
HAL Id: insu-04725755
https://insu.hal.science/insu-04725755v1

Submitted on 8 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

An Analytical Solution for Variable Viscosity Flow in
Fractured Media: Development and Comparative

Analysis With Numerical Simulations
Anis Younes, Mohammad Mahdi Rajabi, Fatemeh Rezaiezadeh Roukerd,

Marwan Fahs

To cite this version:
Anis Younes, Mohammad Mahdi Rajabi, Fatemeh Rezaiezadeh Roukerd, Marwan Fahs. An Analytical
Solution for Variable Viscosity Flow in Fractured Media: Development and Comparative Analysis
With Numerical Simulations. Water Resources Research, 2024, 60, �10.1029/2023WR035741�. �insu-
04725755�

https://insu.hal.science/insu-04725755v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


An Analytical Solution for Variable Viscosity Flow in
Fractured Media: Development and Comparative Analysis
With Numerical Simulations
Anis Younes1 , Mohammad Mahdi Rajabi2,3 , Fatemeh Rezaiezadeh Roukerd2, and
Marwan Fahs1

1ITES, University of Strasbourg, CNRS, ENGEES, Strasbourg, France, 2Faculty of Civil and Environmental Engineering,
Tarbiat Modares University, Tehran, Iran, 3Department of Engineering, Institute of Computational Engineering, University
of Luxembourg, Esch Sur Alzette, Luxembourg

Abstract Explicit fracture models often use analytical solutions for predicting flow in fractured media,
usually assuming uniform fluid viscosity for simplicity. This assumption, however, can be inaccurate as fluid
viscosity varies due to factors like composition, temperature, and dissolved substances. Our study, recognizing
these discrepancies, abandons this uniform viscosity assumption for a more realistic model of variable viscosity
flow, focusing on viscous displacement scenarios. This includes instances like injecting viscous surfactants for
hydrocarbon recovery in fractured reservoirs or soil decontamination. This presents a significant challenge,
enhancing our understanding of transport within fractures, mainly governed by advection. Our study centers on
a low‐permeability rock matrix intersected by two fractures with variable apertures. We employ two methods:
an analytical approach with a new solution and numerical simulations with two distinct in‐house codes,
discretizing both the rock matrix and fractures with two‐dimensional triangular elements. The first code uses a
Discontinuous Galerkin finite element method, while the second utilizes a finite‐volume method, allowing a
comprehensive comparison of solutions. Additionally, we investigate parameter identifiability, like fracture
apertures and viscosity ratios, using breakthrough curves from our analytical solution, applying the Markov
Chain Monte Carlo technique.

1. Introduction
Variable viscosity flow (VVF) arises from the interaction of fluids with different viscosities within a porous
medium, resulting in intricate flow patterns (Chou et al., 2015; Yih, 1961). These variations in viscosity can arise
from compositional differences, temperature gradients, or the presence of dissolved substances (Anima-
saun, 2015). A comprehensive understanding of VVF in porous media is of utmost importance in numerous
applications, including groundwater contamination analysis, enhanced oil recovery, geothermal system simula-
tions, and subsurface storage (Kim, 2014; Prasad et al., 2011; Strack, 2019; Zidane, 2023).

Numerical models developed to simulate VVF in porous media incorporate various mathematical formulations,
including the Navier‐Stokes equations, Darcy's law, and the continuity equation. These formulations often
include additional terms to account for the spatial variation of fluid viscosity in the Navier‐Stokes equations and
Darcy's law (Badea et al., 2010), or through the density term in the continuity equation (Jayanthi &
Kumari, 2007). Numerical modeling techniques, such as finite difference (Sabet et al., 2018), finite element
(Caucao et al., 2017; Sabet et al., 2018), and finite volume (Schmid et al., 2013) methods, have been extensively
utilized to solve the governing equations of VVF. Through numerical simulations, researchers have investigated
the influence of viscosity variations on flow patterns (Reddy & Reddy, 2013; Shankar et al., 2017), pressure
distribution (Zaytoon & Hamdan, 2021), and velocity profiles (Agrawal et al., 2020) within porous media.
Furthermore, studies have examined the effects of various parameters, such as temperature, chemical reactions,
and composition changes, on the behavior of variable viscosity fluids in porous media (Ellahi & Afzal, 2009; Graf
& Boufadel, 2011; Kandasamy and Hashim, 2008).

Analytical models have also been developed to provide insights into the fundamental aspects of VVF in porous
media (Ananthaswamy & Uma Maheswari, 2015; Angot, 2021; Ellahi & Afzal, 2009; Hayek, 2019). These
analytical solutions often focus on simplified scenarios and idealized geometries to derive mathematical ex-
pressions that describe the flow behavior. These models can offer analytical relationships between variables such
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as pressure, velocity, and viscosity (Al‐Khafajy, 2016; Choudhary et al., 2023; Ellahi & Afzal, 2009; Suk, 2017),
enabling researchers to gain a deeper understanding of the underlying mechanisms governing VVF. Furthermore,
these analytical approaches are valuable in validating and benchmarking numerical simulations (Vanderborght
et al., 2005), and provide approximate solutions in cases where complex numerical simulations are not feasible or
necessary (Baigereyev et al., 2021).

VVF processes have been largely investigated in unfractured domains (Zidane, 2023; Graf & Therrien, 2007;
Shafabakhsh et al., 2021). Past studies have examined the behavior of VVF in fractured domains with respect to
CO2 storage (Kim et al., 2019; Raad &Hassanzadeh, 2018; Shafabakhsh et al., 2021;Wang et al., 2022), saltwater
intrusion (Grillo et al., 2010; Hosseini et al., 2020; Koohbor et al., 2020; Sebben et al., 2015; Werner et al., 2013),
nuclear waste disposal (Follin & Stigsson, 2014), thermal convection (Gruais & Poliševski, 2021; Mezon
et al., 2018), and oil and gas production (Shen et al., 2016).

The existing body of research primarily revolves around numerical modeling approaches to study VVF in
fractured media. Although certain analytical models for flow and transport in fractured media have been proposed
(such as the Generalized Integral Transform Technique (GITT), discrete fracture networks (DFNs), and stochastic
continuum (SC)) (Ahmed et al., 2019; Cotta et al., 2020), it is noteworthy that the development of analytical
solutions specifically targeting VVF in fractured media has received very limited attention. Therefore, the
objective of this study is to develop a novel analytical solution that considers VVF in porous media with explicitly
defined fractures. In doing so, our goal is to address the existing research gap and contribute to advancing the
understanding of VVF. In addition, we aim to establish a benchmark solution that can be utilized for validating
numerical models while providing efficient and approximate solutions to expedite VVF simulations.

The remainder of this paper is organized as follows. In the subsequent section, a review of related work on the
development of analytical models for flow and transport in fractured media is presented. To establish a solid
theoretical framework, Section 3 includes a review of the governing equations that describe VVF in fractures. The
test case, assumptions, and development of the benchmark analytical solution are explained in Section 4. The
numerical model employed to simulate the same test case is elaborated in Section 5. Section 6 presents and
discusses the results obtained from a comparison between analytical and numerical simulations. Section 7
concludes the study and reviews the main findings.

2. Related Work
Flow and transport modeling in fractured media can be approached using either an implicit or explicit repre-
sentation of fractures (Berre et al., 2019). In the implicit approach, fractures are accounted for using single or
multi‐continuummodels. In a single continuummodel, the equivalent permeability of a porous medium considers
the properties of the fractures and fracture network (Durlofsky, 1991; Liu et al., 2016). By contrast, multi‐
continuum models utilize two or more superimposed media with distinct flow and/or transport equations (Fahs
et al., 2014; Jourde et al., 2002; Kordilla et al., 2012). Alternatively, the explicit approach adopts an explicit
representation of fractures in the modeling process. This approach directly represents individual fractures and
accounts for their geometrical and hydraulic properties in the simulation. Explicit representation allows for a
detailed characterization of the fracture network and captures the impact of individual fractures on flow and
transport behavior (Hirthe & Graf, 2015). The incorporation of explicit fracture representation fosters more
accurate modeling, encapsulating the behavior of fluid flow affected by both the characteristics of fractures and
variations in fluid viscosity (Huang et al., 2022).

Examples of analytical flow and transport models that rely on the explicit representation of fractures include Tang
et al. (1981), Wu et al. (2004), Xing et al. (2017), O'Malley et al. (2018), Cotta et al. (2020), and Hyman
et al. (2022). The mathematical framework for modeling flow and transport in fractured media is generally
provided by a combination of equations from fluid dynamics (e.g., Darcy's law and the continuity equation), mass
transport (i.e., advection‐dispersion equation), and if relevant, heat transfer, as well as equations describing the
specific properties of the porous media and fractures (Gao & Ghassemi, 2020; Hyman et al., 2022; Khoei
et al., 2023). The latter describes the hydraulic and mechanical properties of fractures, such as their aperture,
permeability and stiffness, and may involve empirical or theoretical relations (Wang et al., 2019).

When creating an analytical model that includes fractures, several simplifying assumptions are commonly
adopted to make the model more manageable, albeit at the risk of introducing certain inaccuracies or errors. These
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assumptions are: (a) fractures are modeled as flat, reduced‐dimensional entities, disregarding any curvature or
unevenness in three dimensions (Hyman et al., 2022); (b) it's assumed that each fracture maintains a consistent
width and transmissivity (Hirthe & Graf, 2015); (c) the model overlooks the potential impacts of diffusion
through the surrounding rock or adsorption processes; and (d) The flow of fluid within each fracture is considered
to be smooth and evenly distributed (Fang & Zhu, 2018). It's important to point out that in the analytical solution
for a single fracture proposed by Tang et al. (1981), which was later utilized by Graf and Simmons (2009), matrix
diffusion was indeed considered. Previous analytical solutions typically concentrated on specific fracture setups.
For instance, Zhang and Ayala (2019) developed solutions for a single fracture with changing viscosity, while
solutions for flow through parallel fractures were addressed by Zhou andWang (2023), and Toller (2022) focused
on intersecting fractures.

The uniform fluid viscosity assumption is commonly applied in modeling flow through porous and fractured
media, as it simplifies the mathematical formulation and solution of the problem (Baigereyev et al., 2021; Berre
et al., 2019). However, fluid viscosity can actually vary due to different factors (Reddy & Reddy, 2013). VVF is
significant in some applications, such as in the injection of viscous surfactants for enhanced hydrocarbon recovery
in fractured reservoirs or for soil decontamination. Neglecting viscosity variations can lead to significant errors in
model predictions (Hasona et al., 2018). To enhance the accuracy of our models and to better represent real‐world
flow and transport in fractured media, this study aims to move beyond the usual assumption of uniform viscosity.
This shift increases the complexity of our mathematical model as fluid properties now vary with space and time,
representing a substantial departure from traditional models where viscosity is considered a constant.

3. Theoretical Background
In this section, the equations governing VVF in fractures are discussed. For simplicity, the flow and transport are
considered for a horizontal fracture network. The flow of fluids with variable viscosity in fracture networks can be
described by the steady‐state mass conservation equation and Darcy's law, respectively (Simacek &
Advani, 2003):

∇.q = 0, (1)

q = −
k
μ

∇P, (2)

where P is the pressure [Pa], q is the Darcy velocity [LT− 1], μ is the fluid dynamic viscosity [ML− 1T− 1], k is the
permeability of the fracture [L2], and ∇ represents the gradient operator. The mixing process of dispersion and
diffusion is often disregarded within fractures, based on several assumptions: first, the relatively short length of
the fractures; second, the absence of soil filling these fractures; and third, the relatively high velocity of fluid flow
inside these fractures. Hence, the transport of contaminants can be assumed to be governed only by advection as
follows:

∂C
∂t
+ V∇C = 0, (3)

where V = q/θ is the fluid velocity [LT− 1], θ is the porosity [‐] and C is the nondimensional relative concentration
[‐]. Equation 3 includes a time‐dependent term to capture the transient dynamics of contaminant transport,
enabling the analysis of scenarios where the contaminant is introduced into the system at a specific point in time.

The coupling between flow and transport equations occurs through density and viscosity relationships that are
dependent on concentration (Ackerer et al., 1999). Considering fractures as open empty channels without a porous
medium (θ= 1), the permeability of the fractures can be approximated based on the aperture of the fracture (e) [L]
(Adler et al., 2013):

k =
e2

12
, (4)

which is often referred to as the cubic law (Witherspoon et al., 1980).
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4. Developing the Analytical Solution
This section offers a summary of the case under examination, detailing the essential parameters, boundary
conditions, and other pertinent information. Following sections delve into analytical solutions for flow modeling
in this test scenario, considering both uniform and variable viscosities of the fluids being injected and displaced.

4.1. Description of the Test Case

We examine a rock matrix intersected by two saturated fractures, each of length L, but with differing thicknesses,
which are joined at their ends, as depicted in Figure 1a. A viscous fluid is injected at the upstream node at a fixed
flow rate. The initial fluid within the fractures is displaced by the injected fluid, exiting through the downstream
node. This scenario is converted into a synthetic test case, illustrated in Figure 1b, featuring a domain with a
rectangular shape measuring 10 cm in length and 50 cm in width. The domain consists of a rock matrix char-
acterized by an extremely low permeability km which is considered inactive in the context of fluid dynamics. This
means that the flow of fluids through this part of the domain is negligible due to the minimal permeability
characteristics of the matrix.

Within this domain, there are two parallel fractures of different apertures that cross the central zone from top to
bottom. The first fracture is located at x = 4 cm and has an aperture of e1, whereas the second fracture, situated at
x = 6 cm, has a smaller aperture of e2. The domain is initially free of contaminant. The boundaries of the domain
are impermeable, except for the injection point at the top, located at x = 5 cm and y = 50 cm, where continuous
injection introduces a fluid with a normalized concentration Cinj = 1 at a specified inlet flux Q. The injected and
displaced fluids exit the system through the outlet orifice at the bottom, positioned at x = 5 cm and y = 0. At the
outlet, a Dirichlet boundary condition with zero pressure is applied. The injected fluid has a viscosity of μ1,
whereas the displaced fluid has a viscosity of μ0. It is assumed that the two fluids do not mix inside the fractures
(dispersion is neglected) and mixing between fluids occurs only in the output node. Notably, the viscosity contrast
can be greater than the permeability contrast if the injected fluid is significantly more viscous than the displaced
fluid.

During subsequent analysis, an analytical solution is formulated for flow and transport scenarios. Initially, the
analysis focuses on a tracer case, where fluids with identical viscosities are injected and displaced. Subsequently,
the analysis explores the scenario of viscous displacement, where the injected fluid possesses significantly higher
viscosity than the displaced fluid. In terms of transport within fractures, the influence is attributed to advection
processes, whereas the impact of diffusion processes within fractures is disregarded.

4.2. Analytical Solution for Uniform Viscosity of Injected and Displaced Fluids

Initially, an analytical solution is developed for the scenario where the fluids that are injected and displaced have
the same viscosity. Noting that the total water flux Q [L2T− 1] is the sum of the flux through the first and second

Figure 1. Conceptual framework of the test case and 2D computational mesh.
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fractures (denoted by Q1 and Q2 respectively), the mass conservation equation for the fluid can be expressed as
follows:

Q = Q1 + Q2 = e1V1 + e2V2, (5)

where Vi=Qi/ei is the fluid velocity [LT
− 1] inside the fracture i= 1, 2. The mass conservation Equation 1, written

for the fracture i with a constant aperture ei and filled by a fluid of constant viscosity μ0, implies that the pressure
has a linear variation along each fracture. Assuming the pressure difference between the entry and outlet
ΔP=Pent‐Pout [Pa], Equation 2 gives:

ΔP
μ0L

=
Q1
e1k1

=
Q2
e2k2

, (6)

Using Equation 5 and assuming that δ = e2/e1, we obtain:

V1 =
Q

e1 (1 + δ3)
, (7)

V2 =
Q

e2 (1 + δ‐3)
,

The fluid velocities V1 and V2 remain constant over time. The pressure remains steady over time and exhibits a
linear variation along the x‐axis, starting from Pent at x = 0 and transitioning to Pout at x = L. Assuming Pout = 0,
the input pressure Pent can be calculated using Equation 6 as follows:

Pent =
Qμ0L

e1k1 (1 + δ3)
, (8)

The advection Equation 3 implies that the concentration C is constant along the characteristic x(t) = X( t; x̃, t̃)
passing through the point ( x̃, t̃) and determined by the following system of equations:

⎧⎨

⎩

dx(t)/dt = V(x(t),t),

x( t̃) = x̃,
(9)

Which implies that C (x,t) = C (0,t*) where (x,t) backtracks to (0,t*). Thus, for a continuous injection with a
constant input concentration Cinj in a domain initially free of contaminant, the concentration in the fracture is
either C (x,t) = 0 if (t*<0) or C (x,t) = Cinj if (t*≥0).

The mass conservation of the contaminant at the outlet reflects the ideal mixing of the fluids arriving from F1
and F2:

QCL(t) = Q1C1(L,t) + Q2C2(L,t), (10)

where CL is the outflow concentration, C1 (L,t) and C2 (L,t) denote the concentrations at the end of the first and
second fractures, respectively, each with a length of L. Hence, substituting Equation 7 into Equation 10 gives the
outflow concentration:

CL(t) =
C1(L,t)
(1 + δ3)

+
C2(L,t)
(1 + δ‐3)

, (11)

The breakthrough curve (BTC) illustrates the arrival of a rapid front from fracture 1 (F1) at the outlet at t1 = e1
(1 + δ3) (L/Q) followed by a slower front from fracture 2 (F2) at t2 = e2 (1 + δ− 3) (L/Q). Before t1, the outlet
concentration is zero, while it becomes one after t2. Between t1 and t2, the fluid exiting F1 has a concentration of 1,
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while the fluid exiting F2 has a concentration of zero. The resulting outlet
concentration is determined by the mixing of these two fluids, as follows:

CL(t)t1 < t< t2 =
1

(1 + δ3)
, (12)

4.3. Analytical Solution for Different Viscosity of Injected and Displaced
Fluids

In situations where the viscosities of the injected and displaced fluids are
different, the flow rates within the fractures change over time, resulting in
three distinct phases during the infiltration process. In the first phase, the
leading edge of the injected fluid hasn't reached the outlet in either of the
fractures, a milestone that's expected at time t1. In the second phase, the
injected fluid in F1 arrives at the outlet, but it hasn't yet reached the outlet in
F2, an event anticipated at time t2. Lastly, in the final phase, both fractures are
fully saturated with the contaminant. The following sections will detail the
analytical solutions for each of these phases separately.

4.3.1. The Initial Flow Regime (t = 0)

At the onset, both fractures are occupied by the initial fluid, which is free of
contaminants and has a viscosity denoted as μ0. The initial velocities in this
scenario (V1 (0) and V2 (0)), similar to those in the tracer case, are determined
by Equation 7.

4.3.2. The Flow Regime During the First Phase (0 < t ≤ t1)

In the first phase, fracture i, which is L in length, contains the injected fluid
with a viscosity of μ1 in its segment Xi(t) and the displaced fluid, having a
viscosity of μ0, in the remaining segment (L‐Xi(t)). This configuration is
illustrated in Figure 2.

We define P∗
i as the pressure at the boundary where the injected and displaced fluids meet within fracture i.

Consequently, integrating conservation Equation 1 with Darcy's Equation 2 reveals that the pressure profile is
linear in the first segment (0 ≤ x ≤ Xi(t)) of the fracture, which is filled with the injected fluid, and similarly linear
in the latter segment (Xi(t) ≤ x ≤ L), occupied by the displaced fluid. The continuity of flux across these two
segments within fracture i is expressed as follows:

Qi(t) = eiK1i
Pent‐P∗

i
Xi(t)

= eiK2i
P∗
i ‐Pout

(L‐Xi(t))
, (13)

with the motilities K1i =
ki
μ1
= (ei)2
12μ1
and K2i =

ki
μ0
= (ei)2
12μ0
.

Detailed calculations presented in Appendix A yield the position of the interface in F1, as detailed in
Equation A14:

X1(t) = ‐
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ12t2 + 2λ
1
1t + a02

√

‐a1t + a0, (14)

Therefore, the fluid velocity in F1 is:

V1(t) =
dX1(t)
dt

= ‐
λ12t + λ11̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ12t2 + 2λ
1
1t + a02

√ ‐a1, (15)

The interface position in F2 is given by combining Equation 14 and Equation A5:

Figure 2. Schematic of the flow regime during the first phase.
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X2(t) =
Q
e2
t + δ‐1(

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ12t2 + 2λ
1
1t + a02

√

+ a1t‐a0), (16)

The fluid velocity in F2 is obtained from Equation 5:

V2(t) =
Q
e2
‐
V1(t)
δ

=
Q
e2
+
1
δ

⎛

⎜
⎜
⎜
⎝

λ12t + λ11̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ12t2 + 2λ
1
1t + a02

√ + a1

⎞

⎟
⎟
⎟
⎠
, (17)

The time t1 when the contaminant in F1 reaches the outlet (X1 (t1) = L) is obtained by solving the following
equation:

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ12t12 + 2λ
1
1 t1 + a02

√

+ a1t1‐a0 + L = 0, (18)

At this point in time, the position of the front in the two vertical fractures X1(t) and X2(t) are respectively given by
Equation 14 and Equation 16 and the velocities V1(t) and V2(t) inside the fractures are respectively obtained from
Equation 15 and Equation 17.

Denoting X2 (t1) = X2∗, the position of the contaminant front in F2 at the end of the first phase (t = t1 ) (i.e., when
the contaminant in F1 reaches the outlet). Using Equations 16 and 18, we obtain:

X2∗ =
Q
e2
t1‐
L
δ
, (19)

At t = t1, the velocity in the two fractures is:

V1 (t1) =
(δ4‐1) a12t1 + a1 (b0‐L)

a1t1‐a0 + L
, (20)

V2 (t1) =
Q
e2
‐
(δ4‐1) a12t1 + a1 (b0‐L)

δ(a1t1‐a0 + L)
, (21)

Contrary to the tracer test case, the pressure does not remain constant over time. To determine the pressure
distribution inside F1 (or F2) at a specific time t, the following steps are undertaken: (a) The interface position
X1(t) (or X2(t)) is computed using Equation 14 (or Equation 16). (b) The velocity V1(t) (or V2(t)) is calculated
based on Equation 15 (or Equation 17). (c) Assuming Pout = 0, the input pressure Pent is determined using
Equation A2. (d) The interface pressure P∗

1 (or P
∗
2 ) is derived from Equation A1. Thus, at time t, the pressure

within fracture i diminishes linearly in the initial segment (0 ≤ x ≤ Xi(t)), ranging from Pent at x = 0 to P∗
i at

x= Xi(t). Subsequently, in the second segment (Xi(t)≤ x≤ L), it continues to decrease linearly from P∗
i at x= Xi(t)

to Pout = 0 at (x = L).

In this initial phase, since neither contaminant front has reached the exit point, the outlet concentration is
consequently as follows:

Cout(t)|t≤ t1 = 0, (22)

4.3.3. The Flow Regime During the Second Phase (t1 < t ≤ t2)

During the second phase, the contaminant from F1 has arrived at the outlet, while in F2, it has yet to reach the
outlet, a situation assumed to occur at t= t2. Under these circumstances, Equation 13, applicable to both fractures,
is expressed as follows:

V1(t) =
K11
L
(Pent‐Pout), (23)
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V2(t) =
K12K

2
2

(K12 (L‐X2(t)) + K22X2(t) )
(Pent‐Pout),

As for the first phase, detailed calculations given in Appendix B (see Equation B8) yield:

X2(t) =
1

(1‐β)
(

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2δ2
Q
e1
L(1‐β) (t‐t1) + ( (1‐β)X2∗ + βL + δ3L)2

√

‐βL‐δ3L), (24)

The velocity V2(t) is calculated as follows:

V2(t) =
dX2(t)
dt

=
δ2 Qe1L̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2δ2 Qe1L(1‐β) (t‐t1) + ( (1‐β)X2∗ + βL + δ3L)2
√ , (25)

The velocity in F1 varies with time and is obtained by employing Equation 5 as follows:

V1(t) =
Q
e1

⎛

⎜
⎜
⎜
⎜
⎝
1‐

δ3L
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2δ2 Qe1L(1‐β) (t‐t1) + ( (1‐β)X2∗ + βL + δ3L)2
√

⎞

⎟
⎟
⎟
⎟
⎠
, (26)

The time t2 when the contaminant in F2 reaches the outlet (X2 (t2) = L) is estimated by:

t2 = t1 +
(1 + δ3)2L2‐( (1‐β)X2∗ + βL + δ3L)2

2δ2 Qe1L(1‐β)
, (27)

In this second phase, the pressure distribution at a given time t in F1 linearly decreases from Pent at (x = 0) to
Pout = 0 at (x = L). The pressure Pent changes over time, and its value at a specific time t can be determined by
applying Equations 26 and 23. In the first segment (0 ≤ x ≤ Xi(t)) of F2, which is filled with the injected fluid, the
pressure drops linearly from Pent at (x = 0) to P∗

2 at (x = X2(t)). The interface position X2(t) is calculated using
Equation 24, and the pressure at this interface, P∗

2 , is derived from Equation 13. Following this, in the latter
segment (Xi(t) ≤ x ≤ L) of F2, the pressure at time t diminishes from P∗

2 at (x = X2(t)) to Pout = 0 at (x = L).

During the second phase, the fluid leaving F1 has a concentration of 1, whereas the fluid leaving F2 has a zero
concentration, the mixing of both fluids creates an outlet concentration that varies with time:

Cout(t)|t1 ≤ t≤ t2 =
e1V1(t)
Q

= 1‐
δ3L

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2δ2 Qe1L(1‐β) (t‐t1) + ( (1‐β)X2∗ + βL + δ3L)2
√ , (28)

4.3.4. The Flow Regime During the Third Phase (t ≥ t2)

In this third phase, both fractures are filled by the contaminant. In this case, Equation 13 becomes:

V2(t)
V1(t)

=
K12
K11

= δ2, (29)

As for the tracer case, we obtain fixed velocities using Equation 7.

In this final phase, the pressure remains constant over time and exhibits a linear variation from Pent at x= 0 to Pout
at x = L. Assuming Pout = 0, the input pressure Pent is higher than for the tracer test case attributable to the
reduction in mobility resulting from the increased viscosity. Pent is calculated using Equation 7 as:
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Pent =
Qμ1L

e1k1 (1 + δ3)
, (30)

Furthermore, the fluid arriving from both fractures has a concentration of 1, as
a consequence, the outlet concentration is:

Cout(t)|t≥ t2 = 1, (31)

5. Numerical Experiments
The test problem was addressed using two different methodologies: an
analytical approach with the solution we formulated, and numerical tech-
niques involving two distinct 2D in‐house codes. The first numerical
approach utilized the advanced Discontinuous Galerkin Finite Element
(DGFE) method, as developed by Younes et al. (2022), which integrates high‐
order time integration strategies through the Method of Lines (MOL). The
second approach employed the Finite Volume (FV) method. Implementing
these methods enabled a thorough comparative analysis of different solution

techniques. In the numerical simulations, the discretization of both the matrix and fracture continua was achieved
using triangular elements on an unstructured mesh. This mesh was refined around the fractures to account for their
narrow aperture, comprising a total of 12,998 triangles, as shown in Figure 1. The fracture aperture ratio is set at
δ = 0.5, reflecting the relative size of the aperture, and the viscosity ratio is fixed at β = 0.138, indicating the
comparative viscosity between the injected and displaced fluids. Additional input parameters are listed in Table 1.

6. Results and Discussion
In the subsequent subsections, we present the analytical solutions formulated for the specific problem being
examined. These solutions are then compared with numerical solutions, highlighting the agreements and dif-
ferences, as well as discussing the potential strengths and weaknesses of each method. Moreover, we concentrate
on analyzing the BTC data to discern and estimate the pertinent parameters of the system under investigation.

6.1. Analytical Solutions

For the tracer test case, the analytical solution (Equations 7–12) yield fixed values V1 = 4.44 × 10
− 4 m/s,

V2 = 1.11 × 10
− 4 m/s, t1 = 1,170 s, t2 = 4,680 s and CL(t)|t1 ≤ t≤ t2 = 0.889. For the viscous test case, Equation 18

yields t1 = 1,266.93 s indicating that the fluid in F1 experiences a delay, arriving approximately 100 s later at the
outlet compared to the tracer test case. To determine the arrival time of the injected fluid in F2 at the outlet,
Equation 27 is solved, resulting in t2 = 3,334.88 s which signifies that the fluid in F2 moves significantly faster,
arriving around 1,300 s earlier at the outlet compared to the tracer test case. The analytical expressions for the
velocity in the first fracture V1(t) are given by Equation 15 for the first phase (t ≤ t1), Equation 26 for the second
phase (t1≤ t≤ t2), and Equation 29 for the third phase (t2≤ t). Similarly, the analytical expressions for the velocity
in the second fracture are provided by Equation 17, Equation 25, and Equation 29 for the three successive phases,
respectively.

The pressure evolution at the middle of F1 and F2 are plotted in Figure 3 for the tracer and the viscous test cases.
For the tracer test case, the same mid‐fracture pressure is observed in F1 and F2. The mid‐fracture pressure is
constant during time and corresponds to 12Pent where the pressure at the input, calculated using Equation 8, yields
Pent= 0.69 [Pa]. For the viscous test case, the mid‐fracture F1 has a very small pressure decrease until it is reached
by the injected fluid (Figure 3).

Subsequently, the pressure rises markedly, following an almost linear trajectory, up until t1, at which point F1
becomes completely occupied by the injected fluid. Following this, the pressure at the midpoint of fracture F1
shows only a slight change until t2, the point at which both F1 and F2 are fully occupied by the injected fluid.
Conversely, at the outset, the pressure at the midpoint of fracture F2 climbs moderately until the injected fluid
reaches this midpoint. The pressure then experiences a notable rise until t2. Ultimately, once both fractures are

Table 1
Flow and Transport Parameters for the Test Case Problem

Parameters Value

Rock matrix permeability km = 10
− 15 m2

Storage coefficient S = 10− 10m− 1

Aperture of the left fracture e1 = 2 × 10
− 3m

Aperture of the right fracture e2 = 10
− 3m

Length of the fractures L = 0.52 m

Injected flow rate Q = 10− 6 m2
/s

Dispersivities αL = αT = 0m

Molecular diffusion Dm = 0 m2/s
Density of the displaced fluid ρ0 = 1000 Kg/m3
Viscosity of the displaced fluid μ0 = 0.001 Kg/m.s
Density of the injected fluid ρ1 = 1000 Kg/m3
Density of the injected fluid μ1 = 0.00726 Kg/m.s
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entirely filled with the injected fluid, the pressures at their midpoints
converge, stabilizing at a constant value equal to 12Pent, where Pent is deter-
mined using Equation 30 and is found to be 5.03 [Pa]. Therefore, the final
entry pressure in the case of higher viscosity is 7.26 times greater than that in
the tracer case, reflecting the viscosity ratio between the injected and dis-
placed fluids.

6.2. Comparison With Numerical Solutions

Figures 4a and 4b display the changes in velocity within fractures F1 and F2,
respectively, as simulated through both numerical and analytical methods. At
the experiment's onset, the fluid velocity in the wider fracture F1 is four times
faster compared to the narrower fracture F2. This difference is attributed to
the fact that F1's aperture is double the size of F2's. Consequently, the
permeability (and similarly, the mobility) of F1 is quadruple that of F2,
corresponding to the square of the aperture ratio.

When the viscous fluid progresses, the velocity in F1 gradually decreases,
while the velocity in F2 concurrently increases. In fact, as X1(t) increases, the

equivalent mobility in F1, Keq1 =
e21L

μ1X1(t)+μ0 (L− X1(t) )
, decreases which induces a

reduction of the velocity inside F1. Consequently, the arrival time of the injected fluid in F1 at the outlet is
t1= 1,266.93 s which is slower than for the tracer test case. At the same time, because of the mass conservation of
the total flow rate, an increase of the velocity in F2 is observed. Once, F1 is entirely filled by the injected fluid, it's
equivalent mobility becomes constant. When the injected fluid progresses in F2, the equivalent permeability Keq2
decreases which induces a reduction of the velocity inside F2 and by compensation, the velocity in F1 begins to
rise, until the injected fluid in F2 reaches the outlet at the time t2 = 3,334.88 s. Subsequently, both fractures are
filled with the same fluid (the injected fluid), resulting in the velocity in F1 once again being four times higher than
that in F2. A remarkable agreement is observed between the DGFE and the analytical solutions (Figure 4).
However, a slight discrepancy arises when comparing the solution derived from a numerical model employing the
FV method with the analytical solution.

Note that during the first phase (t ≤ t1), the amount of reduction of the flow rate inside F1, causing a decrease of
V1, produces, by compensation, the same amount of flow rate rise in F2, which induces a more significant enhance
of V2 because of the difference of the aperture of the fractures. Consequently, when compared to the tracer test
case, the advance of t2 is much more significant than the delay of t1. This is an important feature of injecting
viscous fluids into fractured media, as they accelerate the crossing of small‐aperture fractures. This feature is
beneficial, for example, when injecting viscous surfactants to improve hydrocarbon recovery in a fractured
reservoir or for decontamination of fractured soils.

Figure 5 displays the analytical and numerical breakthrough curves. For the viscous case represented in Figure 5b,
the outlet concentration initially remains at zero until the injected fluid from F1 reaches the outlet at the time
t1 = 1,266.93 s. At this point, a distinct and sharp front is observed. Similarly, a second sharp front is observed
when the injected fluid from F2 reaches the outlet at the time t2 = 3,334.88 s. Following these breakthrough
events, the normalized outlet concentration reaches a value of one. However, during the intermediate period
between t1 and t2, the outlet concentration experiences variations. This is due to the mixing of the fluid from F1,
which has a concentration of 1 and a flux of e1V1(t) , with the fluid from F2, which has a concentration of 0 and a
flux of e2V2(t) . As a result, the outlet concentration is not constant between t1 and t2 because the velocity in the
fractures changes over time. This variation in concentration explains why the plateau observed in the tracer test
case, as depicted in Figure 5a between the two sharp fronts is not observed in the viscous case represented in
Figure 5b. Because of the negligence of the diffusion process, the analytical solution in Figure 5 exhibits sharp
arriving fronts for both tracer and viscous cases. These fronts are very well reproduced by the DGFE numerical
model, while the FV model fails to adequately reproduce these fronts and adds artificial numerical diffusion
smearing the sharp BTCs.

Figure 3. Mid‐fracture pressure evolution in F1 and F2 for the tracer and the
viscous test cases.
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6.3. Parameter Identifiability From the Breakthrough Curve

BTCs reflect flow behavior and exhibit sensitivity to various model param-
eters, such as fracture aperture, fluid viscosity, and transport properties.
Consequently, BTCs have demonstrated their utility in estimating flow pa-
rameters within porous media (Hoffmann et al., 2022; Tran and Jha, 2020)
and characterizing fracture properties (Hyman & Dentz, 2021; Srinivasan
et al., 2019). In this sub‐section, our focus lies in assessing the identifiability
of the following parameters from BTCs: the aperture of F1 (e1), the aperture
of F2 (e2), and the viscosity ratio between the injected and displaced fluids
(η = μ1/μ0). We aim to accomplish this using noisy measurements of the
BTCs while assuming equal fluid densities for the injected and displaced
fluids.

The vector of unknown parameters is represented by ξ, and we perform
parameter estimation using a Bayesian approach by combining prior
parameter information with the observed BTCs. This process simulates many
samples with the developed analytical model and allows us to determine the
posterior probability distribution functions (PDFs) of the model parameters.
To accomplish this, we rely on the widely utilized Markov chain Monte Carlo
technique (MCMC), which has been successfully employed by several au-
thors in the field of Hydrogeology (e.g., Du et al., 2022; Linde et al., 2017;
Rajabi & Ataie‐Ashtiani, 2016; Wang et al., 2019; Wei et al., 2023; Younes
et al., 2016). MCMC is a Bayesian inference method where parameters are
treated as random variables. MCMC generates random sequences of
parameter sets that gradually converge toward the desired target distribution.
By obtaining statistical measures such as the mean and standard deviation
from these distributions, we can estimate the mean parameter values and
determine their confidence intervals. This allows us to effectively charac-
terize parameter uncertainty. Applying the Bayes theorem, we express the
posterior density function of the parameters conditioned on the observations
as follows (Turkman et al., 2019):

p( ξ
⃒
⃒ ymes)∝ p( ymes

⃒
⃒ξ) p(ξ), (32)

In which p (ξ|ymes) is the likelihood function measuring how well the model
outputs are in agreement with the observations ymes, and p(ξ) is the prior PDF
of ξ, which encapsulates any prior knowledge about the unknown parameters.
In this study, we assume that the prior distributions for the three unknown

parameters are independent of each other and follow uniform distributions. To account for a wide range of po-
tential parameter values, large prior intervals are chosen for all parameters. We also assume that the measurement
errors are normally distributed and independent from each other. To investigate the identifiability of the pa-
rameters, we consider two scenarios with different levels of measurement errors. The first scenario involves high
measurement errors, where the standard deviation (σe) is equal to 0.05. The second scenario corresponds to
moderate measurement errors, where σe = 0.02. These error levels are chosen specifically for normalized con-
centrations bounded between 0 and 1, which are the range of interest in this study.

Setting the calibration problem in a Bayesian framework yields the following posterior PDF (Turkman
et al., 2019):

p( ξ
⃒
⃒ ymes)∝ σ‐NCe exp(‐

SSC(ξ)
2σ2e

), (33)

where SSC(ξ) =∑
NC
k=1(C

(k)
mes‐C

(k)
mod(ξ))

2 is the sum of the squares of differences between the observed (C(k)mes) and
predicted (C(k)mod) concentrations at the time tk, and Nc is the overall number of observed concentrations. The

Figure 4. Comparison between the velocities obtained through analytical
calculations and those estimated numerically in F1 (a) and F2 (b).
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MCMC sampler generates a new candidate ξi from a proposal distribution q (ξi|ξi− 1) which only depends on the
previously accepted candidate. The new candidate can be accepted or rejected depending on the Hasting ratio αH
(Yildirim, 2012):

αH = min(1,
p( ξi

⃒
⃒ ymes) q( ξi

⃒
⃒ξi‐1)

p( ξi‐1
⃒
⃒ ymes) q( ξi‐1

⃒
⃒ξi)

), (34)

In this work, we use the DREAM(ZS) MCMC sampler, based on the Metropolis‐Hastings algorithm (Vrugt
et al., 2003). This sampler runs multiple different Markov chains in parallel and uses a discrete proposal dis-
tribution to evolve the sampler to the posterior distribution. DREAM(ZS) has excellent performance on complex,
multimodal search problems (Laloy & Vrugt, 2012). The sampler is run with three parallel chains and the results

Figure 5. Comparison of the BTCs obtained through analytical calculations and those estimated numerically for the tracer
(a) and viscous (b) test cases.
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are considered stationary if the chains are not auto‐correlated and if the
Gelman and Rubin (1992) criterion is verified (Rstat≤1.2). The set of pa-
rameters corresponding to the maximum a posteriori (MAP) value is then
defined as (Turkman et al., 2019):

ξMAP = arg max(p( ξ
⃒
⃒ ymes)), (35)

The perturbed observations (ymes) used for model calibration as conditioning
information are illustrated in Figure 6. These observations represent highly
noised measurements, with a standard deviation equal to 0.05. The vector
consists of 120 measurements of the outlet concentration recorded over time.
To accommodate both error measurements σe = 0.02, 0.05, the MCMC
sampler is configured with three parallel chains, each comprising a total of
6,000 runs. In the subsequent analysis, the last 25% of the runs, which
adequately capture the model‐observation fit, are utilized to estimate the joint
posterior distribution.

The MCMC sampler achieves convergence after approximately 3,000 model
runs for both σe values. The estimated mean values and the corresponding
95% Confidence Intervals (CIs) for each parameter are presented in Table 2.
Note that the CI is computed based on the standard deviation, assuming a
Gaussian posterior distribution.

The results demonstrate that the apertures of the two fractures are well estimated for both measurement errors
(σe = 0.05 and σe = 0.02). The 95% CIs associated with the aperture values are small, indicating high confidence
in the estimates. It is noteworthy that as the measurement errors decrease, the uncertainty in the estimated aperture
values also decreases, aligning with expectations. On the other hand, the estimation of the viscosity ratio is
comparatively less accurate than that of the fracture apertures. When confronted with larger measurement errors
(σe = 0.05), the uncertainty associated with the viscosity ratio (η) is 40% larger than that observed with smaller
measurement errors (σe = 0.02).

The MCMC results for the scenario with small measurement errors are presented in Figure 7. The diagonal plots
display the inferred posterior parameter distributions, revealing relative bell‐shaped distributions for all param-
eters. The off‐diagonal scatterplots illustrate the pairwise correlations observed in the MCMC samples. It is worth
noting that there are negligible correlations between most of the parameters. However, a moderate correlation
(r = 0.94) is observed between e2 and η, indicating a relationship between these two parameters.

7. Conclusion
In this study, we formulated a novel analytical solution that accounts for VVF in porous media with explicitly
represented fractures. The domain of interest is a rock matrix with notably low permeability and considered as
inactive, bisected by two fractures with distinct apertures. We analyzed the scenario where the viscosities of the
injected and displaced fluids vary, leading to temporal changes in fluid velocities. This results in three unique
phases during the infiltration process, for which we develop the analytical solution separately. A comparison of
our analytical solution with the DGFE numerical solution indicates a high level of consistency in terms of general
flow behavior, velocity, and BTC. However, discrepancies emerge when comparing our solution with the FV

Figure 6. Noised BTC with a standard deviation of 0.05.

Table 2
Prior Intervals, Estimated Mean Values, and Confidence Intervals (CIs) for the Three Unknown Parameters

Parameter

Prior intervals σe = 0.05 σe = 0.02

Lower bound Upper bound Mean Standard deviation 95% CI Mean Standard deviation 95% CI

e1 [cm] 0.05 1.0 0.2 1.4 10− 3 (0.197–0.203) 0.2 4.2 10− 4 (0.199–0.201)

e2 [cm] 0.05 1.0 0.1 1.6 10− 3 (0.097–0.103) 0.1 8.9 10− 4 (0.098–0.102)

η [‐] 1 10 7.27 1.68 (4–10) 7.57 1.2 (5.2–9.9)
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method. Despite this, our analytical model effectively approximates VVF in fractured rocks while drastically
reducing the computational time relative to numerical models. Moreover, we evaluate the identifiability of pa-
rameters such as fracture apertures and viscosity ratios between injected and displaced fluids. This evaluation,
informed by BTC from our analytical solution, employs the MCMC technique with the DREAM(ZS) sampler. The
apertures of the two fractures are estimated with high confidence for varying measurement errors, with reduced
error correlating with a lower uncertainty in the estimated values. Conversely, viscosity ratio estimation is less
precise than aperture estimation, with larger measurement errors leading to greater uncertainty. This finding
underscores the significance of accurate measurements for minimizing parameter uncertainties.

Appendix A
From Equation 14, the pressure at the interface is:

P∗
i =

K1i
Xi(t)

Pent +
K2i

(L‐Xi(t) )
Pout

(
K1i
Xi(t)

+
K2i

(L‐Xi(t)))
, (A1)

Substituting Equation A1 into Equation 14 gives the velocity Vi(t) as:

Vi(t) =
K1i K

2
i

(K1i (L‐Xi(t)) + K2i Xi(t) )
(Pent‐Pout), (A2)

Writing Equation A2 for i = 1, 2 and denoting K11
K21
=

K12
K22
=

μ0
μ1
= β gives:

V2(t)
V1(t)

= δ2
β(L‐X1(t)) + X1(t)
β(L‐X2(t)) + X2(t)

, (A3)

Figure 7. MCMC solutions using BTC with measurements errors σe = 0.02. The diagonal plots represent the inferred
posterior parameter distributions. The off‐diagonal represents the pairwise correlations between parameters.
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Substituting Equation A3 into Equation 5 gives:

V1(t) =
dX1(t)
dt

=
Q/e1

1 + δ3 (1‐β)X1(t)+βL
(1‐β)X2(t)+βL

, (A4)

Integrating Equation 5 and using the initial conditions X1 (0) = X2 (0) = 0 gives:

e1X1(t) + e2X2(t) = Qt, (A5)

Substituting Equation A5 into Equation A4 gives:

dX1(t)
dt

=
‐δ‐1Q(1‐β)e1

X1(t) + Q2
e1e2

(1‐β) t + β Q
e1
L

(δ3‐δ‐1)(1‐β)X1(t) +
Q(1‐β)
e2

t + βL(1 + δ3)
, (A6)

Which writes:

dX1(t)
dt

= ‐a1
(X1(t) + a1t‐a0)‐a1δ4t + a0‐b0

(X1(t) + a1t‐a0)
, (A7)

where a0 =
(1+δ3)
(δ3‐δ‐1)

βL
(β‐1) , a1 =

Q
(δ4‐1) e1

, and b0 = δβL
(1‐β) . Using the following change of variables:

Y1(t) = X1(t) + a1t‐a0, (A8)

Equation A7 becomes:

dY1(t)
dt

‐a1 = ‐a1
Y1(t)‐a1δ4t + a0 − b0

Y1(t)
, (A9)

which simplifies to:

Y1(t)
dY1(t)
dt

= λ12t + λ11, (A10)

where λ11 = a1 (b0‐a0) and λ12 = δ4a12. The integration of Equation A10 yields:

Y1(t) = ‐
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ12t2 + 2λ
1
1t + λ10

√

, (A11)

where λ10 is a constant. Thus, Equation A8 gives:

X1(t) = ‐
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ12t2 + 2λ
1
1t + λ10

√

‐a1t + a0, (A12)

Considering the initial condition X1 (0) = 0, we obtain:

λ10 = a02, (A13)

and Equation A12 becomes:

X1(t) = ‐
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ12t2 + 2λ
1
1t + a02

√

‐a1t + a0, (A14)
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Appendix B
The velocity equations given in Equation 23 yield:

V2(t)
V1(t)

=
K12K

2
2L

K11 (K
1
2 (L‐X2(t)) + K22X2(t))

, (B1)

Combining Equation B1 with Equation 5 gives:

V2(t) =
Qδ2 Le1

(1‐β)X2(t) + βL + δ3L
, (B2)

Using the change of variables:

Y2(t) = (1‐β)X2(t) + βL + δ3L, (B3)

We obtain:

Y2(t)
dY2(t)
dt

= δ2
Q
e1
L(1‐β), (B4)

The integration of this equation leads to:

Y2(t) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2δ2
Q
e1
L(1‐β) t + cte1

√

, (B5)

which yields:

X2(t) =
1

(1‐β)
(

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2δ2
Q
e1
L(1‐β) t + cte1

√

‐βL‐δ3L), (B6)

where cte1 is obtained using the initial condition X2 (t1) = X2∗ which yields:

cte1 = ( (1‐β)X2∗ + βL + δ3L)2‐2δ2
Q
e1
L(1‐β) t1, (B7)

and finally, we obtain:

X2(t) =
1

(1‐β)
(

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2δ2
Q
e1
L(1‐β) (t‐t1) + ( (1‐β)X2∗ + βL + δ3L)2

√

‐βL‐δ3L). (B8)
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