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Rare earth elements (REE) have raised significant environ-
mental concerns due to their increasing use in human activities
and subsequent release into the environment. Hence, in the
context of growing demand for “green” technologies and po-
tential mismanagement of their life cycle, understanding their
potential mobility within and between environmental compart-
ments becomes crucial for evaluating their environmental risks.
Colloids emerge as primary carriers/vectors facilitating REE
mobility and transfer in the environment. This work addresses
major topics related to the control exerted by colloids on the
REE speciation and subsequent patterns. Among colloids,
iron-organic matter colloids have been identified as the major
REE carrier in surface water under various pedoclimatic con-
ditions. Compelling evidences were provided that the mixing of
iron-, organic- and iron-organic colloids could explain both
REE concentration and pattern under environmental condi-
tions. However, there is currently a lack of data on the specific
distribution of REE between the iron and organic matter
phases within Fe-OM colloids. It remains unclear whether REE
distribution is primarily controlled by colloid mixing since
structural rearrangements of Fe-OM colloids under varying
hydrological and physicochemical conditions exert also a sig-
nificant role.
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Introduction
As classified by the International Union of Pure and
Applied Chemistry (IUPAC), rare-earth elements
(REE) are a group of seventeen chemical elements in
the periodic table, including fifteen lanthanides, yttri-
um (Y), and scandium (Sc). In coherence with their
chemical properties, REE are separated into three
groups, the light REE (LREE; LaeNd), the middle

REE (MREE; SmeDy), and the heavy REE (HREE;
HoeLu) [1]. These elements are becoming critical for
modern technologies, from cell phones and televisions
to LED light bulbs and wind turbines. New expressive
naming such as “Vitamins of Modern Industry” defines
their importance in high-tech products [2]. They
became so essential that their mining is even expected
on the moon [3]. REE are also used in agriculture, and
an increase was already noted in concentration for some
REE in native plants [4e7]. Gadolinium (Gd), is also
employed in magnetic resonance imaging (MRI) to

enhance contrast [8e10]. Some studies also indicate
that REE can enter the bodies of biological species such
as humans and animals [11,12] through food consump-
tion [13] or even breathing dust [14], which is raising
some concerns about their effect on main (bio)
geochemical cycles [9,15e17].

More generally, in contrast to their socio-economic
benefits, their environmental dissemination and associ-
ated threats are still poorly investigated [18]. REE are
thus classified as emerging pollutants and yet, more
ecological impacts are expected since the growing
development of “green” technologies will be undeniably
accompanied by increased discharges due to misman-
agement of their life cycle. The REE recycling is still
being underdeveloped at present, since it is less prof-
itable than extraction [19e23].

As a crucial first step in evaluating the environmental
risks associated with REE, their mobility pathways
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2 Environmental Technologies (2023)
under environmental conditions have to be deciphered.
Among all studies conducted on REE, their speciation
appears to be the key parameter influencing their
mobility and further transfers in the environment. This
speciation is controlled by physicochemical parameters
of the medium such as pH, temperature, ionic strength
and the presence of organic or inorganic, soluble, or solid
ligands. One of the great peculiarities of REE as

metals is their strong affinity for hydrated organic and
inorganic surfaces [24e28]. They can bind to chemical
functions developed onto solid surfaces through hydra-
tion or during their forming process. If these solids are in
particulate state, REE can be immobilized for more or
less long periods [28]. However, when these solids are of
nanometric size (<1 mm) and exhibit colloidal behav-
iour, dissemination of REE is no longer controlled by
their own properties but rather by those of the colloidal
nanoparticles (NPs) themselves. Generally, colloids are
smaller in size than pores for water drainage allowing

them to migrate with their metal loading over large
distances [29]. They can however become immobilized
Figure 1

Bibliometric network visualization for the co-occurrence of the relevant keywo
(REE), performed with VOSwiever. Interconnectedness (line) and frequency o
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along with their elemental loading through aggregation
and deposition processes [29]. Although their impact on
the biogeochemical cycle of metals is well-known, the
scientific community has struggled to incorporate them
into geochemical models due to the difficulties and
challenges in characterizing and describing their het-
erogeneous and dynamic behaviour in response to vari-
ations of geochemical conditions. As a consequence,

many studies dedicated to the geochemical behaviour of
REE did not systematically consider and determine
colloidal compartment [30e32].

Figure 1 illustrates a bibliometric network of co-
occurrence keywords (from entry keywords: Colloids,
REE, Rare earth element, mobility) made with a pub-
lications database (522 publications from 2000 to 2023)
collected from the Web of Science. Tree clusters were
determined, cluster 1- REE, rare earth element, colloid,
pattern and water; cluster 2- mobility, soil and transport;

and cluster 3- groundwater and organic colloids. Even
though the research was conducted from 2000 to 2023,
rds: organic matter, mobility, transfer, transport and rare earth element
f keywords (balls size) illustrate the research trends and focus areas.

www.sciencedirect.com
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Fe-OM colloids controls REE mobility Tadayon et al. 3
the highest co-occurrence corresponds to a short period
between 2012 and 2014. In this period, REE in-
teractions with colloids in water were the most studied.
Interestingly, few co-occurrences exist between col-
loids, soil and transport. Finally, there was no direct co-
occurrence between colloids and organic colloids
although REE and rare earth elements co-occurred with
organic colloids. REE speciation, and transfer controlled

by particulate, and colloidal phases in surface water were
studied by the scientific community interested in REE
geochemistry through the work of Sholkovitch and
Pokrovsky and their co-workers [33e40]. However, all
these works are from pre-2010 years. The present
bibliometric analysis displays that REE-colloid associa-
tion was highlighted before 2010, and since then, they
were only studied for a short time, focusing mainly on
their occurrence in water rather than on their impact on
REE mobility.

Among colloids, organo-mineral colloids have been
identified as the main carriers of REE in freshwater and
soil solution [33,35,40,41]. They have gained attention
to understand geochemical processes occurring in
groundwater, rivers, and oceans and to identify sources
of both colloids and REE [42e48]. Field, analytical, and
geochemical modelling approaches all provided evi-

dence that organo-mineral colloids area significant
parameter of the control of REE speciation (high affin-
ity) and subsequent mobility and transfer depending on
the colloid’s capacity to be mobile [25,29,40,48e54]. In
such a context, this review aimed to take stock of the
current knowledge of organo-mineral colloid-REE in-
teractions in order to contextualize how organo-mineral
colloids may control the REE mobility and transfer
pathways in the environment and to highlight knowl-
edge gaps and propose future research directions. We
selected the most relevant research on the REE-

colloids, namely that specifically address the in-
teractions between REE and organo-mineral colloids.
This work aims to provide current knowledge to guide
future investigations concerning the REE exposome and
to better develop a prediction model of their dispersion
in the environment.

Organo-mineral colloids interaction with
REE in natural waters
Advancements in ultra-filtration, experimental and
speciation modelling studies of REE-colloid interactions
suggested that REE speciation in natural waters is
dominated by colloids [35,41,47,48,55e57]. More

generally, organo-mineral colloids and more precisely for
river waters, the Fe-organic colloids, are major carriers of
REE [35,40,58]. For example, for large rivers, Lafrenière
et al. [59] demonstrated along a 550 km transect of the
St. Lawrence River (SLR) (Canada) and its tributaries,
that REE speciation was dominated by their binding to
OM-Fe-Al colloids even under alkaline and low DOC
conditions. For river and coastal water, Hoyle et al. [60]
www.sciencedirect.com
showed that REE were associated with the sub-
micrometer particles (0.4�0.7 mm) mainly composed
of Fe and OM. These Fe-OM colloids exhibited a REE
pattern with a HREE enrichment. Andersson et al. [55]
for boreal river demonstrated that REE are transported
mainly in particulate and colloidal phases. The colloids
concentration and size varied significantly with time.
Before the spring flood, colloids were dominated by

large Fe-colloids. During the spring flood, smaller carbon
colloids dominated. Following the spring flood, colloidal
concentrations decreased again, with smaller carbon
colloids still dominating. During the spring flood, col-
loids were enriched in light REE. After the spring flood,
the REE concentrations decreased and colloids exhibi-
ted a REE pattern similar to that of the local till. These
changes are interpreted in terms of hydrological flow
paths in soil and bedrock variation. For the Amazon
rivers, organo-mineral colloids enriched in HREE in its
major tributaries (Rios Negro and Solimoes) control

REE patterns in the 0. 2 mm fraction of the Amazon
River after mixing [61].

In the mining area of Salsigne France, Heydon et al. [57]
showed that REE patterns exhibited a MREE downward
concavity (enrichment compared to the other REE)
suggesting that colloidal OM control REE transport.
The concomitant decrease in MREE enrichment and
DOC concentration with cut-off size of membrane
confirmed the association of REE with these colloids.

In an agricultural watershed, Dia et al. [42] showed
interesting REE pattern variations in the soil solution
and shallow groundwater along a topographic transect.
In the colloidal DOC-poor domain at the hillslope, they
observed REE patterns with a significant negative Ce
anomaly, while in the bottom-up (colloidal DOC-rich
domain) shallow groundwater, REE patterns did not
display any Ce anomaly. To explain such REE pattern
variation, these authors suggested mixing of both poor
and rich-colloidal DOC groundwaters. However, Pourret
et al. [47] observed the same REE pattern systemati-
cally, namely topography-related REE signatures, chal-

lenged this hypothesis. They explained that the organic
colloids produced by redox condition fluctuations in
response to the water table rise in wetlands control the
REE speciation and the subsequent REE patterns.
Therefore the decrease in amplitude of the Ce anomaly
from top to bottom is the result of the Ce(III) binding
by the organic colloids, which prevents further Ce(III)
oxidation to Ce(IV) [62e65]. In addition, Pédrot et al.
[46] demonstrated that the soil organic carbon (OC)/Fe
ratio played an important role in the topographic REE
patterns. For a low OC/Fe ratio, negative Ce anomaly is

large in the soil solution, compared to high OC/Fe ratio
for which REE are bound to organic colloids and Ce
anomaly development is prevented. Permafrost thawing
is another environmental process known to be a rich
colloid and metal source. Dissolved organic carbon, Fe,
Current Opinion in Colloid & Interface Science 2024, 74:101859
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and Al are present in extremely high concentrations in
melted ice from permafrost cores and are systematically
associated with trace elements [34,58,66]. From sam-
ples collected in lakes and small ponds (Siberia, Russia),
Pokrovsky et al. [34,67] observed a DOC increase
concomitant with a decrease OM of low molecular
weight (fraction <1 kDa) suggesting that metals and
REE were bound to OM and coprecipitated (Fe, Al)

colloids. Lim et al. [68] in permafrost peatlands (Siberia,
Russia) observed that DOC, Fe, and Al concentrations
were connected in the porewaters of the active layer and
in peat ice, indicating that organic and organo-mineral
colloids are the primary carriers of REE in the intersti-
tial fluids of permafrost.

In estuaries, several authors provided evidence that
increased ionic strength and salinity induce the floccu-
lation of Fe-OM colloids (i.e. electrical double-layer
screening) carrying HREE into sediments

[37,39,60,69,70]. They observed that the decrease in
the colloidal fraction is related to the coagulation of Fe-
OM colloids at the beginning of the estuary mixing
zone, leading to the replacement of the colloidal fraction
by the truly soluble fraction. However, Goldstein &
Jacobsen [71] showed that profiles of Fe and REE vs.
salinity are not consistent with simple coagulation of Fe
and REE-bearing colloids. They observed a linear rela-
tionship between REE3þ activity and pH, suggesting a
simple ion-exchange model for REE removal.

Davranche et al. [72] incubated organic-rich wetland
soil under anaerobic and aerobic conditions at pH 3 and
7. They demonstrated that REE patterns of the soil
solutions under anaerobic and aerobic conditions at pH
7 exhibited a Middle REE (MREE) downward concav-
ity, indicating the REE binding to colloidal OM. By
contrast, at pH 3, the REE pattern exhibited a positive
Eu anomaly due to the dissolution of soil feldspar.
Davranche et al. [50] completed this study by soil in-
cubation under oxic conditions at pH 7 to promote OM
colloid release and anoxic incubation at pH 5 to promote
only Fe-oxyhydroxide reductive dissolution. Although

REE patterns exhibited a MREE downward concavity
under oxic conditions at pH 7, under anoxic conditions
at pH 5, the REE pattern displayed a continuous REE
enrichment from La to Lu. Compared to REE patterns
observed in the field, they concluded that soil OM
colloids were the main source of REE in the wetland
solution and that oxydo-reduction controls the REE
release as REE-OM colloids in response to the pH in-
crease [65]. However, such results were challenged by
Guénet et al. [73], who studied the fate of the REE-OM
colloids when oxidation reoccurred in the reduced

wetland soil. They showed that REE were redistributed
in several size fractions. In the highest colloidal fraction
(0.2 mm-30 kDa), REE were bound to organic colloids
associated with Fe nano-oxides. In the<30 kDa fraction,
REE were bound to Fe nano-oxides embedded in small
Current Opinion in Colloid & Interface Science 2024, 74:101859
molecules of terrestrial and bacterial OM. The resulting
REE pattern displayed high enrichment of the last five
HREE, indicating their binding to carboxy-phosphate
sites of bacterial OM [43,74,75]. The bacterial source
of OM was confirmed by fluorescence and Py-
GCMS analysis.

All these studies demonstrate that when organo-mineral

colloids occur in natural water, the REE speciation is
controlled by colloidal OM associated with Fe and Al
species (adsorbed ions or colloids). They highlight that
Fe-OM colloids, by controlling the REE speciation in
natural water, also control REE transfer. This transfer
depends on the Fe-OM colloids’ ability to be trans-
ported relative to prevailing physicochem-
ical conditions.

REE interactions with Fe-OM colloids
REE pattern developed onto organo-mineral colloid
result from their adsorption onto the reactive binding
sites occurring on their surface. Their type, density, and
distribution mainly depend on crystallinity and hydra-
tion for mineral phases, and production mechanisms for
organic phases [28]. Several parameters can, however,
modify or even reverse REE patterns, such as REE
loading and physicochemical conditions. Currently, only
field data exist on REE patterns developed at the
organo-mineral colloid’s surface. No laboratory or

modelling studies have described the REE distribution
between mineral and organic phases constitutive of
colloids. Therefore, in the following section, we consider
mineral and organic colloids separately.

Mineral phases of organo-mineral colloids can be made
of various minerals, mainly Fe or Al oxyhydroxides and
clays. However, regarding literature, colloids composed
of Fe and OM are the most highlighted. Moreover, REE
affinity for Fe-oxydroxides is higher than for Al oxides or
clays [76,77]. We therefore choose to focus only on REE

binding to Fe colloids and oxyhydroxides in the
following section.

Mechanisms of REE binding onto Fe-colloids
Liu et al. [70] demonstrated that Fe hydroxide colloids
adsorb more HREE than LREE (Figure 2). This
adsorption is pH-dependent, demonstrating that REE
are bound to the OH� groups on the colloidal Fe
oxyhydroxides surface. At low pH, REE distribution
coefficient patterns exhibit a pronounced M-Type REE
tetrad effect and enrichment of HREE compared to
other REE. Although no other laboratory studies spe-
cifically focused on REE binding to Fe colloids, the REE
pattern described by Liu et al. [70] is similar to those

developed on particulate Fe oxyhydroxides phases
[24,79,80] (Figure 2). To gain a more detailed under-
standing of REE binding mechanisms by Fe colloids, we
used literature focused on particulate Fe oxyhydroxides.
According to modelling calculations by H. Liu et al.
www.sciencedirect.com
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Figure 3
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Variation of the REE pattern for REE adsorbed onto organic-colloids (FA:
fulvic acid, HA humic acid) relative to the REE loading [52,74], to the
major ion competition [88,89] and to the OM sources [90].

Figure 2

Current Opinion in Colloid & Interface Science

Variation of the REE patterns relative to the pH for REE adsorbed onto Fe-
colloids (<1 mm) [78], onto particulate Fe oxyhydroxides (>1 mm) [24] or as
substituted in particulate Fe-oxyhydroxide [83], REE tetrad effect is
highlighted by the black curves.

Fe-OM colloids controls REE mobility Tadayon et al. 5
[80], REE adsorption onto Fe oxyhydroxides follows the
order of HREE > MREE > LREE. At low pH, HREE
adsorption becomes dominant, with REE binding as
both strong and weak complexes on Fe-oxyhydroxides
surface. HREE enrichment can be progressively
suppressed by the increasing carbonate concentration
[26,81]. The same M-Type tetrad effect and HREE
enrichment were observed for schwermanite [82]. REE
can also be substituted in the Fe oxyhydroxide structure.

Yang et al. [83] determined a substitution of REE in
ferrihydrite as high as w550 mg kg�1 (Figure 2). They
also demonstrated that HREE are more prone to sub-
stitution than LREE andMREE, and this substitution is
so significant to stabilize the Fe oxyhydroxide as ferri-
hydrite. Whether REE are substituted or adsorbed onto
Fe oxyhydroxides surface sites, a positive Ce anomaly
www.sciencedirect.com
may appear on the REE pattern (Figure 2). This
anomaly corresponds to surface precipitation of CeO2 or
preferential adsorption of Ce(VI), the only REE capable
of oxidizing in surface conditions [24,79,84,85].
Cerium(VI) oxidation can be driven by the Fe oxide
oxidative surface or by adsorption at the Fe oxyhydr-
oxides surface, decreasing the standard potential of the
Ce(III/IV) [84,85].

Mechanism of REE binding to organic colloids
Pourret et al. [25] studied the binding of REE to
colloidal OM (humic acid, HA) by combining ultrafil-

tration and ICPMS analysis. The amount of REE bound
to OM colloid increased strongly with rising pH.
Moreover, a MREE downward concavity was developed
Current Opinion in Colloid & Interface Science 2024, 74:101859
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on REE patterns at acidic pH (Figure 3). Modelling of
the experimental dataset with Model VI and VII pro-
vided a set of log KMA (i.e., the REEeHA stability
constants specific to Model VI and VII) for the entire
REE series [25,86]. Log KMA values reproduced the
MREE downward concavity. The hypothesis of
PHREEQC/MODELVI and VII provided evidence that
REE were mainly bound as bidentate complexes to

COOH sites on colloidal OM. However, Sonke and
Salters [54] and Sonke [87] in similar studies of REE
binding to colloidal OM (humic acid as well), obtained a
different pattern, and exhibited a continuous increase
from La to Lu. The major difference between both
studies was the REE loading onto OM colloids. To test
the hypothesis of the impact of REE loading, Marsac
et al. [52] performed REE-HA binding experiments
relative to REE concentrations (REE/C molar ratios
ranging from 4� 10�4 to 2.7 � 10�2) (Figure 3). At high
REE loading, a MREE downward concavity developed,

which progressively decreased with decreasing REE
loading at the expense of a HREE enrichment
(Figure 3). Experimental datasets modelling demon-
strated that REE pattern variations with REE loading
arise because REE binding to OM-colloids occurs
through two binding sites in different densities: (i) at
low REE loading, a few strong sites that preferentially
complex HREE and form multidentate complexes, and
(ii) at high REE loading, a larger amount of weak
binding sites (-COOH) that preferentially form biden-
tate complexes with MREE. This modelling hypothesis

and the various complexes formed relative to REE
loading were later confirmed through X-ray absorption
spectroscopy (EXAFS) by Marsac et al. [53]. Hence,
REE loading exerts a major effect on REE binding with
OM-colloids, which could explain the diversity of REE
patterns in natural rich organic matter.

The source of OM can also control the REE pattern at
the surface of organic colloids. Catrouillet et al. [90]
investigated the potential of REE as tracers of organic
colloid’s sources using three different colloidal OM with
terrestrial and microbiological origins. For Leonardite

humic acid (LHA) and Aldrich humic acid (AHA), the
REE patterns in the <10 kDa fraction were consistent
with REE binding to strong but low-density sites at low
REE loading. In contrast, Pony Lake fulvic acid (PLFA)
exhibited a strong HREE enrichment similar to patterns
obtained at the surface of bacteria cells [75]. Fluores-
cence and Py-GC-Ms analyses showed that the<10 kDa
fraction was the fraction with the stronger microbio-
logical character suggesting that REE were bound to
PLFA through REE-phosphate complexes as onto the
bacteria cells surface [75,90,91].

The REE pattern at the surface of organic colloids is also
controlled by competition with major ions. Pourret et al.
[92] studied the competition between colloidal HA and
carbonates for REE binding at various pH and alkalinity.
Current Opinion in Colloid & Interface Science 2024, 74:101859
They showed that the REE occur as binary humate or
carbonate complexes but not as ternary
REEecarbonateehumate as previously proposed. They
also revealed the strong pH and alkalinity dependence
of the mechanism resulted in a systematic fractionation
across the REE series. Specifically, carbonate complex-
ation is at a maximum at pH 10 and increases with the
increasing alkalinity and atomic number of REE (LuCO3

>> LaCO3). Marsac et al. [88] investigated the
competition between REE and Al for binding to
colloidal OM. Their results indicated that Al3þ com-
petes more efficiently with HREE than with LREE at
acidic pH (pH = 3) and low REE/HA ratios, providing
evidence for the high affinity of Al for the few HA
multidentate sites. At pH 5 to 6 and for high REE/C
ratios, Al was more competitive for LREE, suggesting
that Al is bound to HA carboxylic rather than phenolic
sites. Under circumneutral pH conditions, such as in
natural waters, Al is expected to lead to LREE-depleted

patterns onto organic colloids. Marsac et al. [89] also
tested the competitive effect of Fe(III) on the REE
binding to organic colloids. At acidic pH, Fe3þ strongly
competes with HREE for their binding to the few but
strong multidentate sites of the colloidal OM. By
contrast at pH 6, hydrolyzed Fe species compete equally
with all REE, thereby demonstrating that LREE and
HREE have the same affinity for carboxylic and phenolic
sites as Fe. These studies suggest that major cations can
compete with REE for their binding to organic colloids.
Marsac et al. [78] using PREEQC-Model VII tested the

effects of divalent ions, specifically Cu2þ and Ca2þ, on
REE binding to organic colloids. Cu is not able to
compete with REE. Because Ca binds weakly to strong
sites, they have a smaller competitive effect on HREE
than on LREE.

Thus, the REE pattern, speciation, and subsequent
mobility and transfer are strongly controlled by: 1)
organic colloid’s sources and surface properties, and 2)
the presence of competing ions, which impact REE
pattern depending on their affinity for the strong or
weak sites of the organic colloids. However, the primary

driving factor remains pH, which controls organic colloid
formation in response to redox fluctuation, the REE
loading, and the solubility of competitive cations.

As previously explained, there are currently no experi-
mental datasets detailing REE distribution and con-
trolling binding phases in composite Fe-OM colloids.
However, the comparison of REE patterns from natural
colloids with experimental pattern on each Fe and OM
colloid could provide some information and valuable
insights into these interactions.

REE pattern in natural Fe-OM colloids
In this section, patterns of REE expected to be bound to
naturel OM/Fe and Fe-OM colloids were compared and
discussed. For this purpose, we have selected studies
www.sciencedirect.com
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Figure 4
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REE-natural colloids patterns normalized to upper continental crust
(UCC) for permafrost soil solutions collected at 80 and 0–10 cm [35], for
wetland soil solution relative to the location in the wetland [42,46,47] and
in Artic river relative to the season [36].

Fe-OM colloids controls REE mobility Tadayon et al. 7
from contrasting organic and Fe-rich waters under
various sources and pedo-climatic conditions. Refer-
ences from the early 2000s are considered pertinent for
this discussion, as they provide Fe and DOC concen-
trations as well as colloidal fractions.

For Artic River (Siberia, Russia), Pokrovsky et al. [37]
observed that around 75% of the REE was with large-
size colloids (10 kDa-0.22 mm) (Figure 4). In the

spring period, LREE and HREE were in quite similar
amount with La/Yb ratio = 0.9 (La/Yb < 1, HREE
enrichment). In the winter, this ratio decreased to 0.77
in response to an increase in HREE. From spring to
winter, the DOC concentration decreased from
www.sciencedirect.com
15 mg L�1 to 5 mg L�1, and its proportion in large
colloids dropped from 75 to 40 %. In the spring flood, no
significant Ce anomaly was developed with Ce/
Ce* = 0.93 while a negative Ce anomaly occurred in the
winter period with Ce/Ce* = 0.68 (Ce/Ce* = 2Ce/
(La þ Pr), Ce/Ce* < 1, negative Ce anomaly). Pokrov-
sky et al. [36] explained that the Ce anomaly was due to
high concentration of dissolved and particulate Fe. In

the spring flood period, REE concentration was higher
than in winter, the colloids were enriched in OM, the
HREE concentration decreased and the Ce anomaly was
quite less significant. All these observations demon-
strated that soil flooding produced OM colloids that
were then mixed with the colloidal fraction of the river
(colloids of the winter period). REE were therefore
bound to more mineral Fe-colloids in winter and to OM-
enriched colloids in spring. The source of colloids and
their mixing thus control the REE speciation and
mobility. However, is the resulting REE pattern only

due to colloids mixing or is it influenced by a structural
rearrangement of the colloids between both periods?

From inside to the boundary of a wetland (Brittany,
France), Dia et al. Pouret et al. and Pédrot et al.
[42,46,47] showed that OM concentration in the
colloidal fraction decreased while Fe concentration
increased. These variations were concomitant with an
increase of HREE as showed by the La/Yb ratio (La/
Yb = 0.87 and 1.03 from inside to the boundary,
respectively) and an increase of the MREE downward

concavity as showed by the La/Sm ratio (La/Sm = 0.79
and 0.71 from the inside to the boundary, respectively;
La/Sm < MREE enrichment) (Figure 4). However, this
variation was not due to a HREE or a MREE increase
but rather to a La decrease. The Pr/Yb ratio (indicating
HREE enrichment) and Pr/Sm ratio (indicating MREE
downward concavity) varied indeed inversely from 0.94
to 1.18 and from 0.87 to 0.92, respectively. Both
ratio variations indicated an insignificant HREE
enrichment but a more pronounced MREE downward
concavity inside the wetland. This La depletion gener-
ally occurs when REE are bound to Fe colloids or par-

ticles, as shown in Figure 2. This observation is
supported by the negative Ce anomaly, whose calcula-
tion provided the same value, with Ce/Ce* = 0.86,
inside and in the boundary of the wetland. All these
observations demonstrate that inside wetlands, REE
were mainly bound to OM colloids, although the
occurrence of Fe-colloids at the boundary modified the
REE pattern. However, as previously questioned, does
the REE pattern correspond to only colloids mixing or a
structural re-arrangement of colloids and subsequent
binding properties modification due to the Fe phases

increase inside the colloids?

In a permafrost soil solution [35], the REE patterns
exhibited the same REE distribution at the surface and
in the deep layer of the permafrost (Figure 4). The Ce
Current Opinion in Colloid & Interface Science 2024, 74:101859
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anomaly had a consistent size, with Ce/Ce* = 0.87. A
quite similar HREE enrichment with La/Yb varying
from 0.71 to 0.75 was also observed from the surface to
the deep soil. The authors attributed the HREE
enrichment to the basalt bedrock and explained the Ce
anomaly as a result of Ce oxidation during REE copre-
cipitation/adsorption onto Fe hydroxides. However, they
determined a high concentration of DOC in the

permafrost soil solution ranging from 20 to 30 mg L�1.
Additionally, they observed HREE enrichment in the
REE pattern of the soil larch litter. However, because no
direct correlation was observed between REE and OM,
they ruled out that REE could be linked to organic
colloids. Nevertheless, this hypothesis could not be
excluded. The pattern could correspond to a low-loading
REE pattern onto OM colloids, as suggested by Marsac
et al. [52] (Figure 3).

Field studies revealed some uncertainties regarding the

distribution of REE among the different phases that
constitute the colloidal pool. It raises the question of
whether REE patterns result from the mixing of colloids
from various sources and components or from a rear-
rangement of the colloidal pool due to changes in hy-
drologic and physicochemical conditions. Generally, the
colloidal pool is not described as a simple mixture of
various colloids but rather as a complex system in which
Fe and OM are strictly entangled [93e95].
What we know about the Fe-OM colloid
structural organization and reactivity
Comparisons between experimental and natural REE
patterns onto Fe-OM colloids have highlighted how the
structural organization and evolution of colloids affect
the REE distribution between the OM and Fe phases,
with implications for resulting REE patterns.

In natural OM, the most reactive colloidal fraction
regarding chemical elements is typically the colloidal
humic substances, though this terminology should be
considered operational. Colloidal humic substance
structure can exist in two forms: (i) macromolecular
polyelectrolytes that can form molecular aggregates
[96], and (ii) supramolecular assemblies (molecular
aggregates) of small molecules without macromolecular
character, joined together by weak attraction forces [97].
Pédrot et al. [98], who support the idea of supramo-

lecular assemblies, provided evidence that the REE
distribution varied with the HA structural destabiliza-
tion depending on pH. As pH decreased, humic asso-
ciations were destabilized, leading to an enrichment in
organic small molecules in the fraction<3 kDa, as
highlighted by an increase of REE concentrations but
without any REE pattern variation. These variations
were interpreted as disruption of the supramolecular
assemblies. While no REE pattern modifications were
observed, the solubilization of small organic molecules
Current Opinion in Colloid & Interface Science 2024, 74:101859
will therefore enhance the mobility of REE and their
subsequent transfer in environmental systems.

A significant portion of the studies included in this
research demonstrated that OM colloid are associated
with Fe and Al phases [35,43,58,66]. To understand this
structural arrangement of OM, Al, and Fe phases, and
particularly Fe-OM colloids, several authors have con-

ducted experimental investigations [99e102]. They
demonstrated that Fe phases have a fractal organization,
with small Fe nanobeads (or oligomers) that aggregate as
Fe primary aggregates (Fe NPs). These primary aggre-
gates can further aggregate as larger Fe secondary ag-
gregates, forming associations of Fe nano-oxides. Iron
nanobeads (or oligomers), primary and secondary ag-
gregates coexist within the heterogeneous colloid
system. The primary aggregate (w6 nm) growth is
controlled by the adsorption of organic molecules, while
secondary aggregates are associated to a large OM

colloid (w700 nm) [102]. The addition of Ca and Al
leads to the opening of the colloid structure, in which Ca
acts as dimer that bridges between organic molecules,
while Al acts as oligomers that bridge between all OM
and Fe phases. Both elements contribute to the forma-
tion of a large network, where OM molecules are
interconnected by Ca, and both Fe and OM phases are
interconnected by Al [99,100]. The impact of the
structural organization of Fe-OM colloids was evaluated
with arsenic (As). X-ray absorption analysis (XAS)
demonstrated that As was exclusively bound to Fe

phases [102]. The quantity of adsorbed As depended on
the density of available sites, which was not controlled
by the specific surface area of Fe NPs. Instead, it was
governed by the Fe concentration and the degree of
interaction between Fe and OM. These factors affected
both the number and size of Fe NPs. When Fe NPs had
reduced interaction with OM, due to either increased
NP size or the global structure opening (Ca and Al
connection between colloid phases), the density of
available sites increased, leading to a greater amount of
adsorbed As. Unlike As, which is an anion, REE are
primarily cations. REE can bind to both Fe and OM

phases in these mixed colloids, which complicates their
binding dynamics compared to As. Unfortunately, no
data currently exist for REE, although such data are
crucial to understanding REE mobility/transfer between
environmental compartments. The fate, mobility, and
transfer of REE will be contingent on the nature of their
bindingdwhether to OM, Fe, or bothdhighlighting the
importance of further research in this area.
Conclusion, outlook, and recommendations
REE are increasingly becoming a major environmental
concern due to their growing use in human activities and
their subsequent release into the environment. Howev-
er, our understanding of the parameters expected to
control their transfer between the various environmental
www.sciencedirect.com
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comportment, which is crucial for determining the REE
exposome, remains limited. An extensive review of
a large literature database demonstrated that transfer of
REE in the environment is mainly controlled by colloids
and notably by Fe-OM colloids. The affinity of REE for
these peculiar colloids is partly explained by their affinity
to the organic molecules (even at low concentration �
1 mg L�1 in water) and Fe phases. This behaviour is a

consequence of the ability of REE to form strong com-
plexes, including bidentate complexes with the OH-site
for Fe phases, and bidentate and chelate with the car-
boxylic and phenolic groups of OM. Literature on single
organic colloids demonstrated that REE fractionation
depends on factors such as the adsorbed REE loading,
the OM sources, the resulting type and density of the
chemical surface group, and the presence of competitive
ions. For single Fe colloids, REE fractionation is mainly
controlled by pH, the adsorbed REE loading, and the
presence of inorganic ligands (ex. carbonate). However,

the size of the particle (whether colloidal or particulate)
does not influence the REE pattern. Unfortunately, no
information exists for Fe-OM colloids, which are the
most encountered in the environment. Studies of the
REE patterns of natural Fe-OM colloids in various
pedoclimatic contexts demonstrated that the REE pat-
terns were mainly ascribed to the mixing of various
sources of OM colloids with Fe-colloids. However,
several authors have recently demonstrated that the
structural organization of the Fe-OM colloids is complex,
involving oligomer and Fe-nano-oxides that are more or

less associated with organic molecules, with the majority
being linked to OM colloid. Moreover, this structural
organization is modified in the presence of major ions.
The reviewed studies also demonstrated that this
structure and its dynamic control the ability of Fe-OM
colloids to bind metalloid and their subsequent distri-
bution between Fe and OM phases. The review has
therefore identified several gaps in our understanding,
suggesting the need for further research and making the
following recommendations based on the current state of
knowledge for future studies.

� It is imperative to determine how REE are distributed
among the different Fe and OM phases within these
colloids. Since the structure of Fe-OM colloids is
dynamic and affects their reactivity, identifying the
main phases that carry REE within the colloids is
crucial for anticipating their mobility and subsequent
environmental transfer.

� It is essential not only to quantify the concentration of
the OM but also to characterize its sources and there-
fore the type of chemical groups developed at this
surface. Understanding the stability of the formed

REE-OM complexes is crucial. This is particularly
important in regions known as producers of colloids
(such as wetland, dust storm, permafrost thawing,
etc.).
www.sciencedirect.com
� While bedrock and OM sources control the occur-
rence of Fe and OM colloids as well as the reactive
surface group, prevailing physicochemical conditions
control the structural arrangement between Fe and
OM phases and their subsequent reactivity against
chemical elements. More information is needed about
the parameters that control the Fe-OM structure.
Experimental studies are required, but they have to
be completed by more detailed characterization
(beyond size fractions) of colloids produced under
environmental conditions and collected in the field.

� Colloids mixing was advanced to explain the REE
pattern variation. However, during mixing, physico-
chemical conditions vary, and OM- and Fe-colloids are
modified or can be rearranged. Understanding the
structure and properties of colloids resulting from
mixing is thus requisite to anticipate their reactivity
regards REE and more generally chemical elements.

� Progress in sampling and analytical techniques is
essential for accurately determining environmental
REE concentrations and to be able to conduct further
studies. Collecting a sufficient quantity of colloids
without modifying their properties while allowing the

determination of low REE concentration remains a
challenge. The latest generation of ICP-MS, such as
QQQ-ICP-MS or HR-ICP-MS equipped with a colli-
sion chamber, now allows for lower REE detection
limits and could therefore be a solution. To circumvent
the colloid sampling issue, several authors have syn-
thesized Fe-OM colloids representative of those
observed in the field [99,101,102]. With this protocol,
enough amount is produced allowing REE measure-
ment and the study of the impact of physicochemical
parameters. For heterogeneous Fe-OM colloids, the

challenge lies in determining the REE distribution
between the Fe and OM phases. Coupling high-
sensitivity and selective analytical techniques is now
available for the accurate determination of the REE
distribution. These techniques involve size fraction on
the colloids and determining the co-occurrence of
REE, Fe and OM. Asymmetric flow field fractionation
(A4F) equipped with UV and multiple-angle light
scattering (MALS) detectors, and coupled with a
QQQ-ICP-MS is an example of such techniques
[103,104].

� To understand the control exerted by Fe-OM colloids
on REE speciation and mobility, and to establish the
REE exposome, all eco-toxicological studies must be
performed using Fe-OM colloid. This is essential for
estimating the actual impact that REE could have on
living organisms, trophic webs, communities, and
ecosystems.
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