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One-sentence summary 
A 25 × 106 m3 rockslide in East Greenland triggered a 9-day seiche leading to a rare 10.88 mHz monochromatic 
global seismic signal. 

Abstract  
Climate change is increasingly predisposing polar regions to large landslides. Tsunamigenic landslides have 
occurred recently in Greenland (Kalaallit Nunaat), but none have been reported from the eastern fjords. In 
September 2023, we detected the start of a 9-day-long, global 10.88-millihertz (92-second) monochromatic very-
long-period (VLP) seismic signal, originating from East Greenland. We demonstrated how this event started with 
a glacial thinning induced rock-ice avalanche of  25 × 106 cubic meters, plunging into Dickson Fjord, triggering a 
200 m high tsunami. Simulations show the tsunami stabilized into a 7-meter-high long-duration seiche with a 
frequency (11.45 mHz) and slow amplitude decay that were nearly identical to the seismic signal. An oscillating, 
fjord-transverse single force with a maximum amplitude of 5 × 1011 newtons reproduced the seismic amplitudes 
and their radiation pattern relative to the fjord, demonstrating how a seiche directly caused the 9-day-long seismic 
signal. Our findings highlight how climate change is causing cascading, hazardous feedbacks between the 
cryosphere, hydrosphere, and lithosphere.  

http://www.science.org/doi/10.1126/science.adm9247


Pre-print paper published in Science on 13 September 2024. 
Published version: http://www.science.org/doi/10.1126/science.adm9247 

Page 4 

Steep slopes are prone to destructive landslides that are increasingly likely to occur because of climate change (1). 
In cold regions, this increase may be driven by glacial debuttressing, permafrost degradation, or changes in 
precipitation (2–5). A landslide impacting a confined water body, such as a fjord, may produce a destructive 
tsunami (6–9), as demonstrated by previously reported events around the globe (e.g., Chile, Alaska, Norway, and 
Canada) (8, 10–13). Similar events have occurred recently in Greenland (Kalaallit Nunaat) (14–17), as 
exemplified by the 2017 Karrat Fjord event along the west coast (Fig. 1), which caused four fatalities and left two 
villages permanently abandoned (17). However, no such events have previously been observed in East Greenland.  

Large landslides are effective sources of long-period (> 20 s) seismic radiation owing to their typical long durations 
(~10 to 100 s), allowing their dynamics to be probed remotely with seismic data (18–20). The tsunamis induced 
by such landslides may also produce characteristic seismic signatures, especially in the near field (21, 22). In 
closed and semi-enclosed basins, such tsunamis occasionally set up standing waves called seiches (23–25), in 
which water sloshes back and forth at a specific resonant frequency. Because their oscillation frequency derives 
from basin eigenmodes, seiches offer distinctive long-period, monochromatic sources that can be used to remotely 
investigate energy transfer from the hydrosphere to the solid Earth. Yet so far, only short-duration (<1 hour) 
loading-induced tilt caused by seiches has been observed on very local (<30 km distance) seismometers (24, 26–
28). Signals have not been previously recorded at larger distances, and tsunami-induced seiches have not been 
modeled numerically. Therefore, quantifying how tsunamis and seiches dissipate and radiate elastic waves into 
the lithosphere remains an open issue further hampered by the lack of high-rate water level recordings of such 
events in confined water bodies. 

On 16 September 2023, we observed an enigmatic very long-period (VLP) seismic signal propagating around the 
globe (Fig. 1A; fig. S1). Unlike broadband earthquake signals, the VLP signal was monochromatic, with a 
dominant frequency of 10.88 mHz (92 s period), lasting for up to 9 days. Our initial estimates of its source position 
centered on East Greenland (Fig. 1B); (29). At the same time, Greenlandic and Danish authorities received reports 
of a large tsunami at the (then unoccupied) Nanok station and research base at Ella Ø (Ella Island) (Fig. 1C). As 
an interdisciplinary and international research team, we have integrated local observations, multiscale imagery, 
regional-to-global scale seismic data, and landslide-tsunami simulations to present a detailed reconstruction of the 
first documented large, tsunamigenic landslide from East Greenland and how it generated global VLP seismic 
signal. A high-resolution bathymetry dataset (15 m spacing) in the Dickson Fjord area (fig. S2); (29) provided the 
basis for fine-scale modeling that yields insights into the generation and unusual dynamics of the tsunami. 

Field and satellite observations of the landslide 
On 16 September 2023 at 12:35 UTC (11:35 local East Greenland time), a 25 × 106 m3 rockslide (29); (text S1) 
occurred on a mountain peak at Hvide Støvhorn 1200 m above Dickson Fjord (Fig. 2A-B; 72.81°N, 26.95°W; text 
S2). A large body of metamorphic rock (up to 150 m thick, 480 m wide, 600 m long) dropped westwards along a 
foliation-parallel failure plane dipping 45° (Fig. 2D-F; text S3). The rockslide impacted and shattered a 200 m-
wide outlet glacier in a gully at 600-900 m elevation, then turned northward and moved down the 30-40° steep 
glaciated gully as a rock-ice avalanche (text S1), entraining ~2.2 × 106 m3 of the uppermost ~13 m of the glacier 
(Fig. 2G); (29). An 80 x 220 m peninsula that supported the glacier's calving front disappeared (Fig. 2B, 3A), 
indicating that the rock-ice avalanche may have triggered a submarine landslide in a sediment cone deposited at 
the terminus of the gully glacier. On the basis of the fjord morphology from available elevation models (fig. S2);  
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Fig. 1: Seismic signal, position, and local setting. (A) Record section showing vertical-component waveforms from ~4,500 
seismic stations up to 90° (10,000 km) from Dickson Fjord, with data bandpass filtered at 25-115 s, and waveforms colored 
by epicentral distance. These Rayleigh waves move-out with a phase velocity of 4.1 km/s. Stations DK.SCO and II.BFO are 
highlighted, with detailed views of their waveforms shown in Fig. 5C-D. Fig. S1 shows a similar, but global-scale, record 
section. (B) Overview map showing the closest seismic stations, the location of the landslide, and the very long-period (VLP) 
seismic source position using waveform back-projection (29). (C) Map of the Dickson Fjord area showing tsunami runup 
heights and the location of the landslide inferred from both satellite imagery and seismic data. CTD = conductivity, 
temperature and depth sensor. 
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(29), we estimate a minimum total rock-ice avalanche run-out distance of 2.2 km. 

The lower part of the rockslide failure plane extends beneath the pre-slide surface of the glacier (Figs. 2F-G), 
which had been thinning over the past decades (Fig. 2C); (29). We propose that this thinning led to debuttressing 
of the lower part of the unstable slope, triggering the rockslide. Such dynamic preconditioning is reported for other 
high-latitude and alpine landslides (30, 31).  

In addition to the 16 September 2023 event, we found evidence in satellite imagery of at least four smaller previous 
landslides and a subsequent one from the same gully (text S4; Table S1).  

Landslide dynamics from seismic inversion 
The 16 September 2023 landslide-tsunami event generated substantial seismic ground motions. At nearby stations 
(e.g., DK.SCO - 300 km away; Fig. 1B), we observed an emergent 200 s duration high-frequency (HF) (2-10 Hz) 
arrival with an extended coda, accompanied by a 60 s duration signal at lower frequencies (LF; 17-100 mHz). The 
10.88 mHz VLP signal emerges from these higher-frequency signals (Fig. 3B).  

The cigar-shaped HF signal contains two wavetrains. The first signal corresponds to the initial rockslide and the 
second to the rock-ice avalanche moving down the glacial tongue and entering Dickson Fjord. These waveform 
characteristics are typical of landslides (20), particularly those involving glacial ice entrainment (18, 20, 32), 
topographic obstacles, and water bodies (33–35). The LF waves come from acceleration and deceleration of the 
bulk mass on the Earth's surface, whereas the HF waves come from interactions between grains in the moving 
mass with the substrate (20, 36). We used different methods (arrival time inversion, centroid moment tensor 
waveform inversion, cross-correlation) to show that the source, which originated at 16 September 2023 12:35:03 
UTC, is consistent with the imagery-derived landslide location, with most computed positions within 20 km 
distance (fig. S3 & table S2). The landslide was sufficiently energetic to produce acoustic signals recorded on 
International Monitoring System (IMS) infrasound arrays up to 3,310 km away (I37NO, I43RU); (29). 

To estimate the trajectory of the force imparted by the landslide on the Earth's surface, we inverted waveforms 
from the three closest seismic stations (Fig. 1B), bandpass filtered between 17 and 100 mHz, (18–21) (Fig. 3B); 
(29). Our inversion yields a maximum force of 192 × 109 N, corresponding to a mass of approximately 78-103 × 
109 kg, equivalent to a volume of 29-38 × 106 m3 (assuming a density of 2.70 g cm-3); (19, 21). From the fjord 
morphology, we estimate a total run-out distance of 2.2 km. Based on this assumption, the kinematic quantities 
derived from the inverted force give a 55 × 109 kg mass (~20 × 106 m3), which is consistent with the structure from 
motion volume reconstruction (29). The rock-ice avalanche had a peak acceleration of 3.5 m s-2 at 42 s and a peak 
velocity of 47 m s-1 at 52 s after it initiated (Fig. 3D). We find two sudden, mid-path acceleration drops along the 
direction of movement before the final one (“D1” and “D2” in Fig. 3D), the first coinciding with the maximum of 
the upward vertical force and both with drops in the north force (Fig. 3C). D1 coincides with an amplitude peak 
in the HF signal, and D2 marks the onset of the second phase of the HF signal (Fig. 3B), showing the influence of 
topography (34). D1 is likely associated with the mass impacting the west wall; D2 likely corresponds to the 
moment when the front of the rock-ice avalanche reached the water, causing a deceleration to the overall center 
ofmass. Overall, the seismically inverted run-out path matches that inferred from imagery (Fig. 3A). 

According to our inversion results and morphological observations, the higher frequency (>25 mHz) seismic 
waveforms clearly come from the rock-ice avalanche. However, the VLP component of the signal, which emerges. 
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Fig 2. Landslide observations. (A) Pre- and (B) post-event Planet Labs satellite image (locations in Fig. 1C). Image © 2023 
Planet Labs PBC. (C) Mean elevation change during 1985-2018 of the glacier surface per 50 m elevation interval. Scale and 
field of view are the same for A,B,C. (D,E) Pre- and post-event field photos of the coastal slope (looking south, refer to arrows 
in A and B). The stippled yellow line outlines the rockslide source area. Location shown in A and B. Tsunami runup heights 
are indicated with stippled red lines on (E). (source of E: Sirius Dog Sled Patrol of the Joint Arctic Command). (F) Post-
event aerial photomosaic from 19 September 2023 of the onshore landslide-affected area (location in B) (source: Joint Arctic 
Command of the Danish Navy). (G) Orthogonal projection (southward view) of the Structure from Motion point cloud (29), 
showing the failed bedrock volume and the entrained volume of the glacier below the impact area (stippled blue outline). 
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Fig. 3: Landslide seismic signal and modeling. (A) Geomorphological map showing the landslide center-of-mass (CoM) 
runout paths from morphological interpretation and seismic inversion. Green symbols indicate the strike and dip direction of 
the foliation. (B) The seismic signal recorded at DK.SCO.BHZ (313 km distance), shifted by the travel time between the source 
location and the station (at 3 km/s velocity), with different bandpass filters applied. (C) The seismically inverted force of the 
landslide CoM acting on the Earth; (D) Modulus of the seismically-inverted acceleration (blue), velocity (red) and scalar 
product of the acceleration and the normalized velocity (𝑣";	orange) of the CoM of the moving mass; D1 and D2 indicate the 
two first peaks of deceleration and are shown on the map in (A). The colorbar is the same as shown in (A). 

out of the higher-frequency waveforms (Fig. 3B), remains unexplained 

Tsunami recordings and modeling 
The impact of the 16 September 2023 rock-ice avalanche into the 540 m deep and 2.7 km wide Dickson Fjord 
triggered a tsunami with an initial backsplash with a runup height of ~200 m and subsequent waves up to 110 m 
high (Fig. 2E); (29). The tsunamigenic potential of the rock-ice avalanche was enhanced by its channelization into 
the gully, the entrainment of ice into the mobilized volume (18, 37), and the glacier lowering the basal friction (18, 
32, 35). At the Nanok station and research base at Ella Ø, 72 km away out-fjord, the tsunami had a local runup 
height of 4 m, inundating up to 80 m inland, and destroying infrastructure valued at nearly 200,000 USD (Fig. 1C, 
4A-B). Elsewhere in the fjord system, near-coastal cultural heritage sites, such as Thule Culture Inuit 
archaeological sites and 20th-century trapper huts were well within the inundation reach and were assumed to be 
destroyed. The observed destruction of an old trapper hut at Kap Hedlund (Fig. 1C), which had never been affected 
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by tsunamis during its century-old history, demonstrates the unexpected size of the September 2023 event (text 
S5). Cruise ships pass east and west of Ella Ø every week in the ice-free season (Fig. 1C), but none were in the 
fjords during the tsunami.  

The tsunami was recorded by nearby pressure sensors and sea level gauges (29, 38) (Fig. 1C; fig. S18); (29). Out-
fjord, at Ella Ø, a high turbidity signal was detected due to local sediment resuspension by the tsunami, peaking 3 
hours after the initial tsunami and lasting 6-7 hours (Fig. 4C). The sea level gauge in Dickson Fjord, located 8 km 
west of the landslide impact point along the shoreline, recorded a maximum peak-to-peak amplitude anomaly of 
~0.4 m; however, its 15-minute sample interval almost certainly aliases out higher amplitudes (Fig. 4D).  

We therefore relied on numerical modeling, validated by observed runup heights, to better understand the shorter-
period component of the tsunami. We first modeled the tsunami using a linear dispersive Boussinesq model nested 
with a nonlinear shallow water inundation model (GloBouss algorithm); (29), to simulate the observed inundation, 
runup height, and the sea level gauge recording at Ella Ø (adding 0.7 m high-water spring tide at the time of the 
landslide). The simulated and observed runup heights compare well (Fig. 4A-B). To verify this result and to better 
simulate the longer-term evolution of the tsunami within Dickson Fjord we also used an independent, nonlinear 
hydrostatic model (39) that describes the rock-ice avalanche as a granular flow (9) (HySEA model); (29). However, 
modeling the long-term energy dissipation of tsunamis is a non-trivial task. Unrealistic, artificial damping due to 
numerical dissipation in complex bathymetric models is inherent in HySEA’s finite-volume modeling scheme 
(39–41), thus masking realistic physical damping effects, such as out-fjord dissipation and bottom-friction. We 
indeed observed that numerical dissipation in the finite-volume model masks the effects of bottom friction for grid 
spacings of >7.5 m, with reduced dissipation in finer grids (fig. S5). This overall result is independently 
corroborated by GloBouss simulations (text S6). For our preferred simulation, we therefore used the most 
computationally feasible, finest grid spacing of 3 m, with a Manning bottom-friction parameter of 0.03 typically 
used in tsunami modeling (41–43). 

Our preferred simulation set-up shows that at ~5 minutes after the material entered the water, the waves stabilize 
into a slowly decaying seiche with a maximum amplitude of 7.4 m and a dominant frequency of 11.45 mHz (87 
s); (Figs. 4E, 5B & 5E; movies S1-S2). This eigenfrequency is directly related to the width and depth of Dickson 
Fjord, as shown in the analytical solutions (42). 

Character of the VLP seismic signal 
From the higher-frequency rock-ice avalanche signal (Fig. 3B), a prominent harmonic (monochromatic) signal 
emerges, with a frequency of 10.88 mHz (92 s), that is observed on seismometers and superconducting gravimeters 
globally for up to 9 days (Figs. 1A, 5, S6). The amplitude decay of this VLP signal is extremely slow (Fig. 5C). 
We quantify this decay by modeling the signal’s envelope as exp!− !

"
#
$
#, where Q is the quality factor of a 

harmonic oscillator and T is its dominant period of 92 s (29). The initial Q of the signal is ~500, gradually 
increasing, to and stabilizing at, ~3,000 (Fig. 5C), indicating a non-exponential amplitude decay. The signal is 
phase-coherent and undergoes a 540 parts per million semidiurnal frequency modulation for at least its first 50 
hours (fig. S7); (29). 

Our back-projection analysis of global surface waves and regional waveform inversion using a resonating source-
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time function with an equivalent moment magnitude of 5, finds a source location that is stable for 9 days originating 
from East Greenland near Dickson Fjord (Fig. 1B; table S2; movie S3); (29). However, the long wavelengths at 
such long periods (~400 km) limit the spatial resolution of these locations. Nevertheless, given that the VLP signal 
emerges in the coda of the HF signal (Figs. 3B, 5D), we assume it originates near the seismically derived landslide 
source position from HF waveforms (table S2). However, a landslide lasting several minutes could not have 
directly generated such a long duration, slowly decaying, highly monochromatic signal. 

Instead, our analysis of three-component seismic waveforms from stations at teleseismic distances shows that the 
signal’s radiation pattern directly relates to the water body in the fjord. We observed predominant Love wave 
radiation along the longitudinal axis of Dickson Fjord (070°) and Rayleigh wave radiation perpendicular to it 
(160°; Fig. 5A-B); (29). This pattern mimics the vertical-component signal duration (fig. S8), showing how the 
VLP signal’s observed duration of up to 9 days depends on station azimuth relative to radiation pattern and site-
dependent noise level. 

Three weeks later, on 2023-10-11, a similar signal that originated from the same location, and showed the same 
fundamental period and radiation pattern, but with half the amplitude, was also observed globally. The signal was 
also associated with a landslide-tsunami event originating from the same gully with around half the vertical 
tsunami runup (text S4). A systematic search of past seismic data (1990-2023) and gravimeter data (1982-1994) 
from station II.ALE in northern Canada, revealed four additional smaller-amplitude, shorter-duration VLP signals 
with almost identical frequency (fig. S13). At least two of these events (February 2016 and January 2017) were 
associated with a rock-ice avalanche in the same gully, and, intriguingly, occurred when the fjord was ice-covered. 

Although global seismic networks would have been sensitive enough to record them for at least three decades (44, 
45), similarly high-amplitude, globally observable, slowly decaying signals with a stable monochromatic period 
starting at the signal onset, are extremely rare. The handful of documented cases with dominant frequencies of >1 
mHz have been related to volcanic activity, either through resonance excited by subsurface magmatism (46, 47) 
or from explosive eruptions exciting the fundamental mode of Earth’s atmosphere (~3.7 mHz) (48, 49). In contrast, 
the Greenland VLP signals have a much slower decay and a different radiation pattern, making them different 
from previous observations. 

A seiche as the source of the global VLP seismic signal 
The VLP signal’s radiation pattern and slow decay, compared with freely propagating Rayleigh waves, must be 
due to its source excitation because no high-Q Earth normal modes exist near 10.88 mHz (50). We thus propose 
that a freely decaying seiche oscillation in Dickson Fjord generated the observed VLP signals, for four reasons. 

First, the numerical tsunami simulation stabilizes into a free seiche oscillation with a dominant frequency of 11.45 
mHz (87 s period), which is very close to the 10.88 mHz frequency (92 s period) of the seismic signal (Fig. 5D-
E). We attribute the small difference to unmodelled complexities in the fjord’s bathymetry (42). 

Second, the restoring force of the seiche acts in a direction perpendicular to Dickson Fjord and thus provides a 
horizontal transfer of momentum to the Earth’s crust in that direction. This is consistent with the observed radiation 
pattern of Rayleigh- and Love-waves (Fig. 5A-B). 
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Fig. 4: Tsunami observations and modeling. (A) Drone photo looking east-northeast showing the 4 m runup height at Ella 
Ø (white arrows). Source: Joint Arctic Command/Sirius of the Danish Navy. (B) Mapped and simulated tsunami runup at 
Ella Ø. (C) Observed and simulated tsunami at Ella Ø using the GloBouss tsunami model (43) (Fig. 1C). Upper panel: sea 
level and turbidity from the conductivity, temperature, and depth (CTD) station. (D) Comparison between observed (15-min 
sampling interval) and simulated (using the HySEA tsunami model) water level at the Dickson Fjord sea level gauge/CTD 
station (Fig. 1C & 5B). (E) Filtered (9 to 13 mHz bandpass) simulated long term tsunami water elevation at the landslide 
fjord impact location, with indicative exponential decay-rates labelled as Q-values. Its amplitude spectrum is shown in Fig. 
5E.  
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Fig. 5: Very long-period (VLP) seismic signal and comparison with simulated seiche. (A) Locations of seismic stations with 
high-fidelity three-component VLP recordings, colored by dominant surface wave type (green = Rayleigh, pink = Love); (29). 
This radiation pattern matches the strike of Dickson Fjord and its perpendicular, as shown in (B), where the background red-
blue colors show a snapshot of the simulated seiche after 2 hours, along with the modeled direction of the oscillating 
horizontal single force (purple arrow). The inset shows the simulated seiche profile along X-X’, at different timesteps. (C) 
Waveform recording from station II.BFO in Germany (29° away), showing dominant Rayleigh energy on the vertical and 
radial components, with weaker Love energy on the transverse. Indicative Q-values (black lines) highlight their slow, non-
exponential decay. S-body waves arriving at 12:46 UTC (inset) carry the initial VLP signal. Synthetic seismogram envelopes 
(red lines) using the simulated seiche signal at the location of the landslide (Fig. 4E), scaled to a maximum horizontal force 
of 5 × 1011 N (29), match the maximum VLP amplitudes and their decay. All signals are 10- to 12 mHz bandpass filtered. (D) 
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Vertical-component spectrogram from DK.SCO (2.6° away), showing the >9 day-long duration of the VLP signal (white 
arrow). (E) Amplitude spectrum of the simulated seiche time series at the landslide impact in the fjord (Fig. 4E). 
Fourth, the simulated free seiche oscillation shows a decay similar to that of the VLP signal. The seiche has a non-
exponential decay, starting at a higher decay rate of Q ~ 500, and over a few hours, gradually transitions to a 
slower decay of Q ~ 3000 (Fig. 4E), matching very closely the decay of the VLP signal (Fig. 5C). Such a slowly 
dissipating seiche is predicted by two different modeling approaches, which are complementary and independent 
in terms of the physical processes involved and the numerical methods used. From our tsunami simulation with a 
fine grid spacing (i.e., 3 m, Manning 0.03), we use the near-landslide time series of the seiche (Fig. 4E) to generate 
a source-time function as input to the global seismic waveform modeling (29). The amplitudes, radiation pattern, 
and signal envelopes of the resulting synthetic seismograms are shown in Fig. 5C together with the recorded 
waveforms. The good match between synthetics and recordings corroborates the free seiche as the source of the 
VLP signal. 

The freely decaying seiche oscillation in Dickson Fjord 
Although a real-time conductivity, temperature, and depth (CTD) sensor (29) continuously measures water levels 
in the western part of Dickson Fjord (Figs. 1C & 5B), its telemetered sampling interval of 15 minutes strongly 
aliases the short-period tsunamis and the ~90 s period seiche (Fig. 4D). In addition, because the primary purpose 
of the CTD sensor located in the inner fjord was to detect calving events on the nearby Hisinger Glacier, our 
tsunami simulation hindcasts a much weaker seiche signal here, compared with the signal in the central segment 
of the fjord at the landslide (Fig. 5B; movie S2). Therefore, the seiche signal recorded by this CTD sensor would 
have fallen to pre-event noise levels after only ~5 hours (Fig. 4D). Thus, it is the distinctive combination of the 
tsunami simulation and seismic observations that corroborate the slowly decaying free seiche mechanism. 

Although a previous study has reported earthquake tsunami-induced seiches persisting for several days in an island 
archipelago in the open ocean (51), the distinctively longer-duration and more slowly decaying VLP seismic 
signals documented in this study are likely related to the combination of a huge tsunami caused by a large fjord-
transverse landslide and a highly confined water body in Dickson Fjord, with parallel shorelines. This effect is 
seen in the tsunami simulation, in which most seiche energy remains confined to the central segment of the fjord, 
with little leakage in- and out-fjord (Fig. 5B); (movie S2). The sharp bend in the inner fjord seems to prevent 
propagation of the resonant wave components to the outer fjord system. This barrier effect is supported by the two 
independent tsunami modeling approaches (text S6 in (29)). By contrast, the considerably more open fjord basins 
of Taan Fjord in Alaska and Karrat Fjord in West Greenland, with fjord-oblique slide directions, will have 
generated only weaker, shorter duration seiches, as recorded in the corresponding near-field (<30 km) seismic 
observations (28, 52). 

Landslide-tsunami-induced seiches must also have caused the five other, smaller VLP events. Two of these events 
were in winter, albeit with a slightly lower Q (table S1). Previous studies show that seiches can still occur in ice-
covered water (53). During winter, the sea ice in the fjord is not completely fused to the coast, with a zone of tidal-
induced fractures along the shore that can accommodate changing sea level with little energy dissipation (54).  

The small deviation between the dominant frequency of the VLP (10.88 mHz) and simulated seiche (11.45 mHz) 
likely arises from uncertainties in the near-shoreline, shallow water bathymetry data (10% bathymetry difference 
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based on analytical solutions); (42). This effect is shown by our tsunami simulation results using coarser 
bathymetry dataset with 125 m spacing (55), which produced a larger, more discrepant dominant frequency of 
12.45 mHz. Remaining minor differences between the decay rates of the observed VLP and synthetic waveforms 
could be attributed to unmodelled dissipation effects such as larger, high-amplitude waves breaking for the first 
cycles of the seiche (Figs. 4E, 5C), which are not well-modeled with our hydrostatic numerical simulation (56) 
non-linear frictional bottom-stress (51, 57, 58), and non-linear water-seismic coupling/transmission along the walls 
of the fjord. Lastly, we propose that an observed tidal modulation of the VLP signal (fig. S14) occurs because a 
wider channel during higher tides outstrips the weaker channel-deepening effect, as per analytic solutions (42), 
thus reducing the fjord’s eigenfrequency and associated VLP frequency. However, uncertain bathymetry close to 
the shoreline at shallow depths again prevents a detailed reconstruction of this effect from our numerical model.  

In this study, we have focused on the monochromatic, dominant frequencies in the observed VLP seismic signal 
and the tsunami simulation. However, away from these dominant frequencies, these signals contain a set of weaker, 
yet discernible spectral peaks (Fig. 5D-E), some of which are predicted overtones, whereas others are more 
enigmatic. For example, we identified a 90°-rotated radiation pattern in the first harmonic overtone compared with 
the fundamental. These weaker signals and their radiation patterns can be explored in more detail to further 
characterize this rare, unprecedented seiche event and to better understand how it transmits seismic energy into 
the solid Earth. 

Conclusions and implications 
Our study underscores intricate interconnections within the Earth system, specifically between the cryosphere, 
hydrosphere, and lithosphere. Our combined analyses, involving multiscale imagery, field data, tsunami 
simulations, and remote seismological data, demonstrate a complex, cascading chain of events in East Greenland. 
This sequence was originally preconditioned by climate change-induced glacial thinning, culminating, on 16 
September 2023, in a large rockslide, which entered the fjord to generate a 200 m high tsunami. The tsunami 
evolved into an initially 7 m high, ~90 s period freely oscillating seiche that decayed slowly owing to the confined 
nature of the fjord and could be detected seismically for 9 days. The large tsunamigenic rock-ice avalanche is an 
extraordinary event itself, the first ever recorded in East Greenland. Yet the 10.88 mHz monochromatic seismic 
signal highlighted an even more globally distinctive and puzzling phenomenon. We conclude that a tsunami 
stabilizing into a seiche is the mechanism driving this seismic signal. This conclusion comes from four key results: 
(1) the near-identical frequencies (10.88 mHz versus 11.45 mHz) of the VLP signal and simulated seiche resulting 
from fjord geometry; (2) a fjord-transverse oscillating single-force source that fits the VLP signal’s radiation 
pattern and its absolute amplitude using a force value theoretically expected for the oscillating water body; (3) the 
similar slow decay (Q~103) of the simulated seiche and observed VLP signal; and (4) the observed tidal modulation 
of the VLP seismic signal. 

Even though seiches, in the presence of a persistent driving force (e.g., strong wind or storm events (57)), have 
previously been shown to have long-duration transient events or even a continuous nature (59), our finding 
provides the first evidence of fluid sloshing, at a relatively short period of 90 s (compared with seiches in open 
oceans), persisting for several days without requiring an external driver. In particular, we have shown how seiches 
in narrow, deep, parallel-sided fjords can generate distinctive long-period, ultra-long-duration seismic signals, 
which we would not have discovered without the combination of open data from global, high-quality, very-
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broadband seismic networks (44, 45). Seismic detection and accurate localization of these events heavily depend 
on signal amplitude, period, and station noise levels.  

The Dickson Fjord event also highlights the need for networks of high-sampling rate sea-level gauge sensors to be 
installed in confined basins across a wide range of geographic settings to directly record such events in the near-
field and in real-time (60). Specifically, such high-rate geophysical and hydrographic data from inside Dickson 
Fjord would be useful to record any further landslides and tsunamis with higher fidelity, to understand the spectral 
richness of the seismic signals, and to detect any background resonances of the fjord. Our seiche simulations rely 
on high-resolution bathymetry models, thus presenting a global challenge for accurate tsunami modeling because 
such data are often missing in remote areas. As our study demonstrates, multidisciplinary collaboration is 
beneficial to unravel these cascading events and their unusual signals, and to map, rapidly assess, and mitigate 
associated destructive landslide-tsunamis. 
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