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Abstract The electromagnetic interaction between Europa and the plasma sheet in the Jovianmagnetosphere
generates Alfvén waves, ultimately generating auroral footprints in Jupiter's atmosphere. The position of
Europa's auroral footprint is a proxy for travel time of theAlfvénwaves.Wemeasured Europa's footprint position
using the far‐ultraviolet images of Jupiter obtained by theHubble Space Telescope in two observing campaigns in
2014 and 2022. The measured footprint position indicates a longer Alfvén travel time in the 2022 campaign. We
retrieved the plasma sheet parameters at Europa's orbit from the footprint position by tracing the Alfvén waves
launched at Europa and found an increase of both mass density and temperature in the plasma sheet in 2022. The
Poynting flux generated at Europa is calculated with the retrieved plasma sheet parameters, which suggests the
total energy transfer from Europa to its auroral footprint is similar to the case of Io.

Plain Language Summary Europa is an obstacle to the plasma corotating with Jupiter's
magnetosphere. Through the interaction between Europa and the magnetospheric plasma flow, Alfvén waves
are launched at Europa. The Alfvén waves propagate along the field line and ultimately generate auroral
emissions at locations distant from the instantaneous magnetic footprint of Europa. The position of Europa's
auroral footprint is a proxy for the travel time of the Alfvén waves. We measured the position of Europa's auroral
footprint using the far‐ultraviolet images of Jupiter obtained by the Hubble Space Telescope in two observing
campaigns in 2014 and 2022. We found large deviations of the footprint position between the two observing
campaigns. By tracing the Alfvén waves launched at Europa, we retrieved plasma mass density and temperature
at Europa's orbit from the measured footprint position. It is revealed that time variation in the plasma mass
density and temperature caused the deviations in the footprint position. We also calculated the Poynting flux
generated at Europa using the retrieved plasma parameters and found that the total energy transfer from Europa
to its auroral footprint is similar to the case of Io.

1. Introduction
Jupiter's moon Europa orbits the planet at a distance of 9.4 RJ (1 RJ = 71,492 km = Jupiter radius) and is sur-
rounded by the corotating plasma in the Jovian magnetosphere originating from both Io and Europa. Neutrals such
as sulfur dioxide escape from Io and get ionized by electron impact and charge exchange and then picked up by
the corotating magnetic field. The fast corotation causes large centrifugal force and confines the ions into the Io
plasma torus (IPT), centered at the centrifugal equator (the farthest points along the magnetic field lines from
Jupiter's spin axis). The heavy sulfur and oxygen ions are transported radially outward by the interchange
instability and eventually reach Europa's orbit, which forms the plasma sheet. Europa adds H2

+ and H+ picked‐up
ions through electron impact in a neutral H2 cloud at the Europa orbit (Smyth & Marconi, 2006; Szalay
et al., 2022). Since the Jovian magnetosphere is tilted with respect to Jupiter's spin axis and Europa's orbital plane,
Europa's latitudinal position oscillates in the reference frame of the plasma sheet, and the plasma conditions
around Europa therefore vary with its magnetic longitude, System III longitude.

The corotation is faster than Europa's orbital speed, and Europa is therefore an obstacle to the plasma flow. The
electromagnetic interaction at Europa creates Alfvén waves, forming the Alfvén wings. The Alfvén waves
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propagate along magnetic field line, and the Alfvénic perturbations accelerate electrons toward and away from
Jupiter at high latitudes, inducing multiple auroral spots in Jupiter's atmosphere: the Main Alfvén Wing (MAW)
spot is created by the direct, un‐reflected Alfvén waves, followed by Reflected Alfvén Wing (RAW) spots caused
by Alfvén waves that undergo reflection in latitudinal gradient of the plasma sheet density and Transhemispheric
Electron Beam (TEB) spot induced by electrons accelerated in the opposite hemisphere (Bonfond et al., 2008;
Hess et al., 2011; Hess, Pétin, et al., 2010). There are similarities in brightness and multiplicity of the auroral
footprints of Io, Europa, and Ganymede (Bonfond et al., 2017).

The Alfvén waves travel at a finite speed VA, defined by the magnetic field magnitude B, the permittivity of free
space μ0, and the local plasma mass density ρ:

VA =
B
̅̅̅̅̅̅̅
μ0ρ

√ (1)

The travel time of the Alfvén wave creates a quantity called the equatorial lead angle, an angular separation
between the moon and the position of the auroral footprint magnetically mapped onto the orbital plane. As the
position of the moon relative to the plasma sheet changes periodically, the equatorial lead angle also oscillates
with System III longitude (λIII) (Hess, Pétin, et al., 2010; Hue et al., 2023). Long‐term measurements of the
equatorial lead angle by the ultraviolet spectrograph on board the Juno spacecraft (Juno‐UVS) revealed that the
lead angle has temporal variation at a given satellite longitude, which implies that temporal changes in the plasma
sheet density and/or temperature are likely responsible for the variation (Hue et al., 2023). Modeling the position
of the Io footprint aurora, variability of the electron density in the IPT has been retrieved from the infrared images
obtained by Juno (Moirano et al., 2023). However, there have been no models that associate time variation in
Europa's footprint lead angle and the plasma sheet conditions at Europa's orbit. Revealing the correlation between
the footprint observations and the time‐variable plasma sheet parameters will help better understand the energy
transport between the satellite and Jupiter.

In this study, we measured the equatorial lead angle of Europa's MAW footprint in the northern hemisphere of
Jupiter observed by the HST. We estimated the equatorial lead angle of Europa's MAW footprint by tracing the
Alfvén waves. We then retrieved the two plasma sheet parameters at Europa's orbit, ion mass density and tem-
perature. Here, we reveal time variation in the plasma sheet density and temperature at Europa's orbit based on the
measured footprint lead angle for the first time. We also discuss the energy transport from Europa to its footprint
by investigating the corresponding footprint brightness.

2. Methods
2.1. Observations and the Data Set

We used far‐ultraviolet (FUV) images of Jupiter obtained by the Space Telescope Imaging Spectrograph (STIS)
on board the HST. For this study, we chose the two data sets taken in January 2014 (observation ID: GO13035)
and May–October 2022 (IDs: GO16675 and GO16989), using the FUV‐MultiAnode Microchannel Array (FUV‐
MAMA) detector with the F25SRF2 bandpass filter at 130–180 nm. The HST images were reduced using the
pipeline described by Clarke et al. (2009) and Nichols et al. (2009).

We manually located Europa's MAW footprint in each image, which was assisted by the reference path of the
satellite footprint expected by the JRM33 field model (Connerney et al., 2022) combined with the current sheet
model by Connerney et al. (2020) (hereafter referred as CON20). Accuracy in the location of the Europa foot-
prints is governed by errors in measuring the longitude and latitude of the auroral spot and defining the center of
Jupiter. The former is ∼0.3476° in both longitude and latitude, and the latter, error in the central meridian
longitude (CML), is ∼0.1511°.

2.2. Retrieval of the Plasma Density and Temperature in the Plasma Sheet

Propagation of the Alfvén waves is traced to estimate the travel time (τA) of the wave packets that induce the
MAW footprint aurora. We used a 5 km grid along field lines and calculated the Alfvén speed VA from Europa's
position to a location where VA exceeds 10% of the light speed. Similar method to trace the Io‐originated Alfvén
waves is found in Hinton et al. (2019). The magnetic field is represented by the JRM33 and CON20 magnetic field
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models. Estimated τA is converted into the equatorial lead angle of Europa's MAW footprint (δeq) using Equation
4 in Hue et al. (2023). Further description on the modeling is found in Text S1 in Supporting Information S1.

The centrifugal equator is tilted because Jupiter's magnetic field is tilted against its spin axis. We assumed that the
plasma sheet is centered at the centrifugal equator, which is tilted against Jupiter's spin axis by 6.7° toward
λIII = 204.2° (Connerney et al., 2020). The plasma sheet ions spread along the field lines due to the magnetic
mirror force. The number density n of the plasma sheet ions is assumed to be aligned along the field line as a
Gaussian function of s, the distance measured along the field line from the centrifugal equator. The density scale
height H depends on the averaged ion temperature 〈Ti〉 and the centrifugal force (Bagenal & Delamere, 2011;
Hill & Michel, 1976).

n(s) = n(0) exp(−
s2

H2) (2)

H =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2kB 〈Ti〉

3mp 〈Ai〉Ω2
J

√

(3)

The plasma sheet ions at the Europa orbit are treated as a single species with an atomic mass of 〈Ai〉, which yields
ion mass density for Equation 1: ρ(s)=mp〈Ai〉 n(s) with mass of protonmp. We chose the ion mass density and the
averaged ion temperature at the plasma sheet center, ρ0 ≡ ρ(0) and 〈Ti〉, as the fitting parameters, and we assumed
that the plasma sheet is longitudinally uniform in both density and temperature. We then obtained the best fit
parameters based on the chi‐square values.

3. Results
3.1. Equatorial Lead Angle of the Europa Footprint

Figure 1a shows locations of the EFPs detected in Jupiter's northern hemisphere and the simultaneous satellite
positions. The EFPs were detected only in a certain range of System III longitude (80–200°) even though the
longitudinal coverage of the HST data sets was wider (indicated in dark gray).

Figure 1b shows the equatorial lead angle of the observed EFPs (δeq) derived with the JRM33 and CON20 models,
as a function of Europa's System III longitude λIII. In the northern hemisphere, δeq decreases toward λIII = 204.2°
(indicated with light green), where Europa is at the northernmost of the plasma sheet (Figure 1c). Europa is at the

Figure 1. (a) Polar projections of the position of Europa's MAW footprint. The EFP path computed by the JRM33 and CON20
is shown. The observed footprints are plotted in colors, and the corresponding satellite positions are indicated in the outer
edge “Europa orbit”, along with the longitudinal coverage of the HST data set. (b) Europa's MAW equatorial lead angle (δeq)
measured in the northern hemisphere. The dashed line is a predicted curve based on the Juno‐UVS measurements (Hue
et al., 2023). (c) Europa's centrifugal latitude (distance from the plasma sheet), measured from the centrifugal equator.
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center of the plasma sheet at λIII = 114.2° (indicated with pink), and the plasma around Europa is densest there.
The plasma density around Europa becomes smaller as the moon is in farther north of the plasma sheet toward
λIII = 204.2°, and this makes the northbound Alfvén waves travel faster. There are large deviations in the
equatorial lead angle at a given longitude. At λIII ∼ 90°, δeq was larger on 28 September 2022 (blue), than on 13
January 2014 (pink). At λIII ∼ 180°, it was also larger on 1 October 2022 (sky blue), than on 16 January 2014
(amber). These deviations indicate that the Alfvén waves propagated under different plasma conditions in 2014
and 2022. We discuss this further in Section 3.2.

3.2. Retrieval of the Plasma Density and Temperature

Europa's auroral footprint detected in the HST images was almost always a single spot with a fainter tail, although
multiple auroral spots are expected to appear (Bonfond et al., 2008; Hess et al., 2011). Assuming that the observed
footprints were all Europa's MAW footprint, we traced the un‐reflected Alfvén waves and conducted the model
fitting described in Section 2.2. We assumed the plasma sheet ion mass 〈Ai〉= 18 (Table 4 in Bagenal et al., 2015).
The ion mass density and ion temperature were derived in each observation campaign year. The subset “Jan 2014”
consists of the HST visits on January 6, 13, and 16, 2014, and the “Oct 2022” consists of the ones in September 29
and 1 October 2022.

Figure 2a shows the retrieved parameters with the fitting confidence levels given by the residuals σ. We calculated
the 3‐σ (99.73%) confidence range of one parameter with the other fixed to the best. The range was ρ0 = 852–
1,644 amu cm− 3 and 〈Ti〉 = 59–131 eV for “Jan 2014” and ρ0 = 1,408–1,995 amu cm− 3 and 〈Ti〉 = 150–256 eV
for “Oct 2022”, respectively. The best‐fit parameter set was derived at (ρ0, 〈Ti〉) = (1,207 amu cm− 3, 87 eV) for
“Jan 2014” and (1,708 amu cm− 3, 195 eV) for “Oct 2022”, respectively. The best‐fit curves are shown in
Figure 2b, which indicate that the modulation of the measured lead angle with System III longitude is well
explained by our retrieval model.

We also conducted the retrieval with the ion mass 〈Ai〉= 12 determined from Table 3 in Bagenal et al. (2015). The
best‐fit parameter set was derived at (ρ0, 〈Ti〉) = (1,207 amu cm− 3, 58 eV) for “Jan 2014.” We found that both
constant and variable ion mass (〈Ai〉 = 12 and 18) can explain the increase in the measured lead angle well within
the 3‐σ (99.73%) confidence range. The presented retrieval method therefore cannot distinguish temporal vari-
ation in the ion mass 〈Ai〉 and number density and is just sensitive to the ion mass density ρ0.

4. Discussion
Bagenal et al. (2015) derived densities of charged particles and ion temperature at the Europa orbit using the flyby
data obtained by the Plasma Wave (PWS) instrument and the Plasma Science (PLS) instrument on board Galileo,
combined with model studies done by Delamere and Bagenal (2003) and Delamere et al. (2005). Figure 3a shows
the comparison between our retrieval results and the in‐situ observations by the PWS and PLS. The retrieved ion
mass density ρ0 with 〈Ai〉 = 18 is converted into the electron density Ne by Equation 4 for comparison, assuming
an averaged charge 〈Zi〉= 1.4 (Bagenal et al., 2015). The retrieved electron density and ion temperature are within

Figure 2. (a) The retrieved plasma sheet parameters. Confidence levels are shown as contours, 1‐, 2‐, and 3σ (68.3%, 95.4%,
and 99.73%), based on the chi‐square values. The red and blue lines represent the fit results of the “Jan 2014” and “Oct 2022”
subsets, respectively. Length of the vertical and horizontal lines gives the three‐σ confidence range with the other parameter
fixed to the best. The intersection of the two lines indicates the best‐fit parameter set. (b) Best fits of δeq (black lines). The
shades correspond to the three‐σ confidence ranges.
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the ranges of the plasma parameters from the in‐situ observations. Figure 3a illustrates that our retrieval formula
derives plausible variation in density and temperature of the plasma sheet at Europa's orbit.

Ne = ρ0
〈Zi〉

〈Ai〉
(4)

Table 5 in Bagenal et al. (2015) introduced three statistical scenarios of density and temperature, labeled “Low/
Hot”, “Medium”, and “High/Cold”, none of which is inside either contour lines in Figure 2a. This is because our
study is focused more on temporal conditions (≦ 10 days) of the plasma sheet at Europa's orbit in 2014 and 2022,
whereas the three scenarios were given by the Galileo data obtained over five years, which contains large
variation in both the plasma sheet density and temperature.

The Poynting flux (PF) generated through the electromagnetic interaction at Europa is carried by the Alfvén
waves and transmitted to the electrons, which ultimately generate auroral emissions from UV to radio wavelength
(Hess, Delamere, et al., 2010). The Poynting flux S depends on the local ion mass density ρ (Saur et al., 2013):

S = 2πR2
eff(αu0)

2B
̅̅̅̅̅ρ
μ0

√

(5)

where Reff is the radius of the interaction region, and u0 = 100 km s− 1 is the plasma flow speed relative to Europa
(Kivelson et al., 2004, 2009). Reff is taken as 2.1 RE (1 RE = 1,560 km = Europa radius) based on Rabia
et al. (2023). The parameter α represents strength of the electromagnetic interaction and is defined with the

Pedersen and Alfvén conductivities ΣP and ΣA =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ρ/ (μ0B2)

√

, respectively:

α =
ΣP

ΣP + 2ΣA
(6)

ΣP is proportional to the plasma density and scaled relative to the value in the center of the plasma sheet ΣP,0 with
the scaling factor κ = 1 (see equation (58) in Saur et al. (2013)). We chose ΣP,0 = 30 (Case 1) and 10 (Case 2)
Siemens, which are equivalent to α∼ 0.8 (based on the theoretical study by Saur et al., 1998) and∼0.55 (based on
the Juno measurements by Szalay et al., 2024), respectively. Using the retrieved mass density ρ at Europa, we

Figure 3. (a) Comparison between our retrieval results and the Galileo/PLS and PWS observations (adapted from Figure 2 in
Bagenal et al., 2015). The contours represent the confidence levels of the retrieval in “Jan 2014” (red) and “Oct 2022” (blue).
(b) UV emission power measured in Europa's MAW footprint. (c) Northward PF from Europa for Case 1 (ΣP,0 = 30) and
Case 2 (ΣP,0 = 10). (d) UV emission efficiencies in Europa's MAW derived in this study are shown in red and blue. For
comparison, the efficiency of the PF to electron acceleration in Io's MAW (13%, measured during Juno's PJ12 N) is shown in
green (Sulaiman et al., 2023).
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estimated the PF at Europa to compare with the UV brightness measured in Europa's MAW footprint. We
assumed half of the total PF at Europa, SN ≡ S/2, propagates toward the northern hemisphere.

The hydrogen UV emissions are attenuated by hydrocarbons in Jupiter's atmosphere at a wavelength of <135 nm,
mainly by methane. It is therefore required to determine the atmospheric absorption to derive the UV emission
power of H2 from the photon count rate. An absorption extent is known as color ratio (CR), which represents
attenuation of the auroral emission in the hydrocarbon overlying the emission layer (Yung et al., 1982), and thus
CR indicates penetration depth and energy of the precipitating electrons into the hydrocarbon layer (e.g., Gérard
et al., 2002; Grodent et al., 2001). We assumed a constant CR = 2.0 in Europa's MAW footprint based on the
averaged value in Io's footprint (Gérard et al., 2002; Gustin et al., 2012). The photon count rate is converted to the
UV emission power PUV (total in 70–180 nm) using a conversion factor (Gustin et al., 2012) and an averaged size
of Europa's MAW footprint ∼300 km as observed in infrared (Moirano et al., 2021). In the calculation, we
assumed that only the ion mass density and temperature are variable in time.

The PF was expected to be larger in “Oct 2022” than in “Jan 2014” due to the increase of the plasma sheet density
at a given System III longitude (Figure 3c). On the other hand, we do not observe an enhancement of PUV in “Oct
2022” compared to “Jan 2014” (Figure 3b). The brightness of the satellite footprint results from a series of energy
transfer between the satellite and Jupiter; for example, transmittance of Alfvén waves along the magnetic field
lines, efficiency of electron acceleration, energy distribution of precipitating electrons, and vertical distribution of
both H2 and hydrocarbons in Jupiter's atmosphere. Gérard et al. (2002) investigated typical energy of precipitating
electrons in Io's footprint and tail from CR and noted that determination of the precipitating electron energy from
CR relies on the atmospheric model (e.g., Grodent et al., 2001). For instance, the spatial distributions across the
polar region of the main hydrocarbons deriving from methane are known to be affected by particle precipitation
(Hue et al., 2018; Sinclair et al., 2017, 2018). Methane homopause is also known to be elevated across the polar
auroral region (Sinclair et al., 2020). Allegrini et al. (2020) supported the low CR in Europa's footprint tail based
on the precipitating electron energy (characteristic energy of 3.6 keV) measured by Juno at its crossing of the flux
tube connected to Europa. Rabia et al. (2023) also reported that the characteristic electron energy is in 2–5 keV
range in the EFP tail and tends to decrease with the distance from the MAW footprint. Spatial and/or temporal
variations in those processes may be responsible for the discrepancy between the enhancement in the PF and
observed emission, but specific reason of the discrepancy is still unknown.

In Figure 3d, we provide the efficiency of the PF to emitted auroral brightness in Europa's MAW (PUV/SN) × 100
[%]. For Case 1, the UV emission efficiency is derived at ∼3%–4% in “Jan 2014” and ∼2% in “Oct 2022.” For
Case 2, it is derived at ∼4%–6% in “Jan 2014” and ∼4% in “Oct 2022.” We compare our results with a value of
13%, the efficiency of the PF to electron acceleration measured by Juno when it was inside Io's MAW in the
northern hemisphere during its perijove (PJ) 12 N on 1 April 2018 (Sulaiman et al., 2023). This 13% efficiency
was derived by taking the ratio of the electron energy flux to the PF scaled onto Io's orbital plane and is consistent
to the theoretical value ∼10% for Io's MAW (Hess, Delamere, et al., 2010; Saur et al., 2013). Note that Juno also
measured the acceleration efficiency not only in the Io's MAW but also in the down tail of Io's auroral footprint
path in both hemispheres during other perijove: the mean and median values for the down‐tail measurements were
7.7% and 5.5%, respectively (Sulaiman et al., 2023). Only a fraction of the 13% energy is converted to the UV
emission in the MAW: Table 1 in Hess, Pétin, et al. (2010) provides a summary of emitted power from Io's MAW,
which shows that the UV emission power is expected to be an order of magnitude below the total emission power.
The derived UV emission efficiencies and the 13% acceleration efficiency are off by a factor of ∼2–6. If the
energy transfer from the PF to the emission power in the Europa‐Jupiter system is similar to that in the Io‐Jupiter
system, the UV emission efficiencies we derived in Europa's MAW are consistent to the expected fraction of the
emission power at different wavelengths based on the current knowledge of the energy transfer in Io's MAW. We
therefore conclude that the energy transfer from Europa to its UV auroral footprint may be similar to the case of
Io. Processes of electron acceleration in the Europa flux tube, however, may differ from broadband, likely
Alfvénic acceleration found in the Io and Ganymede flux tubes: a broadband signature has been found in the far
tail of the EFP by Juno's in‐situ observations (Rabia et al., 2023), and signs of electrostatic acceleration have also
been found in the electron distributions (Allegrini et al., 2020), which is interpreted as a possible acceleration
process in Europa's TEB (Rabia et al., 2023).

To better understand the processes that control the brightness of Europa's auroral footprints, we suggest that it is
essential to conduct spectroscopic observations of Europa's footprints combined with in‐situ measurement of the
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precipitating electron energy flux and investigate the atmospheric conditions and the electron acceleration pro-
cesses simultaneously. Now that we can obtain the plasma parameter at Europa's orbit from the footprint lead
angle, such combined observations are expected to provide additional clues to explain the energy transfer from
Europa and Jupiter's atmosphere.

5. Conclusion
We measured the equatorial lead angle of Europa's MAW footprint using the HST data taken in the two observing
campaigns in 2014 and 2022. We found an increase of the equatorial lead angle in the 2022 campaign. The ion
mass density and temperature in the plasma sheet at Europa's orbit were retrieved by tracing the Alfvén waves.
We revealed an increase of both ion mass density and temperature in the 2022 campaign. Our retrieval shows that
changes in the ion mass density and temperature at Europa's orbit account for the variation of the footprint lead
angle. We also calculated the PF generated at Europa using the retrieved plasma parameters. The PF was expected
to be increased in 2022 based on the retrieved plasma parameters, but we do not observe an enhancement in the
UV brightness. This discrepancy may be due to spatial and/or temporal variations in atmospheric conditions and/
or electron acceleration processes, which still needs further studies to understand. The UV emission power was
∼2%–6% of the PF generated at Europa. Based on the current knowledge of the energy transfer from Io to its
MAW footprint, we conclude that the energy transfer from Europa to its UV footprint may be similar to the case of
Io. This study is the first attempt to evaluate the energy‐transfer efficiency in Europa's MAW based on the
measurements of the EFP brightness and the estimation of the plasma sheet density and temperature from the
simultaneous EFP lead angle. To fully explain the entire energy‐transfer processes from the power generation at
Europa to the satellite auroral footprints, it is essential to conduct spectroscopic observations of Europa's foot-
prints combined with in‐situ measurement of the precipitating electron energy flux and investigate the atmo-
spheric conditions and the electron acceleration processes simultaneously. Dedicated in‐situ measurements at
Europa's orbit will be conducted by NASA's Europa Clipper and ESA's Jupiter Icy Moons Explorer (JUICE) and
will provide more clues to understand detailed structure of the plasma sheet and the satellite auroral footprints.

Data Availability Statement
The retrieval software is available at Zenodo (Satoh et al., 2024). The HST data are publicly available at MAST
(Satoh, 2024).
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