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ABSTRACT

Context. The pyramid wavefront sensor (PyWFS) provides the required sensitivity for demanding future adaptive optics (AO) instru-
ments. However, the PyWFS is highly nonlinear and requires the use of beam modulation to successfully close an AO loop under
varying atmospheric turbulence conditions. This comes at the expense of a loss in sensitivity.
Aims. We trained, analyzed, and compared the use of deep neural networks (NNs) as nonlinear estimators for the nonmodulated
PyWFS, identifying the most suitable NN architecture for a reliable closed-loop AO.
Methods. We developed a novel training strategy for NNs that seeks to accommodate for changes in residual statistics between open
and closed loops, plus the addition of noise for robustness purposes. Through simulations, we tested and compared several deep NNs
from classical to new convolutional neural networks (CNNs), plus the most recent transformer neural network (TNN; global context
visual transformer, GCViT), first for an open loop and then for a closed loop. By identifying and properly retraining the most adequate
deep neural net, we tested its simulated performance first in an open loop and then for closing an AO loop at a variety of noise and
turbulence conditions. We finally tested the trained NN ability to close a real AO loop for an optical bench.
Results. Using open-loop simulated data, we observe that a TNN (GCViT) largely surpasses any CNN in estimation accuracy in a
wide range of turbulence conditions. Moreover, the TNN performs better in a simulated closed loop than CNNs, avoiding estimation
issues at the pupil borders. When closing the loop at strong turbulence and low noise, the TNN using nonmodulated PyWFS data is
able to close the loop, similar to a PyWFS with 12λ/D of modulation. When the noise is increased, only the TNN is able to close the
loop, while the standard linear reconstructor fails even when a modulation is introduced. Using the GCViT, we closed a real AO loop
in the optical bench and achieved a Strehl ratio between 0.28 and 0.77 for turbulence conditions corresponding to Fried parameters
ranging from 6 to 20 cm, respectively.
Conclusions. Through a variety of simulated and experimental results, we demonstrate that a TNN is the most suitable architecture
for extending the dynamic range without sacrificing sensitivity for a nonmodulated PyWFS. It opens the path for using nonmodulated
Pyramid WFSs in an unprecedented range of atmospheric and noise conditions.

Key words. instrumentation: adaptive optics

1. Introduction

The world will see the arrival of extremely large telescopes
(ELTs) with primary mirror diameters larger than 25 m within
the next ten years. However, atmospheric turbulence affects light
propagation, acting as a dynamic phase mask that introduces
aberrations to the optical path. This finally diminishes the ability
of current large telescopes, as well as future ELTs, to properly
focus light at the diffraction limit. Adaptive optics (AO; Roddier
1999) can assist modern telescopes in overcoming atmospheric
turbulence, first, by measuring and estimating the wavefront
fluctuations from reference sources, and then optically compen-
sating for the aberrations before the science instruments are
reached. Over the past 25 yr, AO has revolutionized astronomy
by providing the highest achievable image quality for ground-
based observatories, becoming a fundamental component in the
upcoming ELTs from first light (Hippler 2019).

Wavefront sensors (WFSs) are the core of modern AO sys-
tems. Basically, a WFS needs to perform measurements quickly
enough (often within a millisecond) to infer the dynamic phase
aberrations present in the wavefront that passes through the
⋆ The movies associated to Figs. 7 and 9 are available at
https://www.aanda.org

atmosphere on its way to the telescope. Thus, an AO loop can
use a deformable mirror to compensate for the atmospheric
turbulence in real time. Of the known WFSs, the pyramid
wavefront sensor (PyWFS; Ragazzoni 1996) exhibits relevant
performance advantages such as high sensitivity, high spatial
frequencies, and a reduced noise propagation (Fauvarque et al.
2016; Chambouleyron, V. et al. 2023). It was therefore success-
fully implemented in current large telescopes (Large Binocular
Telescope, LBT, Esposito et al. 2010, Subaru, Guyon et al. 2020,
and Keck, Mawet et al. 2022) and it is being considered for
the next-generation ELT instruments (HARMONI, Neichel et al.
2022 and MICADO, Clénet et al. 2022).

The PyWFS places the apex of a pyramidal four-sided prism
at the point spread function (PSF) plane (focal plane) of the
incoming wavefront, finally reimaging four different version of
the pupil projected onto a detector array. Then, the slopes of
the wavefront can be easily estimated from the measured image,
although the PyWFS finally offers a very limited dynamic range
where its response is still linear (Vérinaud 2004; Burvall et al.
2006), despite its superb sensitivity. In practical scenarios, and
as suggested in the seminal work done by Ragazzoni (1996),
the inherent nonlinearity of the PyWFS can be counteracted by
circularly modulating the incoming beam over the apex of the
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pyramid, which homogenizes the illumination of the four sides of
the prism. Although the linearity is improved, beam modulation
comes with a detrimental effect on the sensitivity, plus the need
for additional fast and expensive optomechanical elements. The
nonlinearity of the PyWFS becomes evident when using linear
matrix-based reconstruction models (Korkiakoski et al. 2007).
Despite several efforts in the literature to use nonlinear least-
squares methods, which are often iterative, such as in Frazin
(2018); Shatokhina et al. (2020); Hutterer et al. (2023), alter-
native approaches also exploit the compensation of the optical
gains (OG) based on the turbulence statistics (Deo, et al. 2019;
Chambouleyron, et al. 2020). Nevertheless, OG compensation is
only a first-order approximation of the nonlinearities (Deo, et al.
2019), being particularly hard to handle for the nonmodulated
PyWFS case.

Neural networks (NNs), and more particularly, deep NNs,
which make use of a larger number of hidden layers and intri-
cate interconnections, are a great asset today for solving a variety
of hard nonlinear problems in imaging, such as detection, clas-
sification, and inference (LeCun et al. 2015). This also holds
for WFSs, for which Nishizaki et al. (2019) demonstrated that
any imaging system can be turned into an image-based WFS by
appropriately training a convolutional neural network (CNN) to
infer the Zernike modal approximation of the incoming wave-
front. Since then, deep learning has been applied to improve the
estimation performance of focal-plane WFSs (Orban de Xivry
et al. 2021), Shack-Hartmann WFSs (DuBose et al. 2020), phase-
diversity-based WFSs (Andersen et al. 2020), Lyot-based WFSs
(Allan et al. 2020), and also the PyWFS (Landman & Haffert
2020), for which a CNN was used jointly with the linear estima-
tor to improve the PyWFS linearity. Recently, Wong et al. (2023)
demonstrated that a three-layer fully connected neural network
can estimate low-order modes from a PyWFS with and without
modulation, while Archinuk et al. (2023) used a simple CNN
to estimate the first 400 modes from the nonmodulated PyWFS.
Since AO is a two-stage process of wavefront sensing and wave-
front control, we can also use deep NNs not only to improve the
accuracy of the wavefront estimation of the WFS, but also to
improve the performance of the closed-loop AO system, as pro-
posed in Nousiainen et al. (2021) and Pou et al. (2022), who used
reinforcement learning.

Most of the deep-learning WFSs have adapted conventional
deep neural nets that were originally developed for computer
vision applications, such as Xception (Chollet 2017), VGG–Net
(Simonyan & Zisserman 2014), or ResNet (He et al. 2016), while
Vera et al. (2021) crafted an original deep neural net (WFNET)
for image-based WFSs. Nevertheless, there is a new generation
of CNNs, ConvNeXt and ConvNeXt v2 (Liu et al. 2022; Woo
et al. 2023), that delivers an impressive performance in clas-
sification tasks. Moreover, there is a new class of deep neural
nets, called transformer neural networks (TNN), that outper-
forms classical CNNs for a variety of vision applications. These
nets are the visual transformer ViT (Dosovitskiy et al. 2020) and
the global context visual transformer GCViT (Hatamizadeh et al.
2022), which currently are the latest developments. Instead of
convolutions, TNNs such as the GCViT can find correlations
between image patches and their influence on the target outputs.
Nevertheless, the main disadvantage of most modern CNNs and
TNNs is that they often require massive numbers of data for the
training, although they can be efficiently retrained and do not
need to start from scratch.

A good wavefront estimator or reconstructor will necessar-
ily lead to a good AO performance. Therefore, this we studied

and analyzed the use of deep neural nets as a nonlinear estima-
tor for the nonmodulated PyWFS, enabling a reliable open- and
closed-loop adaptive optics performance. To do this, we tested
and compared the ability of several conventional and newest
neural network architectures to handle the PyWFS nonlinearity,
developing appropriate training strategies to accommodate for
changes in residual statistics between open and closed loop. By
choosing and properly training the most adequate deep neural
net for the task, we demonstrate that the dynamic range of the
nonmodulated PyWFS can be extended without sacrificing sen-
sitivity, enabling closed-loop operations at a variety of noise and
turbulence conditions without beam modulation.

2. Method

In this section, we describe the methods we used to (1) simu-
late the PyWFS forward model under a variety of turbulence
and noise conditions, (2) train the deep neural networks using
open-loop data, (3) retrain closed-loop scenarios, (4) determine
the metrics to quantifying the performance of the different NN
estimators, and (5) to configure the experimental setup.

2.1. Simulation framework

We used the OOMAO toolbox (Conan & Correia 2014), written
in Matlab, to generate the incoming aberrated wavefronts and
simulate the propagation through the PyWFS up to the detec-
tor plane. The phase-map dataset was generated with a spatial
resolution of 268 × 268 pixels for a telescope with an aperture
of 1.5 m working at λ = 550 nm with an r0 distribution rang-
ing from 1cm to 20 cm (distributed in discrete steps of 2 cm
after 2 cm), leading to an effective D/r0 range between 7.5 and
150. It is important to note that as D/r0 increases, the turbulence
becomes stronger. For every phase map, we retrieved the first
209 Zernike coefficients, ignoring piston, which were considered
as the ground truth for estimation purposes. After propagating
each phase map for an incoming magnitude 0 light source in
the V band using OOMAO, we stored the intensity image I
projected on the WFS detector of size 268 × 268 pixels with
an exposure time of 1 sec without noise. The diameter of each
subpupil at the simulated WFS detector spanned 68 pixels. In
total, the open-loop phase-map dataset was comprised of 210 000
uncorrelated samples (phase map, Zernikes, and PyWFS image)
obtained from random turbulence realizations given the selected
D/r0 level.

We also simulated phase-map sequences (using two layers
moving at 5 and 10 m s−1 sampled at 250 Hz) of 1000 samples
for different turbulence strengths and several levels of modula-
tion for the PyWFS at 0λ/D (nonmodulated), 3λ/D, 5λ/D, and
12λ/D. These sequences were made for the closed-loop testing.

2.2. Magnitude and noise

We added noise to the intensity image I on demand as required
by either the training or testing stage. By fixing the telescope size
to 1.5 m, we first scaled the image to a proportional photon flux
depending on the magnitude of the star (Mag) and the exposure
time (Te), such that

Iref = I · 10−0.4·Mag · Te. (1)

Then, we applied Poisson noise to the scaled measurement Iref ,
leading to the noisy image Inoise, enabling the calculation of the
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Fig. 1. Nonmodulated PyWFS measurement for different stellar magni-
tudes at a fixed exposure leading to different effective S/N levels.

effective signal–to–noise ratio (S/N) defined as

S/N =
σ(Iref)

σ(Iref − Inoise)
. (2)

Figure 1 displays the example of three images measured
by the PyWFS for different stellar magnitudes at a fixed expo-
sure time, with the respective associated S/N. The image clearly
degrades as the photon flux diminishes. Before it was used with
the linear or NN estimators, the noisy PyWFS measurement was
always normalized. Throughout the paper, we only refer to the
S/N level of the measurements when dealing with noise.

2.3. Neural network training

We selected four deep neural network architectures as nonlinear
estimators for the nonmodulated PyWFS. Xception (Nishizaki
et al. 2019), WFNet (Vera et al. 2021), ConvNext (Liu et al.
2022), and GCVit (Hatamizadeh et al. 2022) were implemented
in PyTorch and adapted to perform regression at the last layer to
provide simultaneous estimates for the first 209 Zernike modes
(without piston).

Since all implemented NNs accept the same input image size
from the PyWFS and deliver estimates of the Zernike coeffi-
cients with the same number of coefficients as well, then all NNs
were trained and tested with the exact same portions of the sim-
ulated dataset, which was divided into 75% for training and 25%
for testing. All training sessions were performed in PyTorch by
using 8 NVIDIA Quadro RTX5000 GPUs. From several prelim-
inary tests on the NNs, we realized that the choice of a proper
range of values for the learning rate and a suitable loss function
heavily depend on the strength and number of Zernikes modes to
be estimated, which are also related to the turbulence strength. A
loss function is an error metric that is computed between the esti-
mated output values of the NN (in this case, a vector of Zernike
coefficients ẑ) and the vector of ground-truth values (z) used for
training. The most common loss functions are the mean square
error (MSE) and the mean absolute error (MAE), defined as

MSE =
1
N

∑
N

(z − ẑ)2 and MAE =
1
N

∑
N

|z − ẑ|, (3)

where N is the number of coefficients. On the other hand, the
learning rate is the weight given to the calculated loss func-
tion that is back-propagated to update the NN hidden parameters
at every training iteration. For instance, mixing a high learn-
ing rate (larger than 10−5) with the MAE loss function allows
a correct training of low-order, high-amplitude Zernikes modes.
In contrast, mixing a low learning rate (≈10−6 or lower) with
the MSE improves the training of high-order, low-amplitude
Zernikes modes.

Fig. 2. Amplitude distribution for selected Zernike modes for two turbu-
lence training regimes. The full range of 7.5 > D/r0 > 150 is shown at
the top, and the high range of 25 > D/r0 > 150 is shown at the bottom.

Therefore, we generated a two-step training strategy for
open-loop wavefronts, creating two training datasets with dif-
ferent distributions for the Zernike modes, as shown in Fig. 2.
The first training uses a limited dataset with a range between
D/r0 = 25 and 150, a starting learning rate of 10−5, and MAE
as the loss, which emphasizes a boost in the linearity response
of the nonmodulated PyWFS. Then, in the second stage, we
retrained the NNs using the whole dataset from D/r0 = 7.5
to 150, a starting learning rate of 10−6, and MSE as the loss,
which played a significant role in preserving the sensitivity of
the PyWFS.

2.4. Closed-loop training

After training the NNs to properly estimate the output from a
nonmodulated pyramid for a variety of turbulence conditions in
open loop, we devised a retraining strategy to prepare for the
statistics of the residuals in closed-loop. We propose a two-step
approach as depicted in Fig. 3. In the first step, we input a phase
map from the dataset to the PyWFS and estimate the Zernike
coefficients from the chosen NN architecture. Then, we recon-
struct the estimated phase out from the Zernike coefficients and
compute the phase residual by plain subtraction. In the second
step, we input the phase residual to the PyWFS and estimate a
new set of Zernike coefficients using the NN. We then calculate
the loss function MAE for the estimated residual coefficients,
and update the parameters of the NN with a learning rate of 10−6.

This novel training approach for closed-loop measurements
allowed us to use the simulated wavefronts in the dataset inde-
pendently, regardless of whether they were correlated in time.
The proposed scheme serves as an effective data-augmentation
approach, which leads to a higher diversity in the statistics
provided for the NN models.

In our initial training using closed-loop data, we considered
an ideal noiseless case. Nonetheless, when we prepared an NN
for a more realistic scenario, we retrained the NN by randomly
selecting an S/N level for the PyWFS measurement (between
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Fig. 3. Neural network closed-loop training strategy. The first stage uses
the estimate by the NN from open-loop data to compute a residual phase
that is used as the input for the second stage. The Zernike coefficients
of the residual are used as the ground truth to compute the loss function
used to retrain the NN.

S/N = 0.7 and S/N = 7), which tended to improve the robustness
of the trained NNs (Bishop 1995).

2.5. Performance metrics

To compare the open-loop wavefront estimate accuracy of the
different NNs in simulations, we used the root mean square error
(RMSE) of the predicted Zernike coefficients as follows:

RMSE =

√
1
N

∑
(z − ẑ)2, (4)

where z corresponds to the ground-truth Zernike coefficients
extracted from the incoming wavefront ϕi, ẑ are the Zernike coef-
ficients estimated by the NN, and N is the number of Zernike
coefficients.

When we switched to closed loop in the simulations, we ana-
lyzed the standard deviation of the phase-map residual σϕ. The
residual was computed by the difference between the incom-
ing phase ϕi and the corresponding update given by the last
reconstruction from the last estimated Zernike coefficients.

For the experimental validation, we also analyzed the system
performance by computing the Strehl ratio given by the ratio of
the maximum value of the reconstructed PSF and the maximum
value of the equivalent diffraction-limited PSF.

2.6. Experimental adaptive optics bench

We used the PULPOS AO bench (Tapia et al. 2022) to validate
the performance of the PyWFS + GCVIT in closed loop. The
particular branch of PULPOS used to close the AO loop with a
PyWFS is shown in Fig. 4. We used a λ = 635 nm fiber-coupled
laser source (Thorlabs S1FC635) attached to an air-spaced dou-
blet collimator (Thorlabs F810APC-635) and a beam expander
(Thorlabs GBE02-A). After a 5 mm diameter aperture stop (P),
the beam passes through a 4f-system with 1X magnification
(L1 and L2) before reaching the reflective high-speed spatial
light modulator (SLM; Meadowlark HSP1920-488-800-HSP8,
1920 × 1152 pixels, 9.2µm pixel size), where phase maps of
560× 560 pixels are projected to emulate the desired turbulence,
matching the pupil size relayed at the SLM. Then, a beam splitter

Fig. 4. Schematic of the experimental AO setup using PULPOS to test
the PyWFS in open and closed loop.

(BS1) redirects the aberrated wavefront through a 0.75X magni-
fication 4f-system (L3 and L4), reaching the L5 lens (400 mm)
that focuses the beam on the PSF plane where the apex of a
zeonex pyramid is located. Then, the L6 lens (200 mm) colli-
mates the four subpupils emerging from the pyramid, projected
onto a high-speed CMOS camera (Emergent Vision HR-500-S-
M, 9µm pixel size, 1586 fps, 812×620 pixels). The WFS images
were cropped at 620 × 620 pixels, where each of the subpixels
spanned a diameter of 110 pixels. These images were resized to
match the subpixel diameter of the pupils used in the simulations
before entering the NN estimation. In parallel, we recorded the
PSF that was imaged by a 125 mm lens onto the science camera
(SC; Emergent Vision HR-500-S-M, 9µm pixel size), where we
extracted the Strehl ratio. The SLM and cameras were controlled
by a desktop computer loaded with an RTX4000 GPU.

3. Results

In this section, we list the results we obtained in open and closed
loop using simulations of the nonmodulated PyWFS estimated
with a variety of deep NN options. These results then drove
the selection of the best-performing NN architecture, which was
used in the final experimental validation using PULPOS in open
and closed loop as well.

3.1. Neural network comparison

In our initial test results, we evaluated the performance of sev-
eral deep NNs trained with identical parameters using the entire
dataset range (r0 = [1 → 20] cm). The chosen NNs were three
CNNs, Xception, WFNet, and ConvNext, and one TNN, GCViT.
In particular, we trained the light-weight version of the GCViT,
which is the GCViT–xxtiny.

In Table 1, we present a summary of the number of
parameters, the estimation speed for the same training com-
puter machine using a single GPU card, and the estimation
performance (average fitting error per mode) from noiseless
measurements of every tested NN architecture. The number of
parameters refers to the number of interconnections (weights)
inside each NN, which depends on the number of layers and neu-
rons of each architecture and is strongly correlated to the size of
the NN stored in the GPU memory. However, every architecture

A202, page 4 of 8



Weinberger, C., et al.: A&A, 687, A202 (2024)

Table 1. Comparison of deep neural networks used for WFS in terms
of the number of parameters (# Params), inference speed (Speed), and
estimation error (Error).

NN # Params (106) Speed (ms) Error (nm)

Xception 22 1 32.5 ± 7.0
WFNet 152 0.37 286.8 ± 28.3
ConvNext 88 1.13 102.5 ± 16.3
GCVit–xxtiny 12 1.56 25.0 ± 7.2

Notes. The best result is highlighted in bold in each column.

has its own intricacies and choice for the number of hidden layers
and the inner operators such as linear convolutions and neuron
nonlinearities that finally affect the speed of calculus of each NN
in a different manner.

The results clearly show that the GCViT achieves the best
average performance, meaning that it is able to provide good
estimates in the whole turbulence range. A slightly worse per-
formance is surprisingly achieved by the Xception, although it is
an older CNN than the newer ConvNext. The worst performance
was achieved by the WFNet, which may be related to the fact that
it was originally developed for undersampled image-based WFS.
Interestingly, the error was somewhat proportional to the num-
ber of parameters of the NNs. Nevertheless, the GCViT seems
to be slowest even though it has fewer parameters. One possible
explanation for this is that it is far more intricate and has a more
complicated architecture.

To select the most promising NN candidate for real AO appli-
cations, we tested the two best-performing NNs in closed loop,
the Xception as the CNN candidate and the GCViT as the TNN
candidate. We performed the close-loop test under a frozen tur-
bulence condition (static phase map at the input) and no noise
(S/N = ∞) to analyze their estimation and compensation behav-
ior in ideal conditions. The closed-loop results for a turbulence
of D/r0 = 75 are depicted in Fig. 5. Both NNs quickly reduce
the residual within a few frames. Nevertheless, at some point, the
CNN tends to diverge as the TNN approaches the ideal residual
value for the estimation of 209 Zernike modes. This problem for
the the CNN in closed loop is clearly seen after inspecting the
residual phase map, where significant aberrations start to appear
at the borders, most likely created by a deficient estimation of the
high-order modes by the CNN.

This behavior of the CNN is probably due to the convolu-
tional nature of the CNN, which may complicate the handling
of the phase at the sharp pupil borders. On the other hand, the
TNN can identify the portions within the image that are infor-
mative, which may explain its superior performance, delivering
a spatially homogeneous residual phase map. As a side note,
we caution that it is impossible to close the loop using a linear
estimator for the nonmodulated PyWFS at this turbulence level.

3.2. Noise response

After we decided that the GCViT is the most suitable NN archi-
tecture for closing the loop with a nonmodulated PywFS, we
retrained the GCViT with different levels of photon noise equiva-
lent to a range of S/N between 0.7 and 7, randomly applied to the
measurements. We compared the GCViT estimate with the lin-
ear estimate of the nonmodulated PyWFS for a turbulence range
between D/r0 = 7.5 and D/r0 = 150 in open loop. The perfor-
mance results for measurements taken with two noise levels (low

0 10 20 30 40 50 60 70 80 90 100

0

200
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800

1000

-2k

0

2k

Fig. 5. Closed-loop performance in simulations using a constant input
phase with two neural networks, a CNN (Xception) and a TNN
(GCViT). Top: last frame of the closed-loop residual phase map.
Bottom: evolution of the residual standard deviation, comparing the
CNN, TNN, and the optimal estimation of 209 Zernike modes.

Fig. 6. Open-loop performance comparison in simulations for the lin-
ear least-squares estimate and the GCViT estimate for a nonmodulated
PyWFS at different S/N.

noise (S/N = 7) and high noise (S/N = 0.7)) are presented in
Fig. 6. The first observation is that the linear estimate for the
nonmodulated PyWFS is extremely immune to noise given its
high sensitivity, so that the two plots are merged into one.

For a high S/N, the GCViT is vastly superior to the lin-
ear estimate in the whole turbulence range, clearly improving
the linearity of the PyWFS response, particularly within the
D/r0 = 20−60 range. Although the GCViT estimates are still
better than the traditional linear estimation for the PyWFS under
low S/N conditions for most of the turbulence range, the linearity
advantages are not as high as in the high S/N case. Nevertheless,
the estimation for the GCViT can become slightly worse than
the linear estimate for the PyWFS for very weak turbulence at
D/r0 = 7.5.
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Fig. 7. Closed-loop residual phase evolution using simulated data at D/r0 = 150 (top column) and D/r0 = 15 (bottom row), comparing the linear
least-squares estimate for the PyWFS at different modulation levels (M = 3,5 and 12λ/D) against the GCViT estimate for the nonmodulated PyWFS
(M = 0). The AO loop is closed at frame 100 using a proportional controller with gain k = 0.5. From left to right: results for different S/N levels.
At the top of each plot, we show the residual phase for the different estimation methods at frame 250. The movies are available online.

3.3. Closed-loop performance

We tested the performance of the GCViT trained with noise
when closing an AO loop using the nonmodulated PyWFS.
We compared the closed-loop performance against the PyWFS
working at different modulations of 3λ/D, 5λ/D, and 12λ/D,
using the traditional linear least-squares estimator. We chose to
close the AO loop at weak turbulence conditions of D/r0 = 15 as
well as at the worst trained turbulence conditions of D/r0 = 150,
where it is impossible to close the loop with the nonmodulated
PyWFS using linear estimation. In Fig. 7 we present the results
for closing the AO loop for three different S/N levels: 9.04, 1.41,
and 0.57. The lowest S/N level is beyond the training regime used
for the GCViT.

The AO loop was closed at frame 100. For the strong-
turbulence case (shown in the top row), all the WFSs are able
to close the loop for all high S/N and reach a stable but different
residual levels. The GCViT and the PyWFS at 12λ/D using the
linear estimate perform best, indicating that they may share an
equivalent linear response at this turbulence regime, as corrobo-
rated by the very similar residual shape for the very last frame.
As the S/N decreases, only the GCViT is able to maintain a sim-
ilar level of residual as obtained in high S/N conditions, while
the PyWFS using linear estimation at different modulations fails
to close the loop. Only at the very lowest S/N level does the
GCViT show some slight difficulties in maintaining the expected
residual levels achieved for higher S/N, but without loosing the
ability of closing the loop at all. By being able to close the loop
in this extreme turbulence regime even at high noise levels, it
seems that by using the nonmodulated PyWFS measurements,
the GCViT is able to keep some of the inherent high sensitivity
while still dramatically increasing the linearity. The bottom row
of Fig. 7 reveals the results for a weak-turbulence regime, where
the GCViT shows a similar behavior, perhaps slightly worse in
terms of residuals, successfully closing the AO loop as all the

modulated PyWFS versions for the high S/N scenario. However,
as the S/N decreases, the loss of sensitivity for the PyWFS is
clear as modulation is increased at 12λ/D, while the GCViT is
able to maintain a stable residual in between of the PyWFS at
3λ/D and 5λ/D of modulation for the lowest S/N case.

3.4. Experimental validation

We used the PULPOS (Tapia et al. 2022) AO bench to obtain
measurements from the nonmodulated PyWFS under controlled,
arbitrary phase maps projected onto the SLM display. We started
by calibrating the PyWFS and obtaining the interaction matrix
by projecting the first pure 209 Zernike modes (without pis-
ton) in push and pull using an amplitude of 0.5λ. As a first part
of the experimental validation, we tested the PyWFS using the
same open-loop dataset as in the simulations, although only for
r0 = [6 → 20] cm, which are the conditions found at the 1.5 m
telescope at the Observatoire de Haute-Provence (OHP) that is
currently running PAPYRUS (Muslimov et al. 2021), an adaptive
optics instrument based on a PyWFS. We present the perfor-
mance results for the classical linear estimation method and the
GCViT in Fig. 8, comparing both the use of simulated measure-
ments and the experimental PyWFS data obtained at PULPOS.
The GCViT has only be trained using simulated data.

The plots in Fig. 8 show that the GCViT estimation using
experimental data vastly outperforms the classical least-squares
estimation, as predicted by the simulations. Despite some gen-
eral offset in both cases, the experimental estimates follow the
overall trend and standard deviation obtained when using the
simulated measurements. The linearity offered by the GCViT
estimates using the nonmodulated PywFS are superior to what is
being offered by the linear estimation methods. In addition, we
may even consider that the sensitivity offered by the GCViT is
also better, considering the superior performance at low turbu-
lence levels and that measurements are noisy since the CMOS
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Fig. 8. Comparison of the wavefront estimation error using least-
squares estimation (Pyr) and the GCViT estimation for simulated and
experimental open-loop measurements from a nonmodulated PyWFS.

camera that was used for the PyWFS is not a science-grade
camera.

As the second part of the experimental validation, we used
the trained GCViT to close an AO loop using PULPOS with the
nonmodulated PyWFS. We estimated the 209 Zernike modes
on the fly using an NVIDIA RTX4000 GPU. As a deformable
mirror, we used the same SLM with which we projected the
aberrated turbulence phase maps in open loop, now displaying
the compensated phase maps given by the chosen control law
applied to the estimates provided by the GCViT. Although the
simulated phase-map sequence used for closed loop is sampled
at 250 Hz, we close the AO loop in PULPOS at 10 Hz because
we work on a real-time control upgrade. We chose to close the
loop at three representative turbulence conditions with r0 at 6,
10, and 20 cms, equivalent to a D/r0 of 25, 15, and 7.5 at OHP,
respectively. The results displaying the evolution of the Strehl
ratio computed from the instantaneous PSFs captured by the sci-
entific camera in PULPOS for different turbulence conditions are
shown at the top of Fig. 9, where we close the loop at frame 100.
By using the GCViT, we are clearly able to close the AO loop in
all situations, and the loop is stable. As a side note, we can hardly
close the loop at D/r0 = 7.5 when using linear estimation with
the nonmodulated pyramid in the AO bench, which explains why
these results are not even presented here.

We display at the bottom of Fig. 9 the PSFs and respective
central horizontal line profiles, integrated between frames 100
and 300, as obtained by the GCViT in closed loop for different
turbulence conditions, corresponding to an average Strehl ratio
of 0.28, 0.56, and 0.77 for an ro of 6, 10, and 20cm, respectively.

4. Conclusions

We presented a comparative analysis of using deep neural net-
works as nonlinear estimators for the nonmodulated PyWFS.
We trained, tested, and compared several conventional and most
advanced neural network architectures to handle the PyWFS
nonlinearity, where convolutional neural networks have been
used most widely for WFS applications so far. We developed
a novel training strategy that combines the use of open- and
closed-loop data, as well as the addition of noise for robustness
purposes. Through simulations, we found that a modern TNN, in
this case, the GCViT, is the most suitable NN architecture for a
closed-loop AO operation, avoiding systematic phase estimation
problems at the pupil borders caused by the convolutional nature
of CNNs.
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Fig. 9. Experimental closed-loop performance for different turbulence
conditions using GCViT with a nonmodulated PyWFS. The AO loop is
closed at frame 100 (gain k = 0.3). Top: evolution of the Strehl ratio for
different turbulence conditions. Bottom: integrated PSFs in closed loop
(PSFCL) with their respective horizontal line profiles. The movies are
available online.

When testing in open loop, the GCViT was able to dramat-
ically extend the dynamic range of the nonmodulated PyWFS
in contrast with the traditional linear estimation methods for a
variety of noise conditions, although there is a clear loss in per-
formance at very high noise levels. However, when testing in a
simulated AO scenario at the worst turbulence conditions, we
found that the GCViT is able to close a stable AO loop similar
to a modulated PyWFS at 12λ/D at a high S/N level. Moreover,
the GCViT is very robust to noise: It was the only estimator able
to reliably close the AO loop for medium to low S/N for strong
turbulence conditions. For weak turbulence, the GCViT was able
to close the loop for the whole range of S/N, with a performance
similar to the PyWFS with 5λ/D of modulation. These results
were experimentally validated in the PULPOS AO bench, where
the GCViT was able to consistently close the AO loop for turbu-
lence ranging from 6 cm to 20 cm, achieving an integrated Strehl
ratio at the scientific camera between 0.28 and 0.77, respectively.

In conclusion, we demonstrated that a TNN such as the
GCViT can be properly trained and become suitable as a non-
linear estimator for a nonmodulated PyWFS. By dramatically
extending the dynamic range of the nonmodulated PyWFS with-
out sacrificing sensitivity, the GCViT can be used in real AO
scenarios, being robust to noise and varying turbulence condi-
tions. This paves the way for further testing in real observing
conditions, which is beyond the scope for this work. It is inter-
esting that the proposed NN was trained entirely offline. The
experimental results we presented showed that the trained TNN
possesses a certain degree of flexibility to accommodate statis-
tical variations. Nevertheless, a retraining using real data may
be necessary in some cases, which will be validated through
on-sky experiments at OHP using the PAPYRUS instrument
(Chambouleyron et al. 2022). This is scheduled for mid 2024.

As prospective work, the results obtained at D/r0 = 150
are very encouraging to scale and extend our research toward
ELTs, which means orders-of-magnitude more Zernike modes
and larger D/r0 turbulence ranges. This can also benefit
from the design and use of modern optical preconditioners
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(Guzmán et al. 2024) to improve the dynamic range of the non-
modulated PyWFS even further. Moreover, we may extend our
work to detecting differential piston modes between the ELT
segments (petal modes) using the nonmodulated pyramid (Lev-
raud et al. 2022), while also adapting the GCViT for improving
the wavefront estimation performance of an even more sensitive
WFS such as the Zernike WFS (Cisse et al. 2022).
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