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Abstract Large ensembles of model simulations are frequently used to reduce the impact of internal
variability when evaluating climate models and assessing climate change induced trends. However, the optimal
number of ensemble members required to distinguish model biases and climate change signals from internal
variability varies across models and metrics. Here we analyze the mean, variance and skewness of precipitation
and sea surface temperature in the eastern equatorial Pacific region often used to describe the El Niño–Southern
Oscillation (ENSO), obtained from large ensembles of Coupled model intercomparison project phase 6 climate
simulations. Leveraging established statistical theory, we develop and assess equations to estimate, a priori, the
ensemble size or simulation length required to limit sampling‐based uncertainties in ENSO statistics to within a
desired tolerance. Our results confirm that the uncertainty of these statistics decreases with the square root of the
time series length and/or ensemble size. Moreover, we demonstrate that uncertainties of these statistics are
generally comparable when computed using either pre‐industrial control or historical runs. This suggests that
pre‐industrial runs can sometimes be used to estimate the expected uncertainty of statistics computed from an
existing historical member or ensemble, and the number of simulation years (run duration and/or ensemble size)
required to adequately characterize the statistic. This advance allows us to use existing simulations (e.g., control
runs that are performed during model development) to design ensembles that can sufficiently limit diagnostic
uncertainties arising from simulated internal variability. These results may well be applicable to variables and
regions beyond ENSO.

Plain Language Summary Earth's climate naturally fluctuates on intraseasonal to interdecadal
timescales, confounding the evaluation of climate models and the detection of trends linked to climate change.
To tackle this challenge, scientists produce ensembles of simulations with identical external forcings (e.g.,
volcanic eruptions, greenhouse gas emissions) but plausibly different initial conditions. In this study, we
analyze how these ensembles can be used to reduce the uncertainty of the simulated climate, to help guide the
design of future ensembles and optimize the use of available computing resources.

1. Introduction
The El Niño–Southern Oscillation (ENSO) is the largest source of interannual climate variability on the planet
(see McPhaden et al., 2020 for a review), affecting the global atmospheric circulation (Taschetto et al., 2020),
severe weather (Goddard & Gershunov, 2020), wildfire activity (Chen et al., 2017), agriculture (Anderson
et al., 2018), fisheries (Bertrand et al., 2020), and economic activity (Cashin et al., 2017). ENSO is characterized
by a recurring climate pattern involving a warming (El Niño) or a cooling (La Niña) of the sea surface temperature
(SST) in the central and eastern tropical Pacific Ocean. The pattern shifts back and forth irregularly every two to
seven years, with SST anomalies (SSTA) typically between 1°C and 3°C (Kestin et al., 1998).

Climate models are a primary tool for improving our understanding of Earth's past, present and future climate.
Knowing how well climate models represent key aspects of the historical climate, and in particular ENSO
variability, is critical for both further model development and to build trust in the model's ability to simulate past
and future climate. Multiple phases of the Coupled Model Intercomparison Project (CMIP; Eyring et al., 2016;
Meehl et al., 2000, 2007; Taylor et al., 2012) have enabled the benchmarking of climate models performance
across development cycles, as well as identifying the relative strengths and weaknesses of each model. ENSO has
been particularly scrutinized from one phase of the project to another (AchutaRao & Sperber, 2006; Bellenger
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et al., 2014; Planton et al., 2021), highlighting, for example, a reduction of mean state biases and an improvement
of the representation of ENSO variability.

Earth's climate naturally fluctuates on intraseasonal to interdecadal timescales (hereafter “internal variability”),
which reduces our ability to detect projected ENSO changes with global warming (e.g., Maher et al., 2018; Ng
et al., 2021; Wittenberg, 2009; Zheng et al., 2018) as well as robustly evaluating model performance (J. Lee
et al., 2021). The use of model ensembles (each ensemble is created by starting simulations using a given model
configuration from different initial conditions) is an established approach to identify the impact of internal
variability on model characteristics and projections (e.g., Deser et al., 2020).

Due to the computational expense of running ensembles, modeling centers contributing to CMIP typically
produce a limited number of ensemble simulations (i.e., fewer than 10 members). However, several studies
indicate that 30 to 50 members may be required to robustly characterize ensemble mean decadal‐scale trends of
SST variance (Maher et al., 2018; Milinski et al., 2020; J. Lee et al., 2021). These 3 papers reached their con-
clusions by analyzing several very large ensembles and randomly selecting members of an ensemble to indicate
how many members are required to obtain a given confidence interval on the ensemble mean. This random
selection‐based method is sophisticated but limited by the existing ensemble. In addition, it is somewhat
complicated for those who simply need to estimate the Required Ensemble Size (RES) for a given expected
uncertainty.

The epoch length used to perform an analysis is of utmost importance. Indeed, Cai et al. (2022) demonstrate that
the lack of consensus about whether ENSO amplitude will increase with climate change in the Intergovernmental
Panel on Climate Change Sixth Assessment Report (IPCC AR6; J.‐Y. Lee et al., 2021) can be explained by the
short 20‐year epoch used. By using 100‐year epochs, Cai et al. (2022) show that ∼80% of the models (only one
member per model is used) indicate an increase of ENSO amplitude, depending on the scenario. Doing so, they
argue that with longer epochs the uncertainty of the statistic decreases. But a systematic approach hasn't been
undertaken yet.

Thompson et al. (2015) proposed that a pre‐industrial control run (piControl) provides a robust estimate of the
simulated internal variability and therefore a single member per model is needed. This approach assumes that the
internal variability is not changing with climate change, and that this single member is close to the center of the
distribution (as the confidence interval is centered on the ensemble mean). Nevertheless, if the internal variability
in piControl and historical runs are similar, one could use the piControl run to estimate a priori the number of
members to compute for the historical run.

In this study, we employ established statistical theory to propose a complementary approach for estimating the
RES for an expected uncertainty. We compare theoretical and empirical results relative to statistical uncertainty
and test how reliable it is to use a piControl run to estimate the simulated internal variability. It follows that,
provided that a long simulation is available, our results deliver new information about the ensemble uncertainty
before the ensemble is generated, enabling those who perform the experiments to estimate a priori the number
simulations to be performed, given a level of accuracy needed for a particular application. We provide equations
to compute the uncertainty of the ensemble mean of a given ensemble (Equation 9) or to estimate the ensemble
size required to reach a given uncertainty of the ensemble mean (Equation 10), without having to compute random
selections. This yields a framework to quantify how the uncertainty of the ensemble mean is affected by the
ensemble size (Section 3.1) and by the epoch length used to compute a statistic (Section 3.2). After comparing the
uncertainty of the ensemble mean in piControl and historical runs (Section 3.3), we provide test cases using our
equations making it possible for others to estimate the ensemble size for their own applications (Section 3.4).

2. Data and Methods
2.1. Model Simulations and Observations

We use piControl and historical runs from the model intercomparison project phase 6 (CMIP6) (Eyring
et al., 2016). The historical runs, which aim to simulate the observed climate, are forced by time‐varying natural
(e.g., orbital parameters, solar irradiance and volcanic aerosols) and anthropogenic (e.g., aerosols and greenhouse
gas emissions, and land use) forcings that are based on observations (e.g., Durack et al., 2018). In the piControl
run, which is designed to simulate the unforced variability arising from processes internal to the climate system,
natural and anthropogenic forcings are fixed to their estimated 1,850 values. We use 59 ensembles from 53
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models for which both historical and piControl runs are available and the piControl run is at least 300 years long
(see Table 1 for the list of ensembles and their size). Monthly means are used for all data sets.

We consider 26 of these ensembles as “large ensembles” (LEs) as they give access to 10 samples or more for both
piControl and historical runs (for more details about members and ensembles see Text S1 in Supporting Infor-
mation S1). The 10 samples threshold enables a good balance between sample size (available number of historical
members and duration of the piControl experiment; see Section 2.2.2 for details about the creation of distribu-
tions) and number of ensembles used in the study. A multi‐model ensemble (MME; hereafter CMIP6‐MME) is
created using the first member of each 59 ensembles.

Table 1
List of Coupled Model Intercomparison Project Phase 6 Ensembles, Their Duration for piControl Run and Size for
Historical Run

Model name Ensemble PI HI Model name Ensemble PI HI

ACCESS‐CM2 i1p1f1 500 10 GFDL‐ESM4 i1p1f1 500 3

ACCESS‐ESM1‐5 i1p1f1 1,000 40 GISS‐E2‐1‐G_p1f1 i1p1f1 851 12

AWI‐CM‐1‐1‐MR i1p1f1 500 5 GISS‐E2‐1‐G_p1f2 i1p1f2 851 11

BCC‐CSM2‐MR i1p1f1 600 3 GISS‐E2‐1‐G_p3f1 i1p3f1 601 9

BCC‐ESM1 i1p1f1 451 3 GISS‐E2‐1‐G_p5f1 i1p5f1 501 9

CAMS‐CSM1‐0 i1p1f1 500 2 GISS‐E2‐1‐H_p1f1 i1p1f1 801 10

CanESM5_p1 i1p1f1 1,000 25 GISS‐E2‐1‐H_p1f2 i1p1f2 451 5

CanESM5_p2 i1p2f1 1,051 40 GISS‐E2‐1‐H_p3f1 i1p3f1 451 5

CanESM5‐1 i1p1f1 501 47 GISS‐E2‐2‐G i1p3f1 351 5

CanESM5‐CanOE i1p2f1 501 3 HadGEM3‐GC31‐LL i1p1f3 1,350 55

CESM2 i1p1f1 1,201 11 HadGEM3‐GC31‐MM i1p1f3 500 4

CESM2‐FV2 i1p1f1 500 3 INM‐CM4‐8 i1p1f1 531 1

CESM2‐WACCM i1p1f1 499 3 INM‐CM5‐0 i1p1f1 1,201 10

CESM2‐WACCM‐FV2 i1p1f1 500 3 IPSL‐CM6A‐LR i1p1f1 2,000 33

CIESM i1p1f1 500 3 MCM‐UA‐1‐0 i1p1f1 500 1

CMCC‐CM2‐SR5 i1p2f1 500 10 MIROC‐ES2H i1p4f2 420 3

CMCC‐ESM2 i1p1f1 500 1 MIROC‐ES2L i1p1f2 500 30

CNRM‐CM6‐1 i1p1f2 500 29 MIROC6 i1p1f1 800 50

CNRM‐CM6‐1‐HR i1p1f2 300 1 MPI‐ESM‐1‐2‐HAM i1p1f1 1,000 3

CNRM‐ESM2‐1 i1p1f2 500 11 MPI‐ESM1‐2‐HR i1p1f1 500 10

E3SM‐1‐0 i1p1f1 500 5 MPI‐ESM1‐2‐LR i1p1f1 1,000 50

E3SM‐2‐0 i1p1f1 500 21 MRI‐ESM2‐0 i1p1f1 701 10

EC‐Earth3 i1p1f1 1,105 18 NESM3 i1p1f1 500 5

EC‐Earth3‐AerChem i1p1f1 501 3 NorCPM1 i1p1f1 1,500 30

EC‐Earth3‐CC i1p1f1 505 10 NorESM2‐LM i1p1f1 501 3

EC‐Earth3‐Veg i1p1f1 500 10 NorESM2‐MM i1p1f1 500 3

EC‐Earth3‐Veg‐LR i1p1f1 501 3 SAM0‐UNICON i1p1f1 700 1

FGOALS‐f3‐L i1p1f1 561 3 TaiESM1 i1p1f1 500 2

FGOALS‐g3 i1p1f1 700 6 UKESM1‐0‐LL i1p1f2 1,880 16

GFDL‐CM4 i1p1f1 500 1

Note. Model ensembles considered as LEs are bolded. The member column indicates the fixed initialization procedures (i),
physical parameterizations (p), and forcings (f) used for the ensemble. If several ensembles are available, the varying
parameter is added to the model's name. The piControl column (PI) indicates the duration of the run, in years. The historical
column (HI) indicates the number of members. Ensembles available as of October 2023. Further information on each model
at https://es‐doc.org/cmip6/.
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Note that we performed a simple quality control procedure: (a) we computed piControl's global mean surface
temperature to verify if the simulated climate is stationary; and (b) we compared the diagnostics (defined in
Section 2.2.1) computed from piControl and the corresponding historical runs to verify if the climate statistics are
similar. Following this quality control, simulations of CAS‐ESM2‐0 and KACE‐1‐0‐G are not used in this study,
and the first 650 years of HadGM3‐GC31‐LL's piControl are also not used (for more details see Text S2 and
Figure S1 in Supporting Information S1).

The epoch 1985–2014 of two observations data sets are used, Global Precipitation Climatology Project Monthly
Analysis Product version 2.3 for precipitation (PR) (GPCPv2.3; Adler et al., 2003) and NOAA Optimum
Interpolation Sea Surface Temperature version 2 for SST (OISSTv2; Reynolds et al., 2002).

2.2. Methodology

2.2.1. Diagnostics

It is common to compute the mean, variance, and skewness of a record to describe respectively our climate's mean
state, variability and asymmetry (e.g., the fact that El Niño events can reach larger amplitudes than La Niña
events). For a record of n time steps, the sample mean (x), variance (σ2) and skewness (g1) can be defined as
follows (e.g., Cramér, 1946):

x =
1
n
∑
n

i=1
xi (1)

σ2 =
1
n
∑
n

i=1
(xi − x)2 (2)

g1 =

1
n ∑

n

i=1
(xi − x)3

(1n ∑
n

i=1
(xi − x)2)

2/3 (3)

Figure 1 illustrates the difficulty of evaluating and ranking models using the observed and modeled 30‐year
(1985–2014) mean, variance, and skewness of PR and SST (interannual anomalies are used for variance, and
skewness) computed over the region Niño3 (hereafter N3; 90–150°W, 5°S–5°N), a key region for ENSO. The
model ensemble from the CMIP Phase 6 (CMIP6) ensemble (59 different ensembles; red boxplots) displays a
large range of values around the observations (horizontal black lines). If we compare the range of the CMIP6
MME to that of the single‐model initial condition ensemble (made of 33 Historical simulations of IPSL‐CM6A‐
LR model; purple boxplots), it is evident that internal variability has a considerable impact on PR skewness
(Figure 1j), as well as SST variance and skewness: the IPSL‐CM6A‐LR ensemble covers 50% or more of the
CMIP6 ensemble (Figures 1h and 1l). In this case, the range of values taken by the IPSL‐CM6A‐LRmodel would
not strongly impact the evaluation of the model as the distance to the observation is large (e.g., Figures 1b, 1d, 1f,
1j, and 1l). However, if the ensembles are not very large, comparing two models in terms of N3 SSTA variance or
skewness may not be conclusive (Figures 1h and 1l). Similarly, only relatively large changes in these statistics
may be robustly detected in climate projections.

The mean (x; Equation 1), variance (σ2; Equation 2) and skewness (g1; Equation 3) of N3 averaged PR and SST
are analyzed. To do so, the domain average is computed, then the time series are analyzed using epoch lengths
ranging from 30 to 150 years (every 15 years, i.e., 30, 45, 60, etc.). Each epoch is analyzed independently, the
linear trend is removed (computed over the given epoch) and, for the variance and skewness, the seasonal cycle is
removed (computed over the given epoch). These calculations are done using the CLIVAR ENSO metrics
package (Planton et al., 2021), executed via the PCMDI Metrics Package framework (Lee et al., 2024).

The N3 region was selected to illustrate the results as it is often used in the literature (e.g., Jin et al., 2020; Yun
et al., 2021) and has a positive skewness for both PRA and SSTA (Figures 1i and 1j). However, the results are
generally true in regions Niño3.4 (120–170°W, 5°S–5°N) and Niño4 (160°E− 150°W, 5°S–5°N) (not shown).
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Additional figures are available on the github webpage of the paper (https://yyplanton.github.io/estimating_
uncertainties_enso/).

2.2.2. Creating piControl and Historical Distributions

For piControl runs, time series (Figure 2a) are split into non‐overlapping epochs of a given epoch length (e.g., 30‐
year and 60‐year; Figures 2b and 2d). The statistic is then computed on each epoch independently and all the
statistical values are grouped into a single distribution per epoch length (Figures 2c and 2e). The overall length of
the piControl run and the epoch length used to compute the statistics influence the number of values in piControl
distributions: for a 300‐year long run, 10 values will be available using 30‐year epochs, but only 2 using 150‐year
epochs.

For historical ensembles, distributions are created using members with identical initialization procedure, physics
and forcing (see Text S1 in Supporting Information S1 for more details). Time series (Figure 2f) of each member
is split into epochs of a given epoch length (e.g., 1850–1879 is the first 30‐year epoch). The statistic is then
computed on each member independently and the statistical values from all members at the given epoch are
grouped into a distribution (Figures 2g and 2h). This process is then repeated by moving forward by 5 years (e.g.,
1855–1884 is the second 30‐year epoch) until the end of the historical time series. All these distributions (e.g.,
there are 28 30‐year epochs staggered by 5 years within the historical run 1850–2014) are used to describe an
historical ensemble. The intra‐ensemble mean (Ex) and intra‐ensemble standard deviation (Eσ) of each distri-
bution represent an estimated mean value and internal variability of a given ensemble for a given epoch length at a
given time (time is considered only for historical ensembles).

2.2.3. Degrees of Freedom

When considering time series, SSTA at a given time is highly correlated to several preceding/succeeding time
steps leading to some predictability (e.g., McPhaden, 2003). However, to perform rigorous statistical analysis one
must use independent values. One way to take into account the fact that time series are correlated to themselves

Figure 1. Statistical moments computed with observed and modeled precipitation (PR) and sea surface temperature (SST). Maps of observed PR (a, e, i; left column) and
SST (c, g, k; right column) over the tropical Pacific Ocean, alongside Niño3 averaged (black rectangle) modeled (boxplots) and observed (black line) PR (b, f, j) and SST
(d, h, l). Statistical moments are: mean (Equation 1; first row), variance (Equation 2; second row) and skewness (Equation 3; third row). The epoch 1985–2014 is used
for all data sets. Boxplots represent the distributions of statistics computed from a multi‐model ensemble (MME; 59 model intercomparison project phase 6 ensembles,
red) and a single‐model ensemble (33 IPSL‐CM6A‐LR members described in Boucher et al., 2020; purple). Whiskers extend to the 5th and 95th percentiles; boxes
encompass the 25th and 75th percentiles; a diamond marks the mean; and dots indicate values that fall outside the whiskers.
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(i.e., autocorrelation) is to reduce the number of time steps n to the number of
effectively independent time steps (n*). In statistics, this number is called
“number of degrees of freedom”, and can be estimated using:

n∗ =
n

1 + ∑
L

i=1
ρ2i

(4)

where the autocorrelation function (ρ) is summed over the number of time
steps (L) necessary to reach the first two sign changes (e.g., Atwood
et al., 2017; Russon et al., 2014). Note that if the studied variable is stable
through time (i.e., the autocorrelation function does not change), increasing
the length of the time series by a factor α (e.g., m = αn), will increase the
number of degrees of freedom by the same factor (m* = αn*).

Distributions of values from piControl runs are created using non‐overlapping
epochs to ensure the independence of each sample. Note that members of an
ensemble are independent by construction.

2.2.4. Combinations

In Sections 3.1 and 3.3 the intra‐ensemble standard deviation (Eσ) is
computed using a given sample size (k) which is smaller or equal to the
ensemble size (N). To do so, combinations (meaning that the order does not
matter) of k distinct members of the ensemble are generated. The number of
combinations used depends on the ensemble size and the sample size. If a
large number of combinations are possible, 10,000 distinct combinations are
randomly selected. The statistic is then averaged across combinations.

2.2.5. Standard Errors

Given a random sample [x1,⋯, xn] from a normal distribution N(μ, σ2), the
Standard Error (SE) of the sample mean (SEx; e.g., Chapter 4 p. 76 of von
Storch & Zwiers, 1999), sample variance (SEσ2 ; e.g., Chapter 4 p. 77 of von
Storch & Zwiers, 1999) and sample skewness (SEg1; e.g., Wright & Her-
rington, 2011) are:

SEx =
σ
̅̅̅
n

√ (5)

SEσ2 = σ2
̅̅̅̅̅̅̅̅̅̅̅
2

n − 1

√

(6)

SEg1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
6(n − 2)

(n + 1)(n + 3)

√

(7)

where n is the number of independent samples (i.e., n* for time series).

2.2.6. Confidence Intervals and Uncertainty of the Ensemble Mean

Using this random sample [x1,⋯, xn], the p × 100% confidence intervals of the true (unknown) mean μ is (e.g.,
Chapter 5 p. 92 of von Storch & Zwiers, 1999):

(x − Z
σ
̅̅̅
n

√ ≤ μ≤ x + Z
σ
̅̅̅
n

√ ) (8)

Figure 2. Graph describing how distributions are created from times series.
Time series of Niño3 averaged sea surface temperature (N3 SST), from (a) a
piControl run and (f) an ensemble of the historical run, as simulated by the
IPSL‐CM6A‐LR model (Boucher et al., 2020). N3 SST mean (Equation 1)
computed from (b) 30‐year and (d) 60‐year non‐overlapping epochs to create
the respective piControl distributions (c, e). N3 SST mean (Equation 1)
computed from the historical ensemble using (g) 30‐year and (h) 60‐year
epochs. The operation is repeated every 5 years to cover the entire historical
run (e.g., 1850–1879, 1855–1884, 1860–1889, etc.). In the boxplots,
whiskers extend to the 5th and 95th percentiles; boxes encompass the 25th
and 75th percentiles; a diamond marks the mean; and dots indicate values
that fall outside the whiskers.
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where Z is the 0.5+ p/2 quantile of the normal distribution and n is the number of independent samples (i.e., n* for
time series). In the paper the 95% confidence interval is used (Z = 1.96).

If we approximate the distribution of statistics computed on each member of an ensemble with a normal dis-
tribution (central limit theorem; e.g., Chapter 2 p. 35 of von Storch & Zwiers, 1999), we can define the absolute
uncertainty of the ensemble mean (∆) as the error on each side of the true (unknown) ensemble mean:

∆ = Z
Eσ
̅̅̅̅
N

√ (9)

where Eσ is the intra‐ensemble standard deviation and N is the ensemble size.

It is sometimes useful to define the uncertainty relative to intra‐ensemble mean (Ex), hereafter “relative uncer-
tainty” (∆r = 100∆/Ex). However, the relative uncertainty can become minuscule when Ex ≫ ∆ (e.g., for N3
SSTmean; not shown), or gigantic when Ex ≪ ∆ (e.g., for N3 SSTA skewness; not shown). For simplicity, we use
the absolute uncertainty (∆) in almost all sections. The relative uncertainty (∆r) is only used in Section 3.4 in
some cases. The main results of this paper are not altered if the relative uncertainty is used (not shown) and we
verified that the uncertainties computed with Equation 9 are very similar to that computed using random sampling
(see Text S3 and Figure S2 in Supporting Information S1).

3. Results
3.1. Influence of the Ensemble Size on the Uncertainty

In the literature, the uncertainty of the intra‐ensemble mean (∆) is usually computed with a random sampling and
authors define one ensemble size for one given uncertainty (e.g., Maher et al., 2018; Milinski et al., 2020; J. Lee
et al., 2021). Using Equation 9, one can analyze the relationship between ensemble size and uncertainty, as well as
confronting our results with the theory: the uncertainty of ensemble mean should decrease with the square root of
the ensemble size.

Figure 3 shows the ratio of the absolute uncertainty (∆) computed with piControl and historical ensembles using
combinations (see Section 2.2.4) of 10 to the maximum number of members (every 5 members) divided by ∆
computed with the maximum number of members. Therefore, the horizontal axis represents the fraction of the
ensemble size used for the computation. The results are presented for epoch lengths ranging from 30 to 150 years
(15‐year intervals) from the CMIP6‐MME and 14 LEs with at least 15 members. We select larger LEs here
compared to our initial threshold as we are creating synthetic ensembles of a smaller sizes and the minimum size
of these synthetic ensembles is 10. There are a total of 188 curves (15 data sets x nine epoch lengths = 135 for the
historical run, and 53 for the piControl run as the ensemble size decreases and falls below the 15 members
threshold when the epoch length increases). All 15 data sets align almost perfectly on the theory (dashed black
lines) for all three statistical moments computed with N3 PR and N3 SST. This means that even if we use very
small samples, the theory can still be used. This is incredibly useful as, if one has an ensemble and wants to divide
the uncertainty of the ensemble mean by 2, one immediately knows that the ensemble size must be multiplied
by 4.

The only notable discrepancy comes from the piControl ensembles of N3 PRA variance computed with the MPI‐
ESM1‐2‐LR (blue cross markers in Figure 3c). This is due to the tendency of MPI‐ESM1‐2‐LR to produce
extremely rare but extremely large N3 PRA during El Niño events, resulting in a poorer convergence toward
theoretical estimate for the smallest ensembles. In the 1000‐year piControl simulation, anomalies of 5 mm.day− 1

are reached during five events (equivalent to ∼9 standard deviations), including one reaching more than 9 mm.
day− 1 (more than 16 standard deviations). If these events are removed, this simulation falls back in the rank and
follows the theory (see Figure S3 in Supporting Information S1). Note that such outliers inflicting a deviation
from the theory are not found in the corresponding 50‐member historical ensemble (i.e., 8250 years of
simulation).

This analysis shows that, among 6 statistics computed with 30 different simulations, only one case deviated from
the theory. Therefore, this approach is extremely robust.
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Figure 3. Dependence of the uncertainty of the ensemble mean (∆; Equation 9) on the fraction of the ensemble used. Uncertainty computed for Niño3 averaged
precipitation (a, c, e) and Niño3 averaged sea surface temperature (b, d, f) mean (a, b), variance (c, d) and skewness (e, f). The dashed black line in each panel represents
the theoretical improvement of the uncertainty with the square root of the fraction of the ensemble used. The uncertainty of the ensemble mean is computed using all
epoch lengths and all epochs of the piControl (dotted lines) and historical (solid lines) runs from 14 LEs with at least 15 members and the CMIP6‐MME.

Journal of Advances in Modeling Earth Systems 10.1029/2023MS004147

PLANTON ET AL. 8 of 16

 19422466, 2024, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S004147 by C
ochrane France, W

iley O
nline L

ibrary on [08/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



3.2. Influence of the Epoch Length on the Uncertainty

For simple diagnostics (like the first three statistical moments), one can use Equations 5–7 with σ and n
respectively equal to the standard deviation of the time series and the number of independent time steps (n*), and
notice that, in theory, the error of these statistics decreases with the square root of the number of independent time
steps.

Now, does it mean the intra‐ensemble standard deviation (Eσ) decreases at the same rate when the epoch length is
increased? Figure 4 shows the ratio of the uncertainty of the ensemble mean (∆) computed with historical en-
sembles using epoch lengths of 30–150 years (15‐year intervals) divided by ∆ computed with 150‐year epochs.
Epoch lengths (i.e., time steps) are used instead of independent number of time steps (degrees of freedom; see
Section 2.2.3) as the latter is proportional to the number of time steps: if T time steps are independent in a 150‐year
epoch, ∼T/2 are independent in a 75‐year epoch (not shown). The results are presented for all 26 LEs and the
CMIP6‐MME, using the maximum number of members of each ensemble (27 curves in each panel). Although the
magnitude of the uncertainty reduction is more model dependent than for the influence of the ensemble size
(Section 3.1), most ensembles show a change of ∆ that is broadly consistent with the theory (dashed black lines)
for all three statistical moments computed with N3 PR and N3 SST.

However, for N3 SST mean (Figure 3b) and N3 PRA skewness (Figure 3e), several ensembles are clearly
departing from the theory. For these ensembles and diagnostics, the intra‐ensemble standard deviation (Eσ) is not
increasing as fast as expected (or even decreases), with decreasing epoch length. The exact reason is beyond the
scope of this paper but two simple reasons may explain this result: (a) Equations 5–7 are valid when the sample is
drawn from a normal distribution but N3 PRA and N3 SSTA (to a smaller extent) distributions are skewed
(Figures 1j and 1l); and (b) a small sized LE can randomly deviate from the theory (see Text S4 and Figure S4 in
Supporting Information S1).

The behavior of the CMIP6‐MME is also notable: varying the epoch length has no influence on the uncertainty.
This is due to the fact that increasing the epoch length only attenuates the internal variability within each model, it
does not reduce the inter‐model differences (inter‐model differences shown by the red boxplots in Figures 1b, 1d,
1f, 1h, 1j, and 1l). So, if one wants to detect a change in a statistical value (e.g., related to climate change) using the
CMIP6‐MME, increasing the epoch length will not reduce the uncertainty. One may detect a change only if it is
large enough between the considered epochs.

While the uncertainty should similarly increase with decreasing epoch length in the piControl run, it is not easy to
prove it due to the methodology used to create the distributions (see Section 2.2.2). Indeed, with the piControl run
increasing the epoch length implies a smaller number of samples, reducing our ability to robustly compute the
standard deviation of the distribution (Eσ). Despite this methodological issue, with a long piControl run, the
uncertainty of the ensemble mean does follow the theory (see Text S5 and Figure S5 in Supporting
Information S1).

Thus, both ensemble size and epoch length can be used to improve the uncertainty of the ensemble mean to obtain
a more robust evaluation of the climate models. However, decreases in uncertainty with increasing the ensemble
size almost perfectly follow expectations from theory, while increasing the epoch length may not have the desired
influence if time series are not relatively constant or for diagnostics more complex than the first three statistical
moments.

3.3. Uncertainty in piControl Versus Historical Runs

We compare now the uncertainty of the ensemble mean (∆) computed from the 26 historical LEs and the CMIP6‐
MME with the corresponding piControl runs (Figure 5), using combinations of k members (see Section 2.2.4), k
being the minimum sample size between the historical and piControl distributions. Here, we only use 30‐year
epochs as some piControl runs are only 300‐year long, that is, 10 non‐overlapping epochs, which is already a
relatively small sample size to compute a standard deviation (we verified that the relationship is similar with other
epoch length; not shown). The CMIP6‐MME is not included for the N3 SSTmean (Figure 5b) as the uncertainty is
∼100% larger than the largest uncertainty computed with LEs and would spuriously increase the correlations (not
shown). This is linked to the fact that the difference from one model to another (the mean state bias of the models;
red boxplot in Figure 1d) is much larger than the difference between a member of a given model to another
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Figure 4. Dependence of the uncertainty of the ensemble mean (∆; Equation 9) on the fraction of 150‐year used for the computation. Uncertainty computed for Niño3
averaged precipitation (a, c, e) and Niño3 averaged sea surface temperature (b, d, f) mean (a, b), variance (c, d) and skewness (e, f). The dashed black line in each panel
represents the theoretical improvement of the uncertainty with the square root of the fraction of 150‐year used. Uncertainty computed using all epochs of the historical
run from CMIP6‐MME and all 26 LEs (using the maximum ensemble size). Note that panel e does not have the same vertical range as the other panels.
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Figure 5.
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member of the same model (i.e., the mean state modulation by the internal variability; purple boxplot in
Figure 1d).

This analysis reveals that four of the six diagnostics (Figures 5a, 5c, 5d, and 5e) produce an almost perfect match
between historical and piControl runs (correlation>0.9, slope∼1, intercept∼0). The relationship is not as good in
the other two diagnostics (correlation ∼0.7, slope ∼0.6, intercept >0; Figures 5b and 5f), with better uncertainties
(i.e., smaller ∆) in the historical run compared to the piControl run when the uncertainty value is large. Overall,
there is a good correspondence between the uncertainty of the ensemble means computed with piControl and
historical runs. This means that even though external forcing has affected the climate system, the climate is not
radically different (ENSO related statistics computed here don't change much), and the internal variability of the
climate is not radically different (the uncertainties of the ENSO related statistics computed here don't change
much). This implies that the control simulation can be used when the historical ensemble is small, or to estimate
the size of the historical ensemble before computing it. This is useful for modelers because multiple control runs
may be performed during the model development or tuning process, well‐before historical runs are performed.

3.4. Estimating the Ensemble Size

There are many papers in the literature proposing a minimum number of members, often termed the RES, that
should be computed for a particular application such as ENSO (e.g., Maher et al., 2018; Milinski et al., 2020; J.
Lee et al., 2021). Here, we propose to use the theory instead to estimate the RES, by rearranging Equation 9:

RES = (Z
Eσ

∆
)

2

(10)

This way, one can easily estimate the RES given an absolute (∆) or relative (∆r = 100∆/Ex) uncertainty. The
main advantage of computing the RES using Equation 10 is that it is not limited by the size of the existing
ensemble (which is one limitation of computing the RES using random sampling). Note that both methods lead to
equivalent results (see Text S6 and Figure S5 in Supporting Information S1). Another advantage is that, if a
piControl simulation is available, one can use Equation 10 to estimate the RES for a particular application, before
the ensemble is generated.

We propose in this section to apply this method to all 59 CMIP6 ensembles using piControl runs to explore
possible ensemble sizes for all models. This approach has some limitations as the mean statistic and the internal
variability may change between piControl and historical runs. We also limit it to 60 members even if in some
cases more members would be needed. We decided to cap the number of members as we aim here to describe
methodologies and order of magnitudes, not to provide exact numbers. In addition, this cap is already larger than
any LE computed for past CMIP exercises.

There are several ways in which this proposed formulamay be utilized. Firstly, one can estimate the RES to reach a
given uncertainty. Here we estimate the RES needed to reach an absolute uncertainty (∆) of 0.05°C and 0.1 for N3
SST mean and skewness respectively (Figures 6b and 6f; gold), a relative uncertainty (∆r) of 5% for N3 PR mean
(Figure 6a; gold) and of 20% for N3 PR variance and skewness, as well as N3 SST variance (Figures 6c, 6d and, 6e;
gold). To reach these uncertainties, the IPSL‐CM6A‐LR ensemble (purple triangles) requires less than 20 mem-
bers. On average across CMIP6 ensembles (boxplot), less than 30 members are required, while focusing on in-
dividual models three models require ensembles with more than 60 members for N3 PR variance and N3 SST
skewness. It is also interesting to note that the RES can be three times larger for N3 PR variance compared to N3
SSTvariance to reach the same relative uncertainty (20%),meaning that the internal variability ofN3PRvariance is
larger relative to that of N3 SST variance. This is likely linked to the fact that precipitation is more nonlinear (e.g.,
Frauen et al., 2014; Garfinkel et al., 2018; Sun et al., 2016), implying stronger interdecadal modulation of its
variance.

Figure 5. Uncertainty of the ensemble mean (∆; Equation 9) computed from historical versus the piControl runs. Uncertainty computed using 30‐year epochs for Niño3
averaged precipitation (a, c, e) and Niño3 averaged sea surface temperature (b, d, f) mean state (a, b), variance (c, d) and skewness (e, f). Uncertainty computed in the 26
LEs and the CMIP6‐MME using the minimum sample size of historical and the piControl runs. For the historical run, the uncertainty is computed for all epochs and
averaged. The solid black line in each panel represents the linear regression. The corresponding correlation (r), regression slope (s) and p‐value (p) are indicated at the
bottom of each panel.
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Secondly, one may want to know the sign of the ensemble's bias and set the
absolute uncertainty to a confidence interval on the absolute difference be-
tween ensemble mean and observational data set (for the 95% confidence
interval, ∆ = P5|Ex − obs|; Figure 6; black). Knowing the sign of the bias can
be usually achieved with less than 20members for all CMIP6 ensembles (e.g.,
11 is the maximum RES needed for the IPSL‐CM6A‐LR ensemble). In some
cases, the RES can be very high because the model bias is extremely small
(this was also the case in J. Lee et al. (2021)). A second criteria could be
introduced to avoid this issue, for example, limiting the desired uncertainty
with a fraction of the observed value (e.g., ∆ = max(P5|Ex− obs|, 0.05 obs)).

Finally, one can desire a robust ranking of CMIP6 ensembles, implying to
limit the overlap of the confidence interval of each model. This can be done
by setting the absolute uncertainty to a fraction of the CMIP6 distribution
(∆ = 0.1CMIP6′sIQR; Figure 6; red). In this case, CMIP6 ensembles (box-
plot) can be correctly ranked only for N3 PR and N3 SSTmeans, for which no
ensemble needs to be larger than 27. For the other four diagnostics (N3 PR
and N3 SST variances and skewness) the desired uncertainty is largely out of
reach (i.e., ∼30% of ensembles do not reach it within 60 members for N3 PR
and N3 SST variances, and ∼85% for N3 PR and N3 SST skewness). Note
that the desired uncertainty specified is quite loose, in that even if it is
reached, ranking of models would be difficult. For instance, 30 ensembles are
found within the IQR and each of their ensemble means would be within a
range equivalent to 0.2xIQR (0.1 IQR on each side of the mean), implying an
important overlap between the uncertainty of each ensemble. According to
our results, it would be hard to provide a robust ranking of CMIP6 ensembles
for N3 PR and N3 SST variances and virtually impossible to do it for N3 PR
and N3 SST skewness.

4. Conclusions
We analyzed the first three statistical moments (mean, variance, and skew-
ness) of N3 PR and N3 SST computed from all available CMIP6 piControl
and historical ensembles (26 large ensembles and the CMIP6‐MME con-
sisting of the first ensemble member from each of 59 different model con-
figurations) to better describe how ensemble means are influenced by
ensemble size and the length of the epoch used to compute the statistic. The
key results are the following:

• The uncertainty of the intra‐ensemble mean (∆) decreases with the square
root of the ensemble size, in accordance with theory. Thus, if one has an
ensemble mean with an uncertainty ∆, and wishes to reduce that uncer-
tainty to ∆/2, the ensemble size must be quadrupled.

• The epoch length generally has a similar effect on ∆. However, this does
not apply to a MME, and there are more inter‐model differences in this
relationship–possibly linked to the non‐normality and/or multi‐decadal
modulation of some model distributions, and the relatively small sizes
of some of the available model ensembles.

• There is a good correspondence between ∆ computed from a historical LE
and that computed from the same model's piControl. This implies that one
can use a piControl run to estimate the ∆ for a given historical ensemble,
or to estimate, or to estimate howmany historical ensemble members must
be generated to obtain a given ∆,.

• With our piControl‐based method, one can simply estimate the ensemble
size required to fit one's purpose, regardless of the ensemble size already
computed. This contrasts with randomly sampling an existing ensemble

Figure 6. Ensemble sizes required to limit the uncertainty to a desired value
(Equation 10). Required ensemble size (RES) computed with the 59
piControl distributions to reach a given uncertainty (gold), to know the sign
of the model bias at the 95% confidence level (∆ = P5|Ex − obs|; black) and
to limit the overlap of the confidence interval of each model
(∆ = 0.1CMIP6′sIQR; red). RES computed for Niño3 averaged precipitation
(a, c, e) and Niño3 averaged sea surface temperature (b, d, f) mean (a, b),
variance (c, d) and skewness (e, f). Purple triangles represent the RES for IPSL‐
CM6A‐LR. Boxplots represent the distribution of values computed using all
model intercomparison project phase 6 ensembles: whiskers extend to the 5th
and 95th percentiles; boxes encompass the 25th and 75th percentiles; a diamond
marks the mean; and dots indicate values that fall outside the whiskers.
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(as in Milinski et al., 2020), where one can estimate the RES only if it is smaller than the one already
computed.

The first two key results are expected according to statistical theory, and here we confirmed them using relatively
small (but practically relevant) samples derived from climate data (10–50 members; 30–150 years of simulation).
Sample sizes as small as 10 (smallest size tested) are large enough to confirm the expected relationship between∆
and the ensemble size. Only cases with extreme outliers are shown to deviate from the theory (e.g., N3 PRA
variance from MPI‐ESM1‐2‐LR's piControl). Larger sample sizes (30 or more) are required to confirm the
relationship between ∆ and the number of time steps. For the skewness, this relationship critically depends on
how the data are distributed (Wright & Herrington, 2011), so one should not expect the same decrease of ∆ with
increasing number of time steps as for the mean or the variance. The third key result relates to the simulated
internal variability in piControl and historical runs. In some cases, internal variability is larger in historical runs,
particularly for large internal variability or small ensemble sizes. Further investigation is required to understand
such discrepancy.

The method that we propose to estimate the RES complements the random sampling methods of Milinski
et al. (2020) and J. Lee et al. (2021), but at amuch smaller computation cost (no random sampling). Specifically, the
resampling is replaced by a mathematical formula to compute ∆ (Equation 9) or by the ensemble size required to
achieve a given ∆ (Equation 10). Our equations can be used by any model user to fit their own purpose, and show
how an existing computation done with a given ensemble size and epoch length can be used to estimate∆ for other
ensemble sizes or epoch lengths. Although we used some simple diagnostics (mean, variance, and skewness of
area‐averaged SST and precipitation) to demonstrate applications of the theory, Equations 9 and 10 can potentially
be used more broadly for other diagnostics and variables, if they are sufficiently normally distributed.

As an example, we propose that this framework could be applied to analyze Tropical Pacific Decadal Variability
(TPDV; Power et al., 2021) and related mechanisms (Capotondi et al., 2023) in climate models. To detect and
attribute a decadal change to external radiative forcings, one requires an ensemble large enough so that ∆ is
smaller than the radiatively forced changes. Similarly, when analyzing the influence of natural forcings in long
paleoclimate simulations (e.g., orbit eccentricity and tilt, CO2 concentration; Yun et al., 2023) or comparing past
and future climates (e.g., Brown et al., 2020) knowing the sampling uncertainty for the target climate phenom-
enon within the available observations and ensemble simulations is crucial to obtain robust results. Finally, in-
termediate models (e.g., Linear Inverse Models, Penland & Sardeshmukh, 1995; ZC model, Zebiak &
Cane, 1987) are often used to obtain long simulations (e.g., 100,000 years in Ramesh & Cane, 2019) at a low cost
compared to coupled general circulation models. But how long must these runs be, for a given application? In
these cases, one can use Equation 9 to estimate if the simulation length and ensemble size are sufficient, and/or
Equation 10 to estimate how many additional years (or members) must be computed to reach a desired accuracy.

Data Availability Statement
CMIP6 data can be accessed at https://esgf‐node.llnl.gov/projects/esgf‐llnl/. Global Precipitation Climatology
Project Monthly Analysis Product version 2.3 (GPCPv2.3; Adler et al., 2003) and NOAA Optimum Interpolation
Sea Surface Temperature version 2 (OISSTv2; Reynolds et al., 2002) data products are provided by NOAA PSL,
Boulder, Colorado, USA, and available from their website at https://psl.noaa.gov/. Data sets were analyzed using
the CLIVAR ENSO metrics package (Planton et al., 2021; https://github.com/CLIVAR‐PRP/ENSO_metrics),
executed via the PCMDI Metrics Package framework (Lee et al., 2024; https://github.com/PCMDI/pcmdi_
metrics). The output and processing scripts used for the paper (Planton & Lee, 2024) are available at https://
zenodo.org/doi/10.5281/zenodo.11512024. Additional figures are available at: https://yyplanton.github.io/esti-
mating_uncertainties_enso/.

References
AchutaRao, K., & Sperber, K. R. (2006). ENSO simulation in coupled ocean‐atmosphere models: Are the current models better? Climate Dy-

namics, 27(1), 1–15. https://doi.org/10.1007/s00382‐006‐0119‐7
Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P., Janowiak, J., et al. (2003). The version 2 Global Precipitation Climatology Project
(GPCP) monthly precipitation analysis (1979‐present) [Dataset]. Journal of Hydrometeorology, 4(6), 1147–1167. https://doi.org/10.1175/
1525‐7541(2003)004<1147:TVGPCP>2.0.CO;2

Anderson, W., Seager, R., Baethgen, W., & Cane, M. (2018). Trans‐Pacific ENSO teleconnections pose a correlated risk to agriculture. Agri-
cultural and Forest Meteorology, 262, 298–309. https://doi.org/10.1016/j.agrformet.2018.07.023

Acknowledgments
The authors thank the four anonymous
reviewers for their constructive comments
and suggestions. We acknowledge the
World Climate Research Programme's
Working Group on Coupled Modelling,
which is responsible for organizing CMIP.
We thank all the international climate
modeling groups for their tireless
development efforts, and for generously
producing and publishing these
coordinated, standardized, and quality‐
controlled simulations. We thank the Earth
System Grid Federation (ESGF) for
archiving the simulations and improving
access, and are grateful to the multiple
funding agencies who support CMIP and
ESGF. The U.S. Department of Energy's
Program for Climate Model Diagnosis and
Intercomparison provides coordinating
support for CMIP, and led development of
software infrastructure in partnership with
the Global Organization for Earth System
Science Portals. Author Planton held a
National Research Council Research
Associateship at NOAA/PMEL when he
started this work. He is now supported by
the Australian Government's National
Environmental Science Program (NESP2)
Climate Systems Hub. Author McGregor
was supported by NESP2 Climate Systems
Hub and the Australian Research Council
(Grant FT160100162 and DP200102329).
Work of LLNL‐affiliated authors was
performed under the auspices of the U.S.
Department of Energy by Lawrence
Livermore National Laboratory under
Contract DE‐AC52‐07NA27344, with
their efforts supported by the Regional and
Global Model Analysis (RGMA) program
of the United States Department of
Energy's Office of Science. We also
acknowledge the support of the ARISE
ANR (Agence Nationale pour la
Recherche, France) project (ANR‐18‐
CE01‐0012). PMEL contribution no. 5394.
Open access publishing facilitated by
Monash University, as part of the Wiley ‐
Monash University agreement via the
Council of Australian University
Librarians.

Journal of Advances in Modeling Earth Systems 10.1029/2023MS004147

PLANTON ET AL. 14 of 16

 19422466, 2024, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S004147 by C
ochrane France, W

iley O
nline L

ibrary on [08/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://esgf-node.llnl.gov/projects/esgf-llnl/
https://psl.noaa.gov/
https://github.com/CLIVAR-PRP/ENSO_metrics
https://github.com/PCMDI/pcmdi_metrics
https://github.com/PCMDI/pcmdi_metrics
https://zenodo.org/doi/10.5281/zenodo.11512024
https://zenodo.org/doi/10.5281/zenodo.11512024
https://yyplanton.github.io/estimating_uncertainties_enso/
https://yyplanton.github.io/estimating_uncertainties_enso/
https://doi.org/10.1007/s00382-006-0119-7
https://doi.org/10.1175/1525-7541(2003)004%3C1147:TVGPCP%3E2.0.CO;2
https://doi.org/10.1175/1525-7541(2003)004%3C1147:TVGPCP%3E2.0.CO;2
https://doi.org/10.1016/j.agrformet.2018.07.023


Atwood, A. R., Battisti, D. S., Wittenberg, A. T., Roberts, W. H. G., & Vimont, D. J. (2017). Characterizing unforced multi‐decadal variability of
ENSO: A case study with the GFDL CM2.1 coupled GCM. Climate Dynamics, 49(7), 2845–2862. https://doi.org/10.1007/s00382‐016‐3477‐9

Bellenger, H., Guilyardi, E., Leloup, J., Lengaigne, M., & Vialard, J. (2014). ENSO representation in climate models: From CMIP3 to CMIP5.
Climate Dynamics, 42(7), 1999–2018. https://doi.org/10.1007/s00382‐013‐1783‐z

Bertrand, A., Lengaigne, M., Takahashi, K., Avadí, A., Poulain, F., & Harrod, C. (2020). El Niño Southern Oscillation (ENSO) effects on fisheries
and aquaculture. In FAO fisheries and aquaculture technical paper No. 660. FAO. https://doi.org/10.4060/ca8348en

Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y., Bastrikov, V., et al. (2020). Presentation and evaluation of the IPSL‐
CM6A‐LR climate model. Journal of Advances in Modeling Earth Systems, 12(7), e2019MS002010. https://doi.org/10.1029/2019MS002010

Brown, J. R., Brierley, C. M., An, S.‐I., Guarino, M.‐V., Stevenson, S., Williams, C. J. R., et al. (2020). Comparison of past and future simulations
of ENSO in CMIP5/PMIP3 and CMIP6/PMIP4 models. Climate of the Past, 16(5), 1777–1805. https://doi.org/10.5194/cp‐16‐1777‐2020

Cai, W., Ng, B., Wang, G., Santoso, A.,Wu, L., &Yang, K. (2022). Increased ENSO sea surface temperature variability under four IPCC emission
scenarios. Nature Climate Change, 12(3), 228–231. https://doi.org/10.1038/s41558‐022‐01282‐z

Capotondi, A., McGregor, S., McPhaden, M. J., Cravatte, S., Holbrook, N. J., Imada, Y., et al. (2023). Mechanisms of tropical Pacific decadal
variability. Nature Reviews Earth & Environment, 4(11), 754–769. https://doi.org/10.1038/s43017‐023‐00486‐x

Cashin, P., Mohaddes, K., & Raissi, M. (2017). Fair weather or foul? The macroeconomic effects of El Niño. Journal of International Economics,
106, 37–54. https://doi.org/10.1016/j.jinteco.2017.01.010

Chen, Y., Morton, D. C., Andela, N., van der Werf, G. R., & Randerson, J. T. (2017). A pan‐tropical cascade of fire driven by El Niño/Southern
Oscillation. Nature Climate Change, 7(12), 906–911. https://doi.org/10.1038/s41558‐017‐0014‐8

Cramér, H. (1946). Mathematical methods of statistics (PMS‐9) (Vol. 9). Princeton University Press. https://doi.org/10.1515/9781400883868
Deser, C., Lehner, F., Rodgers, K. B., Ault, T., Delworth, T. L., DiNezio, P. N., et al. (2020). Insights from Earth system model initial‐condition
large ensembles and future prospects. Nature Climate Change, 10(4), 277–286. https://doi.org/10.1038/s41558‐020‐0731‐2

Durack, P. J., Taylor, K. E., Eyring, V., Ames, S. K., Hoang, T., Nadeau, D., et al. (2018). Toward standardized data sets for climate model
experimentation. Eos, 99, 1029. https://doi.org/10.1029/2018EO101751

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Inter-
comparison Project Phase 6 (CMIP6) experimental design and organization [Dataset]. Geoscientific Model Development, 9(5), 1937–1958.
https://doi.org/10.5194/gmd‐9‐1937‐2016

Frauen, C., Dommenget, D., Tyrrell, N., Rezny, M., & Wales, S. (2014). Analysis of the nonlinearity of El Niño‐Southern oscillation tele-
connections. Journal of Climate, 27(16), 6225–6244. https://doi.org/10.1175/JCLI‐D‐13‐00757.1

Garfinkel, C. I., Gordon, A., Oman, L. D., Li, F., Davis, S., & Pawson, S. (2018). Nonlinear response of tropical lower‐stratospheric temperature
and water vapor to ENSO. Atmospheric Chemistry and Physics, 18(7), 4597–4615. https://doi.org/10.5194/acp‐18‐4597‐2018

Goddard, L., & Gershunov, A. (2020). Impact of El Niño on weather and climate extremes. In M. J. McPhaden, A. Santoso, & W. Cai (Eds.), El
Niño southern oscillation in a changing climate, geophysical monograph (Vol. 253, pp. 361–375). American Geophysical Union. https://doi.
org/10.1002/9781119548164.ch16

Jin, F.‐F., Chen, H.‐C., Zhao, S., Hayashi, M., Karamperidou, C., Stuecker, M. F., et al. (2020). Simple ENSO models. In M. J. McPhaden, A.
Santoso, & W. Cai (Eds.), El Niño southern oscillation in a changing climate, geophysical monograph (Vol. 253, pp. 119–151). American
Geophysical Union. https://doi.org/10.1002/9781119548164.ch6

Kestin, T. S., Karoly, D. J., Yano, J.‐I., & Rayner, N. A. (1998). Time–frequency variability of ENSO and stochastic simulations. Journal of
Climate, 11(9), 2258–2272. https://doi.org/10.1175/1520‐0442(1998)011<2258:TFVOEA>2.0.CO;2

Lee, J., Gleckler, P. J., Ahn, M.‐S., Ordonez, A., Ullrich, P. A., Sperber, K. R., et al. (2024). Objective evaluation of Earth system models: PCMDI
Metrics Package (PMP) version 3. Geoscientific Model Development, 17(9), 3919–3948. https://doi.org/10.5194/gmd‐17‐3919‐2024

Lee, J., Planton, Y. Y., Gleckler, P. J., Sperber, K. R., Guilyardi, E., Wittenberg, A. T., et al. (2021a). Robust evaluation of ENSO in climate
models: How many ensemble members are needed? Geophysical Research Letters, 48(20), e2021GL095041. https://doi.org/10.1029/
2021GL095041

Lee, J.‐Y., Marotzke, J., Bala, G., Cao, L., Corti, S., Dunne, J. P., et al. (2021b). Future global climate: Scenario‐based projections and near‐term
information. In V. Masson‐Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, et al. (Eds.), Climate change 2021: The physical
science basis. Contribution of working group I to the Sixth assessment Report of the intergovernmental panel on climate change. Cambridge
University Press. https://doi.org/10.1017/9781009157896.006

Maher, N., Matei, D., Milinski, S., & Marotzke, J. (2018). ENSO change in climate projections: Forced response or internal variability?
Geophysical Research Letters, 45(20), 11390–11398. https://doi.org/10.1029/2018GL079764

McPhaden, M. J. (2003). Tropical Pacific Ocean heat content variations and ENSO persistence barriers. Geophysical Research Letters, 30(9),
1480. https://doi.org/10.1029/2003GL016872

McPhaden, M. J., Santoso, A., & Cai, W. (Eds.) (2020). El Niño Southern oscillation in a changing climate, Geophysical monograph (Vol. 253).
American Geophysical Union. https://doi.org/10.1002/9781119548164

Meehl, G. A., Boer, G. J., Covey, C., Latif, M., & Stouffer, R. J. (2000). The Coupled Model Intercomparison Project (CMIP). Bulletin of the
American Meteorological Society, 81(2), 313–318. https://doi.org/10.1175/1520‐0477(2000)080<0305:MROTEA>2.3.CO;2

Meehl, G. A., Covey, C., Delworth, D., Latif, M., McAvaney, B., Mitchell, J. F. B., et al. (2007). THEwcrp CMIP3 multimodel dataset: A new era
in climate change Research. Bulletin of the American Meteorological Society, 88(9), 1383–1394. https://doi.org/10.1175/BAMS‐88‐9‐1383

Milinski, S., Maher, N., & Olonscheck, D. (2020). How large does a large ensemble need to be? Earth System Dynamics, 11(4), 885–901. https://
doi.org/10.5194/esd‐11‐885‐2020

Ng, B., Cai, W., Cowan, T., & Bi, D. (2021). Impacts of low‐frequency internal climate variability and greenhouse warming on El Niño‐southern
oscillation. Journal of Climate, 34(6), 2205–2218. https://doi.org/10.1175/JCLI‐D‐20‐0232.1

Penland, C., & Sardeshmukh, P. D. (1995). The optimal growth of tropical Sea Surface temperature anomalies. Journal of Climate, 8(8), 1999–
2024. https://doi.org/10.1175/1520‐0442(1995)008<1999:TOGOTS>2.0.CO;2

Planton, Y. Y., Guilyardi, E., Wittenberg, A. T., Lee, J., Gleckler, P. J., Bayr, T., et al. (2021). Evaluating climate models with the CLIVAR 2020
ENSO metrics package. Bulletin of the American Meteorological Society, 102(2), E193–E217. https://doi.org/10.1175/BAMS‐D‐19‐0337.1

Planton, Y. Y., & Lee, J. (2024). Data and codes for the paper “Estimating uncertainty in simulated ENSO statistics [Dataset]. Zenodo. https://doi.
org/10.5281/zenodo.11512024

Power, S., Lengaigne, M., Capotondi, A., Khodri, M., Vialard, J., Jebri, B., et al. (2021). Decadal climate variability in the tropical Pacific:
Characteristics, causes, predictability, and prospects. Science, 374(6563), eaay9165. https://doi.org/10.1126/science.aay9165

Ramesh, N., & Cane, M. A. (2019). The predictability of tropical Pacific decadal variability: Insights from attractor reconstruction. Journal of the
Atmospheric Sciences, 76(3), 801–819. https://doi.org/10.1175/JAS‐D‐18‐0114.1

Journal of Advances in Modeling Earth Systems 10.1029/2023MS004147

PLANTON ET AL. 15 of 16

 19422466, 2024, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S004147 by C
ochrane France, W

iley O
nline L

ibrary on [08/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1007/s00382-016-3477-9
https://doi.org/10.1007/s00382-013-1783-z
https://doi.org/10.4060/ca8348en
https://doi.org/10.1029/2019MS002010
https://doi.org/10.5194/cp-16-1777-2020
https://doi.org/10.1038/s41558-022-01282-z
https://doi.org/10.1038/s43017-023-00486-x
https://doi.org/10.1016/j.jinteco.2017.01.010
https://doi.org/10.1038/s41558-017-0014-8
https://doi.org/10.1515/9781400883868
https://doi.org/10.1038/s41558-020-0731-2
https://doi.org/10.1029/2018EO101751
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.1175/JCLI-D-13-00757.1
https://doi.org/10.5194/acp-18-4597-2018
https://doi.org/10.1002/9781119548164.ch16
https://doi.org/10.1002/9781119548164.ch16
https://doi.org/10.1002/9781119548164.ch6
https://doi.org/10.1175/1520-0442(1998)011%3C2258:TFVOEA%3E2.0.CO;2
https://doi.org/10.5194/gmd-17-3919-2024
https://doi.org/10.1029/2021GL095041
https://doi.org/10.1029/2021GL095041
https://doi.org/10.1017/9781009157896.006
https://doi.org/10.1029/2018GL079764
https://doi.org/10.1029/2003GL016872
https://doi.org/10.1002/9781119548164
https://doi.org/10.1175/1520-0477(2000)080%3C0305:MROTEA%3E2.3.CO;2
https://doi.org/10.1175/BAMS-88-9-1383
https://doi.org/10.5194/esd-11-885-2020
https://doi.org/10.5194/esd-11-885-2020
https://doi.org/10.1175/JCLI-D-20-0232.1
https://doi.org/10.1175/1520-0442(1995)008%3C1999:TOGOTS%3E2.0.CO;2
https://doi.org/10.1175/BAMS-D-19-0337.1
https://doi.org/10.5281/zenodo.11512024
https://doi.org/10.5281/zenodo.11512024
https://doi.org/10.1126/science.aay9165
https://doi.org/10.1175/JAS-D-18-0114.1


Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., & Wang, W. (2002). An improved in situ and satellite SST analysis for climate
[Dataset]. Journal of Climate, 15(13), 1609–1625. https://doi.org/10.1175/1520‐0442(2002)015<1609:AIISAS>2.0.CO;2

Russon, T., Tudhope, A. W., Hegerl, G. C., Schurer, A., & Collins, M. (2014). Assessing the significance of changes in ENSO amplitude using
variance metrics. Journal of Climate, 27(13), 4911–4922. https://doi.org/10.1175/JCLI‐D‐13‐00077.1

Sun, Y., Wang, F., & Sun, D.‐Z. (2016). Weak ENSO asymmetry due to weak nonlinear air‐sea interaction in CMIP5 climate models. Advances in
Atmospheric Sciences, 33(3), 352–364. https://doi.org/10.1007/s00376‐015‐5018‐6

Taschetto, A. S., Ummenhofer, C. C., Stuecker, M. F., Dommenget, D., Ashok, K., Rodrigues, R. R., & Yeh, S. W. (2020). ENSO atmospheric
teleconnections. In M. J. McPhaden, A. Santoso, &W. Cai (Eds.), El Niño Southern oscillation in a changing climate, geophysical monograph
(Vol. 253, pp. 361–375). American Geophysical Union. https://doi.org/10.1002/9781119548164.ch14

Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological
Society, 93(4), 485–498. https://doi.org/10.1175/BAMS‐D‐11‐00094.1

Thompson, D. W. J., Barnes, E. A., Deser, C., Foust, W. E., & Phillips, A. S. (2015). Quantifying the role of internal climate variability in future
climate trends. Journal of Climate, 28(16), 6443–6456. https://doi.org/10.1175/JCLI‐D‐14‐00830.1

von Storch, H., & Zwiers, F. W. (1999). Statistical analysis in climate Research. Cambridge University Press. https://doi.org/10.1017/
CBO9780511612336

Wittenberg, A. T. (2009). Are historical records sufficient to constrain ENSO simulations?Geophysical Research Letters, 36(12), L12702. https://
doi.org/10.1029/2009GL038710

Wright, D. B., & Herrington, J. A. (2011). Problematic standard errors and confidence intervals for skewness and kurtosis. Behavior Research
Methods, 43(1), 8–17. https://doi.org/10.3758/s13428‐010‐0044‐x

Yun, K.‐S., Lee, J.‐Y., Timmermann, A., Stein, K., Stuecker, M. F., Fyfe, J. C., & Chung, E.‐S. (2021). Increasing ENSO–rainfall variability due
to changes in future tropical temperature–rainfall relationship. Communications Earth & Environment, 2(1), 43. https://doi.org/10.1038/
s43247‐021‐00108‐8

Yun, K.‐S., Timmermann, A., Lee, S.‐S., Willeit, M., Ganopolski, A., & Jadhav, J. (2023). A transient Coupled General Circulation Model
(CGCM) simulation of the past 3 million years. Climate of the Past, 19(10), 1951–1974. https://doi.org/10.5194/cp‐19‐1951‐2023

Zebiak, S. E., & Cane, M. A. (1987). A model El Niño–Southern oscillation. Monthly Weather Review, 115(10), 2262–2278. https://doi.org/10.
1175/1520‐0493(1987)115<2262:AMENO>2.0.CO;2

Zheng, X.‐T., Hui, C., & Yeh, S.‐W. (2018). Response of ENSO amplitude to global warming in CESM large ensemble: Uncertainty due to
internal variability. Climate Dynamics, 50(11), 4019–4035. https://doi.org/10.1007/s00382‐017‐3859‐7

References From the Supporting Information
Bethke, I., Wang, Y., Counillon, F., Keenlyside, N., Kimmritz, M., Fransner, F., et al. (2021). NorCPM1 and its contribution to CMIP6 DCPP.

Geoscientific Model Development, 14(11), 7073–7116. https://doi.org/10.5194/gmd‐14‐7073‐2021
Kelley, M., Schmidt, G. A., Nazarenko, L. S., Bauer, S. E., Ruedy, R., Russell, G. L., et al. (2020). GISS‐E2.1: Configurations and climatology.

Journal of Advances in Modeling Earth Systems, 12(8), e2019MS002025. https://doi.org/10.1029/2019MS002025
Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., et al. (2019). The Canadian Earth System Model Version 5
(CanESM5.0.3). Geoscientific Model Development, 12(11), 4823–4873. https://doi.org/10.5194/gmd‐12‐4823‐2019

Journal of Advances in Modeling Earth Systems 10.1029/2023MS004147

PLANTON ET AL. 16 of 16

 19422466, 2024, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S004147 by C
ochrane France, W

iley O
nline L

ibrary on [08/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1175/1520-0442(2002)015%3C1609:AIISAS%3E2.0.CO;2
https://doi.org/10.1175/JCLI-D-13-00077.1
https://doi.org/10.1007/s00376-015-5018-6
https://doi.org/10.1002/9781119548164.ch14
https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.1175/JCLI-D-14-00830.1
https://doi.org/10.1017/CBO9780511612336
https://doi.org/10.1017/CBO9780511612336
https://doi.org/10.1029/2009GL038710
https://doi.org/10.1029/2009GL038710
https://doi.org/10.3758/s13428-010-0044-x
https://doi.org/10.1038/s43247-021-00108-8
https://doi.org/10.1038/s43247-021-00108-8
https://doi.org/10.5194/cp-19-1951-2023
https://doi.org/10.1175/1520-0493(1987)115%3C2262:AMENO%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1987)115%3C2262:AMENO%3E2.0.CO;2
https://doi.org/10.1007/s00382-017-3859-7
https://doi.org/10.5194/gmd-14-7073-2021
https://doi.org/10.1029/2019MS002025
https://doi.org/10.5194/gmd-12-4823-2019

	description
	Estimating Uncertainty in Simulated ENSO Statistics
	1. Introduction
	2. Data and Methods
	2.1. Model Simulations and Observations
	2.2. Methodology
	2.2.1. Diagnostics
	2.2.2. Creating piControl and Historical Distributions
	2.2.3. Degrees of Freedom
	2.2.4. Combinations
	2.2.5. Standard Errors
	2.2.6. Confidence Intervals and Uncertainty of the Ensemble Mean


	3. Results
	3.1. Influence of the Ensemble Size on the Uncertainty
	3.2. Influence of the Epoch Length on the Uncertainty
	3.3. Uncertainty in piControl Versus Historical Runs
	3.4. Estimating the Ensemble Size

	4. Conclusions
	Data Availability Statement



