line. 

.4 Accr eted substructur es on an eccentric orbit 

n the previous sections, we carry out experiments where a sub-
tructure is injected on a circular orbit either suddenly ( τ = 0), fast
 τ = T ), or slowly ( τ > T ) into a pre-existing field of field particles
n dynamical equilibrium. This experiminental setup invariably leads
o a population of field particles that are captured on to permanent
rbits around the potential � •( t). In this section, we present models
here a static substructure potential is initially placed in a region
f the galaxy devoid of field stars on an eccentric orbit. By design,
hese experiments contain no immediate or permanent captures. 

The numerical set-up is slightly different from previous sections.
ere, we consider a dwarf galaxy sourcing a cuspy Dehnen ( 1993 )
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Figure 9. Upper panel : Average phase-space density Q � = n � /σ
3 
� = 

n δ� /σ
3 
� as a function of distance from the potential � • measured from the 

models shown in Fig. 8 . Distances are measured in units of the thermal 
critical radius r ε , equation ( 9 ). Note that Q � remains approximately constant 
within the volume element, and that its value agrees well with the theoretical 
expectation ( 8 ; black-dashed line). Middle panel : Density enhancement pro- 
file δ� ( r) = n � ( r) /n . The black-dashed line shows the theoretical curve ( 6 ). 
For reference, we mark with a dotted line the background density value 
δ� = 1. Lower panel : Velocity dispersion profiles of the models shown abo v e 
normalized by the local velocity dispersion of the field, σ� ( r) /σ . Black-dashed 
line shows the theoretical profile ( 7 ). 
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Figure 10. Left-hand panels: Initial distribution of field particles (grey 
dots) in dynamical equilibrium within a Dehnen potential with a total mass 
M 

dSph = 3 × 10 9 M �, a scale radius c dSph = 2 kpc and a central density 
slope γ dSph = 1. Right-hand panels: Distribution of particles that become 
bound to a Hernquist potential with M • = 3 × 10 7 M � and a compactness 
κ = + 0 . 9 (see te xt). P articles that become captured during the integration 
time and have E < 0 ( E > 0) at the final snapshot ( t = t f ) are highlighted 
with red (black) dots. The trajectory of the substructure across the galaxy 
is shown with a solid line. Black circles mark a volume size r out = 300 pc 
around the substructure potential. Inlets in the upper-right corner zooms in 
at the substructure location (marked with a cyan dot for ease of reference). 
Distances are given in kpc . Notice that particles captured from a truncated 
galaxy exhibit a flattened shape roughly oriented along the orbital motion. 

w
s

M  

t  

t  

s  

o  

w  

g
 

p
p  

t  

e  

d  

B  

a
 

p  

I
t  

p  

s  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/533/3/3263/7733101 by IBM
P user on 19 Septem

ber 2024
otential ( γ = 1) with a mass M 

dSph = 3 × 10 9 M � and a scale
adius c dSph = 2 kpc . For illustration, we show two experiments 
here the substructure is inserted in the galactic potential at apocen- 

re, R apo = 1380 pc . The initial velocity is set to V • = 7 . 9 km s −1 ,
hich leads to a pericentre of R peri = 165 pc . Thus, this orbit
enetrates the inner-most regions of the galaxy. We then follow 

he motion of the substructure for two dynamical times measured at 
pocentre, �−1 ( R apo ) = R apo /V c ( R apo ) = 34 Myr , where V c ( R apo ) =
9 . 4 km s −1 is the circular velocity. Before showing the outcome of
his experiment, it should be pointed out that we have explored several 
ombinations of apo- and peri-centres and number of orbital periods, 
nding similar results as discussed below. 
We consider two populations of tracer particles in equilibrium 

ithin the galactic potential (see Section 3.1 for details). The 
rst population follows a ‘truncated’ density profile ( αf , βf , γf ) =
2 , 30 , 0 . 2) with a scale radius R 0 = 460 pc , which falls off very
teeply beyond R � 600 pc . The luminosity-averaged velocity dis- 
ersion of these particles is 〈 v 2 〉 1 / 2 / 3 = 11 . 7 km s −1 . The sec-
nd population follows an ‘extended’ Plummer-like profile with 
 αf , βf , γf ) = (2 , 5 , 0 . 1) and the same scale radius, R 0 = 460 pc ,
hich leads to a slightly higher luminosity-averaged velocity disper- 
ion 〈 v 2 〉 1 / 2 / 3 = 19 . 9 km s −1 . 

The substructure sources a static Hernquist potential with a mass 
 • = 3 × 10 7 M �. To set the scale radii of the models we use the

hermal critical radius at t = 0 as a reference. For illustration, we set
he compactness to κ = + 0 . 9 in both galaxy models, which leads to a
cale radius c • = (1 − κ) r ε = 0 . 1 r ε . To find the thermal critical radii
f the two models we insert σ = 〈 v 2 〉 1 / 2 / 3 and V • in equation ( 9 ),
hich yields r ε = 390 pc and 980 pc for the extended and truncated
alaxy models, respectively. 

Left-hand panels of Fig. 10 show the projected locations of tracer
articles with extended (top panel) and truncated (bottom panel) 
rofiles in equilibrium ( t = 0). In the right-hand panels, we o v erplot
he trajectory of the substructure as it falls into the galaxy on an
ccentric orbit (solid lines), and mark its final location with a cyan
ot. Red dots show particles with E < 0 at the final snapshot ( t f ).
lack dots correspond to particles that have been captured for a finite
mount of time before being lost to galactic tides. 

As expected, zooming in at the substructure location, we find that
articles with E < 0 generate a local o v erdensity of field particles.
nterestingly, their observed spatial distribution depends strongly on 
he initial profile of the field. In the extended galaxy model (top
anel), the o v erdensity of bound particles has a close-to-spherical
hape and a relatively large size. In contrast, the overdensity in the
MNRAS 533, 3263–3282 (2024) 
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M

Figure 11. Number of bound particles located within a volume size r out = 

0 . 3 kpc as a function of time for the models plotted in Fig. 10 . Dotted lines 
show the total (bound plus unbound) number of field particles within the 
volume, r < r out . Black-dashed lines show the theoretical prediction from 

equation ( 2 ), with a time-dependent number density and velocity dispersion 
of field particles measured at the location of the substructure, n ( t) = n [ R( t)] 
and σ ( t) = σ [ R( t)]. Pericentric passages are marked with vertical dotted 
lines. 
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ottom panel has a smaller size and a flattened shape, which appears
o be roughly oriented along the orbital motion. 

The rate at which field particles are captured in these two models
s also strikingly different. Solid lines in Fig. 11 shows the number
f bound particles within a volume size r out = 300 pc (marked with
lack circles in Fig. 10 for reference) as a function time. In the top
anel, we can see that the substructure orbiting in the extended galaxy
ontains N b ∼ 3 × 10 3 at t = 0. By definition, these are immediate
aptures. As the substructure falls into the inner regions of the galaxy,
he total number of field particles within the volume (dotted lines)
ncreases systematically until pericentre is reached at � t � 1 . 4.
fter the pericentre passage, the number of bound particles (solid

ines) grows slightly, reaching a plateau at apocentre, � t � 2 . 8.
NRAS 533, 3263–3282 (2024) 
his situation repeats throughtout the next orbital revolution. At the
ast snapshot of the simulation, the number of bound particles is
 b ( t f ) ∼ 4 × 10 4 , which is a factor ∼ 10 increases with respect to

he value at t = 0. Remarkably, the theoretical expectation given by
quation ( 2 ; black-dashed line) barely changes as a function of orbital
hase in spite of the large variation of galactocentric distances and
elocities. This reflects the counter balance between the variation
f the mean phase-space density of field particles along the orbit,
 ( R) = n ( R) /σ 3 ( R), and the exponential suppression of captures

t high v elocities, ξ = e xp [ −V 

2 
• / (2 σ 2 ( R))]. As the substructure

lunges into the inner regions of the galaxy the orbital velocity
ncreases, making capture less efficient. Simultaneously, the number
f field particles around the substructure grows, with both effects
early balancing out in equation ( 2 ). The reverse process takes place
rom pericentre to apocentre. 

The substructure model orbiting within a truncated galaxy ex-
eriences a very different evolution. In this case, bottom panel of
ig. 11 shows that capture does not occur until the substructure

s close to its first orbital pericentre. As expected, the number of
mmediate captures is zero by construction. After each pericentric
assage, we observe a very rapid increase in the population of bound
articles, whose size can grow by ∼ 3 orders of magnitude. However,
 large fraction of these particles are quickly lost to galactic tides.
t first apogalacticon, the number of bound particles has stabilized

t N b ∼ 10 2 . As it reaches its second pericentre, it grows again up to
 b ∼ 5 × 10 3 , falling back to N b ( t f ) ∼ 10 2 at its second apocentre.
omparison with the theoretical expectation (black-dashed lines)

hows that equation ( 2 ) cannot accurately describe this behaviour.
here are two main reasons for the mismatch. In the first place,

he statistical theory derived in Section 2.1 relies on the local
pproximation, which assumes that the properties of the galactic field
o not vary strongly as a function of distance from the substructure.
his is clearly not the case in this particular galaxy model, which is
trongly truncated beyond R � 600 pc . Furthermore, it assumes that
he properties of the field are time-invariant, and that the population
f captured particles is in steady state at all times. None of these
onditions apply to the the model shown in the bottom panel. The
atter approximation is particularly poor after the first pericentric
assage. Here, equation ( 2 ) predicts N b = 0 because the density of
eld particles at this location is n ( R apo ) = 0 (see bottom-left panel
f Fig. 10 ). In contrast, our numerical experiment shows that the
ubstructure has captured N b ∼ 10 3 particles after the first orbital
evolution. This mismatch arises again at the second apocentre, which
orresponds to the final snapshot of the simulation. Here, all particles
ithin the volume under observation (dotted line) are bound to the

ubstructure (solid line). It is worth stressing that region of the galaxy
as empty from field particles at t = 0. Looking the bottom-right
anel of Fig. 10 , we find field particles beyond the original truncation
adius of the galaxy are either still bound to the substructure (red
ots), or were ‘scooped’ from the inner regions and released back to
he galaxy by tidal forces (black dots). 

Fig. 12 shows that distribution of bound particles in the extended
nd truncated galaxies plotted in Fig. 10 follow very different profiles.
or ease of comparison, we normalize the profiles to its central value,
 0 = n � ( r = 0), and measure distances in units of the substructure
cale radius ( c •). Given the relative small number of particles with
 < 0 at the final snapshot, we reduce statistical noise by generating
00 and 600 realizations of the extended and truncated galaxy
odels, respectively. This is done placing substructures at random

ositions o v er the surface of a sphere with a radius R apo = 1380 pc
nd a tangential velocity V • = 7 . 9 km s −1 at t = 0, such that all
ndividual realizations have a common pericentre of R peri = 165 pc . 
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Figure 12. Number density profile of field particles bound to the substructure 
models shown in Fig. 10 . Distances are measured relative to the final 
substructure location and given in units of the substructure scale radius 
( c •). The profiles are averaged over 500 realizations of the model to 
reduce statistical noise (see text). Notice that the model associated with an 
extended galaxy model roughly follows the theoretical profile ( 6 ). In contrast, 
substructures evolving in a truncated galaxy generate a local o v erdensity that 
falls off steeply at large distances δ� ∼ r −3 at r � c •. 
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Particles captured by the substructure model orbiting in an 
xtended galaxy exhibit a profile shape that roughly scales as 
1 + r/c •) −3 / 2 , which matches equation ( 6 ). This is a remarkable
esult considering the strong strong temporal evolution of the field 
long the substructure orbit, and that the statistical theory is derived 
or static systems. Ho we ver, the normalization of the profile is not so
ell matched by the analytical formula. In particular, Fig. 11 shows

hat equation ( 6 ) tends to underpredict the number of field particles
ound to the substructure at all points of the orbit. 
This mismatch is considerably stronger in substructures orbiting a 

n a truncated galaxy. In these objects, captured field particles show 

 profile that falls off more steeply than predicted by equation ( 6 )
t large distances, r � c •, whereas at small distances, r � c •, it
onverges to the profile of the extended galaxy model. The different 
ehaviour may be traced back to the lack of permanent captures in
he truncated galaxy models, which tend to smooth out the o v erall
ensity enhancement profile (see Fig. 6 ). 
In general, the numerical experiments in this Section indicate that 

he distribution of field stars captured by substructures moving on 
ccentric orbits vary as a function of time in different ways depending
n whether these objects are form in a pre-existing sea of field
articles, or are accreted from outside the galaxy. 

.5 Compact versus fluffy substructures 

he statistical theory outlined Section 2.1 predicts that only dark 
ubhaloes that are sufficiently compact ( κ > 0) can become visible 
s localized o v erdensities of field stars. To illustrate this result, this
ection presents similar experiments as shown in Section 3.2 with 
ositive and negative compactness values. 
Fig. 13 shows the projection onto the orbital plane of par- 

icles bound to a Hernquist substructure potential with a mass 
 • = 10 6 M � moving on a circular orbit R • = 0 . 5 kpc in the Fornax
Sph-like galaxy model introduced in Section 3.1 . Recall that the
idal radius given by equation ( 20 ) is r t ≈ 190 pc . We consider two

odels with κ = + 0 . 8 (upper panels) and κ = −0 . 5 (lower panels),
ith the ne gativ e sign of κ implying that the number density of

aptured field particle does not exceed the background ( δ� < 1)
t any distance from the substructure. Application of equation ( 9 )
ields a thermal critical radius r ε = 18 . 9 pc , which translates into
cale-radii c • = 3 . 78 pc and c • = 28 . 3 pc for the ‘compact’ and
fluf fy’ models, respecti vely. Notice that the time-scale needed 
o cross the o v erdensity size by a random field particle is much
horter than the orbital time around the dSph galaxy potential, 
 ε = r ε/σ

dSph = 18 . 9 pc / (12 . 2 km s −1 ) ≈ 1 . 5 Myr . As a result, the
opulation of captured particles reaches steady state quickly. We 
hoose a volume size around the substructure equal to its tidal
adius ( 20 ), r out = r t = 190 pc . We run both models from t = 0 until
 = 50 T . 

Fig. 13 highlights the impact of the substructure compactness 
 κ = 1 − c •/r ε) on the spatial and kinematic distribution of stars with
 < 0. As predicted in Section 2.1 , at a fixed mass only compact

 κ > 0) objects lead to the formation of o v erdense re gions of trapped
tars with a velocity dispersion that is systematically hotter than in
uffy ( κ < 0) counterparts. These differences can be better quantified

n the middle-right and right-most panels, which compare the density 
nhancement ( 6 ) and velocity dispersion ( 7 ) profiles derived analyt-
cally (black-solid lines) against the numerical values (orange dots). 
or reference, Fig. 13 marks with vertical arrows the location of c • (in
lue) and r ε (in red), respectively. At large distances r � c •, we find
hat the density enhancement approaches the Keplerian behaviour 
� ∼ r −3 / 2 and the velocity dispersion drops off as σ� ∼ r −1 / 2 , 
hereas at small distances r � c • both profiles become roughly 

onstant. Ho we ver, while in the compact model ( κ = + 0 . 8) trapped
tars reach a relatively high density, δ�, 0 = δ� ( r = 0) ≈ 9 . 0, and a
ot velocity dispersion, σ�, 0 /σ = σ� ( r = 0) /σ � 1 . 9, stars captured
y the fluffy counterpart with a ne gativ e compactness ( κ = −0 . 5)
how subdominant densities, δ�, 0 = 0 . 44, and a cold dispersion,
�, 0 /σ � 0 . 69, with respect to the field. We discuss the rele v ance
f this result for the detection of dark substructures in Section 4 . 
An important property of the models plotted in Fig. 13 is that they

ppear approximately spherical and show no signature of tidal tails. 
his is in stark contrast with the substructures moving on eccentric
rbits plotted in Fig. 10 , which are elongated and exhibit prominent
idal tails roughly aligned with the orbit of the substructure. This
mphasizes the need to model the motion of the substructure in the
ost potential and the distribution of field particles simultaneously, 
s discussed in the following section. 

 DI SCUSSI ON  

.1 Anomalous stellar clusters in dSphs 

ev eral Milk y Way dSphs contain stellar substructures that may
e good candidates for being composed of field stars captured by
ark substructures, i.e. they have a large size for their luminosity,
heir stellar populations are indistinguishable from those of the host 
alaxy, and they exhibit DM-dominated mass-to-light ratios. 

F or e xample, the F ornax dSph is kno wn to contain 5 massi ve
 ∼ 10 5 M �) globular clusters (e.g. Larsen, Brodie & Strader 2012 ).
here has been a long-standing debate in the literature about a
ossible sixth cluster, named Fornax 6 (F6), which was first noted
y Shapley ( 1939 ). While early studies debated whether it was
MNRAS 533, 3263–3282 (2024) 
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Figure 13. Upper left panels: Locations projected onto the orbital plane of stellar tracer-particles temporarily bound to a substructure with a mass M • = 10 6 M �
moving on a circular orbit at a fixed distance R = 0 . 5 kpc from the centre of the Fornax dSph (see Section 3.1 ). These models adopt two different scale-radii 
(marked with black-solid circles for reference): ‘compact’ ( κ = + 0 . 8, or c • = 0 . 2 r ε (upper panels) and ‘fluffy’ ( κ = −0 . 5, or c • = 1 . 5 r ε (lower panels), where 
r ε = 18 . 9 pc is the thermal critical radius measured from ( 9 ) (black-dashed circle). Middle left panels: Velocity dispersion map for the models shown in the 
left-hand panels. Middle right panels: Density enhancement as a function of distance to the substructure centre. Red and blue arrows mark the location of 
the thermal critical radius and the scale length of the substructure, respectively. The theoretical profile predicted by equation ( 6 ) is shown with a black line. 
Right-hand panels: Velocity dispersion profiles in spherical coordinates of the abo v e models. Black lines show the profiles predicted by equation ( 7 ). Captured 
particles have isotropic velocities on account of their chaotic motions in the dwarf potential (see text). 

c  

S  

t  

h  

l  

t  

v  

s  

fi  

r  

m  

d  

h  

m  

a  

i  

t
 

s  

s  

F  

t  

m  

s  

o  

v  

c  

p  

a  

m  

d
 

s  

t  

t  

a  

o  

t  

s  

D  

h  

a  

T  

o  

S  

m  

i
 

l  

l  

v  

a  

2  

u  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/533/3/3263/7733101 by IBM
P user on 19 Septem

ber 2024
omposed of stars or background galaxies (e.g. Stetson, Hesser &
mecker-Hane 1998 ), recent ground-based and Gaia data show

hat F6 is clearly an o v erdensity of stars (Wang et al. 2019 ). F6
as total stellar mass of M 

F6 
� = (7 . 2 ± 2 . 2) × 10 3 M �, and a half-

ight radius of r F6 
h = 11 ± 1 . 4 pc (Wang et al. 2019 ). Crucially,

he metallicity [Fe / H] = −0 . 71 ± 0 . 05 and age ∼ 2 Gyr of F6 are
ery similar to the average metallicity and age of Fornax’s MR
tars (Pace et al. 2021 ). This is in stark contrast with the other
ve globular clusters, which have much lower metallicities that
ange between −2 . 5 < [Fe / H] < −1 . 4. With this data at hand, F6
embers are therefore indistinguishable from MR stars in the Fornax

Sph. Importantly, the velocity dispersion of F6 is unexpectedly
igh, σF6 = 5 . 6 ± 2 . 0 km s −1 , which translates into an ‘anomalous’
ass-to-light ratio of 15 < M/L < 258 when virial equilibrium is

ssumed (Pace et al. 2021 ). The inflated mass-to-light ratio has been
nterpreted as a result of ongoing tidal disruption, although no tidal
ails originating from the cluster have been found. 

Alternatively, the unusual properties of F6 can be explained if this
tellar system is made of field stars temporarily captured by a dark
ubstructure orbiting in the Fornax dSph potential. According to
ig. 2 a stellar o v erdensity with N � ∼ 10 4 members and a mass-

o-light ratio of M/L ∼ 100 would require a minimum subhalo
ass of M • ∼ 10 6 M �, which lies significantly below the minimum

ubhalo mass that can trigger star formation, and is consistent with
ur working assumption that this object would be ‘dark’. To be
isible as an o v erdensity, it must be compact enough, i.e. κ > 0 or
 • � r ε ∼ 20 pc (for illustrativ e e xamples, see the numerical models
NRAS 533, 3263–3282 (2024) 
resented Section 3.1 ). Interestingly, this size is smaller than the
v erage peak-v elocity radius of field CDM haloes of comparable
asses, i.e. r max ∼ 100 pc for M 200 ∼ 10 6 M � at redshift z = 0. We

iscuss the implications of this estimate in Section 4.3 . 
In addition, de Boer et al. ( 2013 ) report the presence of two

tellar o v erdensities in the F ornax dSph with lower luminosities
han F6. These stellar systems also have elongated shapes (see
heir fig. 2a), high metallicities ( [Fe / H] � −0 . 6) and young stellar
ges ( ∼ 1 . 5 Gyr ), similar to those of the Metal Rich component
f the Fornax dSph. VST observations confirmed the presence of
hose substructures, and revealed two additional overdensities that
hare similar properties (Bate et al. 2015 ). More recently, using
ES data Wang et al. ( 2020 ) find several high-density regions of
igh-metallicity & young stellar ages, some of which were new
nd some of which were pre viously kno wn (Coleman et al. 2004 ).
hese substructures are therefore good candidates for being made
f MR field stars captured by a population of massive dark objects.
pectroscopic measurements of their systemic velocity and proper
otions, together with their internal velocity dispersion are needed

n order to test this scenario. 
The Eridanus II dSph is a dwarf spheroidal galaxy with low

uminosity, N 

dSph 
� ∼ (6 ± 1) × 10 4 (Crnojevi ́c et al. 2016 ), a half-

ight radius of r dSph 
h = 299 ± 12 pc (Simon et al. 2021 ), and low

elocity dispersion σ dSph = 6 . 9 ± 1 . 1 km s −1 . Surprisingly for such
 faint galaxy, it contains a single stellar cluster located at R =
3 ± 3 pc from its centre (Koposov et al. 2015 ). The cluster has very
nusual properties, e.g. it is ancient ∼ 13 . 5 ± 0 . 3 Gyr , and extremely
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etal-poor [Fe / H] = −2 . 75 ± 0 . 2 (Weisz, Savino & Dolphin 2023 ).
t has a remarkably large size, r h = 15 ± 1 pc , for a cluster with
uminosity M V = −2 . 7 ± 0 . 3 (Simon et al. 2021 ; note that Crnojevi ́c
t al. 2016 derive slightly different values). Like F6, Eri II cluster
s elongated, ε ≈ 0 . 31 ± 0 . 05, with a shape that is remarkably well
ligned with the ellipticity of the Eri II galaxy (Simon et al. 2021 ). An
longated shape could be the telltale signature of these systems being 
lose to full tidal destruction and therefore in a disequilibrium state. 
et N -body models that adopt this scenario struggle to reproduce 

he extended size of these clusters, and predict bright tidal tails that
hould have already been observed in the data currently available 
Orkney et al. 2022 ). Crucially in the context of this paper, the age
nd metallicity of the Eri II cluster are statistically indistinguishable 
rom the dSph itself (Crnojevi ́c et al. 2016 ; Simon et al. 2021 ; Weisz
t al. 2023 ), which makes this system a good candidate for being
omposed of field stars captured by a dark substructure. Again, 
pectroscopic follow-up measurements are needed to test the main 
rediction from this scenario, i.e whether the Eridanus II cluster 
xhibits anomalously high velocity dispersion compatible with being 
 DM-dominated system. 

As a cautionary note, it must be pointed out that the nature of
ome of those stellar substructures is still debated. For example, 
here were early claims that F6 is not a stellar cluster, but actually an
 v erdensity of unresolved background galaxies (Verner et al. 1981 ;
emers, Irwin & Kunkel 1994 ; Stetson et al. 1998 ). Only recently,
ECam imaging and Gaia astrometric data have shown that F6 is

learly an o v erdensity of stars (Wang et al. 2019 ), a conclusion later
upported by Magellan/M2FS spectroscopy, which helped to identify 

15–17 likely stellar members (Pace et al. 2021 ). Yet, the relatively
mall size of the data set may be still prone to systematics arising
rom low-number statistics. 

The unknown physical separation between these substructures and 
heir host galaxies introduces additional uncertainty in the models. 
or simplicity, it is common to assume that these objects are located
t a galactocentric distance equal to the projected separation on the 
ky, which is the minimum distance allowed by the data. Given that
he phase-space density of field stars decreases with distance to the 
ost galaxy centre, this choice can potentially bias future model 
onstraints. F or e xample, were these substructures located in the 
utskirts of the dwarf galaxies, substructures would need to have 
ystematically larger masses in order to capture the same number of
eld stars (see Section 2 ). 
The results enclosed in this paper call for follow-up observational 

fforts to measure the spatial distribution, kinematics & chemical 
omposition of stellar substructures in dSphs with better accuracy, 
s they might provide unique constraints on the population of dark 
bjects orbiting in these galaxies, as well as on the particle nature of
ark matter, as briefly discussed in Section 4.3 . 

.2 Theory: simplifications and current uncertainties 

he theoretical models presented in this work rely on a number of
ssumptions that are worth discussing here. 

First, our substructure models source a spherical potential. Yet, 
nomalous stellar systems detected in dSphs, such as F6 and the 
one cluster in Eridanus II, tend to exhibit elongated shapes that are
ell aligned with the morphology of the host galaxy (Wang et al.
019 ; Simon et al. 2021 ). In the scenario proposed in this paper, stars
rapped in a dark substructure may appear aspherical due to an intrin-
ic triaxial shape of the objects that captured them, and/or a triaxial
warf galaxy potential (e.g. Allgood et al. 2006 ; Despali, Giocoli &
ormen 2014 ). Interestingly, the numerical experiments plotted in 
ig. 10 show that spherical substructures accreted onto the galaxy 
n eccentric orbits may also generate flattend spatial o v erdensities
hat appear to be aligned with the orbital motion. Further theoretical
ork is needed to understand the possible connection the elongated 

hape of these stellar clusters and the expected triaxiality of dark
atter haloes as well as their formation history. 
The statistical experiments in Section 3 adopt substructure models 

ith masses that are either constant, or grow with time. The latter
odels can be applied for example to study the population of field

articles trapped around intermediate mass black holes (IMBHs) that 
row in disks surrounding supermassive black holes (e.g. McKernan 
t al. 2012 ). Ho we v er, our models do not co v er the case of self-
ravitating subhaloes orbiting in a parent halo, which experience 
idal stripping and mass loss after each pericentre passage (e.g. 
e ̃ narrubia et al. 2010 ). This shortcoming may be addressed by
unning live N -body simulations where substructures are modelled as 
elf-gravitating objects. Unfortunately, the numerical tools required 
o explore this scenario are more complex and computationally 
 xpensiv e than the ones used for this work. The results enclosed in
his paper suggest that the analytical expressions outlined in Section 2 
an be applied to time-dependent substructures, � •( t), insofar as
ts time-evolution is not impulsive, i.e.t it occurs on time scales
 ̇� •/� •| −1 � T , and the local approximation is reasonably accurate.
nder these conditions, the population of bound field stars can be

ssumed to be in steady state in a time-varying potential � •( t), see
ig. 8 . For substructures moving on eccentric orbits around extended
alaxy models, numerical experiments in Section 3.4 ) show that 
he steady-state approximation may be reasonably accurate away 
rom orbital pericentre. In truncated galaxy models, it is the local
pproximation that fails away from pericentre (see Fig. 10 ). 

Our experiments do not explore a cosmologically moti v ated 
cenario in which field stars form in a dark matter halo that contains
 pre-existing population of dark matter clumps. By definition, dark 
ubstructures orbiting in these galaxies would not host a population 
f permanent captures, yet they may be able to trap field stars
nto temporary orbits. Given the numerical experiments shown in 
ection 3 , we expect a different distribution of captured field stars
ompared to models where substructures grow in a pre-existing sea of 
articles. Cosmological hydrodynamical simulations that incorporate 
tar formation/feedback are needed to tackle this issue. 

The number, distribution and density profiles of dark matter sub- 
ubhaloes in the satellite galaxies of MW-like haloes are notoriously 
ncertain. F or illustrativ e purposes, it is useful to estimate how
any subhaloes that one would expect in a Fornax-like dwarf 

pheroidal with a virial mass of M vir ∼ 10 9 M � (e.g. Pe ̃ narrubia,
cConnachie & Navarro 2008a ; Errani et al. 2018 ). Adopting a mass

atio between the Fornax dSph and the MW of ∼ 10 9 M �/ 10 12 M � =
0 −3 , and re-scaling CDM haloes of MW-like galaxies down three
rders of magnitude suggests that the Fornax dSph should contain 
f the order of ∼ 100 satellite sub-subhaloes with M • � 10 6 M �
nclosed within its virial radius, r dSph 

vir ∼ 30 kpc (e.g. Weerasooriya 
t al. 2023 and references therein). 

Ho we ver, this nai ve scaling is only valid for field haloes. As
ointed out abo v e, dwarf spheroidals tend to be accreted early onto
arger galaxies and lose a large fraction of their mass to Galactic tides
e.g. Pe ̃ narrubia & Benson 2005 ; Errani et al. 2017 ), which possibly
lso remo v es a large fraction of the sub-subhalo population that fell
n embedded with the dSph, particularly those with large orbital 
pocentres and long orbital periods (e.g Pe ̃ narrubia, Navarro & 

cConnachie 2008b ; Errani & Navarro 2021 ). 
At present, it is not possible to turn to cosmological simulations

f structure formation for accurate predictions on the number of 
MNRAS 533, 3263–3282 (2024) 
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ark sub-subhaloes in dSphs. Current N -body methods struggle to
esolve objects with internal crossing times as short as T ∼ 1 Myr in

ilky Way-like haloes. Furthermore, these simulations suffer from
ell-known numerical artifacts (such as self-heating and artificial
isruption) on scales comparable to the resolution of the simulation
e.g. van den Bosch & Ogiya 2018 ; Errani & Pe ̃ narrubia 2020 ). These
ssues call for dedicated high-resolution N -body simulations that
ddress these numerical shortcomings and provide reliable statistics
f ensembles of sub-subhaloes in dwarf spheroidal galaxies. 
Alternatively, since the orbits of MW dSphs are relatively well

nown thanks to the astrometry provided by the Gaia mission (e.g.
attaglia, Taibi & Thomas 2022 , and references therein), it is now

easible to model the properties of the surviving population of dark
ubstructures in each individual MW dSph using constrained N -body
imulations that do not suffer from the abo v ementioned numerical
rtifacts. We leave these questions to future work. 

.3 Dark matter particle constraints 

he detection and characterization of dark sub-subhaloes in dSphs
ay provide unprecedented constraints on the mass and self-

nteracting cross-section of DM particle models. For example, the
ast majority of gaps in cold tidal streams around MW-like galaxies
re sensitive to subhaloes with masses in the range 10 6 < M •/ M � <

0 8 (Erkal et al. 2016 ), while strong-lens observations are sensitive
o subhaloes with masses M • � 6 × 10 8 M � (e.g. O’Riordan et al.
023 ). In contrast, Figs 1 and 2 show that dSphs may be able to probe
ubhalo masses down to M • ∼ 10 4 –10 5 M �. 

Measuring the masses of dark sub-subhaloes down to those scales
ould significantly impro v e current bounds on the free-streaming
ength of DM particles. This is best illustrated by quantifying the
alf-mode mass m hm 

, defined as the mass scale where the WDM
ower spectrum is suppressed by half with respect to CDM models
Schneider et al. 2012 ) 

 hm 

= 3 × 10 8 M �

(
m DM 

3 . 3 keV 

)−3 . 33 

. 

etecting field stars trapped in a dark subhalo with a mass of
 • � 10 6 M � � m hm 

would imply a half-mass mode of m hm 

�
8 keV , significantly tightening existing constraints from gravita-
ional lensing ( m DM 

� 5 keV ; Gilman et al. 2020 ), Lyman-alpha
orest ( m DM 

� 3 keV ; Villasenor et al. 2022 ), or the combination
f strong gravitational lensing, the Ly- α forest, the number of
uminous satellites in the Milky Way, which put a lower particle

ass limit of m DM 

� 6 keV (Enzi et al. 2021 ; Nadler et al. 2021a ),
nd m DM 

> 9 . 7 keV when the Milky Way satellite population is
ombined with strong-lensing flux ratio statistics (Nadler et al.
021b ). Detecting objects with masses M • � 10 5 M � � m hm 

would
ush the constraints up to m hm 

� 37 keV . 
In addition, the internal structure of these systems may also reveal

hether DM particles e xperience self-interactions. F or e xample,
ark substructures with M • ∼ 10 6 M � must be sufficiently compact,
 • � 20 pc , in order to generate a stellar o v erdensity of field stars in a
ornax-like dSph (see middle panel of Fig. 2 ). This condition trans-

ates into a characteristic density ρ• = M •/ (2 πc 3 •) � 20 M � pc −3 ,
hich is higher than CDM subhaloes with similar masses. More
recisely, field haloes with a mass of M 200 = 10 6 M � at redshift
 = 0 have a mean peak velocity radius of r max ∼ 100 pc . equating
his radius to the substructure scale radius, c • = r max , yields a con-
iderably lower characteristic density of ρ• ∼ 0 . 1 M � pc −3 (Ludlow
t al. 2016 ). 
NRAS 533, 3263–3282 (2024) 
On the one hand, the existence of DM sub-subhaloes with
bnormally high densities may point to interactions in the dark sector
e.g. Kahlhoefer et al. 2019 ). On the other, it is not immediately clear
hether such a high density would necessarily be in conflict with
DM predictions. First, because sub-subhaloes in satellite galaxies
re expected to be tidally processed, and more concentrated than
eld haloes of the same mass (e.g. Pe ̃ narrubia et al. 2010 ; Errani &
avarro 2021 ). And second, because it is possible that the detection
f dense sub-subhaloes may be due to observational biases. Indeed,
ompact substructures produce higher density enhancements in the
eld (see Section 2 ), which can therefore be more easily detected as

ocalized o v erdensities ( δ� > 1). In this picture, anomalous objects
ike F6 may be sampling the high-density, low-probability tail of the
ub-subhalo population. That is, they would represent the proverbial
tip of the iceberg’, pointing to the presence of a much larger popu-
ation of diffuse ( δ� < 1) substructures with a power-law luminosity
unction ( 14 ). There are several ways to test this prediction, e.g. by
odelling statistical fluctuations of number counts in photometric

urv e ys (e.g. Scheuer 1957 ), or by searching for clumps with low-
elocity dispersion and/or significant velocity offsets in kinematic
urv e ys of dSphs (e.g. Pace et al. 2014 ). 

It is also worth noting that the presence of a large DM component in
lusters such as F6 and the Eri II would have important implications
or their survi v al in the host galaxy. For example, using collisional

-body simulations Contenta et al. ( 2018 ) show that the Eri II cluster
with no DM in the star cluster) quickly disrupt in a cuspy DM halo,
a v ouring dSph models with a cored DM profile. In addition, Brandt
 2016 ) shows that the survival of a stellar cluster near the centre
f a dwarf galaxy depends on the number of massive compact halo
bjects populating the DM halo (see also Zoutendijk et al. 2020 ),
hereas Marsh & Niemeyer ( 2019 ) point out that the cluster could

lso be used to test quantum fluctuations of ultralight DM models.
o we ver, if these objects are embedded in dense DM haloes, they
ould become resilient to tidal stripping and would also be protected

gainst collisions with nearby compact objects and rapid fluctuations
f the local tidal field by dynamical invariance (e.g. Weinberg 1994 ;
e ̃ narrubia 2019 ), weakening the constraints derived from their very
urvi v al. 

 SUMMARY  

ubstructures orbiting a larger galaxy can capture field stars that
ass nearby with lo w relati v e v elocities. In this work, stars become
aptured by the substructure potential � • when their gravitational
nergy E = v 2 / 2 + � •( r) flips from positiv e to ne gativ e. Our nu-
erical experiments show that the orbits of stars captured through

his mechanism can be separated into two families: (i) Temporary
aptures . The majority of field stars trapped in the potential � •
o v e on chaotic orbits that orbit around the substructure for a finite

mount of time before being released back to the galactic potential.
his leads to a net number of temporary captures that converges to a
teady state as the rate of capture becomes roughly equal to the escape
ate. Stars captured on temporary orbits generate stellar o v erdensities
 δ� > 1) at the location of substructures that are sufficiently compact,
= 1 − c •/r ε > 0, where r ε and c • are the thermal critical radius ( 9 )

nd scale radius of � •, respectively. (ii) Permanent captures . In
ddition, we find that immersing a substructure potential in a galaxy
hat is in dynamical equilibrium at t = 0 invariably results in a
opulation of field particles that remain bound to � • for arbitrarily
ong times. In static models where � • does not vary with time
nd mo v es on a circular orbit around the host galaxy, we find that
articles on permanent orbits were already bound to the substructure
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otential at t = 0, and remain within its tidal radius indefinitely.
hese particles are therefore reminiscent of the ‘potential escapers’ 
iscussed by Fukushige & Heggie ( 2000 ). Our experiments also 
how that substructures with a time-growing mass, M •( t), can also
apture stars on permanent orbits at t > 0, with a rate that peaks
t t ∼ τ , where τ = | Ṁ •/M •| −1 

t= 0 is the time-scale that determines
ow fast the substructure mass varies. Importantly, we find that 
tars on permanent orbits have a density that lies below the host
alaxy background ( δ� < 1), and therefore do not generate visible 
 v erdensities. 
The superposition of permanent and temporary orbits results in a 

opulation of captured field stars with an homogeneous phase-space 
istribution around the substructure potential, Q � = n � /σ

3 
� ≈ const . 

n steady state, these stars follow number density and dispersion 
rofiles that scale as n � ∼ | � •| 3 / 2 , and σ� ∼ | � •| 1 / 2 , respectively
see Section 2.1 ). Experimental results show that these theoretical 
redictions are accurate for substructures that source a static po- 
ential and mo v e on a circular orbit across a sea of field particles
nitially in equilibrium. They become less accurate when applied to 
ermanent & temporary captures individually, or to substructures on 
ery eccentric orbits moving through a rapidly changing background. 

In the current cosmological paradigm, galaxies are expected to 
ost a large number of DM subhaloes, many of which may contain
aptured field stars. Here, we show that these objects would have a lu-
inosity function go v erned by the subhalo mass function. Adopting a 
DM-moti v ated mass function d N/ d M • ∼ M 

−α
• with α � 1 . 9 (e.g.

pringel et al. 2008 ) leads to stellar substructures with a power-law
uminosity function ( 14 ), which scales as d N/ d M � ∼ M 

−β
� , where

= (2 α + 1) / 3 ≈ 1 . 6. Ho we ver, only subhaloes that are sufficiently
compact’ ( κ > 0) may materialize as localized stellar o v erdensities
n the galactic background ( δ� > 1). 

In dwarf spheroidal galaxies, field stars captured by compact 
ubstructures may resemble stellar ‘clusters’ with anomalous prop- 
rties, e.g. the y hav e e xtended sizes for their luminosity, contain
tellar populations indistinguishable from the field, and exhibit DM- 
ominated mass-to-light ratios ( M/L � 1). In contrast, field stars 
aptured by ‘fluffly’ substructures ( κ < 0) have densities below the 
ackground ( δ� < 1), and are therefore more difficult to detect. In
pectroscopic surv e ys the y may appear as clumps of co-moving field
tars with low velocity dispersion ( 〈 σ 2 

� 〉 1 / 2 < σ ) and/or a significant
elocity offset ( V • �= 0). In cluster models that contain no DM, the
resence of stellar systems with extended sizes and high mass-to- 
ight ratios is typically attributed to on-going tidal disruption, which 
an be tested by searching for the associated tidal tails (Orkney et al.
022 ). Yet, our experiments show that stars captured by substructures
oving on eccentric orbits are released back to the galactic potential 

long tidal tails (see right-hand panels Fig. 10 ), which complicates a
lear-cut distinction between the two scenarios. 

Capture models make a number of unique testable predictions. 
.g. stellar o v erdensities composed of captured field stars have 
tellar ages and metallicities indistinguishable from those of the host 
alaxy, and high mass-to-light ratios M/L � 1 indicative of the 
resence of a substantial DM component. In galaxies with multiple 
hemo-dynamical populations, like the Fornax dSph, these models 
lso make predictions on the ratio of captured stars as a function of
etallicity. In addition, the density and velocity dispersion profiles of 

aptured stars provide simultaneous constraints on the substructure 
ass profile, ( M •, c •), as well as on its systemic velocity with

espect to the host galaxy, V •, which can be potentially measured
ith a combination of accurate astrometric & spectroscopic data. 
he numerical experiments outlined in Section 3 show that the 
istribution of captured field stars also depends on the formation 
echanism of the substructure, e.g. whether it grew within a pre-
xisting sea of field particles, or it formed outside of the galaxy and
as accreted at a later time (see Fig. 12 ). This suggests that it may be
ossible to constrain the formation history, mass profile and systemic 
otion of the substructure simultaneously by fitting the distribution 

nd kinematics of stellar systems with anomalous properties. 
We hav e giv en numerical and theoretical arguments that indicate

hat ‘dark’ subhaloes that were not sufficiently massive to trigger 
n situ star formation may become ‘visible’ by capturing baryonic 
articles from the host galaxy field. The important implication of 
his result is that dark subhaloes may not be completely invisible .
f they contain gravitationally bound baryonic matter, they must 
mit and absorb radiation, which opens up a new avenue to test
DM predictions on halo mass scales that have not been probed

o date. Follow-up work is needed to inspect the detectability of
dark’ subhaloes in dSphs with masses below the star formation 
hreshold, as well as observational campaigns aimed at detecting & 

haracterizing those objects. In Section 4.3 we discuss how the de-
ection and characterization of dark subhaloes may provide unique & 

nprecedented constraints on the particle mass and cross section for 
 large range of DM candidates. 
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