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Abstract
High resolution regional climate models (RCM) are necessary to capture local precipitation but are too expensive to fully 
explore the uncertainties associated with future projections. To resolve the large cost of RCMs, Doury et al. (2023) proposed 
a neural network based RCM-emulator for the near-surface temperature, at a daily and 12 km-resolution. It uses existing 
RCM simulations to learn the relationship between low-resolution predictors and high resolution surface variables. When 
trained the emulator can be applied to any low resolution simulation to produce ensembles of high resolution emulated 
simulations. This study assesses the suitability of applying the RCM-emulator for precipitation thanks to a novel asymmetric 
loss function to reproduce the entire precipitation distribution over any grid point. Under a perfect conditions framework, 
the resulting emulator shows striking ability to reproduce the RCM original series with an excellent spatio-temporal cor-
relation. In particular, a very good behaviour is obtained for the two tails of the distribution, measured by the number of 
dry days and the 99th quantile. Moreover, it creates consistent precipitation objects even if the highest frequency details are 
missed. The emulator quality holds for all simulations of the same RCM, with any driving GCM, ensuring transferability 
of the tool to GCMs never downscaled by the RCM. A first showcase of downscaling GCM simulations showed that the 
RCM-emulator brings significant added-value with respect to the GCM as it produces the correct high resolution spatial 
structure and heavy precipitation intensity. Nevertheless, further work is needed to establish a relevant evaluation framework 
for GCM applications.

Keywords  Emulator · Hybrid downscaling · Regional climate modeling · Statistical downscaling · Precipitations · Deep 
neural network · Machine learning · EURO-CORDEX · CORDEX

1  Introduction

Precipitation is the primary source of accessible freshwater 
on Earth. It plays a pivotal role in maintaining Earth’s system 
equilibrium, supporting ecosystems, and crucially, sustain-
ing human survival and activities (Masson-Delmotte et al. 
2021). However, it also harbors the potential for catastrophic 
events. Intense rainfall can lead to devastating floods and 
adversely impact agricultural yields. Severe droughts inflict 
significant damage on ecosystems, agriculture, and access to 
potable water. Given the contemporary backdrop of global 

climate change, it is crucial to study potential changes in 
precipitation patterns and extremes.

The study of precipitation is inherently complex. It is 
a non-continuous variable, neither in temporal nor spatial 
terms. Precipitation occurrences are characterized by their 
frequency and intensity but also by their duration and spatial 
extent. Investigating precipitation series across diverse tem-
poral and spatial scales is imperative for a comprehensive 
grasp of their inherent nature. While rainfall or snowfall may 
be influenced by large-scale atmospheric circulations, they 
can also manifest as highly localized events due to small-
scale physical processes (e.g., convective instability, cold 
pool.. Ducrocq et al. 2008), influenced by local topography 
or surface heterogeneity, among other factors. Fine spatial 
and temporal resolution is, therefore, imperative when mod-
eling precipitation and studying its local changes in the con-
text of global climate change.
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Undeniably, regional climate models (RCMs) stand out 
as one of the most widely employed modeling tools today, 
to fulfill the imperative for precise spatial and temporal 
resolution in projecting the future dynamics of precipita-
tion. RCMs are a specific kind of climate models used to 
downscale at high-resolution and over a limited domain the 
low resolution simulations produced with Global Climate 
Models. Their high computational costs render unfeasible 
the production of large ensembles of high resolution simu-
lations necessary to address the different sources of uncer-
tainty associated with the local impacts of climate change 
(Hawkins and Sutton 2009; Evin et al. 2019). To try to 
address this high-resolution versus large-ensemble dilemma, 
various papers (Chadwick et al. 2011; Holden et al. 2015; 
Walton et al. 2015; Berg et al. 2015; Maraun and Widmann 
2018) introduced the concept of emulator for Regional Cli-
mate Model (RCM) as a solution to create large ensembles 
of high resolution climate projections blending the RCM 
approach with modern machine-learning techniques. In the 
recent years, many RCM-emulator have been proposed, 
focusing on different variables or different regions, showing 
the exponential success of the approach (Wang et al. 2021; 
Serifi et al. 2021; Babaousmail et al. 2021; Boé et al. 2022; 
Meer et al. 2023).

Doury et al. (2023) introduced a RCM-emulator for the 
near-surface temperature for a RCM at its full resolution 
(12 km) over Europe. The concept of the RCM-emulator 
involves using machine learning tools to learn the relation-
ship between low-resolution tropospheric variables describ-
ing the atmospheric circulation on a specific day and a high-
resolution local surface variable, such as daily precipitation. 
This downscaling function is learnt inside existing RCM 
simulations. The aim is to tackle the cost limitation of RCM 
by mimicking its downscaling function for a specific vari-
able at a low computational cost and then by applying it to 
any global and low resolution simulation. RCM-emulators 
are categorized as hybrid downscaling methods because 
they incorporate both statistical and dynamical downscaling. 
Using historical and future RCM simulations in the training 
set enables the RCM-emulator to learn how this relationship 
may evolve under changing climate conditions. Moreover, a 
RCM-emulator can also be built over regions with no long 
series of good quality precipitation records as it relies only 
on RCM simulations. Here, we propose testing if the RCM-
emulator introduced by Doury et al. (2023) is suitable for the 
downscaling of daily precipitation at 12 km and we propose 
an adaptation to better capture the complexity of this new 
variable.

Numerous studies have proposed statistical downscaling 
methods to estimate the relationship between large-scale and 
local-scale variables in observational records. Maraun et al. 
(2010) or Gutiérrez et al. (2019) provide an overview of 
available approaches for precipitations. Some recent studies 

(Baño-Medina et al. 2020, 2021; Vandal et al. 2019) have 
successfully implemented convolutional neural networks for 
this purpose. The RCM-emulator employed in Doury et al. 
(2023) and here is based on a fully convolutional neural 
network architecture called UNet (Ronneberger et al 2015). 
It has exhibited an excellent ability to emulate the tempera-
ture, notably in reproducing the complex spatial structure 
and daily variability brought by the RCM. However, since 
precipitation is more challenging to model than temperature, 
this study proposes to explore the use of the loss function to 
help the neural network focusing on a specific task, follow-
ing the spirit of previous work (Cannon 2008; Baño-Medina 
et al. 2020; Ravuri et al. 2021; Rampal et al. 2022). Here, the 
challenge relies in the reproduction of the complex precipita-
tions distribution and specifically for the heavy precipitation 
events. Here, we introduce a novel asymmetric loss function 
tailored for daily precipitation, which we compare to two 
classical choices for regression problems that we consider 
as benchmarks. Other recent studies have proposed differ-
ent strategies to improve the skills on the reproduction of 
precipitation such as oversampling approach or generative 
neural networks (Wang et al. 2021; Addison et al. 2022).

After assessing the suitability of the RCM-Emulator for 
precipitation, we propose in this study to profit from the 
EURO-CORDEX simulations to evaluate the transferability 
of the tool. Indeed the emulator is trained using a given set 
of available RCM simulations (driven by a given GCM and 
RCP scenario) and it is crucial to study its behavior when 
downscaling other socio-economic scenarios or GCMs. 
Then, in a first step, we evaluate the emulator in a perfect 
model framework (presented in Sect. 2.1)regarding all avail-
able simulations with the emulated RCM. Then in a final 
step, we propose a first showcase of application by downs-
caling GCM simulations.

This paper is organised into four main sections. In Sect. 2, 
we recall the concept of the RCM-emulator introduced in 
Doury et al. (2023), define the technical aspects related 
to the neural network and the loss functions, and present 
the framework of the study, including the data, the target 
domain, and the associated predictors. Section 3 presents the 
detailed evaluation and comparison of the emulators within 
a perfect model framework, while Sect. 4 shows the results 
of applying the asymmetric emulator to GCM simulations. 
The concluding section summarizes the paper and initiates 
the discussion.

2 � Methodology

In this section, we define the framework used to build and 
evaluate the RCM emulator for precipitation. Firstly, we 
recall the emulator concept and present the simulations and 
the chosen target domain and predictors for this study. We 



8589On the suitability of a convolutional neural network based RCM‑emulator for fine spatio‑temporal…

present the neural network architecture and the three loss 
functions used to train the three emulators for the inter-
comparison. The perfect model framework approach used 
to train and evaluate the emulator is also recalled. Finally, 
we detail the metrics used to evaluate the emulator under 
different aspects.

2.1 � RCM‑emulator concept and calibration process

Regional climate models (RCMs) are driven by global cli-
mate models (GCMs) as they continuously receive incom-
ing data at their domain’s borders from a specific GCM 
simulation at regular intervals. The resulting RCM simula-
tion essentially represents a downscaling of the data from 
the driving GCM. Nevertheless, within the boundaries of 
its domain, the RCM develops its own narrative and may 
consequently deviate from the driving GCM. This can lead 
to significant differences, both on a daily scale and on a 
climatological scale, as discussed by Laprise et al. (2008). 
This large scale transformation primarily arises from the 
chaotic nature of weather (Lucas-Picher et al. 2008), but it 
is also influenced by differences in how the models represent 
physical processes or their inherent complexity, as explored 
by Boé et al. (2020) and Taranu et al. (2022). Thanks to 
a lower computational cost, GCMs typically include more 
components than RCM such as ocean coupling or evolv-
ing aerosols. Consequently, Doury et al. (2023) decided to 
develop an RCM emulator specifically designed to learn 
the downscaling process inside the RCM simulation while 
excluding the impact of large-scale transformations.

To isolate the downscaling function, the emulator is 
trained within a “perfect model" framework, where both 
the inputs and target data are sourced from the same RCM 
simulation. The methodology is detailed in Fig. 1. The 
chosen predictors (described in Sect. 2.3) are upscaled to 
match the resolution of the GCM, typically around 150 km, 
through a conservative interpolation method, which involves 

a straightforward average of all points encompassed within 
the low-resolution grid. This strategy implies to build coars-
ened RCM predictors that are statistically equivalent with 
standard GCM predictors to downscale GCM simulations. 
For this reason, Doury et al. (2023) applied a spatial moving 
average filter eliminate at most high-resolution features that 
might persist through the interpolation. Subsequently, the 
emulator is trained to accurately replicate the relationship 
between these “upscaled" inputs and the target variable, such 
as precipitation, at the resolution of the RCM. A different 
strategy, generally referred as imperfect training (Boé et al. 
2022; Meer et al. 2023; Bano-Medina et al. 2023), consist in 
training directly between GCM low resolution outputs and 
RCM high resolution outputs. Nevertheless, Bano-Medina 
et al. (2023) showed that the large scales differences differ 
from one RCM/GCM couple to the other, thus limiting the 
transferability of the tool.

This perfect model framework also facilitates a rigorous 
evaluation of the emulator, with the RCM series serving 
as an ideal reference that it should be capable of faithfully 
reproducing. In practical application, the emulator is directly 
applied to a GCM simulation, and the smoothing step is 
retained to consider the GCM at its effective resolution, as 
discussed by Klaver et al. (2020).

2.2 � Data: the RCM matrix

The emulator proposed in this study relies on the regional 
climate model ALADIN63 (Nabat et al. 2020). A total of 
ten simulations have been published with this RCM over the 
whole Europe in the EURO-CORDEX framework (Coppola 
et al. 2021). They downscale four different GCMs and three 
different scenarios of greenhouse gas emissions (cf Table 1). 
The CNRM-CM5 global climate model is developed in the 
same institute as ALADIN63, so they belong to the same 
family of models. CNRM-CM5 drove 4 ALADIN63 simula-
tions, the historical (1951–2005) and three RCP scenarios 

RCM SIMULATION  (0.11°)
ALADIN 63, forced by CNRM-CM5, 1950-2100, RCP85

TRAINING

Conservative interp. 
to 1.4° grid

Selection of 2D inputs 
( X ) 

Moving average filter

Extraction 
of 1D inputs (Z)

( X, Z ) Emulator Y

RCM SIMULATION  (0.11°)
ALADIN 63, forced by CNRM-CM5, 2006-2100, RCP45

CNRM Hist, RCP 26 and RCP85 

+ MPI, NCC & HGM Hist and RCP85, 

EVALUATION  
Perfect model world

( X, Z ) Emulator

Y

Y

Comparison

GCM SIMULATION  (1.4°)
CNRM-CM5, MPI, NCC & HGM 

2006-2100, RCP85

( X, Z ) Emulator

Y

Y

Comparison

RCM 
SIMULATION  

(0.11°)
ALADIN63

Moving average filter

Extraction 
of 1D inputs (Z)

APPLICATION
GCM world

Conservative interp. 
to 1.4° grid

Selection of 2D inputs 
( X ) 

Moving average filter

Extraction 
of 1D inputs (Z)

Interp. to CNRM-CM5
 grid (1.4°) 

Selection of 2D inputs 
( X ) 

Daily cumulative

precipitation

Fig. 1   Scheme of the training (left), perfect model evaluation (middle) and GCM world application (right) protocols. Redrawn from Doury et al. 
(2023)
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(2.6, 4.5 and 8.5, on the period 2006–2100). MPI-ESM-
LR, NorESM1-M and HadGEM2-ES are the three other 
GCMs used to drive ALADIN63 following the historical 
and RCP8.5 scenarios of greenhouses gases emissions. From 
now, CNRM-CM5 will be referred to as CNRM, MPI-ESM-
LR as MPI, NorESM1-M as NCC and HadGEM2-ES as 
HGM.

2.3 � Predictands, predictors and neural network 
architecture

This study focuses on the challenging task of emulating 
of daily precipitation from ALADIN63 at 0.11◦ horizontal 
resolution (about 12 km). We selected a sub-domain of the 
EURO-CORDEX domain centred over the Alps, consisting 
of 128 × 128 grid points. The target domain is visible on the 
left side of Fig. 2. It includes the entire Alps and goes from 
Sardinia until the north of France and from the Pyrenees 
until Croatia. This domain is of particular interest due to its 

diverse areas with distinct precipitation regimes. For exam-
ple, the Cevennes (South-East of France) region is known for 
its very extreme events in autumn, similarly to other coastal 
areas of the Mediterranean region. High terrains receive 
more precipitation than low elevations. They are known to 
be spots of RCM added value, especially regarding extremes 
(Torma et al. 2015). The flat regions of the north of the 
domain receive a lot of precipitation throughout the year but 
have less strong daily extremes than the southern regions. 
The Alps have also a specific precipitation regime with 
intense summer storms.The emulator is trained to replicate 
both land and ocean precipitations, although at times, we 
will concentrate our evaluation solely on land. Additionally, 
this domain is four time larger than the one in Doury et al. 
(2023).

The emulator used in this paper for precipitation down-
scaling follows the principles developed in Doury et al. 
(2023). It can be viewed as a conventional machine learn-
ing problem

where (Xt, Zt) are the low resolution predictors, Yt the high 
resolution target variable (in this case daily amount of pre-
cipitation) at day t and F the downscaling function we aim 
to estimate using a neural network. The list of predictors and 
the standardization procedure remain consistent, encompass-
ing both sets of 1D and 2D inputs, as detailed in Table 2. As 
we considered the daily precipitation we also provide daily 
inputs. For each day, we perform spatial normalization on 
each 2D input, in order to provide normalized “images” to 

Yt = F
(
Xt, Zt

)

Table 1   RCM x GCM x Scenario matrix

Driving
Scenarios

Driving GCMs

CNRM-
CM5
(CNRM)

MPI-ESM-
LR
(MPI)

NorESM1-M
(NCC)

HadGEM-ES2
(HGM)

Historical x x x x
RCP26 x
RCP45 x
RCP85 x x x x

Fig. 2   Illustration of the input (left) and target (right) domains 
through the climatology of the daily rainfall over the 1980–2000 
period. The black line on the left panel shows the target domain while 
the input domain is the entire map. On the target domain: the red 
points are the three illustrating points on Fig.  5 and 9. From North 

to South, there is Paris, a high point (2247 ms) in the Swiss Alps and 
Roma. The three blue boxes are the three regions used for the SAL 
evaluation in section 3.1.4: The north region, centred over Belgium, 
the Cevennes region (south-east France) and the Dinaric Alps
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constrain the network to focus on the comprehension of the 
spatial structures. Since they are crucial information, the 
daily spatial mean and standard deviation, that are retrieved 
on each maps, are subsequently provided to the emulator 
through the set of 1D inputs, which also includes external 
forcings (yearly greenhouse gas concentrations, solar and 
ozone forcings) and the seasonal indicator (sinus-cosinus 
vector). The inclusion of the external forcings should help 
the network to get some context to better differentiate, if 
necessary, the climate state it is considering (season, CO2 
concentration.. ). The predictors selection are the ones com-
monly used in statistical downscaling (Gutiérrez et al. 2019; 
Maraun and Widmann 2017), more details can be found in 

Doury et al. (2023). The input domain is adjusted to align 
with the new target domain. It is a 22 × 16 grid points on the 
CNRM-CM5 grid ( 1.4◦ ) centred over the target domain, (the 
whole map on Fig. 2, left).

The neural network architecture is adapted from the UNet 
architecture (Ronneberger et al 2015). The small differences 
with the one presented in Doury et al. (2023) are due to the 
size of the input and target domains. As shown in Fig. 3, 
the first layer of the network reshapes the 2D inputs from 
[16, 22, 32] to [16, 16, 64] in order to obtain squared images 
before the encoding path. On the other side, the expand-
ing path is extended to reach the target domain size. This 
leads to a network of about 28 millions of parameters. The 

...

2D Inputs

[t,16,22,19]

16²

64

8²

128

8²

64

2²
256

4² 4²

256128
2²

512

1²

512 1²

1024

1D Inputs

[t,1,1,43]

512

2²

1024

2 2²

512

4²

512

4 4²

256

8²

256

8²

128

16²

128

16²

64

6

32²

64

32²

64

64²

64

64²

64
64

128²

64

128²

 1

128²

UNET (Ronnenberg et al. 2015)  

Conv 2*2,
Relu 

MaxPool 2*2
Conv Transp
2D
Conv 1*1

Concat

x2

Fully Dense NN
4 Layers

4
16²

32

Fig. 3   Illustration of the neural network architecture, adapted from Doury et al. (2023) where a complete description of the network is provided

Table 2   List of predictors, 
identical to Doury et al. (2023)

2D Variables

Altitude
(850, 700, 500 hPa)

Geopotential height, Humidity,
Temperature, Northern &
Eastern wind components

Daily

550hPa Total Aerosols
optical depth (ood550)

Monthly mean

Near-Surface Sea level pressure,
Northern & Eastern wind components

Daily

1D Variables
Mean & Standard deviation
for each 2D variables

Daily

Total anthropogenic
greenhouses gases

Yearly

Solar and Ozone
forcings

Yearly

Cosinus and Sinus
seasonal indicators

Daily
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emulator presented in this paper is trained over the 150 years 
of the ALADIN63 simulations driven by the CNRM-CM5 
historical and RCP85 runs. It takes about two hours and an 
half and 60 epochs to train the network on a GPU (Tesla 
V100 PCIe 16GB) using the keras environment (Chollet 
et al. 2015).

2.4 � Loss function for the neural network training

Over this study, we propose a deeper look on the impact of 
the loss function on the emulator’s performance. The loss 
function is an essential part of the neural network training. 
In the training phase, the network sees examples of inputs 
and target pairs. For each day of the training set, it makes a 
prediction and compares it with the truth. The loss function 
evaluates the network prediction against the expected out-
come. The network parameters are then updated according 
to the loss function results. This operation is repeated until 
the cost (i.e. the loss mean on the training set) stabilises. The 
best combination of parameters has the lowest cost over a 
validation set, different from the training set. This is then a 
minimisation problem to find the best estimate F̂ such that:

Where � is the ensemble of possible parameters, V the vali-
dation set and L the loss function.

(1)F̂ = argmin
𝜃∈𝛩

L(V, 𝜃)

Precipitations are particularly complicated to emulate 
with neural networks because of their distribution. Indeed, 
as illustrated in Fig. 4, the distribution of precipitation 
looks like a highly left-skewed gamma distribution. There 
are many days with no precipitation and few ones with 
very high precipitation, which induces heavy tail distribu-
tions. These different events contribute non equally to the 
mean, with a few days having more impact than the other 
ones as illustrated on Fig. 4. It is of fundamental interest 
that the emulator reproduces well the entire distribution. 
The good reproduction of the frequency and intensity of 
rare extreme events constitutes a substantial added value of 
RCM, so the emulator should reproduce them accurately. 
The loss function is therefore a possible way to rebalance 
the data and to force the emulator to look more specifi-
cally into some specific part of the distribution (Ayzel 
et al. 2020).

We compare here three emulators, constructed with dif-
ferent loss functions:

•	 Emul-MSE uses the classical mean squared error for 
the loss function, as stated in Doury et al. (2023). It cor-
responds to the L2 distance. 

(2)L(y, ŷ) =
1

N × T

T∑
t=0

∑
i∈D

(
yi,t − ŷi,t

)2

Fig. 4   Illustration of daily precipitation distribution (in mm/day), in 
the Cevennes box (cf Fig. 2), all points and days are pooled. On the 
left side we show the classical representation of the distribution while 

the right side illustrate the distribution in term fractional contribution 
to mean (explained in Sect. 2.5.3)
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 With D the ensemble of grid points, N the number of 
grid points and T the number of days.

•	 Emul-MAE uses the mean absolute error. It corresponds 
to the L1 distance. 

•	 Emul-ASYM uses a specific loss function designed for 
the precipitation problem. It is based on the MAE loss 
function plus an asymmetric term which penalizes the 
emulator when it underestimates the true value while it 
was a raining day. The stronger the rain the stronger the 
penalty. 

 With �i,t = Gi(yi,t) and Gi the cumulative distribution 
function of a random variable Yi following a gamma 
distribution 

 where the �i and �i parameters are fitted on the historical 
precipitation series at each grid point i.

The MAE and MSE losses are the most commonly used loss 
functions for regression problems. The MAE loss sums the 
absolute distance between an observation and its prediction. 
It gives the same weight to each observation. Knowing that 
daily rainfalls are strongly left-skewed, with a vast number 
of observations with a small amount of precipitation, the 
EMUL-MAE should be able to fit these days well. However, 
the rare cases with large precipitations could be less well 
reproduced.

The MSE loss function gives more weight to the signifi-
cant errors than the small ones. The MSE generally shows 
the best results in regression problems and is equivalent to 
the maximum likelihood estimation in a Gaussian setting. It 
leads theoretically to the best estimate for normally distrib-
uted data knowing the inputs. In the case of precipitations, 
it is not likely to be the case because of their highly inter-
mittent nature. So the MSE loss function might not be well 
suited. Note that Emul-MSE is the same emulator as the one 
introduced in Doury et al. (2023).

The choice of the asymmetric loss function comes from 
the results of both EMUL-MAE and EMUL-MSE presented 
in Sect. 3. The idea is to add a penalty when the emulator 
underestimates strong precipitations. This is done by the 
asymmetric term: max(0, yi,t − ŷi,t) . Moreover it needs to 
depend on the rain intensity. The more extreme the precipi-
tation, the rarest it is and so the higher the penalty should 

(3)L(y, ŷ) =
1

N × T

T∑
t=0

∑
i∈D

||yi,t − ŷi,t
||

(4)
L(y, ŷ) =

1

N × T

T∑
t=0

∑
i∈D

||yi,t − ŷi,t
||

+ 𝛾2
i,t
× max

(
0, yi,t − ŷi,t

)

Yi ∼ �i ∶ �
(
�i, �i

)

be. The �i,t parameter determines how extreme is a given 
observation and defines the weight accordingly. At each grid 
point, we estimated the parameters of a gamma distribution 
on the rainy days (over 1 mm) of the training set (using the 
scipy python package, Virtanen et al. 2020). The Gamma 
distribution has been widely used to described precipitation 
data (Katz 1977; Vrac and Naveau 2007) but other distribu-
tion could be considered. In order to make this parameter 
estimation more robust, we fit them yearly and then average 
these parameters over the years. It gives a map of the shape 
and scale parameters. The �i,t parameter is then the evalu-
ation of yi,t (the target value at point i and time t) by the 
Cumulative Distribution Function (CDF) associated to the 
gamma distribution �i fitted for this point. It is an objective 
way to indicate the relative intensity of the precipitation for a 
given location. The asymmetric term acts like a “regulariza-
tion” parameter in the loss function as it aims to correct the 
defaults of the MAE based emulator.

2.5 � Evaluation metrics

In order to evaluate and compare the performances of the 
emulators we will evaluate their predictions with respect to 
the daily precipitation series from the corresponding RCM 
simulation (cf Fig. 1). The evaluation relies on various met-
rics to compare the targeted (Y) and the predicted ( ̂Y  ) series 
to have the most complete evaluation possible and under-
stand the strengths and weaknesses of each emulators. The 
different metrics are detailed below.

2.5.1 � Time series comparison

First of all we will evaluate in each grid point if the emu-
lated time series matches the original RCM series through 
two metrics:

–	 Temporal Anomalies Correlation. This is the Pearson 
correlation coefficient after removing the seasonal cycle: 

 with � the Pearson correlation coefficient and Ya and Ŷa 
are the anomaly series after removing a seasonal cycle 
computed on the whole series.

–	 Ratio of Variance. It indicates the performance of the 
emulator in reproducing the local daily variability. We 
provide this score as a percentage: 

Both metrics are computed at each grid point. Each map 
is summarised with its spatial mean and 5th and 95th 

(5)ACC(Y , Ŷ) = �
(
Ya, Ŷa

)
,

(6)RoV(Y , Ŷ) =
Var

(
Ŷ
)

Var(Y)
∗ 100
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super-quantiles. The super-quantile � is defined as the mean 
of all the values larger (resp. smaller) than the quantile of 
order � , when � is larger (resp. smaller) than 0.5.

2.5.2 � Climatological scale metrics

It is necessary to evaluate the emulators at the climatological 
scale. We use three statistics over at least 20 years: the daily 
precipitation mean, the 99th quantile and the percentage of 
dry days (precipitations lower than 1 mm/day). These three 
metrics, often used in the climate community, are snapshots 
of the variable distribution illustrating the performances of 
the emulators from low to high precipitation. The biases 
maps are presented in percentage. When the biases are too 
strong, notably because of comparing very small values, we 
use the simple bias (Ŷ − Y) , expressed in mm/days. Again, 
the statistics are computed point-wise, and each map is sum-
marised by its spatial mean and super-quantiles.

These three statistics will be looked at in present climate 
but also in climate change context. Each statistic will be 
computed in a future period and the climate change statistic 
is the relative difference with the past period. Then the sim-
ple bias is computed between RCM and emulator climate 
change statistics.

2.5.3 � PDF normalisation

Since the probability density function for daily precipita-
tion are very heavy-tailed, it is difficult to compare distri-
bution we get from the emulators with the RCM. We pro-
pose here to use the ASoP method introduced in Klingaman 
et al. (2017) and applied in multiple studies as Berthou 
et al. (2020) or Vergara-Temprado et al. (2020). It consists 
in computing the precipitation frequency following some 
well-chosen bins bn defined in Eq. 8. The bins are such that 
they contain a similar number of events for bins over 1 mm 
and as long as the number of events is sufficient.

Then we can look at each bin’s contribution Cn to the mean 
by multiplying each frequency by the corresponding bin’s 
mean as described in Eq. 9. Both frequency and contribution 

(7)Relative bias =

(
Ŷ − Y

)
Y

× 100

(8)
bn = e

⎛

⎜

⎜

⎝

log(0.005) +
[

n
(log(120) − log(0.005))2

59

]

1
2 ⎞

⎟

⎟

⎠

with n ∈ [[0, 100]]

are interesting in comparing the emulated series with the 
true RCM.

We use the skill score proposed in Berthou et al. (2020) to 
evaluate the difference between the emulators and the RCM 
truth contributions curves. The fractional contributions are 
the actual contributions divided by the total mean precipita-
tion of the series. They give information on the shape of the 
distribution independently from the mean. The Fractional 
Contribution Skill Score (FCSS) sums the absolute differ-
ence in each bin between the fractional contributions of an 
emulator and the targeted true series. The area under the FC 
curve is equal to 1, so the FCSS is equal to 0 when the two 
distributions are identical and to 2 when there is no overlap 
between them. It measures the differences between the two 
distribution shapes independently from the series mean. This 
score is illustrated on Fig. 9 and further commented in the 
results Sect. 3.1.3.

2.5.4 � SAL score

In order to further evaluate the performances of the emula-
tor, we use an object-oriented score introduced in Wernli 
et al. (2008). The SAL score aims to evaluate the spatial 
structure of precipitation objects from a predicted map ver-
sus a reference. It compares two maps of precipitation at a 
given time step. It accounts for the objects’ structure (S-com-
ponent), location (L-component) and the total amplitude of 
precipitation (A-component). In perfect model evaluation, 
the emulator should be able to reproduce the precipitation 
events accurately. This score indicates if the emulator rec-
reates objects with the same characteristics than the RCM. 
Note that the days are dealt independently meaning that the 
life time of the objects is not considered.

The first step is to identify the precipitation objects. To 
do so, we used the pysteps (Pulkkinen et al. 2019) python 
library, which integrates a SAL implementation. On each 
daily map, the objects are define as the groups of at least 5 
consecutive points with precipitation higher than a thresh-
old equal to R∗ =

1

15
R(95) , R(95) being the 95th quantile on 

the map. Multiple objects can be detected every day. Then, 
the three components are computed aiming to differenti-
ate objectively different precipitation objects. The A- and 
S- components take values between – 2 and 2 while the 

(9)

Cn = fnmn

where fn and mn are the frequency and the mean of bin bn

(10)

FCSS(Emul,RCM) =
�

n∈[[0,100]]

���FC
Emul
n

− FCRCM
n

���

where FCn =
Cn∑
n Cn

=
Cn

mean
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L-component takes values between 0 and 2. If all objects 
are similar on the maps the three components will be close 
to 0. A more detailed presentation of the score behavior can 
be find in Wernli et al. (2008, 2009).

The results are then presented in a diagram where each 
day is represented by a point with the S and A components 
on the x and y axis respectively, and the L component given 
by the color of the point. SAL diagram are visible in Fig. 11 
and commented in Sect. 3.1.4. Following the recommenda-
tion of Wernli et al. (2009), we apply this score on sub-
domains of a maximum of 500 km by side represented with 
blue squares on Fig. 2. It is noteworthy that other metrics 
could be applied to evaluate an RCM-emulator in an object 
perspective through tracking (Caillaud et al. 2021) or spec-
tral density (Vosper et al. 2023) approaches.

3 � Perfect model evaluation

This section is divided in two parts. In a first evaluation 
step we evaluate and compare the three emulators in per-
fect model framework. We use the CNRM-ALADIN RCP45 
simulation, from 2006 to 2100, which has not been seen 
during the training of the neural network (see Fig. 1). After 
a first impression on the emulators’ abilities through some 

examples, we extend the analysis with climatological and 
daily scores. This section also aims to understand the impact 
of the loss function on the trained emulator by comparing 
the results of EMUL-ASYM with the two benchmarks emu-
lators. A second step focuses the evaluation on the Emul-
ASYM and the assessment of the transferability question by 
extending the analysis to all available ALADIN63 simula-
tions (cf. Table 1).

3.1 � Comparison of the three emulators

3.1.1 � First look into the emulators’ prediction

Before evaluating the emulators’ performances with metrics, 
it seemed worthwhile to look into the raw series they pro-
duce. Figure 5 shows the times series at four grid points for 
the year 2022 in the evaluation simulation for the RCM truth 
and the three emulators. The three grid points show very 
different series. The Alps point series shows the strongest 
variability and intensities, with many days over 50 mm and 
almost no dry spell. The Paris series has minimal variability 
with numerous small precipitation days and lower extremes 
compared with the other points. The Roma series shows dry 
spells during spring and summer 2022 in this simulation and 
has a very strong rainfall event in fall.

Fig. 5   Daily precipitation time series for four grid points. The RCM truth (in red) and the three emulators are plotted on each panel
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The emulators series are very encouraging. They repro-
duce the original series accurately, respecting each point’s 
characteristics. They look like precipitation series as they 
appear to be able to produce periods with no precipitation 
and days with heavy rainfall. All emulators capture the 
extreme autumn rainfall in Roma and the dry spell between 
May and June. The very high variability over the Alpine 
point also appears to be well reproduced by the three emula-
tors. On all points, the three emulators seem to miss some 
extremes simulated by the RCM, as it occurs several times 
that the red line comes higher than the others. However, it 
does not seem that Emul-MSE or Emul-MAE ever make 
stronger extremes than the RCM. At this point, it is impos-
sible to decide if an emulator performs better than the others.

Figure 6 shows the precipitation field over the target for 
three days randomly picked along the simulation. It shows 
the RCM truth, the three emulators and the UPscaled pre-
cipitation field (UPRCM). The UPRCM helps to have an 
insight into the input resolution and shows how the RCM 
and the emulators refine it, even if precipitation is not part 
of the predictors. Several exciting points appear in this fig-
ure. First of all, the emulators’ prediction on each panel is 
very coherent with the RCM. The precipitation predicted by 

the emulator occur at the right place on these 3 days (with 
respect to the RCM “reality”) and with a correct intensity. It 
seems, however, that the emulators are producing too smooth 
objects. On the RCM maps, there are some very sharp and 
precise structures that the emulators fail to reproduce with 
the same precision. For example, on the lower panel, there 
is a hole with no rain over the southwest of France, which 
is missed by all emulators, even if Emul-MAE and Emul-
ASYM make less intense precipitation over this area. The 
middle panel RCM map also shows very sharp structures 
that appear smoother in the emulators’ maps. Nevertheless, 
the extreme points are well located for the three days.

In terms of intensities, the three emulators have mostly 
the correct spatial mean. Emul-ASYM reproduces better the 
spatial extremes as it has closer 95th superquantiles than 
Emul-MSE and Emul-MAE, which are both under-estimat-
ing the spatial extremes on these three days. Emul-ASYM 
is overestimating the spatial SQ95 on the first panel, as it 
creates a more significant local extreme over the Alps than 
in the RCM map. It is, however, remarkable that this extreme 
is not inconsistent with the UPRCM map. Indeed it is inter-
esting to notice the differences between the RCM and the 
UPRCM maps, which attest to the resolution’s impact. The 

Fig. 6   3 randomly chosen days illustrating the precipitation field of 
ALADIN63 at the Upscaled resolution (UPRCM), its native resolu-
tion (RCM truth). The three right-most plots show the precipitation 

field for each of the three emulators. The values corresponds to the 
spatial mean and 5th and 95th super-quantiles
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RCM is able to create sharp and well defined objects, with 
locally strong intensities. Regarding this aspect, the emula-
tors seem to have an adequate capacity to refine the low-
resolution maps and always recreate high resolution maps 
consistent with the driving large scale circulation. Neverthe-
less, it seems that the objects created by the emulator are 
smoother than the original RCM maps.

3.1.2 � Daily scale analysis

In a second step, and to extend the first observations from 
the previous section, we can look at some scores over the 
time series. Firstly, the upper panel on Fig. 7 shows the Pear-
son correlation coefficients calculated between the RCM and 
the emulators’ series in each grid point. The three emulators 
appear to have similar performances regarding this aspect, 
with average correlation of 0.80 (de-seasonalised and de-
trended) with the true series over the whole domain. The 
best correlations are over the high terrains with Pearson 
coefficients larger 0.9. The lowest correlation appears over 
the driest area (cf Fig. 8), like the south of the Pyrenees or 
the North-East corner of the domain, but the correlations 
are still around 0.75.

The lower panel on Fig. 7 shows the variance ratio for 
the three emulators against the RCM truth. Emul-ASYM 
manages to reproduce in each point the RCM variance much 
better than the two others. Its variance ratio ranges from 
80 to 120 percent, with a big part of the map being very 
light, showing about 100% variance reproduction. It slightly 

overestimates the relief’s variance and slightly underesti-
mates it over the regions with low rain average (cf Fig. 8). 
On the other hand, both Emul-MSE and Emul-MAE vastly 
underestimate the variance over the whole domain, even if 
Emul-MSE is slightly better.

It seems that the three emulators understand the driving 
atmospheric circulation described by the predictor similarly 
as they seem able to create the chronology of the original 
RCM series very accurately. They can identify where and 
when the precipitations occur at the grid point scale, as 
shown by the good correlation maps. However, the loss 
choice seems to substantially impact the reproduction of the 
events’ intensity as the emulators have different variance 
ratio maps. Let us see if this is confirmed when we look at 
aggregated statistics.

3.1.3 � Climatological scale analysis

In this section, we look at some aggregated statistics to eval-
uate if the series produced by the emulator are statistically 
similar to the RCM one and how they differ. Figure 8 shows 
three climatological metrics over 20 years in the present 
period for the RCP4.5 simulation which is not in the train-
ing set. The upper panel shows the average daily precipita-
tion over 2006–2025, the middle one is the 99th quantile, 
and the lower one shows the proportion of dry days. This 
figure illustrates well the impact of each loss function on 
the emulator.

Fig. 7   Temporal Anomalies Correlation (up) and Ratio of variance (bottom) computed on the entire evaluation simulation (2006–2100) for the 
three emulators



8598	 A. Doury et al.



8599On the suitability of a convolutional neural network based RCM‑emulator for fine spatio‑temporal…

The Emul-MSE mean is very similar to the RCM map. 
The spatial mean and superquantiles are the same. The bias 
map shows that it slightly underestimates the RCM values, 
but at maximum by 15% and over regions with low pre-
cipitations. However, it presents much poorer results on the 
other part of the distribution: it largely underestimates the 
99th quantile (– 15% on average) and the number of dry 
days (– 10% on average). It is due to the nature of the mean 
squared error loss, mainly concentrating around the mean.

The Emul-MAE is, meanwhile, very accurate for the rep-
resentation of dry days, very slightly overestimating them. 
However, it fails to reproduce the mean and the 99th quantile 
maps, broadly underestimating them. The MAE loss gives 
the same weight to all errors. Since the number of dry days 
is the most represented (between 35 and 85% of the days are 
between 0 and 1 mm) they weigh much more in the emulator 
training, so it mainly focuses on them.

The Emul-ASYM aims to correct the EMUL-MAE by 
giving more weight to the rainy days, proportionally to the 
amount of rain. It has similar performances to Emul-MAE 
over the dry days’ map, which is expected since both emu-
lators have the same loss function on this part of the distri-
bution. However, the Emul-ASYM mean and 99th quantile 
maps are also very accurate. It shows in both cases less than 
15% bias over the worst points and almost no bias on average 
over the maps. Regarding both climatologic maps, it seems 
to slightly overestimate the precipitation over the high ter-
rains where it is raining the most and under-estimates at the 
driest points. Nevertheless, these errors are small, and the 
Emul-ASYM is clearly the best option if we aggregate the 
performances for the three metrics.

On all maps in Fig. 8, it is striking to see how well the 
emulators reproduce the complex spatial structures. Emul-
MAE and Emul-MSE have strong biases that are uniform 
over the domain. All three statistics present locally differ-
ent patterns, and the emulators reproduce that. For instance, 
on the 99th quantile maps, there is a strong pattern in the 
Cevennes, just south of the Massif Central (France), which 
is much less intense in the daily mean map. It is the same for 
the emulators’ maps. The spatial structure over Italy is also 
very complex; there is a thin line over the high terrains with 
more rainy days and higher extremes, which is also almost 
perfectly reproduced by the emulators. Similar examples 
exist for the entire domain.

In order to extend this result, we can look at the entire 
distribution using the ASoP method described in Sect. 2.5.3. 

In Fig. 9, the pdf analysis is detailed for the three regions 
of 9 × 9 grid points previously centered over Paris, Roma 
and a high point in the Swiss Alps. The first column shows 
the events frequencies for each bin defined in Sect.  2.5.3. 
Most days fall in bins under 0.1mm/day as the RCM curve 
comes from high on the left part of the plots. The Emul-
ASYM and the Emul-MAE reproduce this part well, while 
the Emul-MSE underestimates the very low precipitations 
( ≤ 0.1mm∕day ) and overestimates the ones between 0.01 
and 10 mm/day. It is less pronounced for the Alps point, 
where the event distribution is more uniform across the bins 
than the other three points. Emul-ASYM reproduces the fre-
quency of these stronger events better than the two other 
emulators.

The second column shows the actual contributions 
to the mean, which are the frequencies multiplied by the 
bins’ mean. The first remark is that Emul-ASYM slightly 
overestimates the contribution of the precipitations around 
10 mm, which probably led to the wet bias on the mean map 
of Fig. 8. Emul-MAE produces insufficient rainfall over ∼ 
8 mm as the right part of the distribution is shifted to the 
left. The same remark applies to the Emul-MSE to a minor 
extent, which has a better reproduction of the mean, confirm-
ing what we saw in Fig. 8.

The last column illustrates the fractional contributions 
skill score by plotting the difference between the emula-
tors and the RCM distributions on the third column. The 
fractional contributions are the actual contributions nor-
malized by the mean of the series, allowing us to compare 
only the shape of the distribution across the bins. It helps 
to see that the Emul-MSE and Emul-MAE distribution are 
generally left-shifted, with too many small precipitations 
and not enough strong events. The Emul-ASYM curve gen-
erally looks better even if it tends to produce slightly too 
many precipitations between the mean and the 75th quantile. 
The regularization term in the Emul-ASYM loss appears to 
play its role pretty well as the distribution of precipitation 
is closer to the real one but might sometimes be too strong.

The skill score measures the area between the emula-
tors’ fractional contribution and the RCM one, and we can 
see that the Emul-ASYM outperforms the others over these 
three points. It is interesting to notice that Emul-MSE and 
Emul-MAE perform better over the Alps point, where the 
precipitations are more uniformly distributed across the bins. 
Finally, Fig. 10 shows that the Emul-ASYM skill score is 
better over the whole domain. It generalizes the distribu-
tion analysis and confirms that the specifically designed loss 
function is more adapted than the two others to reproduce 
the highly skewed distribution of precipitation.

Fig. 8   (Upper) the mean map of daily precipitation accumulations 
over the 2006–2025 period, (middle) the 99th quantile map over the 
same period and (lower) the percentage of dry days. These three sta-
tistics are shown for the RCM and the three emulators. For each emu-
lator and each metric, the relative bias maps are shown. The spatial 
mean and 95th and 5th superquantiles are given for each map

◂
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3.1.4 � Object oriented analysis

Figure 6 seems to illustrate that the precipitation objects cre-
ated by the three emulators are smoother than in the RCM. 

The SAL method presented in Sect. 2.5.4 is a objected-ori-
ented evaluation approach which compares on two maps the 
object similarities.

Fig. 9   Illustration of the probability density function analysis fol-
lowing the ASoP method (Klingaman et al. 2017) on three example 
regions composed of 9 × 9 grid points. Each line is a point and each 
column is a different step of the method. The first column shows the 
frequency of events in each bins, the second and the third the actual 

and the fractional contribution and the last column illustrates the frac-
tional skill score (i.e. bin per bin difference between RCM and emu-
lators fractional contribution plots). The numbers in the last column 
plots are the FCSS for each emulator at the corresponding point

Fig. 10   Fractional Contribution Skill Score maps for the three emulators
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Following the recommendation of Wernli et al. (2009), 
we limited the evaluation to three subdomains of about 
500 km by the side. The blue boxes represent them on 
Fig.  2. The first subdomain focuses on the Cevennes 
regions. This part of South France is well known for its 
extreme autumn precipitation events. These events are the 
object of multiple studies (Ribes et al. 2019; Caillaud et al. 
2021) because of their strong socio-economic impacts. It 
is then important to assess whether the emulator is able 
or not to reproduce such events. The second domain is 
another hotspot for Mediterranean extreme precipita-
tion events (Ivušić et al. 2021) located in Croatia, over 
the Dinaric Alps and the North of the Adriatic Sea. The 
last subdomain is centred around Belgium, including the 
South-East of England, the North-East of France and West 
of Germany. This region presents a different climatology 
with extreme events of smaller intensities occurring more 
in winter.

Figure  11 presents the SAL scores’ results for the 
Emul-ASYM, while SM.F2 and SM.F3 in supplementary 
material show the results for the two others emulators. 
We focus here the comments on the Emul-ASYM as the 
three emulators present similar conclusions on this aspect. 
For each region, there are five SAL diagrams. The left 
most diagram represents the results for all rainy days. 
Then going to the right we consider only days where the 
spatial 99th percentile of the RCM truth series is above 
an increasing threshold. The threshold and the number 
of considered days are indicated on each diagram. Thus, 
from left to right we consider only more and more extreme 
events. The first general comment is that over all these 
diagrams, the emulator reproduces accurately the large 
majority of the events. Indeed the red boxes regroup 90% 
of the days and they are always centred around 0 with most 
points in deep blue, showing good Location score.

Fig. 11   SAL diagram for the three regions: Cevennes (up), North 
of the domain centred around Belgium (middle), and a region over 
Croatia and the North of the Adriatic sea. From left to right, the panel 
show the SAL results for days with maximum events intensities above 
an increasing threshold. Each point on the diagram represents a day 

with the Amplitude component on the y-axis, the Structure on the 
x-axis and the color give the Location score. The red box includes 
90% of the points, and the black cross indicates the A and S median. 
On the colorbar the white point indicates the L metric median over 
selected days and the bars the 95th and 5th percentiles
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On the first column representing all rainy days, the emu-
lator underestimates the global amount of precipitation 
over the domain, with the red box being pulled down left. 
As it gets more centered when we look only at stronger 
events we can conclude that the emulator misses some 
small precipitation objects. Knowing the chaotic nature 
of rainfall, we assume that it is perfectly fine if the emula-
tor misses or add some small events. Moreover, the SAL 
metrics are one-sided: they evaluate how the predicted 
map matches the reference one. As we fix the threshold 
according to the RCM true series, it is logical that events, 
especially small ones, are missed or underestimated by the 
emulator. Besides, when we fix the threshold according 
to the emulated series, then the emulator overestimates 
the amplitude of some small RCM events and the red box 
is pushed up-right. It shows that the emulator sometimes 
misses small objects and sometimes creates some.

On the right of the figure, when we look at days with 
heavier precipitation, the amplitude gets centred around 
zero or slightly positive on the right-most column of the 
two Mediterranean regions. In addition, the emulator tends 
to produce larger objects with a positive S-component. 
However, the centre of the object is most of the time well 
located. It tends to generalize that the emulator produces 
smoother objects than the RCM, especially on significant 
intensities events. There is a correlation between the errors 
in amplitude and structure metrics. It can attest that the 
emulator always creates objects consistent with the RCM. 
They are either smaller or bigger in terms of both shape 
and amplitude.

Generally speaking, the emulator manages to reproduce 
the precipitation objects simulated by the RCM, even if they 

do not always have the perfect characteristics. The emulator 
captures most of the extreme events with the most suitable 
characteristics. The emulator seems nevertheless to produce 
smoother objects implying that it misses the high frequency 
details. A further analysis, with an application to a hydrolog-
ical impact study, should be conducted to determine whether 
it is a fundamental limitation and how we could maybe adapt 
the emulator.

3.2 � Transferability assessment in perfect model 
framework

In order to give more robustness to the good performances 
of the Emul-ASYM, we extend its evaluation in perfect 
model to all ALADIN63 simulations available for our tar-
get domain. Indeed, up to now we focused the evaluation on 
the ALADIN simulation driven by CNRM-CM5 RCP4.5, 
which share the same driving GCM. The EURO-CORDEX 
matrix gives us the opportunity to evaluate the emulator 
on simulations driven a by different GCMs. We keep using 
coarse grained inputs from ALADIN simulations driven by 
different GCM which allow us to perform a first assessment 
for transferability to different GCMs, as it is a necessary 
condition for the application of the emulator to downscale 
large ensemble of simulations.

3.2.1 � Present climate

Figure 12 summarizes climatological maps as the ones 
shown on Fig. 8. The three panels (from left to right) cor-
respond to the three statistics we looked at in Sect. 3.1.3: the 
mean amount of daily precipitation, the 99th quantile and 

Fig. 12   Summary plots of the three climatological statistics regroup-
ing the results on all ALADIN63 simulations in perfect model evalu-
ation. On each error bar, the lower (resp. upper) bound is the spatial 
5th (resp. 95th) superquantile and the spatial mean is represented by 

the dot. The upper panels show the raw maps summary statistics for 
the RCM (in red) and the Emul-ASYM (in green), and the lower pan-
els show them for the relative bias maps
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the percentage of dry days over the 2006–2025 period. On 
each panel, the upper part shows the summary statistics for 
the raw maps of the RCM and the emulator, and the lower 
part summarises the relative bias maps of the emulator with 
respect to the RCM truth. On each panel, the columns cor-
respond to a simulation. Each bar shows the spatial mean 
of the map, the upper bound shows the 95th super-quantile 
and the lower bound shows the 05th super-quantile. The first 
column shows the results for the CNRM RCP85 simulation, 
which has been used to train the emulator. The results on 
this simulation are given here as an indicator and cannot 
be taken alone to evaluate the emulator’s performances. On 
each panel, the second column is the summary of the evalu-
ation on the CNRM-RCP45 simulation presented on Fig. 8. 
The bars illustrate well the main conclusions with for exam-
ple a slight over-estimation over the wettest point (as the 
green bar goes higher) or the low biases on the lower panel.

The results are encouraging as the performances of the 
emulator are very similar across simulations, even if those 
are different in several aspects. For instance, the 3 CNRM 
simulations have higher daily means than the three others 
since the spatial mean and superquantiles are higher. It is 
less evident on the 99th quantile maps, where only the NCC 
simulation produces “eye-visible" lower heavy precipita-
tions. The emulator’s bars reproduce the diversity of behav-
ior of the various GCM-RCM pairs, as for example the NCC 
simulation seems to have less spatial variability on the 99th 
quantile maps than the other simulations. As observed previ-
ously, the emulator overestimates the average daily precipi-
tation on the wettest points and underestimates it over the 
driest points whatever the statistics (see Fig SM.F4), which 
stays valid for all simulations. The biases on land points are 
similar to the ones observed for the CNRM RCP45 simula-
tion, showing that the emulator reproduces each simulation 
with the same accuracy. In all these simulations, the emula-
tor reproduces the three parts of the distribution well over 
the whole domain.

The analysis is the same regarding the variance maps 
summarized in Figure SM.F5 in supplementary material. 
The daily variance differs according to the simulation. For 
example, the RCM simulation driven by NCC has a smaller 
variance than the CNRM simulations or the HGM. The 
emulator reproduces in each case the variance maps quite 
accurately. However, in every simulation, it strengthens the 
variance where it is the strongest. The variance ratio sum-
mary plot confirms that the analysis made for the CNRM 
RCP45 in Sect. 3.1.2 extends to all other simulations. The 
emulator can reproduce the daily time series with globally 
acceptable variance at every grid point. The temporal cor-
relations (not shown) are also similar to what we observed 
on the CNRM-RCP45 simulation across all simulations. In 
the worse cases, it misestimates the variance by about 20%. 
Figure SM.F5 also shows the FC skill score maps for the 

four missing evaluation simulations (the RCP45 simulation 
in in 10). Here again, we can observe that the emulators 
reproduce the shape of the precipitation distribution cor-
rectly at each grid point in all simulations. The emulator has 
similar performances across all simulations at the grid point 
scale, with for example lower skill scores on the South-West 
corner of the domain and better ones over the eastern alps.

3.2.2 � Climate change reproduction

In order to finalise the evaluation of the emulator in the per-
fect model framework, we can look at the climate change 
maps. To do so, we will look at the three statistics used 
in the previous sections: the mean daily precipitation, the 
99th quantile and the percentage of dry days. In each simu-
lation, we compute the relative changes in a future period 
(2070–2100) versus a past period (1950–1980). The changes 
in precipitation are likely to be different according to the 
seasons over western Europe so we will look at the sea-
sonal climate change here. Previous studies tend to project 
a decrease in summer precipitation over the region, notably 
around the Mediterranean sea, and an increase of winter 
precipitation on the North (Coppola et al. 2021). Besides, 
a possible increase in extreme precipitation, especially over 
northern Europe, is expected. The results for the summer and 
winter and the three statistics on all simulations are summa-
rised through summary plots in Fig. 13 while the results for 
the MPI and HGM simulations are illustrated in Fig. 14. We 
chose those two maps as they show very contrasted climate 
change signal.

The first remark is that on all plots summarising the raw 
maps, the green bar corresponds very well to the red one, 
implying that the emulator correctly reproduces the maps 
and the intensity of the local changes. It is particularly 
notable on the summer plot, where the differences between 
the projections are the strongest. The MPI and NCC simu-
lations show a substantial decrease in the mean daily pre-
cipitation over the entire map, associated with a global 
increase in the percentage of dry days. On the other hand, 
the HGM simulation projects an increase in average daily 
rainfall over some regions in summer. The emulator repro-
duces each simulation specificity with mainly the right 
intensity. Figure 14 shows summer and winter changes for 
the MPI and HGM simulations. It illustrates well that the 
emulator correctly captures the big spatial pattern. Still, 
in summer, we can observe that the emulator precisely 
places the regions where the HGM simulation produces 
an increase in average rainfall. This increase matches an 
increase of the 99th quantile in the same regions, and the 
emulator produces the same relationship. Similar analysis 
can exist on the winter maps, concluding that the emulator 
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reproduces the ALADIN63 simulation with excellent 
accuracy.

Nevertheless, the emulator’s maps are more continu-
ous than the RCM maps, especially for the 99th quantile 
maps, which are patchy. It results in significant local biases 
between the emulator and the RCM maps. It partly explains 
the large biases on the bias maps summary plots in Fig. 13. 
Generally, the emulator tends to overestimate some changes 
as we can see that the green bar is often longer than the red 
one. The number given on top of the bias maps summary 
plots shows the percentage of sign agreement between RCM 
and emulator over the grid points. It shows that the emulator 
identifies well the changes as these numbers are very high ( 
always above 75%, very often above 90%). Moreover, on the 
bias maps of Fig. 14, the hatching shows the points where 
RCM and emulator disagree on the signs. It is visible that 
they mostly correspond to points with minor changes.

To conclude, the emulator can reproduce high-resolution 
climate change maps with the same strong spatial pattern 
and intensities. Another relevant remark, not shown here, 
is that Emul-MSE and Emul-MAE have the same ability 
as Emul-ASYM to reproduce the climate change maps. It 
means that each emulator keeps the same biases along the 
simulation, and the changes are mainly driven by the large 
scale, which the emulators captures well (see Table 3).

3.2.3 � Perfect model evaluation conclusions

Through Sects. 3.1 and 3.2 we have analysed the ability of 
the emulator trained with the asymmetric loss function to 
reproduce the precipitation field simulated by the RCM. The 
conclusion on the emulator performances are summarised 
here:

–	 The three emulators are able to produce realistic precipi-
tation time series well correlated to the RCM ones and 
with the right spatio-temporal variability.

–	 The grid-point regularization term in the asymmetric loss 
function helps to respect and reproduce the entire com-
plex distribution of precipitation everywhere on the tar-
get domain. However it is important to mention that the 
evaluation does not account for the full spatio-temporal 
complexity of precipitation and we did not explore the 
extremes (5 or 10 year return period events).

–	 The asymmetric emulator tend to underestimate the pre-
cipitation in generally dry regions and overestimate it in 
the wettest parts of the domain.

–	 The emulators creates coherent objects of precipitation, 
with generally the right characteristics even if they tend 
to miss highest frequency details, and this is true for the 
three emulators.
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Fig. 13   Same as Fig  12 for the winter and summer climate change 
(2070–2100 vs 1950–80) summary plots for the three statistics of 
interest: the daily precipitation mean, the 99th quantile and the per-
centage of dry days. The changes are the relative difference between 

the future period and the past one. The biases are simple bias between 
the emulator and RCM relative change maps. On each bias summary 
plot the number indicates the % of points where RCM and emulator 
agree on the sign
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–	 Those conclusions are the same for any ALADIN63 
simulations available to evaluate the emulator in per-
fect model, including the ones driven by different 
GCMs than the one used during the training. It notably 
showed good ability to reproduce the diversity across 

simulations which attests for the good transferability 
of the learnt function and so gives some confidence on 
its applicability to various GCMs simulations. This is 
a key results for future applications.

Fig. 14   Perfect model evaluation. Relative changes (in %) between 
2070–2100 and 1950–1980 for the MPI and HGM driven simulations 
regarding (up) the mean map of daily precipitation accumulations, 
(middle) the 99th quantile map and (low) the percentage of dry days. 

These three statistics are shown for the RCM and the emulator, plus 
the simple bias map between the two. For each map, the spatial mean 
and 95th and 5th superquantiles are given. The hatching indicates the 
point where RCM and emulator disagree on the sign
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–	 Finally the climate change maps obtained from the emu-
lated series are in excellent agreement to the RCM ones. 
It gives a lot of confidence to use the emulator in climate 
change context.

The emulator present therefore satisfactory results in perfect 
model evaluation, where it downscales coarse grained RCM 
inputs, even is there is space for improvements. The pro-
posed loss function allowed to reproduce correctly the entire 
precipitation distribution at the grid point scale validating 
so far the use of the RCM emulator for precipitation downs-
caling. Therefore, the loss function plays here as a cursor to 
set the event intensities, while the chronology of the series 
is well captured from the predictors. It brings a clear added 
value compared to the two benchmark loss function that we 
proposed here.

4 � Application to GCM predictors

This section aims to assess the emulator’s applicability to 
GCM simulations. The ultimate objective of the emulator 
is to downscale large ensembles of GCM simulations to 
generate high-resolution simulations, allowing the study of 
local precipitation evolution and the associated uncertainty. 
Hence, it is crucial to evaluate if the emulator is indeed 
applicable to GCM simulations while maintaining similar 
performance levels than in perfect model framework evalu-
ation. The application protocol is illustrated in the right 
panel of Fig. 1, where the emulator processes GCM data 
after interpolating them onto a common grid. In this evalu-
ation, we utilized the emulator to downscale four RCP85 
GCM simulations-CNRM-CM5, MPI-ESM-LR, HadGEM2-
ES, and NorESM1 (refer to Table 1), which were employed 
to drive ALADIN63. The corresponding RCM simulations 
serve as a comparison basis, yet they cannot be deemed as 
the reference truth for the emulated series.

Indeed, as elucidated in Doury et  al. (2023) and in 
Sect. 2.1, differences between an RCM simulation and its 
driving GCM entail low day-to-day correlation and long-
term statistical disparities. The climatological inconsisten-
cies between an RCM and its driving GCM is a well iden-
tified issue that has been notably posed in Laprise et al. 
(2008). The authors discuss whether those differences 
should be expected (linked to the upscaled added-value of a 

better representation of the local processes) or if the RCM 
shouldn’t deviate from the GCM large scale climatology. 
Recent studies (Boé et al. 2020; Taranu et al. 2022) tend 
to agree that at least a part that the climatological biases 
observed in Doury et al. (2023) is not representing an added-
value of the RCM at large-scale. The challenge of this sec-
tion therefore lies in evaluating whether the emulator gener-
ates a series that aligns with the large-scale characteristics of 
the GCM while incorporating high-resolution features from 
the RCM. Another way to frame the objective of this section 
is that we try to identify if the Emulator in GCM application 
mode is able to reproduce an added-value with respect to its 
driving GCM similar to the one proposed by the original 
RCM. Consequently, we will compare the emulator’s output 
with both the RCM and GCM series. Our expectation is that 
the emulator produces a series consistent with the GCM’s 
large scale while integrating high-resolution features akin to 
those introduced by the RCM.

4.1 � Showcases on the large scale differences 
between RCM and GCM

Figure 15 showcases the precipitation field for three con-
secutive autumn days in the CNRM RCP85 simulation. 
Each day includes the RCM truth simulation alongside the 
emulated maps in perfect model (UPRCM) and application 
(GCM) mode, complemented the UPRCM and GCM pre-
cipitation maps for the respective days. It is important to 
remember here that the low-resolution precipitation field 
is not a predictor. The UPRCM precipitation is simply the 
RCM map interpolated on the GCM grid, and we use it to 
compare with the GCM precipitation map.

These three days vividly illustrate the low day-to-day cor-
relation between the RCM and its driving GCM. Compar-
ing the low-resolution maps reveals distinct chronologies. 
One can observe that the situation in day 1 is quite similar 
between the GCM and the RCM thanks to the sea-level-
pressure contour, but that it evolves very differently leading 
to very different precipitation maps.

However, the three high-resolution maps offer assur-
ance regarding the emulator’s ability to downscale GCM 
simulations. It generates a series consistent with the GCM, 
depicting precipitation objects that align with the GCM daily 
weather patterns. Moreover, the emulator refines the high 
resolution in a manner similar to the RCM. For instance, 

Table 3   Summary of the 
emulators’ comparison results

Emulators Temporal
correlation

Average pre-
cipitation

Low
precipitation

Heavy
precipitation

Variance PDF
Shape

MSE ++ ++ – – – –
MAE ++ – ++ – – -
ASYM ++ ++ ++ ++ + +
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on day one, it precisely localizes extremes in the Alps and 
along the northern Italian coast. On day two, the GCM’s 
situation over Italy closely resembles the RCM’s depiction 
on day three, with the emulator producing similar events 
in mid-Italy in both cases. The emulator also adjusts the 
intensity of daily extremes, generating stronger heavy pre-
cipitations compared to the GCM as captured by the SQ95. 
However, it exhibits similar limitations in both UPRCM and 
GCM applications, with objects appearing overly blurred 
and lacking sharpness, as discussed in Sect. 3.1.4. This con-
sistency underscores the emulator’s stability when downs-
caling GCM data. These three days exemplify the challenge 
of evaluating the emulator in application mode without a 
proper reference, given the day-to-day mismatches that 
hinder distinguishing potential emulator issues from large-
scale-induced divergences.

4.2 � Present climate

In this section we analyse the series downscaled by the emu-
lator in present climate. As in the perfect model evaluation, 
we compute the annual average daily rainfall, the 99th quan-
tile and the percentage of dry days in the present climate 
(2006–2025) in the four simulations. We compare the emula-
tor’s maps with the RCM ones and the GCM ones.

The most striking observation lies in the added value 
brought by both the RCM and the emulator when compared 
to the GCM maps. CNRM, among the GCMs, exhibits 
some spatial structure across all three statistical measures, 

while the remaining three show notably flat maps, espe-
cially concerning heavy precipitation events. The emulator’s 
maps exhibit a high spatial correlation with the RCM ones, 
effectively replicating the fine-scale spatial structure across 
mean climate conditions and within dry or wet conditions. 
It successfully captures topography-driven spatial patterns, 
portraying areas like the central Alps experiencing more pre-
cipitation compared to the rest of the range across all RCM 
and emulator simulations. Additionally, intricate structures 
over Italy and the Mediterranean coastline are faithfully 
reproduced by the emulator. Another point of validation is 
the spatial super-quantile that are comparable with the RCM, 
confirming the emulator’s high-resolution consistency with 
the RCM.

In all four simulations and across the three statistical 
measures, significant disparities exist between the emulator 
and the RCM maps. As explained in Sect. 2.1 or in Doury 
et al. (2023), the daily inconsistencies between GCM and 
RCM large scales can lead to climatological differences. 
For instance, the emulator driven by CNRM generates more 
intense precipitation over the Alps than the RCM simulation, 
resulting in a higher 99th quantile and fewer dry days in 
the region. Conversely, the HGM-driven emulator simula-
tion reflects a drier tendency, characterized by a lower 99th 
quantile and a larger number of dry days across the entire 
domain. The consistency between the three statistics and 
the fact that the differences vary across simulations tend to 
support the hypothesis of real large scale differences rather 
than a problem in the emulator downscaling.

Fig. 15   Illustration of 3 consecutive days for the UPRCM, the emulator downscaling the UPRCM, the RCM, the emulator downscaling the 
GCM, and the GCM precipitation fields. The contours on low resolution maps show the sea-level-pressure
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However, some biases in the emulator’s outputs warrant 
attention. For instance, all emulated simulations under-
estimate the 99th quantile over the Cevennes in southern 
France. This region is recognized for its extreme events, an 
area where the RCMs usually bring a proven added-value at 
daily scale. While the emulator generates significant extreme 
events here, they appear comparatively less intense than 
those over the Alps in contrast to the RCM maps, where 
they exhibit a similar intensity. Dedicated studies specifi-
cally investigating the added value of emulators compared 

to RCMs and GCMs by analyzing particular events could 
certainly be conducted. However, such studies are beyond 
the scope of our current investigation (see Fig. 16).

4.3 � Climate change

In order to complete the study of the emulator ability to 
downscale GCM simulations, we propose to look at climate 
change maps. Given the inherent challenges in assessing the 
emulator’s performance when downscaling GCMs, we will 

Fig. 16   Present (2006–2025) climate statistics of 4 simulations 
(CNRM RCP85, MPI, NCC and HGM) for (upper) the mean map of 
daily precipitation accumulations, (middle) the 99th quantile map and 

(lower) the percentage of dry days. For each simulation, we see the 
RCM, the emulated one and the corresponding GCM map. The spa-
tial mean and 95th and 5th superquantiles are given for each map
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emphasize specific examples in this section. While the emu-
lator is not expected to precisely replicate the changes simu-
lated by the RCM, it should align with those produced by the 
GCM while integrating small-scale features consistent with 
the RCM. We compare the changes in autumn precipitation 
presented in Figs. 17 and 18 produced by the emulator maps 
for the four simulations with the RCM and the driving GCM 
simulations.

These figures affirm the emulator’s capability to incorpo-
rate high-resolution features into GCM simulations. In terms 
of both heavy precipitation and mean changes, the emula-
tor generally aligns with the patterns observed in the GCM 
maps. For instance, the CNRM simulation exhibits an inten-
sification of autumn precipitation over the northern domain, 
particularly noticeable in the 99th quantiles. The emulator 
echoes this trend, demonstrating a consistent signal with a 
more refined localization of pronounced changes, notably 
over northern and western France. The Emulator also clari-
fies the North-South contrast in precipitation change in the 
Alps with respect to the GCM low-resolution map, mimicing 
well the RCM pattern.

Moreover, the emulator appears capable of modifying 
the signal produced by the GCM. For instance, both the 
MPI and HGM simulations indicate a decrease in aver-
age precipitation across the entire domain, despite show-
ing an intensification in the 99th quantile. In contrast, the 
emulator portrays an increase in autumn precipitations 
over the eastern domain, propelled by a more substantial 
intensification of extreme events in those regions. If it is 
difficult to assess for the validity of the modification, it is 
in agreement with the two other emulated simulations and 
the four RCM maps.

Even if some spatial structures are consistent between 
the RCM and the emulator maps, they remain fundamen-
tally distinct. The emulator’s structures are generally 
smoother than the RCM ones. However, the maps pro-
duced by the emulator include realistic high resolution fea-
tures influenced by topography or coastline for example. 
Setting aside the differences in smoothness, distinguishing 
between the RCM and emulator maps becomes a challeng-
ing task.

Fig. 17   Autumn relative changes of average daily precipitation 
between future (2080–2100) and present (2006–2025) period for the 
4 GCM simulations downscaled with the emulator: CNRM, MPI, 
NCC and HGM under RCP85 scenario. From up to down, the rows 

show: the RCM, the emulator downscaling GCM, and the GCM 
maps. The spatial mean and 95th and 5th superquantiles are given for 
each map
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5 � Conclusion

This study aims to propose a credible solution to the high 
computational costs of Regional Climate Models to build 
large ensembles of high-resolution precipitation projections 
at daily scale. It extends the RCM-emulator introduced in 
Doury et al. (2023) for the case of temperature downscal-
ing. RCM-emulators belong to the family of hybrid down-
scaling methods. They use RCM simulations to estimate 
the downscaling relationship between low-resolution and 
large-scale variables and a high-resolution surface variable. 
It is important to recall here that the present study propose 
an emulator of a given RCM, CNRM-ALADIN63, in its 
EURO-CORDEX configuration. This manuscript has three 
main objectives: 

1.	 Addressing the suitability of the emulator for the com-
plex variable of precipitation, including the extreme 
parts of its distribution.

2.	 Studying the transferability of the trained emulator to 
different sources of inputs.

3.	 Evaluating the emulator behavior when applied to GCM 
simulations.

To address these objectives we extended the Doury et al. 
(2023)’s work with some developments while keeping as 

most the same basis. Indeed a strength of the RCM-emulator 
should be its universality across domain or variables. Thus 
the emulator presented here relies on the same perfect model 
framework as in Doury et al. (2023), it takes the same list 
of predictors and the neural network architecture is simply 
adapted to match the new input and target domains. The tar-
get domain considered here is four times bigger which also 
implied increasing the size of the input domain. Because 
of the non-Gaussian nature of precipitation we introduced 
a novel asymmetric loss function and put those results in 
perspective with two classical functions (MSE and MAE) 
for regression problems that we consider as benchmark for 
this study. Finally we also extended the evaluation of the 
emulator to a larger test set including simulations driven by 
various GCMs allowing to study its transferability. A first 
result is the good stability of the methodology set in Doury 
et al. (2023) with a bigger domain even regarding to com-
putational efficiency.

Regarding the first main objective we have shown that 
RCM-emulators are a credible strategy to downscale pre-
cipitation fields. The perfect model evaluation ensures a per-
fect reference against which we can precisely evaluate and 
compared the three emulators (corresponding to the three 
different loss functions). All of them managed to capture the 
relationship between the daily large scale circulation and the 
associated high resolution precipitation accumulation as they 

Fig. 18   Same as Fig. 17 for the 99th quantile changes
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all showed very good temporal correlation. It validates the 
concept of the emulator as it is possible to identify and learn 
the RCM downscaling function associated to precipitation. 
Nevertheless, only the asymmetric loss function ensured the 
emulator to reproduce the full high resolution daily variabil-
ity that the RCM creates as well as the entire precipitation 
distribution including heavy precipitation. In addition to our 
study, a dedicated work should be conducted to evaluate the 
emulator ability to reproduce specific rarest events. Indeed, 
we have seen that a dedicated loss function to re-balance 
the data is necessary to deal with precipitation, and the one 
introduced here is a credible strategy. We also evaluated the 
accuracy of precipitation object created by the emulator. We 
found that they are quite realistic and coherent even if they 
tend to textcolorbluesmooth high frequency details. Another 
deficiency of the asymmetric loss function we designed is 
that it leads to an over-estimation of the precipitation where 
it rains the most and underestimation where it rains the less. 
Therefore, the loss function is a critical aspect to ensure 
that emulators suit well a given variable. The asymmetric 
loss function is a proposition that showed some success, but 
other loss functions or different strategy could be used in the 
same purpose in future studies. Moreover, this result shows 
that adapting the loss function, which is a simple technical 
modification, helps to generalize the emulator to complex 
variables.

The EURO-CORDEX matrix allowed us to study the 
emulator’s behavior when we move out from the world cor-
responding to the Scenarios/GCM/RCM triplet used for 
training. We highlighted the robustness of the learnt func-
tion as it presents similar performances across all available 
simulations. The emulator notably managed to reproduce the 
specificity of each simulation in present climate but also in 
climate change signal. Indeed each simulation showed dif-
ferent climate change signals with different spatial patterns 
and variability over the domain and the emulator showed an 
excellent ability to reproduce this diversity. This question 
of transferability is essential for the potential applications 
it opens to the emulator. Our result tends to show that the 
emulator can be used to downscale various GCMs and vari-
ous scenarios.

A critical point in the emulator evaluation is to ensure its 
good applicability to GCM simulations as it is its purpose. 
Because the emulator is trained in perfect model framework 
(i.e. with both target and input coming from the same RCM 
simulation), it learns only the downscaling function and not 
any large scale modification. Thus in GCM application it 
applies this function to the large scale provided by the GCM 
which is very likely to differ from the RCM one and so the 
run produced by the emulator is expected to differ from the 
RCM simulation driven by the same GCM. We expect the 
emulator to be coherent with the GCM large scale but also 
to include high resolution features brought by the RCM. We 

analysed the emulator performance over 4 GCMs and under 
different time horizons: we looked at some daily maps and 
at climatological statistics in present climate and in climate 
change. The conclusions are robust over all those aspects, 
the emulator brings a strong added-value with respect to 
its driving GCM that is consistent with the original RCM 
added-value. However, there are substantial differences 
between RCM and emulator maps, and it is difficult to assess 
if they results from large scale discrepancies between the 
RCM and its driving GCM, and that we do not want to repro-
duce, or from a misconception of the emulator. Further stud-
ies focused on given phenomenon or including other, specifi-
cally designed, simulations are probably necessary to assess 
if we can have a complete trust in the current version of the 
emulator when it is used to downscale GCM simulations.
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