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Abstract

Black carbon (BC) and brown carbon (BrC) are light-absorbing aerosols with significant climate impacts, but their absorption
properties and direct radiative effect (DRE) remain uncertain. We simulated BC and BrC absorption during the intense
Canadian boreal wildfires in June 2023 using an enhanced version of CHIMERE model. The study focused on a domain
extending from North America to Eastern Europe, including a significant portion of the Arctic up to 85°N.

The enhanced model includes an updated treatment for the BC absorption enhancement and a BrC ageing scheme accounting
for both browning and blanching through oxidation. When compared to observations, the updated model accurately captured
aerosol optical depth (AOD) at multiple wavelengths, both near the wildfires and during transoceanic transport to Europe.
Improvements were observed in the simulation of absorbing aerosol optical depth (AAOD) compared to the control model.

The all-sky regional direct radiative effect (DRE) for June 2023 attributed to the intense Canadian wildfires, was reduced from
-2.1 W/m² in the control model to -1.9 W/m² (-2.0/-1.8 W/m², ±5%), in the enhanced model, indicating an additional warming
effect of +0.2 W/m² (about +10%) due to advanced schemes used for the BC and BrC absorption.

The results indicate the importance of an accurate simulation of aerosol absorption in regional climate predictions, especially

during large-scale biomass burning events. They also suggest that traditional models could overestimate the cooling effect of

boreal wildfires, highlighting the need for improvement of aerosol parameterization to better predict the DRE and develop

effective mitigation strategies.
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Key Points 18 

• Enhanced modelling of black and brown carbon improved the simulation of aerosol absorption during 19 

the 2023 Canadian wildfires. 20 

• Advanced modelling of black and brown carbon reduced the direct radiative effect of the wildfires by 21 

10%, from -2.1 to -1.9 W/m². 22 

• Accurate aerosol absorption representation is crucial for predicting the regional climate impact of 23 

large-scale biomass burning events. 24 

  25 
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Abstract 1 

Black carbon (BC) and brown carbon (BrC) are light-absorbing aerosols with significant climate impacts, 2 

but their absorption properties and direct radiative effect (DRE) remain uncertain. We simulated BC and 3 

BrC absorption during the intense Canadian boreal wildfires in June 2023 using an enhanced version of 4 

CHIMERE model. The study focused on a domain extending from North America to Eastern Europe, 5 

including a significant portion of the Arctic up to 85°N.  6 

The enhanced model includes an updated treatment for the BC absorption enhancement and a BrC ageing 7 

scheme accounting for both browning and blanching through oxidation. When compared to observations, 8 

the updated model accurately captured aerosol optical depth (AOD) at multiple wavelengths, both near 9 

the wildfires and during transoceanic transport to Europe. Improvements were observed in the simulation 10 

of absorbing aerosol optical depth (AAOD) compared to the control model.  11 

The all-sky regional direct radiative effect (DRE) for June 2023 attributed to the intense Canadian 12 

wildfires, was reduced from -2.1 W/m² in the control model to -1.9 W/m² (-2.0/-1.8 W/m², ±5%), in the 13 

enhanced model, indicating an additional warming effect of +0.2 W/m² (about +10%) due to advanced 14 

schemes used for the BC and BrC absorption.  15 

The results indicate the importance of an accurate simulation of aerosol absorption in regional climate 16 

predictions, especially during large-scale biomass burning events. They also suggest that traditional 17 

models could overestimate the cooling effect of boreal wildfires, highlighting the need for improvement 18 

of aerosol parameterization to better predict the DRE and develop effective mitigation strategies. 19 

  20 
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Plain Language Summary 1 

Black carbon (BC) and brown carbon (BrC) are atmospheric particles that absorb sunlight and contribute 2 

to climate warming. BC is emitted from the incomplete combustion of fossil fuels, biomass, and biofuels, 3 

while BrC is primarily produced by wood burning. However, their exact climate impact remains 4 

uncertain. In this study, we used an improved version of the CHIMERE model to simulate BC and BrC 5 

absorption during the intense Canadian wildfires in June 2023. The model covered a vast area from North 6 

America to Eastern Europe, including parts of the Arctic. 7 

We refined the model to more accurately calculate the BC light absorption and the BrC absorption 8 

changes over time (either increasing or decreasing). Comparing the model results with satellite and 9 

ground-based data, we found that the updated model more precisely captured the absorption spatial 10 

variability, particularly in regions affected by wildfire smoke. 11 

The study showed that models lacking proper BC and BrC treatment may overestimate the cooling effect 12 

of wildfires. Our improved model reduced the estimated cooling from the 2023 Canadian wildfires by 13 

about 10%, emphasizing the importance of accurate modelling to predict the climate impacts of these 14 

increasingly frequent events driven by global warming. 15 

 16 

 17 

  18 
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1 Introduction 1 

Black carbon (BC) and brown carbon (BrC) are recognized by the scientific community as light-2 

absorbing aerosol particles influencing the climate through the direct (Haywood and Boucher, 2000) and 3 

semidirect (Hansen et al., 1997) effects, by darkening the surface after their deposition on the snow/ice 4 

pack (Flanner et al., 2007;  Bond et al., 2013, Lin et al., 2014; Tuccella et al., 2021; Brown et al., 2022), 5 

and acting as cloud condensation nuclei for clouds they may modify the cloud optical properties and 6 

precipitation pattern through the indirect aerosol effects (Andreae et al., 2008). The effects of BC and 7 

BrC on the global and regional climate are uncertain (IPCC, 2021). 8 

BC is formed through the incomplete combustion of fossil fuels (FF), biomass (BB), and biofuels 9 

(BF) (Bond et al., 2013). Soot particles exhibit a strong capacity to absorb incoming solar radiation (Bond 10 

et al., 2013). Current estimates suggest BC as the third most important contributor to global warming after 11 

carbon dioxide (CO2) and methane (CH4) (Bond et al., 2013; Gustafsson and Ramanathan, 2016; IPCC, 12 

2021).  13 

BC absorption is influenced by its mixing state (Curci et al., 2019; Tuccella et al., 2020). Mixing 14 

state refers to the distribution of chemical and physical properties within an aerosol population (Riemer 15 

et al., 2019). In an externally mixed state, different aerosol components exist as separate particles with 16 

distinct compositions. Conversely, internally mixed particles within an aerosol population consist of a 17 

homogeneous mixture of chemical species. In the real atmosphere, purely internal or external mixing 18 

states are not common (Bondy et al., 2018) and the mixing state continuously evolves due to processes 19 

governing the aerosol lifecycle. Freshly emitted BC particles usually have a fractal structure and are 20 

externally mixed with non-BC species. After emission, ageing processes lead to the formation of 21 

internally mixed particles, characterized by a core-shell structure where the BC core is coated by a shell 22 

composed of organic and inorganic compounds. The presence of the shell increases amplifies the BC 23 

absorption through the so called “lensing effect” (Jacobson, 2000, 2001; Lesins et al., 2002).  24 

The absorption enhancement (Eabs) of coated BC is typically calculated with a Mie code for the 25 

core-shell structure (e.g., Toon and Ackerman, 1981). Several studies have demonstrated that this model 26 

is an oversimplification, since it does not consider the complex morphology of BC particles, with 27 

implications for absorption calculation (Adachi et al., 2010; Wang et al., 2021; Romshoo et al., 2022). In 28 

particular, the core-shell model overestimates the BC absorption enhancement (Adachi et al., 2010; Liu 29 

et al., 2017; Fierce et al., 2020; Wang et al., 2023). While some studies have observed a substantial 30 

increase in light absorption, others have reported a considerably lower Eabs compared to laboratory and 31 

modeling simulations (Cappa et al., 2012; Lack et al., 2012; Liu et al., 2017). Liu et al. (2017) 32 

demonstrated that Eabs is influenced by the mass ratio of non-BC to BC. Specifically, BC emitted from 33 

urban traffic, characterized by lower non-BC to BC mass ratios, is often better represented as externally 34 

mixed with no absorption enhancement. Moreover, the discrepancies of between observed and modelled 35 

differences have been also attributed to the particle-to-particle heterogeneity in the environment (Fierce 36 

et al., 2020; Zhao et al., 2021; Zeng et al., 2024). This highlights the importance of incorporating mixing 37 

state-dependent absorption parameterizations in atmospheric models to accurately predict the radiative 38 

effects of BC. 39 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/global-warming
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Brown carbon (BrC) is defined as the subset of organic aerosol that exhibits strong absorption 1 

(OA) (Andreae et al., 2006; Laskin et al., 2015) of shortwave radiation with wavelengths less than 400 2 

nm (Lukacs et al., 2007; Alexander et al., 2008; Chen et al., 2010; Arola et al., 2011; Kirchstetter et al., 3 

2012, Moise et al. 2015). BrC is mainly produced by BF combustion, BB, and ageing of secondary organic 4 

aerosol (SOA) (Bones et al., 2010; Hecobian et al., 2010; Arola et al., 2011; Updyke et al., 2012; Lambe 5 

et al., 2013; Lee et al., 2014; Laskin et al., 2015; Guang et al., 2016), while other sources are related to 6 

cloud chemistry (Zhang et al., 2017). The representation of OA optical properties in climate models has 7 

evolved over the past decade. From being considered as scattering particles, the BrC absorption is now 8 

included in many global (Wang et al., 2014; Lin et al., 2014; Saleh et al., 2015; Jo et al., 2016; Wang et 9 

al., 2018; Brown et al., 2018; Tuccella et al., 2020, 2021; Zhang et al., 2020; Drugé et al., 2022; DeLessio 10 

et al., 2024) and regional modelling studies (Methymaki et al., 2023; Kononalov et al., 2024). 11 

Primary BrC absorption is not constant over time but varies with ageing processes that OA 12 

undergoes. Experimental results have suggested that BrC optical properties may be modified through 13 

aqueous-phase photochemical reactions, potentially leading to both photo-enhancement and 14 

photobleaching (Zhao et al., 2015). The increase of BrC absorption is called “browning” and it is primarily 15 

driven by heterogeneous oxidation reactions with hydroxyl (OH) and nitrate (NO3) radicals, as well as 16 

aqueous oxidation (Cheng et al., 2020; Schnitzler et al., 2020; Hems et al., 2020). Following browning, 17 

BrC undergoes bleaching, a process attributed to oxidation by OH and ozone (O3) (Hems et al., 2021).  18 

While photobleaching is frequently incorporated into models simulating brown carbon (Wang et 19 

al., 2018; Brown et al., 2018; Zhang et al., 2020; Drugé et al., 2022), browning is often overlooked. To 20 

our knowledge, only DeLessio et al. (2024) have accounted for photo-enhancement in their study. The 21 

same authors concluded that accurate representation of the diurnal variability in OA absorption 22 

necessitates the inclusion of the browning process in the atmospheric models.  23 

Many studies have demonstrated that wildfires impact the climate system (Randerson et al., 2006; 24 

Li et al., 2017; Walker et al., 2018; Eckdahl et al., 2022; Linares and Ni-Meister, 2024). At the same time, 25 

the frequency of wildfire events is increasing due to climate warming. The relationship between climate 26 

change and wildfire frequency has been studied since the early 1990s (van Bellen et al., 2010). The Arctic 27 

is warming at more than twice the global average rate (Meredith et al., 2019), which contributes to the 28 

rise of wildfire activity in boreal regions of Alaska and western Canada (Gillett, 2004; Veraverbeke et al., 29 

2017). Moreover, the Northern Hemisphere has experienced extreme wildfire seasons, as for example the 30 

2023 Canadian events (Byrne et al., 2024), leading to significant aerosol emissions, with notable impacts 31 

on aerosol properties even in Europe (Filonchyk and Peterson, 2024). Additionally, in the future, 32 

anthropogenic aerosol mitigation could be a significant driver in enhancing boreal forest fires (Allen et 33 

al., 2024). 34 

Boreal forest fires are important sources of BC and OA, which may exert significant regional 35 

climate feedback at regional scale (Konovalov et al., 2024a; 2024b). Accurate prediction of BC and OA 36 

absorption properties is essential for estimating the climatic impact of boreal wildfires.   37 

This study provides a comprehensive assessment of BC and BrC absorption during the 2023 38 

Canadian boreal wildfires using an enhanced parametrisation within the CHIMERE model. The results 39 

underscore the critical role of aerosol absorption modelling for an accurate prediction of the regional 40 



6 

 

direct radiative effect (DRE), associated to large-scale wildfire events. In Section 2, we detailed the model 1 

description and setup, where we included a treatment for improving the BC absorption and a treatment 2 

for BrC absorption, including an update parameterization for BC Eabs and a treatment for BrC absorption, 3 

accounting for both browning and blanching processes. In Section 3, the simulated optical properties have 4 

been evaluated against satellite and ground-based observations. Finally, in Section 4, we discussed the 5 

DRE of the June 2023 Canadian smoke aerosol.  6 
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2 Methods 1 

2.1 CHIMERE model description and setup 2 

In this study, we have used the 2021 version of the CHIMERE model (Menut et al., 2021) to 3 

simulate the absorption of BC and BrC, coupled online with the meteorological Weather Research and 4 

Forecasting (WRF) model. This online configuration is capable to simulate both direct (Briant et al., 2017) 5 

and indirect aerosol effects (Tuccella et al., 2019). The WRF model is a mesoscale meteorological model 6 

including several parameterizations for atmospheric processes (https://www.mmm.ucar.edu/models/wrf, 7 

last access: 09 October 2024). CHIMERE is a chemical and transport model suitable for studies ranging 8 

from hemispheric to urban scales (Mailler et al., 2017). It contains multiple numerical schemes for 9 

simulating the gas-phase and aerosol processes. WRF and CHIMERE are coupled with the external 10 

coupler OASIS3-MCT (Craig et al., 2017). The information between models is exchanged with a regular 11 

frequency defined by the user (Briant et al., 2017).  12 

We simulated the entire month of June 2023, after a one-month of spin-up for chemistry. WRF-13 

CHIMERE was configured on the domain shown in Figure 1. This domains spans from North America 14 

to Eastern Europe, in latitude it extends from Tropics up to North Pole. The horizontal resolution was of 15 

78 km, with 190 x 127 grid points. We used 33 vertical levels extending from surface up to 50 hPa for 16 

WRF, and 30 levels up to 200 hPa for CHIMERE. The coupling time (i.e., exchange frequency) between 17 

WRF and CHIMERE was fixed at 20 minutes.  18 

Main parameterizations adopted for WRF are the YSU for planetary boundary layer (Hong et 19 

al.,2006), NOAH as land surface model (Chen and Dudhia, 2001), RRTMG for shortwave and longwave 20 

radiation (Iacono et al., 2008), Thompson for cloud microphysics (Thompson et al., 2008), and Grell-21 

Freitas scheme for cumulus convection (Grell and Freitas, 2014). In CHIMERE, gas-phase reactions were 22 

calculated with the MELCHIOR2 model (Derognat et al., 2003), which includes 40 gaseous species and 23 

120 photochemical reactions. Photolytic rates were parameterized with the FAST-JX model (Wild et al., 24 

2000), as detailed in Mailler et al. (2016, 2017). Aerosol treatment is based on a sectional approach 25 

(Bessagnet et al., 2008; Mailler et al., 2017). Herein, we have used 10 dimensional bins ranging from 0.01 26 

up to 40 µm. Aerosol model includes the main inorganic species (sulphate, nitrate, ammonium), water, 27 

black carbon, primary organic matter (OM), unspeciated particles, secondary organic aerosols (SOA), sea 28 

salt, and soil dust. We simulated anthropogenic and biogenic SOA with a single-step oxidation scheme, 29 

according to Bessagnet et al. (2008). Thermodynamic equilibrium of inorganic aerosols was simulated by 30 

using the ISORROPIA model (Nenen, 1998). Dry deposition of gases and aerosols were calculated with 31 

the schemes proposed by Wesely (1989) and Zhang et al. (2001), respectively. Wet deposition calculation 32 

followed the methods of Wang et al. (2014), as detailed in Mailler et al. (2017). 33 

Aerosol optical properties in CHIMERE are calculated under the assumption of external mixing 34 

state, as outlined in Mailler et al. (2017), at 200, 400, 600, and 999 nm. Extinction efficiency, single 35 

scattering albedo (SSA), and asymmetry parameter are initially determined for each aerosol particles 36 

across each dimensional bin, and then are summed. These optical parameters are calculated assuming the 37 

aerosol particles as spherical using the Mie theory (Mie, 1908), solved through the spher.f code 38 

(Mischenko et al., 2002). Most of the aerosol complex refractive indices adopted in CHIMERE are based 39 

https://www.mmm.ucar.edu/models/wrf
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on the ADIENT project (Mailler et al., 2016), with exception of BrC and BC. These latter are discussed 1 

in Section 2.2 and 2.3. 2 

Anthropogenic emissions of trace gases and particles were taken from global inventory CAMS 3 

(Soulie et al., 2024) for the year 2022. Biomass burning emission fluxes were obtained from the CAMS 4 

dataset as described by Kaiser et al. (2012). Both inventories are at horizontal resolution of 0.1° x 0.1° 5 

and were re-gridded onto model grid according to Menut et al. (2021). Forest fire emissions from CAMS 6 

relative to June 2023 are displayed in Figure 2. Vertical injection profile of fire emissions adopted in 7 

CHIMERE is described in Menut et al. (2018). The injection height is calculated as in Sofiev et al. (2012) 8 

and corrected according to Veira et al. (2015), in case of huge fire. After the estimation of injection height, 9 

the shape of injection profile was calculated with the so called 2Kz-like shape, where the emissions profile 10 

presents two maxima, one close to surface and one around injection height. Soil dust emissions were 11 

computed by using the scheme developed by Alfaro and Gomes (2001), with optimizations introduced by 12 

Menut et al. (2005). Sea salt emissions were estimated in accordance with Monahan (1986). NOx 13 

emissions by lightning were included using the scheme of Price and Rind (1993), as detailed by Menut et 14 

al. (2020). Biogenic emissions were considered in our simulations employing the MEGAN model 15 

(Guenther et al., 2012). 16 

Initial and boundary conditions for WRF were obtained from 6-hourly NCEP operational analyses 17 

at resolution a of 1° x 1°. Grid nudging toward NCEP analysis data of wind, temperature, and water vapor 18 

was applied in WRF on the model vertical levels above the planetary boundary layer. Sea ice extent and 19 

sea surface temperature were taken from NCEP data and were updated every six hours. CHIMERE was 20 

driven by the boundary conditions derived from the 2010-2017 gas and aerosol climatology based on the 21 

LMDZ-INCA global model (Folberth et al., 2006). 22 

2.2 BC treatment 23 

Within CHIMERE, the aerosol optical properties are calculated assuming an external mixing 24 

approach, which does not account for the BC absorption enhancement due to the lensing effect associated 25 

with the core-shell morphology of coated BC. Consequently, we have implemented within CHIMERE a 26 

scheme to account for this effect, drawing on the work of Liu et al. (2017). The authors demonstrated that 27 

Eabs depends on the mass ratio (Mr) of BC, given by ratio between the mass of non-BC aerosols and mass 28 

of soot particles. When Mr<1, BC is external mixed and absorption enhancement is not observed (Eabs=1), 29 

whereas for Mr>3, BC is internally mixed, and absorption is correctly calculated by core-shell model. 30 

When Mr is between 1 and 3, BC a transitional regime is observed, being neither external nor internal 31 

mixed. Therefore, for small Mr typical of fresh traffic sources (less than 1.5), Eabs is small (Schwarz et al., 32 

2008). In fact, an Eabs of 1.1 has been reported in urban regions of California (Cappa et al., 2012) and 33 

China (Lan et al., 2013). When Mr is larger (greater than 3), as for example in biomass burning emissions, 34 

Eabs is in the range of 1.3-1.9 (Lack et al., 2012; Rathod et al., 2021; Kompalli et al., 2023).   35 

Therefore, Eabs has been parameterized with a hybrid optical model, where no Eabs occurs when 36 

Mr<1 and is linearly interpolated to the upper threshold of Mr=3, where Eabs is accurately predicted by 37 

core-shell model (Liu et al., 2017): 38 
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𝐸𝑎𝑏𝑠 = 𝐸𝑎𝑏𝑠𝑐𝑠
𝐹𝑖𝑛 + (1 − 𝐹𝑖𝑛) 1 

𝐹𝑖𝑛 = 0.57𝑀𝑟 − 074      for    1 < 𝑀𝑟 < 3 2 

 3 

where 𝐸𝑎𝑏𝑠𝑐𝑠
is the absorption enhancement calculated by core-shell model and 𝐹𝑖𝑛  is the 4 

internally mixed fraction of BC. Fin is equal to 0 for Mr<1 and 1 for Mr>3.  𝐸𝑎𝑏𝑠𝑐𝑠
 should be estimated 5 

with a core-shell algorithm; however, in this study, we used a constant value of 1.5. We have chosen this 6 

value because it is representative of the mean of Eabs estimations (Kong et al., 2024), which coincides 7 

with the average value recommended by Bond and Bergstrom (2006). It should be noted that the 90% 8 

confidence interval of Eabs distribution function reported by Kong et al. (2024) ranges from 1.15 (5%) to 9 

2.18 (95%). This highlights that BC absorption simulation may depend on the value of 𝐸𝑎𝑏𝑠𝑐𝑠
adopted. 10 

Finally, the refractive index assigned to BC was 1.95–0.79i, as recommended by Bond and Bergstrom 11 

(2006).  12 

2.3 BrC treatment  13 

The CHIMERE model treats OM as a scattering aerosol particle. Therefore, we have implemented 14 

a scheme to consider the BrC absorption within CHIMERE simulations. To our knowledge, currently 15 

there are not emission inventories of BrC. Previously, different methods have been employed to estimate 16 

the primary BrC emissions. For example, Jo et al. (2016) derived BrC emissions fluxes using a 17 

relationship between the modified combustion efficiency and absorbing Ångström exponent. Other 18 

studies, such as Feng et al. (2013) and Wang et al. (2014), have assumed that a fraction of emitted OA 19 

was BrC. Additionally, emissions have been also inferred from BC-to-OA ratio (Park et al., 2010; Saleh 20 

et al., 2015; Zhang et al., 2020). Alternatively, other researchers have treated all OA as radiation-21 

absorbing particles, assigning to them specific optical properties (Wang et al., 2018). In our investigation, 22 

we have used this latter approach, as detailed below.  23 

BB-BrC emissions were taken directly from BB-CAMS inventory (see Section 2.1). By contrast, 24 

BF-BrC anthropogenic emissions have been estimated from emission fluxes from domestic, industrial, 25 

waste management, and agricultural sectors. Specifically, a fraction of these emissions was considered as 26 

absorbing OA. This portion was derived based on the ratio of BF emissions to the total anthropogenic 27 

(FF+BF) OA emissions, as reported in the inventory of Bond et al. (2007), and then applied to OM 28 

emissions from CAMS, after being treated as described in Section 2.1. 29 

In this investigation, we utilized the BrC optical properties as suggested by Wang et al. (2018), 30 

which were obtained constraining the MAC of biomass burning BrC with measurements from aircraft 31 

campaigns conducted in the continental United States. Additionally, the same authors demonstrated that 32 

their optical properties were applicable to reproduce the BB-BrC absorption observed over Europe. 33 

Consequently, we have adopted the MAC values from Wang et al. (2018), since our study is focusing on 34 

North America and Europe. Additionally, in our prior investigations, we were able to calculate BrC 35 

absorption at global scale in the atmosphere (Tuccella et al., 2020) and within snow (Tuccella et al., 2021), 36 
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using this set of optical properties. MACs at 365, 440, and 550 nm were 1.19, 0.76, and 0.39 m2/g for 1 

BF-BrC, and 1.33, 0.77, and 0.35 m2/g for freshly emitted BB-BrC, respectively. 2 

Photochemical ageing of BB-OA is crucial in simulating BrC absorption, since it induces 3 

blanching of BrC through photochemistry processes. Several methodologies have been adopted to 4 

simulate the BB-BrC ageing. One of these consists in the passage from hydrophobic to hydrophilic, with 5 

hydrophilic component exhibiting a lower absorption compared to its hydrophobic counterpart (e.g., 6 

Tuccella et al., 2020; Zhang et al., 2020; Brugé et al., 2022). The transition is usually done with a 7 

characteristic time scale. Alternatively, some studies have adopted a blanching scheme wherein the 8 

absorption was tracked and attenuated based on OH concentration and a characteristic half-life time scale 9 

(Wang et al., 2018; Brown et al., 2018). However, the most recent advancement in BB-BrC ageing 10 

modelling has been introduced by DeLessio et al. (2024). This consists in considering the heterogeneous 11 

oxidation of BB-BrC by hydroxyl radical (OH), nitrate radical (NO3), and ozone (O3), according to the 12 

results of Hems et al. (2021). This innovative approach has been adopted and integrated in our 13 

investigation.   14 

Specifically, following DeLessio et al. (2024), the ageing processes was divided in two distinct 15 

steps. In the first, freshly emitted BB-BrC undergoes an absorption enhancement, a phenomenon known 16 

as “browning”. In the second phase, the “browner” BrC is subjected to blanching process, during which 17 

the absorption is lower than that of freshly emitted BrC. Transfer mass from freshly emitted BrC to more 18 

absorbing BrC is succeeded by whitening, involving mass transfer from browner to less absorbing BrC. 19 

The mass transfer was quantified with second order rate constant for each reaction of BB-BrC with OH, 20 

NO3, and O3. During the nighttime, freshly emitted BB-BrC is oxidized by NO3 to form more absorbing 21 

OA, which then becomes less absorbing through subsequent oxidation with O3. During daylight hours, 22 

freshly BB-BrC is oxidized by OH to form more absorbing brown carbon. This browner BrC is then 23 

blanched through oxidation with OH and O3. Rate constants used were the same of DeLessio et al. (2024), 24 

derived from the initial first reaction rate for BrC processing defined by Hems et al. (2021), with oxidant 25 

concentrations assumed by same authors.  26 

The MACs at 365, 440, and 550 nm of less absorbing BB-BrC were set at 0.37, 0.23, and 0.10 27 

m2/g, respectively (Wang et al., 2018). These values reflect the average absorption of biomass burning 28 

BrC and are recommended for applications in models where absorption is not tracked. They should be 29 

used to account for absorption reduction when the whitening is not explicitly simulated (Wang et al., 30 

2018). We note that the MACs adopted for less absorbing BB-BrC were slightly less 30% of those of 31 

freshly emitted OA. However, this value is very close to the minimum threshold of ¼, imposed by the 32 

same authors (Wang et al., 2018), below which the absorption may not drop, when it is tracked to account 33 

for BrC blanching. In addition, this value is also close to threshold of 20% based on laboratory studies 34 

(Fleming et al., 2020; Hems et al., 2021). As in DeLessio et al. (2024), we assigned to browner biomass 35 

burning BrC a MAC that is 150% larger of that attributed to freshly emitted OA.  36 

In this work, we have also assumed that both biogenic and anthropogenic SOA are absorbing. We 37 

attributed to SOA-BrC the same set of optical properties of Wang et al. (2014), that for a typical size 38 

distribution of organic aerosols result in a MAC of 0.3 m2/g at 440 nm.  39 
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The approach for implementing the BrC in CHIMERE illustrated above presents some limitations. 1 

These are related to ageing processes that were missed in our implementation. First, our model does not 2 

account for the blanching effect due to in-cloud water processing, which should reduce the browner BrC 3 

lifetime of about 3 hours (Hems et al., 2021). Second, we have not included in the model the blanching 4 

that SOA-BrC could undergo with ageing (Lee et al., 2014; Liu et al., 2016; Kasthuriarachchi et al., 2020). 5 

Another source of uncertain is the absorption attributed to the browner BB-BrC, which was assumed to 6 

be 150% higher than that of fresh emitted BrC. It should be noted that this value represents the middle 7 

range of the values observed in laboratory studies (Zhong and Jang, 2014; Hems et al., 2021). Therefore, 8 

this assumption could affect the BrC absorption close to BB sources, where browner BrC is present. 9 

Additionally, we have assigned to SOA-BrC compounds the same value for the imaginary part of the 10 

refractive index. In fact, the absorption of secondary BrC could be dependent on the specific SOA species. 11 

For example, the absorption of SOAs formed from photochemical oxidation of toluene appears to strongly 12 

depend on initial NOx concentration (Lin et al., 2015, Liu et al., 2015, Moise et al., 2015, Dingle et al., 13 

2019).  14 

2.4 Numerical simulations 15 

We performed a series of model simulation to evaluate the model development described above. 16 

The list of our runs is reported in Table 1. The first simulation has been conducted with the default version 17 

of CHIMERE, which does not include the BC absorption enhancement and BrC effects. This reference 18 

simulation (control, CTRL) was used to evaluate the aerosol transport and basic skill of the model in 19 

reproducing the AOD distribution.  20 

The second simulation included only the scheme for BCEabs and was aimed to evaluate how this 21 

parameterization improves the aerosol absorption simulation in CHIMERE (BCEabs). The third run was 22 

takes into account both black carbon Eabs and BrC absorption. This simulation was labelled as “BEST” as 23 

it includes all the parameterizations introduced to enhance CHIMERE and because it represents a central 24 

estimate of absorption compared to the perturbed runs described below.     25 

Other two simulations have been conducted to estimate the sensitivity of BC and BrC absorption 26 

to aerosol optical properties uncertainties. Consequently, we created a high absorption scenario (H-ABS) 27 

and a low absorption scenario (L-ABS), perturbing the BEST run. In the first case, we have not considered 28 

the BB-BrC ageing assigning it the MAC of freshly emitted BB-OA. Furthermore, 𝐸𝑎𝑏𝑠𝑐𝑠
 was set to 1.9, 29 

representing the 90th percentile of Eabs distribution (Kong et al., 2024). By contrast, in the L-ABS 30 

scenario, we assigned to BB-BrC the MAC of blanched OA and 𝐸𝑎𝑏𝑠𝑐𝑠
 was set to the 10th percentile of 31 

Eabs distribution reported in Kong et al. (2024), which is equal to 1.2. Consequently, by considering these 32 

two extreme cases of absorption, we have evaluated the range error in simulating the carbonaceous 33 

aerosols absorption, associated to uncertainties of BC absorption enhancement and BrC ageing 34 

parameterizations.  35 

All simulations were conducted without the direct and indirect aerosol effects, since they may 36 

introduce feedback mechanisms that could influence atmospheric dynamics and subsequently affect the 37 

evaluation of model updates. Furthermore, the primary objective of this study is to assess the direct 38 

radiative effect of the 2023 Canadian wildfire episode and to investigate the implications of model 39 

https://pubs.acs.org/action/doSearch?field1=Contrib&text1=Nethmi+Y.++Kasthuriarachchi
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development on its estimation. The activation of direct and indirect effects could further alter the radiation 1 

budget through modifications in cloud coverage and properties. However, this is a subject that deserves 2 

future investigation.  3 

2.5 Evaluation strategy 4 

Numerical simulations have been compared with aerosol optical properties retrieved from ground-5 

based and satellite instruments. Before the comparison, the CHIMERE output was regridded onto a 6 

regular grid with a horizontal resolution of 0.7° x 0.7°. The regular domain is presented in Figure 3. 7 

Ground-based observations were taken from the version 3 of Aerosol Robotic Network 8 

(AERONET) Sun photometers (Holben et al., 2001; Sinyuk et al., 2020). AERONET is a global network 9 

providing observations of spectral columnar aerosol optical properties, such as AOD, AAOD, and single 10 

scattering albedo (SSA), at 440, 675, 870, and 1020 nm. AERONET disseminates data according to 11 

different quality check criteria: the cloud‐screened L1.5, and cloud‐screened and quality‐assured L2.0 12 

(Dubovik et al., 2002). In the latter, SSA is provided only when AOD levels at 440 nm exceeds 0.4. 13 

Consequently, only 18% of L2.0 data available in June 2023 was AAOD. Thus, following the 14 

methodology used in our previous studies (Curci et al., 2019; Tuccella et al., 2020), based on the work of 15 

Wang et al. (2016), we have complemented the L2 AAOD data with the L1.5. 16 

Figure 3 displays the AERONET sites available during our study period, along with the fraction 17 

of AOD data coverage for each site. For our analysis, we included only the stations with at least 75% of 18 

data availability. Figure 3 also illustrates the average AOD at 440 nm measured at these sites during June 19 

2023. Based on these AOD values, we identified three regions that were most interested by Canadian 20 

forest fires, which are outlined with blue rectangles in Figure 3. The first region (R1) included the 21 

AERONET stations located in Canada, representative of the measurement sites directly affected by the 22 

boreal fire sources. The second region (R2) covered the Western USA, where the observation stations 23 

were affected by smoke transported downwind the fire sources. Finally, the third region (R3) was 24 

represented by Western Europe, where AERONET sun photometers were subjected to transoceanic 25 

transport of Canadian boreal wildfire aerosols. In these three regions, we conducted a thorough and 26 

detailed analysis of the model performances. The AERONET stations used for AAOD evaluation are also 27 

displayed in Figure 3. In our analysis, we included only the stations with at least 55% of data availability, 28 

due to the reduced availability of AAOD data compared to AOD.  29 

The simulated monthly spatial AOD pattern at 550 nm was compared with the Moderate 30 

Resolution Imaging Spectroradiometer (MODIS) AQUA data (Levy et al. 2015). In this work, we used 31 

the “AOD_550_Dark_Target_Deep_Blue_Combined” merged product from the “MYD04_L2” Level 2 32 

(at 10 km spatial resolution at nadir), which combines the Deep Blue (Hsu et al., 2004) and Dark Target 33 

(Remer et al., 2005; 2020) MODIS algorithms, to disseminate the AOD global coverage. This merged 34 

product provides only high quality-assured (QA) pixels. The QA flag in the MODIS product is defined 35 

as an integer number, which in the selected combined AOD product is represented by:    36 

• QA>3 over land and QA>0 over ocean for the Dark Target 37 

• QA 2 and 3 for the Deep Blue  38 
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The MODIS satellite data were resampled at the spatial resolution to match the spatial resolution 1 

of the CHIMERE regular grid. For each grid cell, observed AOD was calculated as a weighted average, 2 

considering the quality-assurance flags from the MODIS retrievals. A minimum threshold of 30% of data 3 

with a QA score greater than 3 was required for each regridded pixel. The same approach was applied to 4 

average the satellite overpass times, extracting the nearest hour to align with the numerical simulation. 5 

The simulated monthly spatial AOD and AAOD patterns at 354 nm were also compared with the 6 

Ozone Monitoring Instrument (OMI) Aura Near UV OMAERUV satellite product. Despite the coarse 7 

spatial resolution of 13x24 km2 of the OMI satellite footprint, the OMAERUV algorithm provides aerosol 8 

spectral optical properties at 354 and 388 nm (Torres et al., 2007; 2013).  9 

To compare the CHIMERE simulations with OMI data, only quality-assured data (i.e., quality 10 

flag = 0) were used, considering pixels with a solar zenith angle <70° and non-missing UV aerosol index 11 

values. The OMI satellite data were further resampled to match the spatial resolution of the CHIMERE 12 

regular grid. For each grid cell, the AOD/AAOD values were calculated as the average of all satellite 13 

pixels falling within the simulation grid. 14 

Model accuracy in reproducing observations was evaluated using a set of statistical indices. These 15 

included the Pearson correlation coefficient, normalized mean bias (NMB), root mean square error 16 

(RMSE), Nash-Sutcliffe efficiency (NSE), Taylor score (TS), and standard deviation error (STDE). 17 

Definitions and explanations of these indices are reported in Section S1 of the Supplementary Material.  18 

 19 

  20 
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3 Model evaluation 1 

3.1 Aerosol optical depth simulation 2 

In this section, we assessed the model performance of the reference run (CTRL) in reproducing 3 

the AOD, since it is a key indicator of model skill in reproducing aerosol load, which in turn depends on 4 

different processes, such as emission, transport and deposition. Statistical indices obtained from the model 5 

comparison with observed AOD are reported in Table 2.  6 

Figure 4 shows the comparison between monthly average of AOD at 550 nm predicted and 7 

observed from the MODIS satellite. CHIMERE satisfactorily reproduced the AOD patterns. In particular, 8 

the model captured the southeastern aerosol transport, downwind of the Canadian wildfires, toward East 9 

Coast of North America and the subsequent outflow on the Atlantic Ocean. The model successfully 10 

captured the eastward long-range transport across the ocean and the plume advection over Western 11 

Europe. However, the simulated AOD is generally underestimated compared to satellite observations. A 12 

more quantitative comparison indicates that CHIMERE reproduced the MODIS monthly data with a 13 

correlation of 0.77, an average NMB of –14%, NSE of 0.57, and TS of 0.79.  14 

Figure 5 displays the comparison between monthly average AOD at 354 nm predicted by 15 

CHIMERE and observed by OMI. CHIMERE captured the AOD distribution retrieved by satellite, 16 

especially in Canada close to the boreal fire, Eastern North America, and Atlantic Ocean. The estimated 17 

correlation coefficient was 0.65, while the AOD was underpredicted by 30%. A closer inspection to 18 

Figure 5 reveals that this bias originates in Western USA, where the model underestimates the 19 

observations by a factor of 3-4. In general, the CHIMERE performance in reproducing OMI AOD 20 

appeared poorer compared to MODIS. The possible reason of this bias will be discussed later.    21 

The comparison of the simulated daily AOD at 440 nm compared to the AERONET at all sites 22 

showed a NMB of -24%, while the correlation, NSE and TS were 0.55 and 0.88. Figure 6 depicts the 23 

comparison of modelled and observed daily averaged time series of AOD at 440 nm at the R1, R2, and 24 

R3 regions. Additionally, the figure also reports the scatter plots between predicted and observed daily 25 

AOD values. The model captured the mean daily observed AOD behaviour in R1, R2, and R3. The 26 

CHIMERE model was able to reproduce the AOD main peaks at the Canadian AERONET sites (R1) in 27 

the first half of June, although it did not accurately capture the peaks on June 23 and 25-26. At the same 28 

time, the peaks of early, mid, and end June on eastern USA downwind from Canadian sources (R2) were 29 

captured, as well as the late June peak on western Europe (R3) due to the long-range smoke transport 30 

from North America.  31 

Furthermore, the correlation coefficient and TS exceeded 0.70 and 0.80 for all three regions, 32 

respectively. The NMB was about -20% in R2 and R3, while in R1, it was -35%. The largest bias in R1 33 

could be mainly attributed to the model resolution used in this study that could affect the right position of 34 

the wildfire sources. The largest bias in R1 could be mainly attributed to the model resolution deployed 35 

in this study that could impact the right position of the wildfire sources. However, it should be noted that 36 

even at higher resolution, small errors in simulated wind speed and direction may significantly impact the 37 

plume position prediction downwind of the sources (Tuccella et al., 2017). Additionally, the assessment 38 
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of model performance in R1 may be affected by the limited number (see Figure 3) of AERONET stations 1 

available in this region.  2 

The same analysis has been conducted for the comparison of modelled AOD at 675 nm with 3 

AERONET measurements. Figure S1 shows the daily averaged times series and daily scatter plots of 4 

predicted versus observed AOD at this wavelength. The statistical indices obtained from this comparison 5 

are presented in Table S1. At this wavelength, CHIMERE simulated the average time series of AOD in a 6 

similar way as well as discussed at 440 nm. The correlation coefficient with observed daily values was 7 

0.78, 0.73 and 0.70 in R1, R2, and R3, respectively. 8 

In summary, the outcomes of the statistical analysis obtained from the comparison of the simulated 9 

AOD with the AERONET and satellite data are comparable to that of current regional atmospheric models 10 

(Curci et al., 2015; Palacios-Peña et al., 2019). Overall, our model exhibited an underestimation of AOD, 11 

which was quantifiable in average between 15-30%. This bias has been found in other studies conducted 12 

with CHIMERE, even with finer resolutions with respect to the one used in this study (e.g., Menut et al., 13 

2023). Several factors may contribute to a potential bias in the simulated AOD, among those the 14 

assumption on particle mixing state (Curci et al., 2015), the simulated aerosol size distribution (Esteve et 15 

al., 2014) and the aerosol chemical composition as well as the adopted schemes to represent the organic 16 

aerosol fraction (Balzarini et al., 2015). Regarding the dependency on the chemical composition, 17 

Konovalov et al. (2023) showed that the parameterization for the secondary organic aerosols used in this 18 

study tends to underestimate the SOA mass during wildfire episodes, with consequent bias on the aerosol 19 

load. This aspect could be improved by using more realistic SOA schemes available in CHIMERE (such 20 

as the Volatility Set Basis scheme), but these are computational expensive for the aim of this investigation, 21 

since they would have required many additional variables resulting from the splitting of primary OA 22 

sources for BrC simulation. Another important source of bias in this study is the uncertainty of BB 23 

emission inventories. Aerosol simulations and their climatic impact are sensitive to specific BB emission 24 

inventory (Liu et al., 2018; Ramnarine et al., 2019; Carter et al., 2020). This uncertainty may be larger at 25 

high latitudes, where the fire sources in this study are located, due to the increased cloud cover in these 26 

regions, which may decrease the accuracy of BB emission estimates (Hua et al., 2024). 27 

Additionally, in this discussion, it is essential to consider the uncertainties in the AOD 28 

measurements, especially the error associated with satellite data. AERONET has an uncertainty of 0.01-29 

0.02 (Holben et al., 2001), while the error of MODIS is 0.05 ± 0.20 ∙ AOD  and 0.03 ± 0.05 ∙ AOD over 30 

land and ocean, respectively (Tanré et al., 1997; Kaufman et al., 1997). The average error expected in 31 

OMI AOD is of the order of 30% (Torres et al., 2002). We compared AOD retrieved by MODIS and OMI 32 

with AERONET data. The comparison of MODIS AOD is shown in Figure S2. The analysis indicates 33 

that MODIS tends to overestimate AOD at AERONET stations, with a monthly average bias of 18%. 34 

Figure S3 shows the comparison of OMI AOD with AERONET data, revealing that OMI overestimates 35 

AOD by 40%. This bias is particularly evident in the western United States, where we identified the most 36 

substantial discrepancies between CHIMERE and OMI data. 37 
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3.2 Aerosol absorption simulation 1 

In this section, we evaluated the performance of the new absorption scheme implemented within 2 

the CHIMERE model and detailed in Sections 2.2 and 2.3. Indeed, we compared the simulated AAOD 3 

for the reference simulation (CTRL), the BCEabs, and the BEST simulations with the OMI and AERONET 4 

AAOD data.  5 

Figure 7 shows the monthly average of AAOD at 354 nm for June 2023, as observed by OMI and 6 

predicted by the CHIMERE in the CTRL run, BCEabs, and BEST simulations. The statistical indices 7 

derived from this comparison are reported in Table 3. The correlation coefficient for all the three 8 

simulations ranged between 0.50 and 0.54. However, the default model (CTRL), which assumes an 9 

external mixing state, failed to reproduce the AAOD observed pattern, exhibiting a bias of -78%. The 10 

increase in absorption due to BCEabs was moderate and primarily localized near the biomass burning 11 

sources, where the mass ratio (Mr) reaches its highest values. The overall bias of BCEabs is reduced by 3% 12 

compared to CTRL. A significant improvement in aerosol absorption was observed in BEST simulations. 13 

The inclusion of the BrC treatment enabled the model to reproduce the spatial pattern of AAOD much 14 

more closely to that observed by OMI. This improvement was also reflected in the statistical indices with 15 

the Taylor score increasing more than twofold from CTRL (0.34) to BEST (0.73). Despite this progress, 16 

the mean bias still was -55%. The largest biases in BEST simulations were found in Western USA and 17 

North Africa. The latter could be related to the errors in simulating the aerosol dust absorption; however, 18 

uncertainties in OMI retrievals must also be considered. We will explore this issue in more detail at the 19 

end of this section. 20 

Figure 8 shows the comparison of daily AAOD averaged time series at 440 and 675 nm simulated 21 

in the CTRL, BCEabs, and BEST against observations from AERONET sites in the R1, R2, and R3 regions. 22 

Generally, the AAOD simulated in CTRL was underestimated, particularly during peak events related to 23 

the Canadian forest fires across all three regions. Including the BC absorption enhancement (BCEabs), a 24 

moderate improvement in AAOD simulation was observed at 440 nm Conversely, at 675 nm, the 25 

inclusion of BC Eabs resulted in a more accurate prediction of AAOD peaks both near the fire sources 26 

(R1) and downwind (R2), as well as in late June over western Europe (R3), attributed to transoceanic 27 

smoke transport from North America. This improvement is attributable to the dominance of BC at this 28 

wavelength, since BrC primarily absorbs solar radiation in the UV range. Consequently, at 675 nm the 29 

BCEabs and BEST simulations were identical, and the results obtained at this wavelength may be 30 

considered an evaluation of BC Eabs parameterization. 31 

Figure 9 displays the scatter plots of the daily AAOD at 440 nm simulated in CTRL, BCEabs, and 32 

BEST models with the AAOD measurements from the AERONET sites in R1, R2, and R3. The summary 33 

of the statistical indices is reported in Figure 10. In general, the correlation coefficient remained constant 34 

across the simulations (about 0.70, 0.64, and 0.53 in R1, R2, and R3, respectively). This indicates that all 35 

three the models were able to capture the temporal variations of absorption. It should be noted that 36 

correlation, as well as NSE and TS, decreased moving away from the fire sources, most likely because in 37 

R1 the AAOD simulation was most affected by BB emissions, while far from boreal wildfires the mixing 38 

with other sources may alter the relative contribution of the absorbing and scattering aerosols, lowering 39 

the performance indices. At the same time, RMSE and STDE decreased moving downwind of the fires.  40 
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The bias represented the most varying metric. The CTRL simulation underpredicted the AAOD 1 

by 18% in R1, while it became negligible after including BC enhancement in the model. The addition of 2 

the BrC absorption (BEST), lead to a positive bias of +30%. This result could be attributed to the presence 3 

of “browner” BB-BrC, whose absorption could be overestimated, given the high uncertain of its MAC. 4 

Moreover, as highlighted also in Section 3.1 for the AOD, model evaluation in R1 may be affected by the 5 

limited number of AERONET observations available in this area. Similar results in terms of bias are 6 

obtained for the R2 and R3. The CTRL simulation underestimated the absorption by about 40%, while in 7 

BCEabs the bias was reduced to about -25%, becoming slightly positive in BEST.  8 

The same analysis has been performed for AAOD at 675 nm. The results of the comparison are 9 

reported in Figures S4 and S5. As for AAOD at 440 nm, the correlation coefficient was constant across 10 

model simulations and decreased moving away from boreal wildfires. Its values were about 0.75, 0.65, 11 

and 0.45 in R1, R2, and R3 respectively. The same behavior was exhibited by NSE and TS. Conversely 12 

RMSE and STDE improved downwind the BB sources. Also in this case, the metric that showed the most 13 

variations among simulations was the bias. In R1, NMB was negligible in CTRL, but it increased at +25% 14 

in BCEabs. CTRL underestimated the AAOD at 675 nm by 18% and 26% in R2 and R3, respectively. 15 

Adding the BC absorption enhancement, the bias became negligible in R2 and reduced to -9% in R3.     16 

In summary, the evaluation demonstrated that the new absorption scheme implemented in 17 

CHIMERE overall enhances the model skill in reproducing the observed AAOD patterns. The 18 

uncertainties of absorption treatment used in this work are mostly related to the missing of some blanching 19 

effects due to in-cloud processes of primary BrC and SOA ageing. Additionally, assumptions regarding 20 

the MAC of browner BB-BrC could introduce further uncertainty. Furthermore, the uncertainties could 21 

also arise from the simplified parameterization of Eabs. In our model, the absorption enhancement 22 

predicted by core-shell model (𝐸𝑎𝑏𝑠𝑐𝑠
) is maintained at the fixed value of 1.5, which may not accurately 23 

capture the variability observed under different atmospheric conditions. 24 

Moreover, uncertainties associated with AERONET and OMI data could affect the model 25 

comparison with observations. In our analysis, we complemented the L2.0 of AERONET for AAOD with 26 

L1.5 measurements, as AAOD in the L2 dataset was provided only for AOD at 440 nm larger than 0.4. 27 

The uncertainty of single scattering albedo (SSA), used to derive AAOD, is site dependent. Generally, 28 

the uncertainty related to SSA retrieval varies with AOD, ranging from approximately ±0.03 for AOD at 29 

440 nm greater than 0.5 to ±0.05–0.07 for AOD less than 0.2 (Sinyuk et al., 2020). Furthermore, this 30 

uncertainty increases with larger wavelengths. Concerning the uncertainty of OMI retrieval, the 31 

comparison of OMI AAOD with AERONET data is displayed in Figure S6. OMI shows an average 32 

positive bias of 66% with respect to AERONET. The most considerable discrepancies between 33 

AERONET and OMI data are found in the western United States, where we noted the most important 34 

error in CHIMERE AAOD prediction with respect to OMI data. 35 

  36 
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4 Direct radiative effect  1 

In this section, we have assessed the impact of new treatment of BC and OA absorption on the 2 

AAOD simulation and its implication for the DRE. This analysis was conducted over the regular 3 

CHIMERE domain. 4 

Figure 11 shows the total and BB aerosols average AAOD at 550 nm for June 2023, as calculated 5 

in CTRL and BEST simulations. The domain averages of AAOD are reported in Table 4. The total 6 

average AAOD was 0.0068 in CTRL simulation, while in the enhanced model (BEST) it increased to 7 

0.0089 (+31%). In the Canadian wildfire source regions, AAOD in the BEST simulation increased by 35-8 

40% relative to the CTRL run, with some areas showing a rise of up to 45% (Figure S7). The relative 9 

increase in AAOD could reach up to 50% in regions where BB aerosols are mixed with BF sources, such 10 

as in the southeastern USA. Over the Atlantic Ocean and the Arctic, the relative increase was 30-35%. A 11 

35-40% increase was also observed over Eastern Europe, largely due to BF emissions of OA. AAOD due 12 

to BB was 0.0047 in the CTRL run and increased to 0.0066 (+40%) in BEST simulation. According to 13 

our model, BB contributes approximately 74% to the total aerosol absorption within the considered 14 

domain. The maximum uncertainty in domain-average AAOD from the enhanced model was evaluated 15 

by comparing the BEST run with extreme absorption scenarios (L-ABS and H-ABS tests), resulting in an 16 

uncertainty range of -10/+24% for total AAOD and -14/+30% for BB AAOD. 17 

DRE at the top of the atmosphere (TOA) has been calculated offline with a simplified 18 

formalization provided by Seinfeld and Pandis (2016). The details of this formulation are reported in 19 

Section S2 of the Supplementary Material. 20 

Figure 12 displays the average BB all-sky DRE for June 2023, as calculated in CTRL and BEST 21 

simulations. Table 5 reports the domain averages of clear and all-sky top of the atmosphere (TOA) DRE. 22 

The uncertainty associated with the DRE from the enhanced model was evaluated using the same 23 

approach as for AAOD.  24 

In the default model, the all-sky DRE related to the intense Canadian wildfire event was -2.1 25 

W/m², with the strongest cooling effects observed over oceans and land, reaching -30/-20 W/m² near the 26 

BB sources in Canada. By contrast, warming effects were observed over snow-covered land and sea ice, 27 

with a warming of up to 10-15 W/m² in Arctic regions downwind of the BB sources. 28 

In the BEST model, the all-sky DRE was reduced to -1.9 W/m² (-2.0/-1.8 W/m², ±5%), indicating 29 

an additional monthly average warming of +0.2 W/m² (+10%) in the enhanced model simulation of the 30 

Canadian wildfire climatic impact. This supplemental warming was most pronounced over snow/ice-31 

covered regions, with a DRE reduction up to 2.5-3.0 W/m² in North America downwind of the fires and 32 

up to 2.0-2.5 W/m² in southern Greenland. The cooling effect in BEST was also reduced by up to 1.5 33 

W/m² in Canada near the source regions and by few tens of W/m² over the Atlantic Ocean and Europe. 34 

Finally, it is insightful to examine the variation in DRE between the default and enhanced models, 35 

normalized to the change in AAOD at 550 nm between the two simulations. The resulting normalized BB 36 

all-sky ΔDRE was 105 W/m2/AAOD. This value suggests a significant DRE sensitivity to AAOD change 37 

in the model.   38 



19 

 

These results emphasize that accurate prediction of BC and BrC sunlight absorption is crucial for 1 

understanding the impact of intense boreal wildfires on regional climate. Our findings suggest that models 2 

lacking proper treatment of carbonaceous aerosol absorption may overestimate the cooling effect of boreal 3 

wildfires. Therefore, improving aerosol absorption parameterizations is crucial, along with incorporating 4 

the feedback between climate and aerosol smoke from boreal fires, both in near-future climate predictions 5 

and the development of effective mitigation strategies. Recent study of Allen et al. (2024) suggest that 6 

anthropogenic aerosol mitigation strategies will likely increase boreal forest fires, but the full impact of 7 

resulting emissions on the climate system remains uncertain. Without adequate treatment of BC and BrC 8 

absorption, the climatic effect of these emissions could be significantly misrepresented.   9 

  10 
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5 Conclusions 1 

Black carbon (BC) and brown carbon (BrC) are light-absorbing aerosols which play a key role in 2 

the climatic system. Boreal wildfires are significant sources of these particles. Boreal wildfire events are 3 

increasing due to climate change. Accurate modelling of BC and BrC absorption is essential for predicting 4 

the direct radiative effect (DRE) of these events. In this study, we modelled the BC and BrC absorption 5 

during the severe Canadian wildfires of June 2023 using an enhanced CHIMERE model and assessed the 6 

impact of these improvements on the DRE of the wildfires. 7 

The CHIMERE model was configured on a large domain spanning from North America to Eastern 8 

Europe, including the high latitude up to 75°N. We implemented in the model a parameterization for BC 9 

absorption enhancement (Eabs), which depends on the mixing state of BC particles, through the mass ratio 10 

of non-BC to BC aerosols, according to the work of Liu et al. (2017). We also implemented an advanced 11 

scheme for BrC absorption, which accounts for “browning” and “blanching” processes due to 12 

photochemical ageing, following the approach of DeLessio et al. (2024). A series of simulations were 13 

conducted to assess the impact of BC Eabs and BrC on aerosol absorption prediction. Model performance 14 

was evaluated through a statistical comparison with aerosol optical depth (AOD) and absorbing aerosol 15 

optical depth (AAOD) data from satellite instruments (MODIS and OMI) and ground-based AERONET 16 

stations, focusing on regions impacted by Canadian wildfires.  17 

The model captured the spatial patterns of AOD, particularly the long-range transport of aerosols 18 

from Canadian wildfires toward the East Coast of North America and across the Atlantic to Europe. The 19 

model generally underestimated AOD compared to satellite observations, with biases ranging from 15-20 

30%. Correlation coefficients for the comparison with MODIS and OMI AOD were 0.77 and 0.65, 21 

respectively, while comparisons with AERONET showed a correlation of 0.79 and a bias of -24%. 22 

The default model (CTRL) underestimated AAOD retrieved by OMI, particularly near biomass 23 

burning sources, with a bias of up to -78%. A moderate improvement was observed by including in model 24 

the BC absorption enhancement (BCEabs), but the most substantial advancements were achieved in the 25 

BEST simulations, which included both Eabs and BrC treatment, improving spatial patterns and statistical 26 

indices. The model comparison with AAOD measurements at 440 and 675 nm from AERONET exhibited 27 

a correlation of about 0.75 near the wildfire sources, which tends to decrease moving downwind from 28 

these sources. In general, the CTRL run underestimated the observed AAOD, while a significant 29 

improvement of the model was obtained in the BEST simulation.     30 

The enhanced model (BEST) increased the monthly domain average AAOD at 550 nm by 31% 31 

compared to the CTRL, with the most significant changes observed near the Canadian wildfires and areas 32 

where biomass burning aerosols mixed with fossil fuel sources. Canadian smoke aerosols contributed 33 

approximately to 74% of total aerosol absorption. 34 

The all-sky TOA DRE associated with the Canadian wildfires of June 2023 was estimated to be -35 

2.1 W/m² in the CTRL run. In the best simulation, this value was reduced to -1.9 W/m², indicating an 36 

additional warming of +0.2 W/m² (+10%), attributable to the enhanced treatment of BC and BrC 37 

absorption. The increased in DRE calculated in BEST was more pronounced in the regions covered by 38 

snow and ice, such as the Arctic and Southern Greenland. Furthermore, the normalized all-sky DRE 39 
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change resulting from the increase in AAOD obtained in BEST simulation was +105 W/m²/AAOD, 1 

highlighting the critical role of aerosol absorption in radiative balance during the intense boreal wildfire 2 

events. 3 

The main uncertainties in this study are linked to the absorption scheme implemented in 4 

CHIMERE, which does not account for the blanching due to in cloud-processes of primary BrC and SOA 5 

ageing. Moreover, the complex part of refractive index adopted for browner BrC could introduce an 6 

additional uncertainty factor. Another source of uncertainty is related to the assumption of a constant Eabs 7 

resulting from the core-shell morphology of BC. To evaluate the impact of these uncertainties, we 8 

perturbed the BEST simulation with low and high absorption scenarios. The results indicate an error of 9 

±5% in the DRE estimate attributed to Canadian wildfires.    10 

Overall, the findings of this investigation demonstrate the importance of an accurate simulation 11 

of BC and BrC absorption to properly assess the regional climatic impact of intense boreal wildfire. The 12 

lack of this factor in the models may results in an overestimation of the radiative cooling effect of boreal 13 

fires. Consequently, improving the parameterizations of carbonaceous aerosol absorption is essential for 14 

reliable near-future climatic predictions and effectively evaluation of the efficiency of the aerosol 15 

mitigation strategies. 16 

 17 
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Tables 1 

 2 

Table 1.  Summary of the numerical experiments.  3 

Simulation Description 

CTRL Control simulation. Default model. 

BCEabs Only BC absorption enhancement  

BEST BC absorption enhancement and BrC absorption  

H-ABS High absorption scenario: EabsCS=1.9, no BB-BrC ageing  

L-ABS Low absorption scenario: EabsCS=1.2, all BB-BrC is aged  

 4 

 5 
 6 

Table 2. Statistical comparison of the predicted and observed AOD with MODIS at 550 nm, OMI at 7 

354 nm, and AERONET stations at 440 nm.  8 

Database r NMB (%) RMSE NSE TS STDE 

MODIS1 0.77 -14 0.17 0.57 0.79 0.16 

OMI1 0.65 -30 0.64 0.35 0.70 0.60 

AERONET2,3 0.79 -23 0.22 0.58 0.88 0.21 

AERONET-R12 0.78 -35 0.47 0.56 0.81 0.44 

AERONET-R22 0.77 -20 0.27 0.54 0.88 0.26 

AERONET-R32 0.76 -16 0.14 0.54 0.86 0.13 

1The comparison is done with monthly average 9 

2The comparison is done with daily data 10 

3This comparison is done with all AERONET data 11 

 12 

 13 

 14 

 15 
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Table 3. Statistical comparison of the predicted monthly AAOD at 354 nm in CTRL, BCEabs, and BEST 1 

simulations with that and observed by OMI.  2 

Simulation r NMB (%) RMSE NSE TS STDE 

CTRL 0.53 -78 0.059 -0.32 0.34 0.044 

BCEabs 0.54 -75 0.058 -0.25 0.41 0.044 

BEST 0.50 -55 0.055 -0.14 0.73 0.049 

 3 

 4 

Table 4. Total aerosol and BB average AAOD at 550 nm for June 2023, calculated CTRL and BEST 5 

simulations.  6 

 CTRL BEST UNCERTAINTY1 

AAOD 0.0068 0.0089  0.0080/0.0110 (-10/+24%) 

BB-AAOD 0.0047 0.0066 0.0057/0.0086 (-14/+30%) 

1The uncertainty has been assessed relative to BEST simulation, using L-ABS and H-ABS sensitivity tests. 7 

 8 

Table 5. June 2023 average clear-sky and all-sky TOA DRE (W/m2) of BB calculated from CTRL and 9 

BEST simulations. 10 

 CTRL BEST UNCERTAINTY1 

Clear-sky -3.1 -2.8 -3.0/-2.6 (±7%) 

All-sky -2.1 -1.9 -2.0/-1.8 (±5%) 

 11 

1The uncertainty has been assessed relative to BEST simulation, using L-ABS and H-ABS sensitivity tests. 12 
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Figures 1 

 2 

Figure 1: The domain used to run WRF-CHIMERE. The grid had horizontal resolution of 78 km with 3 

189x109 grid points. 4 
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 1 

 2 

Figure 2: Biomass burning emission flux of black carbon during the month of June 2023 obtained from 3 

the CAMS database.  4 
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 1 

Figure 3: AERONET stations used to evaluate the model simulations. The colour scale represents the 2 

fraction of data coverage in June 2023 for the aerosol optical depth (AOD) (a) and the absorption aerosol 3 

optical depth (AAOD) (c), and the mean AOD (b) and AAOD (d) at 440 nm measured at AERONET 4 

sites. Average AOD is calculated at the stations with at least 75% of monthly data coverage, while 5 

monthly AAOD is calculated at sites with at least 55% of data coverage. The regions R1, R2, and R3 6 

outlined by blue rectangles indicate the area most affected by Canadian boreal fires (see Section 2.5).  7 

  8 
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 1 

 2 

Figure 4: Aerosol optical depth (AOD) monthly average at 550 nm for June 2023, as measured by 3 

MODIS (upper panel) and modelled by CHIMERE (lower panel). 4 
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 1 

Figure 5: As in Figure 4, but for AOD at 354 nm measured by OMI. 2 
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 1 

Figure 6. Comparison of modelled and observed aerosol optical depth (AOD) at 440 nm at AERONET 2 

sites. The left panels show the predicted and measured daily time series of AOD, averaged across all 3 

stations in regions R1, R2, and R3. The right panels present the scatter plots of observed versus predicted 4 

daily AOD in R1, R2, and R3. The lines 1:1, 2:1, and best least-squares linear fit shown for reference.   5 
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 1 

Figure 7: June 2023 monthly average absorption aerosol optical depth (AAOD) at 354 nm, a) as measured 2 

by OMI and modelled by CHIMERE in b) CTRL, c) BCEabs, and d) BEST simulations. 3 
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 1 

Figure 8. Comparison observed and modelled average time series of absorption aerosol optical depth 2 

(AAOD) at 440 (left panels) and 675 nm (right panels), for the CTRL (blue), BCEabs (green), and BEST 3 

(red) simulations at AERONET sites in regions R1, R2, and R3. Please, note that at 675 nm BCEabs, and 4 

BEST give the same results, since BrC is not absorbing at this wavelength.    5 
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 1 

Figure 9. Scatter plots of observed and modelled daily absorption aerosol optical depth (AAOD) at 440 2 

nm, for the CTRL, BCEabs, and BEST simulations at AERONET sites in regions R1, R2, and R3. The 3 

lines 1:1, 2:1, and best least-squares linear fit shown for reference.   4 

 5 
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 1 

Figure 10. Statistical summary of the comparison of observed and modelled daily absorption aerosol 2 

optical depth (AAOD) at 440 nm, for the CTRL, BCEabs, and BEST simulations, at AERONET sites in 3 

regions R1, R2, and R3. 4 
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 1 

Figure 11. Mean total (left panels) and biomass burning (BB, right panels) absorption aerosol optical 2 

depth (AAOD) at 550 for June 2023, calculated by the CTRL (upper panels) and BEST (middle panels) 3 

models, and their difference (lower panels). 4 

 5 

 6 
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 1 

 2 

Figure 12. Mean all-sky DRE of biomass burning aerosols at top of the atmosphere (TOA) for June 2023, 3 

calculated by the CTRL (upper panel) and BEST (middle panel) models, and their difference (lower 4 

panel). 5 

 6 
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Key Points 18 

• Enhanced modelling of black and brown carbon improved the simulation of aerosol absorption during 19 

the 2023 Canadian wildfires. 20 

• Advanced modelling of black and brown carbon reduced the direct radiative effect of the wildfires by 21 

10%, from -2.1 to -1.9 W/m². 22 

• Accurate aerosol absorption representation is crucial for predicting the regional climate impact of 23 

large-scale biomass burning events. 24 
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Abstract 1 

Black carbon (BC) and brown carbon (BrC) are light-absorbing aerosols with significant climate impacts, 2 

but their absorption properties and direct radiative effect (DRE) remain uncertain. We simulated BC and 3 

BrC absorption during the intense Canadian boreal wildfires in June 2023 using an enhanced version of 4 

CHIMERE model. The study focused on a domain extending from North America to Eastern Europe, 5 

including a significant portion of the Arctic up to 85°N.  6 

The enhanced model includes an updated treatment for the BC absorption enhancement and a BrC ageing 7 

scheme accounting for both browning and blanching through oxidation. When compared to observations, 8 

the updated model accurately captured aerosol optical depth (AOD) at multiple wavelengths, both near 9 

the wildfires and during transoceanic transport to Europe. Improvements were observed in the simulation 10 

of absorbing aerosol optical depth (AAOD) compared to the control model.  11 

The all-sky regional direct radiative effect (DRE) for June 2023 attributed to the intense Canadian 12 

wildfires, was reduced from -2.1 W/m² in the control model to -1.9 W/m² (-2.0/-1.8 W/m², ±5%), in the 13 

enhanced model, indicating an additional warming effect of +0.2 W/m² (about +10%) due to advanced 14 

schemes used for the BC and BrC absorption.  15 

The results indicate the importance of an accurate simulation of aerosol absorption in regional climate 16 

predictions, especially during large-scale biomass burning events. They also suggest that traditional 17 

models could overestimate the cooling effect of boreal wildfires, highlighting the need for improvement 18 

of aerosol parameterization to better predict the DRE and develop effective mitigation strategies. 19 

  20 
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Plain Language Summary 1 

Black carbon (BC) and brown carbon (BrC) are atmospheric particles that absorb sunlight and contribute 2 

to climate warming. BC is emitted from the incomplete combustion of fossil fuels, biomass, and biofuels, 3 

while BrC is primarily produced by wood burning. However, their exact climate impact remains 4 

uncertain. In this study, we used an improved version of the CHIMERE model to simulate BC and BrC 5 

absorption during the intense Canadian wildfires in June 2023. The model covered a vast area from North 6 

America to Eastern Europe, including parts of the Arctic. 7 

We refined the model to more accurately calculate the BC light absorption and the BrC absorption 8 

changes over time (either increasing or decreasing). Comparing the model results with satellite and 9 

ground-based data, we found that the updated model more precisely captured the absorption spatial 10 

variability, particularly in regions affected by wildfire smoke. 11 

The study showed that models lacking proper BC and BrC treatment may overestimate the cooling effect 12 

of wildfires. Our improved model reduced the estimated cooling from the 2023 Canadian wildfires by 13 

about 10%, emphasizing the importance of accurate modelling to predict the climate impacts of these 14 

increasingly frequent events driven by global warming. 15 

 16 

 17 

  18 
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1 Introduction 1 

Black carbon (BC) and brown carbon (BrC) are recognized by the scientific community as light-2 

absorbing aerosol particles influencing the climate through the direct (Haywood and Boucher, 2000) and 3 

semidirect (Hansen et al., 1997) effects, by darkening the surface after their deposition on the snow/ice 4 

pack (Flanner et al., 2007;  Bond et al., 2013, Lin et al., 2014; Tuccella et al., 2021; Brown et al., 2022), 5 

and acting as cloud condensation nuclei for clouds they may modify the cloud optical properties and 6 

precipitation pattern through the indirect aerosol effects (Andreae et al., 2008). The effects of BC and 7 

BrC on the global and regional climate are uncertain (IPCC, 2021). 8 

BC is formed through the incomplete combustion of fossil fuels (FF), biomass (BB), and biofuels 9 

(BF) (Bond et al., 2013). Soot particles exhibit a strong capacity to absorb incoming solar radiation (Bond 10 

et al., 2013). Current estimates suggest BC as the third most important contributor to global warming after 11 

carbon dioxide (CO2) and methane (CH4) (Bond et al., 2013; Gustafsson and Ramanathan, 2016; IPCC, 12 

2021).  13 

BC absorption is influenced by its mixing state (Curci et al., 2019; Tuccella et al., 2020). Mixing 14 

state refers to the distribution of chemical and physical properties within an aerosol population (Riemer 15 

et al., 2019). In an externally mixed state, different aerosol components exist as separate particles with 16 

distinct compositions. Conversely, internally mixed particles within an aerosol population consist of a 17 

homogeneous mixture of chemical species. In the real atmosphere, purely internal or external mixing 18 

states are not common (Bondy et al., 2018) and the mixing state continuously evolves due to processes 19 

governing the aerosol lifecycle. Freshly emitted BC particles usually have a fractal structure and are 20 

externally mixed with non-BC species. After emission, ageing processes lead to the formation of 21 

internally mixed particles, characterized by a core-shell structure where the BC core is coated by a shell 22 

composed of organic and inorganic compounds. The presence of the shell increases amplifies the BC 23 

absorption through the so called “lensing effect” (Jacobson, 2000, 2001; Lesins et al., 2002).  24 

The absorption enhancement (Eabs) of coated BC is typically calculated with a Mie code for the 25 

core-shell structure (e.g., Toon and Ackerman, 1981). Several studies have demonstrated that this model 26 

is an oversimplification, since it does not consider the complex morphology of BC particles, with 27 

implications for absorption calculation (Adachi et al., 2010; Wang et al., 2021; Romshoo et al., 2022). In 28 

particular, the core-shell model overestimates the BC absorption enhancement (Adachi et al., 2010; Liu 29 

et al., 2017; Fierce et al., 2020; Wang et al., 2023). While some studies have observed a substantial 30 

increase in light absorption, others have reported a considerably lower Eabs compared to laboratory and 31 

modeling simulations (Cappa et al., 2012; Lack et al., 2012; Liu et al., 2017). Liu et al. (2017) 32 

demonstrated that Eabs is influenced by the mass ratio of non-BC to BC. Specifically, BC emitted from 33 

urban traffic, characterized by lower non-BC to BC mass ratios, is often better represented as externally 34 

mixed with no absorption enhancement. Moreover, the discrepancies of between observed and modelled 35 

differences have been also attributed to the particle-to-particle heterogeneity in the environment (Fierce 36 

et al., 2020; Zhao et al., 2021; Zeng et al., 2024). This highlights the importance of incorporating mixing 37 

state-dependent absorption parameterizations in atmospheric models to accurately predict the radiative 38 

effects of BC. 39 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/global-warming
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Brown carbon (BrC) is defined as the subset of organic aerosol that exhibits strong absorption 1 

(OA) (Andreae et al., 2006; Laskin et al., 2015) of shortwave radiation with wavelengths less than 400 2 

nm (Lukacs et al., 2007; Alexander et al., 2008; Chen et al., 2010; Arola et al., 2011; Kirchstetter et al., 3 

2012, Moise et al. 2015). BrC is mainly produced by BF combustion, BB, and ageing of secondary organic 4 

aerosol (SOA) (Bones et al., 2010; Hecobian et al., 2010; Arola et al., 2011; Updyke et al., 2012; Lambe 5 

et al., 2013; Lee et al., 2014; Laskin et al., 2015; Guang et al., 2016), while other sources are related to 6 

cloud chemistry (Zhang et al., 2017). The representation of OA optical properties in climate models has 7 

evolved over the past decade. From being considered as scattering particles, the BrC absorption is now 8 

included in many global (Wang et al., 2014; Lin et al., 2014; Saleh et al., 2015; Jo et al., 2016; Wang et 9 

al., 2018; Brown et al., 2018; Tuccella et al., 2020, 2021; Zhang et al., 2020; Drugé et al., 2022; DeLessio 10 

et al., 2024) and regional modelling studies (Methymaki et al., 2023; Kononalov et al., 2024). 11 

Primary BrC absorption is not constant over time but varies with ageing processes that OA 12 

undergoes. Experimental results have suggested that BrC optical properties may be modified through 13 

aqueous-phase photochemical reactions, potentially leading to both photo-enhancement and 14 

photobleaching (Zhao et al., 2015). The increase of BrC absorption is called “browning” and it is primarily 15 

driven by heterogeneous oxidation reactions with hydroxyl (OH) and nitrate (NO3) radicals, as well as 16 

aqueous oxidation (Cheng et al., 2020; Schnitzler et al., 2020; Hems et al., 2020). Following browning, 17 

BrC undergoes bleaching, a process attributed to oxidation by OH and ozone (O3) (Hems et al., 2021).  18 

While photobleaching is frequently incorporated into models simulating brown carbon (Wang et 19 

al., 2018; Brown et al., 2018; Zhang et al., 2020; Drugé et al., 2022), browning is often overlooked. To 20 

our knowledge, only DeLessio et al. (2024) have accounted for photo-enhancement in their study. The 21 

same authors concluded that accurate representation of the diurnal variability in OA absorption 22 

necessitates the inclusion of the browning process in the atmospheric models.  23 

Many studies have demonstrated that wildfires impact the climate system (Randerson et al., 2006; 24 

Li et al., 2017; Walker et al., 2018; Eckdahl et al., 2022; Linares and Ni-Meister, 2024). At the same time, 25 

the frequency of wildfire events is increasing due to climate warming. The relationship between climate 26 

change and wildfire frequency has been studied since the early 1990s (van Bellen et al., 2010). The Arctic 27 

is warming at more than twice the global average rate (Meredith et al., 2019), which contributes to the 28 

rise of wildfire activity in boreal regions of Alaska and western Canada (Gillett, 2004; Veraverbeke et al., 29 

2017). Moreover, the Northern Hemisphere has experienced extreme wildfire seasons, as for example the 30 

2023 Canadian events (Byrne et al., 2024), leading to significant aerosol emissions, with notable impacts 31 

on aerosol properties even in Europe (Filonchyk and Peterson, 2024). Additionally, in the future, 32 

anthropogenic aerosol mitigation could be a significant driver in enhancing boreal forest fires (Allen et 33 

al., 2024). 34 

Boreal forest fires are important sources of BC and OA, which may exert significant regional 35 

climate feedback at regional scale (Konovalov et al., 2024a; 2024b). Accurate prediction of BC and OA 36 

absorption properties is essential for estimating the climatic impact of boreal wildfires.   37 

This study provides a comprehensive assessment of BC and BrC absorption during the 2023 38 

Canadian boreal wildfires using an enhanced parametrisation within the CHIMERE model. The results 39 

underscore the critical role of aerosol absorption modelling for an accurate prediction of the regional 40 
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direct radiative effect (DRE), associated to large-scale wildfire events. In Section 2, we detailed the model 1 

description and setup, where we included a treatment for improving the BC absorption and a treatment 2 

for BrC absorption, including an update parameterization for BC Eabs and a treatment for BrC absorption, 3 

accounting for both browning and blanching processes. In Section 3, the simulated optical properties have 4 

been evaluated against satellite and ground-based observations. Finally, in Section 4, we discussed the 5 

DRE of the June 2023 Canadian smoke aerosol.  6 
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2 Methods 1 

2.1 CHIMERE model description and setup 2 

In this study, we have used the 2021 version of the CHIMERE model (Menut et al., 2021) to 3 

simulate the absorption of BC and BrC, coupled online with the meteorological Weather Research and 4 

Forecasting (WRF) model. This online configuration is capable to simulate both direct (Briant et al., 2017) 5 

and indirect aerosol effects (Tuccella et al., 2019). The WRF model is a mesoscale meteorological model 6 

including several parameterizations for atmospheric processes (https://www.mmm.ucar.edu/models/wrf, 7 

last access: 09 October 2024). CHIMERE is a chemical and transport model suitable for studies ranging 8 

from hemispheric to urban scales (Mailler et al., 2017). It contains multiple numerical schemes for 9 

simulating the gas-phase and aerosol processes. WRF and CHIMERE are coupled with the external 10 

coupler OASIS3-MCT (Craig et al., 2017). The information between models is exchanged with a regular 11 

frequency defined by the user (Briant et al., 2017).  12 

We simulated the entire month of June 2023, after a one-month of spin-up for chemistry. WRF-13 

CHIMERE was configured on the domain shown in Figure 1. This domains spans from North America 14 

to Eastern Europe, in latitude it extends from Tropics up to North Pole. The horizontal resolution was of 15 

78 km, with 190 x 127 grid points. We used 33 vertical levels extending from surface up to 50 hPa for 16 

WRF, and 30 levels up to 200 hPa for CHIMERE. The coupling time (i.e., exchange frequency) between 17 

WRF and CHIMERE was fixed at 20 minutes.  18 

Main parameterizations adopted for WRF are the YSU for planetary boundary layer (Hong et 19 

al.,2006), NOAH as land surface model (Chen and Dudhia, 2001), RRTMG for shortwave and longwave 20 

radiation (Iacono et al., 2008), Thompson for cloud microphysics (Thompson et al., 2008), and Grell-21 

Freitas scheme for cumulus convection (Grell and Freitas, 2014). In CHIMERE, gas-phase reactions were 22 

calculated with the MELCHIOR2 model (Derognat et al., 2003), which includes 40 gaseous species and 23 

120 photochemical reactions. Photolytic rates were parameterized with the FAST-JX model (Wild et al., 24 

2000), as detailed in Mailler et al. (2016, 2017). Aerosol treatment is based on a sectional approach 25 

(Bessagnet et al., 2008; Mailler et al., 2017). Herein, we have used 10 dimensional bins ranging from 0.01 26 

up to 40 µm. Aerosol model includes the main inorganic species (sulphate, nitrate, ammonium), water, 27 

black carbon, primary organic matter (OM), unspeciated particles, secondary organic aerosols (SOA), sea 28 

salt, and soil dust. We simulated anthropogenic and biogenic SOA with a single-step oxidation scheme, 29 

according to Bessagnet et al. (2008). Thermodynamic equilibrium of inorganic aerosols was simulated by 30 

using the ISORROPIA model (Nenen, 1998). Dry deposition of gases and aerosols were calculated with 31 

the schemes proposed by Wesely (1989) and Zhang et al. (2001), respectively. Wet deposition calculation 32 

followed the methods of Wang et al. (2014), as detailed in Mailler et al. (2017). 33 

Aerosol optical properties in CHIMERE are calculated under the assumption of external mixing 34 

state, as outlined in Mailler et al. (2017), at 200, 400, 600, and 999 nm. Extinction efficiency, single 35 

scattering albedo (SSA), and asymmetry parameter are initially determined for each aerosol particles 36 

across each dimensional bin, and then are summed. These optical parameters are calculated assuming the 37 

aerosol particles as spherical using the Mie theory (Mie, 1908), solved through the spher.f code 38 

(Mischenko et al., 2002). Most of the aerosol complex refractive indices adopted in CHIMERE are based 39 

https://www.mmm.ucar.edu/models/wrf
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on the ADIENT project (Mailler et al., 2016), with exception of BrC and BC. These latter are discussed 1 

in Section 2.2 and 2.3. 2 

Anthropogenic emissions of trace gases and particles were taken from global inventory CAMS 3 

(Soulie et al., 2024) for the year 2022. Biomass burning emission fluxes were obtained from the CAMS 4 

dataset as described by Kaiser et al. (2012). Both inventories are at horizontal resolution of 0.1° x 0.1° 5 

and were re-gridded onto model grid according to Menut et al. (2021). Forest fire emissions from CAMS 6 

relative to June 2023 are displayed in Figure 2. Vertical injection profile of fire emissions adopted in 7 

CHIMERE is described in Menut et al. (2018). The injection height is calculated as in Sofiev et al. (2012) 8 

and corrected according to Veira et al. (2015), in case of huge fire. After the estimation of injection height, 9 

the shape of injection profile was calculated with the so called 2Kz-like shape, where the emissions profile 10 

presents two maxima, one close to surface and one around injection height. Soil dust emissions were 11 

computed by using the scheme developed by Alfaro and Gomes (2001), with optimizations introduced by 12 

Menut et al. (2005). Sea salt emissions were estimated in accordance with Monahan (1986). NOx 13 

emissions by lightning were included using the scheme of Price and Rind (1993), as detailed by Menut et 14 

al. (2020). Biogenic emissions were considered in our simulations employing the MEGAN model 15 

(Guenther et al., 2012). 16 

Initial and boundary conditions for WRF were obtained from 6-hourly NCEP operational analyses 17 

at resolution a of 1° x 1°. Grid nudging toward NCEP analysis data of wind, temperature, and water vapor 18 

was applied in WRF on the model vertical levels above the planetary boundary layer. Sea ice extent and 19 

sea surface temperature were taken from NCEP data and were updated every six hours. CHIMERE was 20 

driven by the boundary conditions derived from the 2010-2017 gas and aerosol climatology based on the 21 

LMDZ-INCA global model (Folberth et al., 2006). 22 

2.2 BC treatment 23 

Within CHIMERE, the aerosol optical properties are calculated assuming an external mixing 24 

approach, which does not account for the BC absorption enhancement due to the lensing effect associated 25 

with the core-shell morphology of coated BC. Consequently, we have implemented within CHIMERE a 26 

scheme to account for this effect, drawing on the work of Liu et al. (2017). The authors demonstrated that 27 

Eabs depends on the mass ratio (Mr) of BC, given by ratio between the mass of non-BC aerosols and mass 28 

of soot particles. When Mr<1, BC is external mixed and absorption enhancement is not observed (Eabs=1), 29 

whereas for Mr>3, BC is internally mixed, and absorption is correctly calculated by core-shell model. 30 

When Mr is between 1 and 3, BC a transitional regime is observed, being neither external nor internal 31 

mixed. Therefore, for small Mr typical of fresh traffic sources (less than 1.5), Eabs is small (Schwarz et al., 32 

2008). In fact, an Eabs of 1.1 has been reported in urban regions of California (Cappa et al., 2012) and 33 

China (Lan et al., 2013). When Mr is larger (greater than 3), as for example in biomass burning emissions, 34 

Eabs is in the range of 1.3-1.9 (Lack et al., 2012; Rathod et al., 2021; Kompalli et al., 2023).   35 

Therefore, Eabs has been parameterized with a hybrid optical model, where no Eabs occurs when 36 

Mr<1 and is linearly interpolated to the upper threshold of Mr=3, where Eabs is accurately predicted by 37 

core-shell model (Liu et al., 2017): 38 
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𝐸𝑎𝑏𝑠 = 𝐸𝑎𝑏𝑠𝑐𝑠
𝐹𝑖𝑛 + (1 − 𝐹𝑖𝑛) 1 

𝐹𝑖𝑛 = 0.57𝑀𝑟 − 074      for    1 < 𝑀𝑟 < 3 2 

 3 

where 𝐸𝑎𝑏𝑠𝑐𝑠
is the absorption enhancement calculated by core-shell model and 𝐹𝑖𝑛  is the 4 

internally mixed fraction of BC. Fin is equal to 0 for Mr<1 and 1 for Mr>3.  𝐸𝑎𝑏𝑠𝑐𝑠
 should be estimated 5 

with a core-shell algorithm; however, in this study, we used a constant value of 1.5. We have chosen this 6 

value because it is representative of the mean of Eabs estimations (Kong et al., 2024), which coincides 7 

with the average value recommended by Bond and Bergstrom (2006). It should be noted that the 90% 8 

confidence interval of Eabs distribution function reported by Kong et al. (2024) ranges from 1.15 (5%) to 9 

2.18 (95%). This highlights that BC absorption simulation may depend on the value of 𝐸𝑎𝑏𝑠𝑐𝑠
adopted. 10 

Finally, the refractive index assigned to BC was 1.95–0.79i, as recommended by Bond and Bergstrom 11 

(2006).  12 

2.3 BrC treatment  13 

The CHIMERE model treats OM as a scattering aerosol particle. Therefore, we have implemented 14 

a scheme to consider the BrC absorption within CHIMERE simulations. To our knowledge, currently 15 

there are not emission inventories of BrC. Previously, different methods have been employed to estimate 16 

the primary BrC emissions. For example, Jo et al. (2016) derived BrC emissions fluxes using a 17 

relationship between the modified combustion efficiency and absorbing Ångström exponent. Other 18 

studies, such as Feng et al. (2013) and Wang et al. (2014), have assumed that a fraction of emitted OA 19 

was BrC. Additionally, emissions have been also inferred from BC-to-OA ratio (Park et al., 2010; Saleh 20 

et al., 2015; Zhang et al., 2020). Alternatively, other researchers have treated all OA as radiation-21 

absorbing particles, assigning to them specific optical properties (Wang et al., 2018). In our investigation, 22 

we have used this latter approach, as detailed below.  23 

BB-BrC emissions were taken directly from BB-CAMS inventory (see Section 2.1). By contrast, 24 

BF-BrC anthropogenic emissions have been estimated from emission fluxes from domestic, industrial, 25 

waste management, and agricultural sectors. Specifically, a fraction of these emissions was considered as 26 

absorbing OA. This portion was derived based on the ratio of BF emissions to the total anthropogenic 27 

(FF+BF) OA emissions, as reported in the inventory of Bond et al. (2007), and then applied to OM 28 

emissions from CAMS, after being treated as described in Section 2.1. 29 

In this investigation, we utilized the BrC optical properties as suggested by Wang et al. (2018), 30 

which were obtained constraining the MAC of biomass burning BrC with measurements from aircraft 31 

campaigns conducted in the continental United States. Additionally, the same authors demonstrated that 32 

their optical properties were applicable to reproduce the BB-BrC absorption observed over Europe. 33 

Consequently, we have adopted the MAC values from Wang et al. (2018), since our study is focusing on 34 

North America and Europe. Additionally, in our prior investigations, we were able to calculate BrC 35 

absorption at global scale in the atmosphere (Tuccella et al., 2020) and within snow (Tuccella et al., 2021), 36 
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using this set of optical properties. MACs at 365, 440, and 550 nm were 1.19, 0.76, and 0.39 m2/g for 1 

BF-BrC, and 1.33, 0.77, and 0.35 m2/g for freshly emitted BB-BrC, respectively. 2 

Photochemical ageing of BB-OA is crucial in simulating BrC absorption, since it induces 3 

blanching of BrC through photochemistry processes. Several methodologies have been adopted to 4 

simulate the BB-BrC ageing. One of these consists in the passage from hydrophobic to hydrophilic, with 5 

hydrophilic component exhibiting a lower absorption compared to its hydrophobic counterpart (e.g., 6 

Tuccella et al., 2020; Zhang et al., 2020; Brugé et al., 2022). The transition is usually done with a 7 

characteristic time scale. Alternatively, some studies have adopted a blanching scheme wherein the 8 

absorption was tracked and attenuated based on OH concentration and a characteristic half-life time scale 9 

(Wang et al., 2018; Brown et al., 2018). However, the most recent advancement in BB-BrC ageing 10 

modelling has been introduced by DeLessio et al. (2024). This consists in considering the heterogeneous 11 

oxidation of BB-BrC by hydroxyl radical (OH), nitrate radical (NO3), and ozone (O3), according to the 12 

results of Hems et al. (2021). This innovative approach has been adopted and integrated in our 13 

investigation.   14 

Specifically, following DeLessio et al. (2024), the ageing processes was divided in two distinct 15 

steps. In the first, freshly emitted BB-BrC undergoes an absorption enhancement, a phenomenon known 16 

as “browning”. In the second phase, the “browner” BrC is subjected to blanching process, during which 17 

the absorption is lower than that of freshly emitted BrC. Transfer mass from freshly emitted BrC to more 18 

absorbing BrC is succeeded by whitening, involving mass transfer from browner to less absorbing BrC. 19 

The mass transfer was quantified with second order rate constant for each reaction of BB-BrC with OH, 20 

NO3, and O3. During the nighttime, freshly emitted BB-BrC is oxidized by NO3 to form more absorbing 21 

OA, which then becomes less absorbing through subsequent oxidation with O3. During daylight hours, 22 

freshly BB-BrC is oxidized by OH to form more absorbing brown carbon. This browner BrC is then 23 

blanched through oxidation with OH and O3. Rate constants used were the same of DeLessio et al. (2024), 24 

derived from the initial first reaction rate for BrC processing defined by Hems et al. (2021), with oxidant 25 

concentrations assumed by same authors.  26 

The MACs at 365, 440, and 550 nm of less absorbing BB-BrC were set at 0.37, 0.23, and 0.10 27 

m2/g, respectively (Wang et al., 2018). These values reflect the average absorption of biomass burning 28 

BrC and are recommended for applications in models where absorption is not tracked. They should be 29 

used to account for absorption reduction when the whitening is not explicitly simulated (Wang et al., 30 

2018). We note that the MACs adopted for less absorbing BB-BrC were slightly less 30% of those of 31 

freshly emitted OA. However, this value is very close to the minimum threshold of ¼, imposed by the 32 

same authors (Wang et al., 2018), below which the absorption may not drop, when it is tracked to account 33 

for BrC blanching. In addition, this value is also close to threshold of 20% based on laboratory studies 34 

(Fleming et al., 2020; Hems et al., 2021). As in DeLessio et al. (2024), we assigned to browner biomass 35 

burning BrC a MAC that is 150% larger of that attributed to freshly emitted OA.  36 

In this work, we have also assumed that both biogenic and anthropogenic SOA are absorbing. We 37 

attributed to SOA-BrC the same set of optical properties of Wang et al. (2014), that for a typical size 38 

distribution of organic aerosols result in a MAC of 0.3 m2/g at 440 nm.  39 
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The approach for implementing the BrC in CHIMERE illustrated above presents some limitations. 1 

These are related to ageing processes that were missed in our implementation. First, our model does not 2 

account for the blanching effect due to in-cloud water processing, which should reduce the browner BrC 3 

lifetime of about 3 hours (Hems et al., 2021). Second, we have not included in the model the blanching 4 

that SOA-BrC could undergo with ageing (Lee et al., 2014; Liu et al., 2016; Kasthuriarachchi et al., 2020). 5 

Another source of uncertain is the absorption attributed to the browner BB-BrC, which was assumed to 6 

be 150% higher than that of fresh emitted BrC. It should be noted that this value represents the middle 7 

range of the values observed in laboratory studies (Zhong and Jang, 2014; Hems et al., 2021). Therefore, 8 

this assumption could affect the BrC absorption close to BB sources, where browner BrC is present. 9 

Additionally, we have assigned to SOA-BrC compounds the same value for the imaginary part of the 10 

refractive index. In fact, the absorption of secondary BrC could be dependent on the specific SOA species. 11 

For example, the absorption of SOAs formed from photochemical oxidation of toluene appears to strongly 12 

depend on initial NOx concentration (Lin et al., 2015, Liu et al., 2015, Moise et al., 2015, Dingle et al., 13 

2019).  14 

2.4 Numerical simulations 15 

We performed a series of model simulation to evaluate the model development described above. 16 

The list of our runs is reported in Table 1. The first simulation has been conducted with the default version 17 

of CHIMERE, which does not include the BC absorption enhancement and BrC effects. This reference 18 

simulation (control, CTRL) was used to evaluate the aerosol transport and basic skill of the model in 19 

reproducing the AOD distribution.  20 

The second simulation included only the scheme for BCEabs and was aimed to evaluate how this 21 

parameterization improves the aerosol absorption simulation in CHIMERE (BCEabs). The third run was 22 

takes into account both black carbon Eabs and BrC absorption. This simulation was labelled as “BEST” as 23 

it includes all the parameterizations introduced to enhance CHIMERE and because it represents a central 24 

estimate of absorption compared to the perturbed runs described below.     25 

Other two simulations have been conducted to estimate the sensitivity of BC and BrC absorption 26 

to aerosol optical properties uncertainties. Consequently, we created a high absorption scenario (H-ABS) 27 

and a low absorption scenario (L-ABS), perturbing the BEST run. In the first case, we have not considered 28 

the BB-BrC ageing assigning it the MAC of freshly emitted BB-OA. Furthermore, 𝐸𝑎𝑏𝑠𝑐𝑠
 was set to 1.9, 29 

representing the 90th percentile of Eabs distribution (Kong et al., 2024). By contrast, in the L-ABS 30 

scenario, we assigned to BB-BrC the MAC of blanched OA and 𝐸𝑎𝑏𝑠𝑐𝑠
 was set to the 10th percentile of 31 

Eabs distribution reported in Kong et al. (2024), which is equal to 1.2. Consequently, by considering these 32 

two extreme cases of absorption, we have evaluated the range error in simulating the carbonaceous 33 

aerosols absorption, associated to uncertainties of BC absorption enhancement and BrC ageing 34 

parameterizations.  35 

All simulations were conducted without the direct and indirect aerosol effects, since they may 36 

introduce feedback mechanisms that could influence atmospheric dynamics and subsequently affect the 37 

evaluation of model updates. Furthermore, the primary objective of this study is to assess the direct 38 

radiative effect of the 2023 Canadian wildfire episode and to investigate the implications of model 39 

https://pubs.acs.org/action/doSearch?field1=Contrib&text1=Nethmi+Y.++Kasthuriarachchi
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development on its estimation. The activation of direct and indirect effects could further alter the radiation 1 

budget through modifications in cloud coverage and properties. However, this is a subject that deserves 2 

future investigation.  3 

2.5 Evaluation strategy 4 

Numerical simulations have been compared with aerosol optical properties retrieved from ground-5 

based and satellite instruments. Before the comparison, the CHIMERE output was regridded onto a 6 

regular grid with a horizontal resolution of 0.7° x 0.7°. The regular domain is presented in Figure 3. 7 

Ground-based observations were taken from the version 3 of Aerosol Robotic Network 8 

(AERONET) Sun photometers (Holben et al., 2001; Sinyuk et al., 2020). AERONET is a global network 9 

providing observations of spectral columnar aerosol optical properties, such as AOD, AAOD, and single 10 

scattering albedo (SSA), at 440, 675, 870, and 1020 nm. AERONET disseminates data according to 11 

different quality check criteria: the cloud‐screened L1.5, and cloud‐screened and quality‐assured L2.0 12 

(Dubovik et al., 2002). In the latter, SSA is provided only when AOD levels at 440 nm exceeds 0.4. 13 

Consequently, only 18% of L2.0 data available in June 2023 was AAOD. Thus, following the 14 

methodology used in our previous studies (Curci et al., 2019; Tuccella et al., 2020), based on the work of 15 

Wang et al. (2016), we have complemented the L2 AAOD data with the L1.5. 16 

Figure 3 displays the AERONET sites available during our study period, along with the fraction 17 

of AOD data coverage for each site. For our analysis, we included only the stations with at least 75% of 18 

data availability. Figure 3 also illustrates the average AOD at 440 nm measured at these sites during June 19 

2023. Based on these AOD values, we identified three regions that were most interested by Canadian 20 

forest fires, which are outlined with blue rectangles in Figure 3. The first region (R1) included the 21 

AERONET stations located in Canada, representative of the measurement sites directly affected by the 22 

boreal fire sources. The second region (R2) covered the Western USA, where the observation stations 23 

were affected by smoke transported downwind the fire sources. Finally, the third region (R3) was 24 

represented by Western Europe, where AERONET sun photometers were subjected to transoceanic 25 

transport of Canadian boreal wildfire aerosols. In these three regions, we conducted a thorough and 26 

detailed analysis of the model performances. The AERONET stations used for AAOD evaluation are also 27 

displayed in Figure 3. In our analysis, we included only the stations with at least 55% of data availability, 28 

due to the reduced availability of AAOD data compared to AOD.  29 

The simulated monthly spatial AOD pattern at 550 nm was compared with the Moderate 30 

Resolution Imaging Spectroradiometer (MODIS) AQUA data (Levy et al. 2015). In this work, we used 31 

the “AOD_550_Dark_Target_Deep_Blue_Combined” merged product from the “MYD04_L2” Level 2 32 

(at 10 km spatial resolution at nadir), which combines the Deep Blue (Hsu et al., 2004) and Dark Target 33 

(Remer et al., 2005; 2020) MODIS algorithms, to disseminate the AOD global coverage. This merged 34 

product provides only high quality-assured (QA) pixels. The QA flag in the MODIS product is defined 35 

as an integer number, which in the selected combined AOD product is represented by:    36 

• QA>3 over land and QA>0 over ocean for the Dark Target 37 

• QA 2 and 3 for the Deep Blue  38 
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The MODIS satellite data were resampled at the spatial resolution to match the spatial resolution 1 

of the CHIMERE regular grid. For each grid cell, observed AOD was calculated as a weighted average, 2 

considering the quality-assurance flags from the MODIS retrievals. A minimum threshold of 30% of data 3 

with a QA score greater than 3 was required for each regridded pixel. The same approach was applied to 4 

average the satellite overpass times, extracting the nearest hour to align with the numerical simulation. 5 

The simulated monthly spatial AOD and AAOD patterns at 354 nm were also compared with the 6 

Ozone Monitoring Instrument (OMI) Aura Near UV OMAERUV satellite product. Despite the coarse 7 

spatial resolution of 13x24 km2 of the OMI satellite footprint, the OMAERUV algorithm provides aerosol 8 

spectral optical properties at 354 and 388 nm (Torres et al., 2007; 2013).  9 

To compare the CHIMERE simulations with OMI data, only quality-assured data (i.e., quality 10 

flag = 0) were used, considering pixels with a solar zenith angle <70° and non-missing UV aerosol index 11 

values. The OMI satellite data were further resampled to match the spatial resolution of the CHIMERE 12 

regular grid. For each grid cell, the AOD/AAOD values were calculated as the average of all satellite 13 

pixels falling within the simulation grid. 14 

Model accuracy in reproducing observations was evaluated using a set of statistical indices. These 15 

included the Pearson correlation coefficient, normalized mean bias (NMB), root mean square error 16 

(RMSE), Nash-Sutcliffe efficiency (NSE), Taylor score (TS), and standard deviation error (STDE). 17 

Definitions and explanations of these indices are reported in Section S1 of the Supplementary Material.  18 

 19 

  20 
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3 Model evaluation 1 

3.1 Aerosol optical depth simulation 2 

In this section, we assessed the model performance of the reference run (CTRL) in reproducing 3 

the AOD, since it is a key indicator of model skill in reproducing aerosol load, which in turn depends on 4 

different processes, such as emission, transport and deposition. Statistical indices obtained from the model 5 

comparison with observed AOD are reported in Table 2.  6 

Figure 4 shows the comparison between monthly average of AOD at 550 nm predicted and 7 

observed from the MODIS satellite. CHIMERE satisfactorily reproduced the AOD patterns. In particular, 8 

the model captured the southeastern aerosol transport, downwind of the Canadian wildfires, toward East 9 

Coast of North America and the subsequent outflow on the Atlantic Ocean. The model successfully 10 

captured the eastward long-range transport across the ocean and the plume advection over Western 11 

Europe. However, the simulated AOD is generally underestimated compared to satellite observations. A 12 

more quantitative comparison indicates that CHIMERE reproduced the MODIS monthly data with a 13 

correlation of 0.77, an average NMB of –14%, NSE of 0.57, and TS of 0.79.  14 

Figure 5 displays the comparison between monthly average AOD at 354 nm predicted by 15 

CHIMERE and observed by OMI. CHIMERE captured the AOD distribution retrieved by satellite, 16 

especially in Canada close to the boreal fire, Eastern North America, and Atlantic Ocean. The estimated 17 

correlation coefficient was 0.65, while the AOD was underpredicted by 30%. A closer inspection to 18 

Figure 5 reveals that this bias originates in Western USA, where the model underestimates the 19 

observations by a factor of 3-4. In general, the CHIMERE performance in reproducing OMI AOD 20 

appeared poorer compared to MODIS. The possible reason of this bias will be discussed later.    21 

The comparison of the simulated daily AOD at 440 nm compared to the AERONET at all sites 22 

showed a NMB of -24%, while the correlation, NSE and TS were 0.55 and 0.88. Figure 6 depicts the 23 

comparison of modelled and observed daily averaged time series of AOD at 440 nm at the R1, R2, and 24 

R3 regions. Additionally, the figure also reports the scatter plots between predicted and observed daily 25 

AOD values. The model captured the mean daily observed AOD behaviour in R1, R2, and R3. The 26 

CHIMERE model was able to reproduce the AOD main peaks at the Canadian AERONET sites (R1) in 27 

the first half of June, although it did not accurately capture the peaks on June 23 and 25-26. At the same 28 

time, the peaks of early, mid, and end June on eastern USA downwind from Canadian sources (R2) were 29 

captured, as well as the late June peak on western Europe (R3) due to the long-range smoke transport 30 

from North America.  31 

Furthermore, the correlation coefficient and TS exceeded 0.70 and 0.80 for all three regions, 32 

respectively. The NMB was about -20% in R2 and R3, while in R1, it was -35%. The largest bias in R1 33 

could be mainly attributed to the model resolution used in this study that could affect the right position of 34 

the wildfire sources. The largest bias in R1 could be mainly attributed to the model resolution deployed 35 

in this study that could impact the right position of the wildfire sources. However, it should be noted that 36 

even at higher resolution, small errors in simulated wind speed and direction may significantly impact the 37 

plume position prediction downwind of the sources (Tuccella et al., 2017). Additionally, the assessment 38 
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of model performance in R1 may be affected by the limited number (see Figure 3) of AERONET stations 1 

available in this region.  2 

The same analysis has been conducted for the comparison of modelled AOD at 675 nm with 3 

AERONET measurements. Figure S1 shows the daily averaged times series and daily scatter plots of 4 

predicted versus observed AOD at this wavelength. The statistical indices obtained from this comparison 5 

are presented in Table S1. At this wavelength, CHIMERE simulated the average time series of AOD in a 6 

similar way as well as discussed at 440 nm. The correlation coefficient with observed daily values was 7 

0.78, 0.73 and 0.70 in R1, R2, and R3, respectively. 8 

In summary, the outcomes of the statistical analysis obtained from the comparison of the simulated 9 

AOD with the AERONET and satellite data are comparable to that of current regional atmospheric models 10 

(Curci et al., 2015; Palacios-Peña et al., 2019). Overall, our model exhibited an underestimation of AOD, 11 

which was quantifiable in average between 15-30%. This bias has been found in other studies conducted 12 

with CHIMERE, even with finer resolutions with respect to the one used in this study (e.g., Menut et al., 13 

2023). Several factors may contribute to a potential bias in the simulated AOD, among those the 14 

assumption on particle mixing state (Curci et al., 2015), the simulated aerosol size distribution (Esteve et 15 

al., 2014) and the aerosol chemical composition as well as the adopted schemes to represent the organic 16 

aerosol fraction (Balzarini et al., 2015). Regarding the dependency on the chemical composition, 17 

Konovalov et al. (2023) showed that the parameterization for the secondary organic aerosols used in this 18 

study tends to underestimate the SOA mass during wildfire episodes, with consequent bias on the aerosol 19 

load. This aspect could be improved by using more realistic SOA schemes available in CHIMERE (such 20 

as the Volatility Set Basis scheme), but these are computational expensive for the aim of this investigation, 21 

since they would have required many additional variables resulting from the splitting of primary OA 22 

sources for BrC simulation. Another important source of bias in this study is the uncertainty of BB 23 

emission inventories. Aerosol simulations and their climatic impact are sensitive to specific BB emission 24 

inventory (Liu et al., 2018; Ramnarine et al., 2019; Carter et al., 2020). This uncertainty may be larger at 25 

high latitudes, where the fire sources in this study are located, due to the increased cloud cover in these 26 

regions, which may decrease the accuracy of BB emission estimates (Hua et al., 2024). 27 

Additionally, in this discussion, it is essential to consider the uncertainties in the AOD 28 

measurements, especially the error associated with satellite data. AERONET has an uncertainty of 0.01-29 

0.02 (Holben et al., 2001), while the error of MODIS is 0.05 ± 0.20 ∙ AOD  and 0.03 ± 0.05 ∙ AOD over 30 

land and ocean, respectively (Tanré et al., 1997; Kaufman et al., 1997). The average error expected in 31 

OMI AOD is of the order of 30% (Torres et al., 2002). We compared AOD retrieved by MODIS and OMI 32 

with AERONET data. The comparison of MODIS AOD is shown in Figure S2. The analysis indicates 33 

that MODIS tends to overestimate AOD at AERONET stations, with a monthly average bias of 18%. 34 

Figure S3 shows the comparison of OMI AOD with AERONET data, revealing that OMI overestimates 35 

AOD by 40%. This bias is particularly evident in the western United States, where we identified the most 36 

substantial discrepancies between CHIMERE and OMI data. 37 
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3.2 Aerosol absorption simulation 1 

In this section, we evaluated the performance of the new absorption scheme implemented within 2 

the CHIMERE model and detailed in Sections 2.2 and 2.3. Indeed, we compared the simulated AAOD 3 

for the reference simulation (CTRL), the BCEabs, and the BEST simulations with the OMI and AERONET 4 

AAOD data.  5 

Figure 7 shows the monthly average of AAOD at 354 nm for June 2023, as observed by OMI and 6 

predicted by the CHIMERE in the CTRL run, BCEabs, and BEST simulations. The statistical indices 7 

derived from this comparison are reported in Table 3. The correlation coefficient for all the three 8 

simulations ranged between 0.50 and 0.54. However, the default model (CTRL), which assumes an 9 

external mixing state, failed to reproduce the AAOD observed pattern, exhibiting a bias of -78%. The 10 

increase in absorption due to BCEabs was moderate and primarily localized near the biomass burning 11 

sources, where the mass ratio (Mr) reaches its highest values. The overall bias of BCEabs is reduced by 3% 12 

compared to CTRL. A significant improvement in aerosol absorption was observed in BEST simulations. 13 

The inclusion of the BrC treatment enabled the model to reproduce the spatial pattern of AAOD much 14 

more closely to that observed by OMI. This improvement was also reflected in the statistical indices with 15 

the Taylor score increasing more than twofold from CTRL (0.34) to BEST (0.73). Despite this progress, 16 

the mean bias still was -55%. The largest biases in BEST simulations were found in Western USA and 17 

North Africa. The latter could be related to the errors in simulating the aerosol dust absorption; however, 18 

uncertainties in OMI retrievals must also be considered. We will explore this issue in more detail at the 19 

end of this section. 20 

Figure 8 shows the comparison of daily AAOD averaged time series at 440 and 675 nm simulated 21 

in the CTRL, BCEabs, and BEST against observations from AERONET sites in the R1, R2, and R3 regions. 22 

Generally, the AAOD simulated in CTRL was underestimated, particularly during peak events related to 23 

the Canadian forest fires across all three regions. Including the BC absorption enhancement (BCEabs), a 24 

moderate improvement in AAOD simulation was observed at 440 nm Conversely, at 675 nm, the 25 

inclusion of BC Eabs resulted in a more accurate prediction of AAOD peaks both near the fire sources 26 

(R1) and downwind (R2), as well as in late June over western Europe (R3), attributed to transoceanic 27 

smoke transport from North America. This improvement is attributable to the dominance of BC at this 28 

wavelength, since BrC primarily absorbs solar radiation in the UV range. Consequently, at 675 nm the 29 

BCEabs and BEST simulations were identical, and the results obtained at this wavelength may be 30 

considered an evaluation of BC Eabs parameterization. 31 

Figure 9 displays the scatter plots of the daily AAOD at 440 nm simulated in CTRL, BCEabs, and 32 

BEST models with the AAOD measurements from the AERONET sites in R1, R2, and R3. The summary 33 

of the statistical indices is reported in Figure 10. In general, the correlation coefficient remained constant 34 

across the simulations (about 0.70, 0.64, and 0.53 in R1, R2, and R3, respectively). This indicates that all 35 

three the models were able to capture the temporal variations of absorption. It should be noted that 36 

correlation, as well as NSE and TS, decreased moving away from the fire sources, most likely because in 37 

R1 the AAOD simulation was most affected by BB emissions, while far from boreal wildfires the mixing 38 

with other sources may alter the relative contribution of the absorbing and scattering aerosols, lowering 39 

the performance indices. At the same time, RMSE and STDE decreased moving downwind of the fires.  40 
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The bias represented the most varying metric. The CTRL simulation underpredicted the AAOD 1 

by 18% in R1, while it became negligible after including BC enhancement in the model. The addition of 2 

the BrC absorption (BEST), lead to a positive bias of +30%. This result could be attributed to the presence 3 

of “browner” BB-BrC, whose absorption could be overestimated, given the high uncertain of its MAC. 4 

Moreover, as highlighted also in Section 3.1 for the AOD, model evaluation in R1 may be affected by the 5 

limited number of AERONET observations available in this area. Similar results in terms of bias are 6 

obtained for the R2 and R3. The CTRL simulation underestimated the absorption by about 40%, while in 7 

BCEabs the bias was reduced to about -25%, becoming slightly positive in BEST.  8 

The same analysis has been performed for AAOD at 675 nm. The results of the comparison are 9 

reported in Figures S4 and S5. As for AAOD at 440 nm, the correlation coefficient was constant across 10 

model simulations and decreased moving away from boreal wildfires. Its values were about 0.75, 0.65, 11 

and 0.45 in R1, R2, and R3 respectively. The same behavior was exhibited by NSE and TS. Conversely 12 

RMSE and STDE improved downwind the BB sources. Also in this case, the metric that showed the most 13 

variations among simulations was the bias. In R1, NMB was negligible in CTRL, but it increased at +25% 14 

in BCEabs. CTRL underestimated the AAOD at 675 nm by 18% and 26% in R2 and R3, respectively. 15 

Adding the BC absorption enhancement, the bias became negligible in R2 and reduced to -9% in R3.     16 

In summary, the evaluation demonstrated that the new absorption scheme implemented in 17 

CHIMERE overall enhances the model skill in reproducing the observed AAOD patterns. The 18 

uncertainties of absorption treatment used in this work are mostly related to the missing of some blanching 19 

effects due to in-cloud processes of primary BrC and SOA ageing. Additionally, assumptions regarding 20 

the MAC of browner BB-BrC could introduce further uncertainty. Furthermore, the uncertainties could 21 

also arise from the simplified parameterization of Eabs. In our model, the absorption enhancement 22 

predicted by core-shell model (𝐸𝑎𝑏𝑠𝑐𝑠
) is maintained at the fixed value of 1.5, which may not accurately 23 

capture the variability observed under different atmospheric conditions. 24 

Moreover, uncertainties associated with AERONET and OMI data could affect the model 25 

comparison with observations. In our analysis, we complemented the L2.0 of AERONET for AAOD with 26 

L1.5 measurements, as AAOD in the L2 dataset was provided only for AOD at 440 nm larger than 0.4. 27 

The uncertainty of single scattering albedo (SSA), used to derive AAOD, is site dependent. Generally, 28 

the uncertainty related to SSA retrieval varies with AOD, ranging from approximately ±0.03 for AOD at 29 

440 nm greater than 0.5 to ±0.05–0.07 for AOD less than 0.2 (Sinyuk et al., 2020). Furthermore, this 30 

uncertainty increases with larger wavelengths. Concerning the uncertainty of OMI retrieval, the 31 

comparison of OMI AAOD with AERONET data is displayed in Figure S6. OMI shows an average 32 

positive bias of 66% with respect to AERONET. The most considerable discrepancies between 33 

AERONET and OMI data are found in the western United States, where we noted the most important 34 

error in CHIMERE AAOD prediction with respect to OMI data. 35 

  36 
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4 Direct radiative effect  1 

In this section, we have assessed the impact of new treatment of BC and OA absorption on the 2 

AAOD simulation and its implication for the DRE. This analysis was conducted over the regular 3 

CHIMERE domain. 4 

Figure 11 shows the total and BB aerosols average AAOD at 550 nm for June 2023, as calculated 5 

in CTRL and BEST simulations. The domain averages of AAOD are reported in Table 4. The total 6 

average AAOD was 0.0068 in CTRL simulation, while in the enhanced model (BEST) it increased to 7 

0.0089 (+31%). In the Canadian wildfire source regions, AAOD in the BEST simulation increased by 35-8 

40% relative to the CTRL run, with some areas showing a rise of up to 45% (Figure S7). The relative 9 

increase in AAOD could reach up to 50% in regions where BB aerosols are mixed with BF sources, such 10 

as in the southeastern USA. Over the Atlantic Ocean and the Arctic, the relative increase was 30-35%. A 11 

35-40% increase was also observed over Eastern Europe, largely due to BF emissions of OA. AAOD due 12 

to BB was 0.0047 in the CTRL run and increased to 0.0066 (+40%) in BEST simulation. According to 13 

our model, BB contributes approximately 74% to the total aerosol absorption within the considered 14 

domain. The maximum uncertainty in domain-average AAOD from the enhanced model was evaluated 15 

by comparing the BEST run with extreme absorption scenarios (L-ABS and H-ABS tests), resulting in an 16 

uncertainty range of -10/+24% for total AAOD and -14/+30% for BB AAOD. 17 

DRE at the top of the atmosphere (TOA) has been calculated offline with a simplified 18 

formalization provided by Seinfeld and Pandis (2016). The details of this formulation are reported in 19 

Section S2 of the Supplementary Material. 20 

Figure 12 displays the average BB all-sky DRE for June 2023, as calculated in CTRL and BEST 21 

simulations. Table 5 reports the domain averages of clear and all-sky top of the atmosphere (TOA) DRE. 22 

The uncertainty associated with the DRE from the enhanced model was evaluated using the same 23 

approach as for AAOD.  24 

In the default model, the all-sky DRE related to the intense Canadian wildfire event was -2.1 25 

W/m², with the strongest cooling effects observed over oceans and land, reaching -30/-20 W/m² near the 26 

BB sources in Canada. By contrast, warming effects were observed over snow-covered land and sea ice, 27 

with a warming of up to 10-15 W/m² in Arctic regions downwind of the BB sources. 28 

In the BEST model, the all-sky DRE was reduced to -1.9 W/m² (-2.0/-1.8 W/m², ±5%), indicating 29 

an additional monthly average warming of +0.2 W/m² (+10%) in the enhanced model simulation of the 30 

Canadian wildfire climatic impact. This supplemental warming was most pronounced over snow/ice-31 

covered regions, with a DRE reduction up to 2.5-3.0 W/m² in North America downwind of the fires and 32 

up to 2.0-2.5 W/m² in southern Greenland. The cooling effect in BEST was also reduced by up to 1.5 33 

W/m² in Canada near the source regions and by few tens of W/m² over the Atlantic Ocean and Europe. 34 

Finally, it is insightful to examine the variation in DRE between the default and enhanced models, 35 

normalized to the change in AAOD at 550 nm between the two simulations. The resulting normalized BB 36 

all-sky ΔDRE was 105 W/m2/AAOD. This value suggests a significant DRE sensitivity to AAOD change 37 

in the model.   38 
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These results emphasize that accurate prediction of BC and BrC sunlight absorption is crucial for 1 

understanding the impact of intense boreal wildfires on regional climate. Our findings suggest that models 2 

lacking proper treatment of carbonaceous aerosol absorption may overestimate the cooling effect of boreal 3 

wildfires. Therefore, improving aerosol absorption parameterizations is crucial, along with incorporating 4 

the feedback between climate and aerosol smoke from boreal fires, both in near-future climate predictions 5 

and the development of effective mitigation strategies. Recent study of Allen et al. (2024) suggest that 6 

anthropogenic aerosol mitigation strategies will likely increase boreal forest fires, but the full impact of 7 

resulting emissions on the climate system remains uncertain. Without adequate treatment of BC and BrC 8 

absorption, the climatic effect of these emissions could be significantly misrepresented.   9 

  10 
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5 Conclusions 1 

Black carbon (BC) and brown carbon (BrC) are light-absorbing aerosols which play a key role in 2 

the climatic system. Boreal wildfires are significant sources of these particles. Boreal wildfire events are 3 

increasing due to climate change. Accurate modelling of BC and BrC absorption is essential for predicting 4 

the direct radiative effect (DRE) of these events. In this study, we modelled the BC and BrC absorption 5 

during the severe Canadian wildfires of June 2023 using an enhanced CHIMERE model and assessed the 6 

impact of these improvements on the DRE of the wildfires. 7 

The CHIMERE model was configured on a large domain spanning from North America to Eastern 8 

Europe, including the high latitude up to 75°N. We implemented in the model a parameterization for BC 9 

absorption enhancement (Eabs), which depends on the mixing state of BC particles, through the mass ratio 10 

of non-BC to BC aerosols, according to the work of Liu et al. (2017). We also implemented an advanced 11 

scheme for BrC absorption, which accounts for “browning” and “blanching” processes due to 12 

photochemical ageing, following the approach of DeLessio et al. (2024). A series of simulations were 13 

conducted to assess the impact of BC Eabs and BrC on aerosol absorption prediction. Model performance 14 

was evaluated through a statistical comparison with aerosol optical depth (AOD) and absorbing aerosol 15 

optical depth (AAOD) data from satellite instruments (MODIS and OMI) and ground-based AERONET 16 

stations, focusing on regions impacted by Canadian wildfires.  17 

The model captured the spatial patterns of AOD, particularly the long-range transport of aerosols 18 

from Canadian wildfires toward the East Coast of North America and across the Atlantic to Europe. The 19 

model generally underestimated AOD compared to satellite observations, with biases ranging from 15-20 

30%. Correlation coefficients for the comparison with MODIS and OMI AOD were 0.77 and 0.65, 21 

respectively, while comparisons with AERONET showed a correlation of 0.79 and a bias of -24%. 22 

The default model (CTRL) underestimated AAOD retrieved by OMI, particularly near biomass 23 

burning sources, with a bias of up to -78%. A moderate improvement was observed by including in model 24 

the BC absorption enhancement (BCEabs), but the most substantial advancements were achieved in the 25 

BEST simulations, which included both Eabs and BrC treatment, improving spatial patterns and statistical 26 

indices. The model comparison with AAOD measurements at 440 and 675 nm from AERONET exhibited 27 

a correlation of about 0.75 near the wildfire sources, which tends to decrease moving downwind from 28 

these sources. In general, the CTRL run underestimated the observed AAOD, while a significant 29 

improvement of the model was obtained in the BEST simulation.     30 

The enhanced model (BEST) increased the monthly domain average AAOD at 550 nm by 31% 31 

compared to the CTRL, with the most significant changes observed near the Canadian wildfires and areas 32 

where biomass burning aerosols mixed with fossil fuel sources. Canadian smoke aerosols contributed 33 

approximately to 74% of total aerosol absorption. 34 

The all-sky TOA DRE associated with the Canadian wildfires of June 2023 was estimated to be -35 

2.1 W/m² in the CTRL run. In the best simulation, this value was reduced to -1.9 W/m², indicating an 36 

additional warming of +0.2 W/m² (+10%), attributable to the enhanced treatment of BC and BrC 37 

absorption. The increased in DRE calculated in BEST was more pronounced in the regions covered by 38 

snow and ice, such as the Arctic and Southern Greenland. Furthermore, the normalized all-sky DRE 39 
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change resulting from the increase in AAOD obtained in BEST simulation was +105 W/m²/AAOD, 1 

highlighting the critical role of aerosol absorption in radiative balance during the intense boreal wildfire 2 

events. 3 

The main uncertainties in this study are linked to the absorption scheme implemented in 4 

CHIMERE, which does not account for the blanching due to in cloud-processes of primary BrC and SOA 5 

ageing. Moreover, the complex part of refractive index adopted for browner BrC could introduce an 6 

additional uncertainty factor. Another source of uncertainty is related to the assumption of a constant Eabs 7 

resulting from the core-shell morphology of BC. To evaluate the impact of these uncertainties, we 8 

perturbed the BEST simulation with low and high absorption scenarios. The results indicate an error of 9 

±5% in the DRE estimate attributed to Canadian wildfires.    10 

Overall, the findings of this investigation demonstrate the importance of an accurate simulation 11 

of BC and BrC absorption to properly assess the regional climatic impact of intense boreal wildfire. The 12 

lack of this factor in the models may results in an overestimation of the radiative cooling effect of boreal 13 

fires. Consequently, improving the parameterizations of carbonaceous aerosol absorption is essential for 14 

reliable near-future climatic predictions and effectively evaluation of the efficiency of the aerosol 15 

mitigation strategies. 16 

 17 
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temporary link for peer review only and will be made public at acceptance. AERONET data are freely available at the following 2 

website https://aeronet.gsfc.nasa.gov/new_web/data.html. MODIS and OMI data may be downloaded at 3 

https://disc.gsfc.nasa.gov/. 4 

 5 

Author Contributions: PT and LDA conceptualized the study and developed the methodology. PT and LM developed the 6 

model. PT performed the model simulations with contribution from LDA. PT, LDA and ADM performed the formal analysis. 7 

PT, LDA and VC prepared and wrote the original draft. PT, LDA, ADM, VC, LM, ER, and GP reviewed the original draft.  8 

  9 

Competing interests: The authors declare that they have no conflict of interest. 10 

 11 

Funding: This work was not supported by any external funding. 12 

 13 

  14 

https://osf.io/dnygq/
https://aeronet.gsfc.nasa.gov/new_web/data.html


23 

 

References 1 

Adachi, K., Chung, S. H., and Buseck. P. R. (2010). Shapes of soot aerosol particles and implications for their 2 

effects on climate. J. Geophys. Res., 115, D15206, https//doi.org/10.1029/2009JD012868. 3 

Akagi, S. K., Craven, J. S., Taylor, J. W., McMeeking, G. R., Yokelson, R. J., Burling, I. R., Urbanski, S. P., Wold, 4 

C. E., Seinfeld, J. H., Coe, H., Alvarado, M. J., and Weise, D. R. (2012). Evolution of trace gases and 5 

particles emitted by a chaparral fire in California. Atmos. Chem. Phys., 12, 1397–1421, 6 

https//doi.org/10.5194/acp-12-1397-2012. 7 

Alfaro, S. C., and Gomes, L. (2001). Modeling mineral aerosol production by wind erosion: Emission intensities 8 

and aerosol size distribution in source areas. J. Geophys. Res., 106, 18075–18084, 9 

https//doi.org/10.1029/2000JD900339. 10 

Alexander, D. T. L., Crozier, P. A., and Anderson, J. R. (2008). Brown carbon spheres in East Asian outflow and 11 

their optical properties. J. Geophys. Res., 321, 833–836, https//doi.org/10.1126/science.1155296. 12 

Allen, R. J., et al. (2024). Are Northern Hemisphere boreal forest fires more sensitive to future aerosol mitigation 13 

than to greenhouse gas–driven warming?. Sci. Adv., 10, DOI:10.1126/sciadv.adl4007. 14 

Andreae, M. O., and Gelencsér, A. (2006). Black carbon or brown carbon? The nature of light-absorbing 15 

carbonaceous aerosols. Atmos. Chem. Phys., 6, 3131–3148, https//doi.org/10.5194/acp-6-3131-2006. 16 

Arola, A., Stu G., Kazadzis, S., Dey, S., and Tripathi, S. N. (2011). Inferring absorbing organic carbon content 17 

from AERONET data. Atmos. Chem. Phys., 11, 215–225, https//doi.org/10.5194/acp-11-215-2011. 18 

Balzarini, A., Pirovano, G., Honzak, L., Žabkar, R., Curci, G., Forkel, R., Hirtl, M., San José, R., Tuccella, P., and 19 

Grell, G.A. (2015). WRF-Chem model sensitivity to chemical mechanisms choice in reconstructing aerosol 20 

optical properties. Atmos. Environ., 115, 604-619, https//doi.org/10.1016/j.atmosenv.2014.12.033. 21 

Bessagnet, B., Hodzic, A., Vautard, R., Beekmann, M., Cheinet, S., Honoré, C., Liousse, C., and Rouil, L. (2004). 22 

Aerosol modeling with CHIMERE—Preliminary evaluation at the continental scale. Atmos. Environ., 38, 23 

2803–2817, https//doi.org/10.1016/j.atmosenv.2004.02.034. 24 

Bessagnet, B., Menut, L., Curci, G., Hodzic, A., Guillaume, C., Liousse, C., Moukhtar, S., Pun, B., Seigneur, C., 25 

and Schulz, M. (2008). Regional modeling of carbonaceous aerosols over Europe-Focus on secondary 26 

organic aerosols. J. Atmos. Chem., 61, 175–202, https//doi.org/10.1007/s10874-009-9129-2. 27 

Bond, T. C., and Bergstrom R. W. (2006). Light absorption by carbonaceous particles: an investigative review. 28 

Aerosol. Sci. Tech., 40, 27–67, https//doi.org/10.1080/02786820500421521. 29 

Bond, T. C., Bhardwaj, E., Dong, R., Jogani, R., Jung, S. K., Roden, C., Streets, D. G., and Trautmann, D. G. 30 

(2007). Historical emissions of black and organic carbon aerosol from energy-related combustion, Global 31 

Biogeochem., 21, 1850–2000, https//doi.org/10.1029/2006GB002840. 32 

Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., De Angelo B. J., Flanner, M.G., Ghan, S., 33 

Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. C., Schulz, M., 34 

Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K.,  Hopke, P. K., Jacobson, M. Z., 35 

Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, D., Warren, S. G., and 36 

Zender, C. S. (2013). Bounding the role of black carbon in the climate system: A scientific assessment. J. 37 

Geophys. Res.-Atmos., 118, 5380–5552, https//doi.org/10.1002/jgrd.50171. 38 

https://doi.org/10.1029/2009JD012868
https://doi.org/10.1029/2000JD900339
https://doi.org/10.1126/sciadv.adl4007
http://do10.1016/j.atmosenv.2014.12.033
doi:10.1029/2006GB002840.


24 

 

Bondy, A., Bonanno, D., Moffet, R., Wang, B., Laskin, A., and Ault, A. (2018). The diverse chemical mixing state 1 

of aerosol 430 particles in the southeastern United States. Atmospheric Chemistry and Physics, 18, 12595-2 

12612, 10.5194/acp-18- 12595-2018. 3 

Bones, D. L., Henricksen, D. K., Mang, S. A., Gonsior, M., Bateman, A. P., Nguyen, T. B., Cooper, W. J., and 4 

Nizkorodov, S. A. (2010). Appearance of strong absorbers and fluorophores in limonene-O3 secondary 5 

organic aerosol due to NH4+ mediated chemical aging over long time scales. J. Geophys. Res., 115, 6 

https//doi.org/10.1029/2009JD012864. 7 

Briant, R., Tuccella, P., Deroubaix, A., Khvorostyanov, D., Menut, L., Mailler, S., and Turquety, S. (2017). 8 

Aerosol–radiation interaction modelling using online coupling between the WRF 3.7.1 meteorological 9 

model and the CHIMERE 2016 chemistry-transport model, through the OASIS3-MCT coupler. Geosci. 10 

Model Dev., 10, 927–944, https//doi.org/10.5194/gmd-10-927-2017. 11 

Brown, H., Liu, X., Feng, Y., Jiang, Y., Wu, M., Lu, Z., Wu, C., Murphy, S., and Pokhrel, R. (2018). Radiative 12 

effect and climate impacts of brown carbon with the Community Atmosphere Model (CAM5), Atmos. 13 

Chem. Phys., 18, 17745–17768, https//doi.org/10.5194/acp-18-17745-2018. 14 

Brown, H., Wang, H., Flanner, M., Liu, X., Singh, B., Zhang, R., Yang, Y., and Wu M. (2022). Brown carbon fuel 15 

and emission source attributions to global snow darkening effect. J. Adv. Model Earth Sy., 14, 16 

e2021MS002768, https//doi.org/10.1029/2021MS002768. 17 

Byrne, B., Liu, J., Bowman, K.W. et al. (2024). Carbon emissions from the 2023 Canadian wildfires. Nature, 18 

https://doi.org/10.1038/s41586-024-07878-z. 19 

Cappa, C. D., Onasch, T. B., Massoli, P., Worsnop D. R., Bates, T. S., Cross, E. S., Davidovits, P., Hakala, J., and 20 

Hayden, K. L. (2012). Radiative Absorption Enhancements Due to the Mixing State of Atmospheric Black 21 

Carbon, Science, 337, 1078–1081, https//doi.org/10.1126/science.1223447. 22 

Carter, T. S., Heald, C. L., Jimenez, J. L., Campuzano-Jost, P., Kondo, Y., Moteki, N., Schwarz, J. P., Wiedinmyer, 23 

C., Darmenov, A. S., and da Silva, A. M. (2020). How emissions uncertainty influences the distribution 24 

and radiative impacts of smoke from fires in North America. Atmos. Chem. Phys., 20, 2073-2097, 25 

https//doi.org/10.5194/acp-20-2073-2020.  26 

Chen, F., and Dudhia, J. (2001). Coupling an Advanced Land Surface-Hydrology Model with the Penn State-27 

NCAR MM5, Modeling System. Part I: Model Implementation and Sensitivity. Mon. Weather Rev., 129, 28 

569–585, https//doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2. 29 

Chen, Y., and Bond, T. C. (2010). Light absorption by organic carbon from wood combustion. Atmos. Chem. Phys., 30 

10, 1773–1787, https//doi.org/10.5194/acp-10-1773-2010. 31 

Cheng, Z., Atwi, K. M., Yu, Z., Avery, A., Fortner, E. C., Williams, L., Majluf, F., Krechmer, J. E., Lambe, A. T., 32 

and Saleh, R. (2020). Evolution of the light-absorption properties of combustion brown carbon aerosols 33 

following reaction with nitrate radicals, Aerosol Sci. Tech., 54, 849–863, 34 

https://doi.org/10.1080/02786826.2020.1726867.  35 

Clarke, A. D., Shinozuka, Y., Kapustin, V. N., Howell, S., Huebert, B., Doherty, S., Anderson, T., Covert, D., 36 

Anderson, J., Hua, X., Moore II, K. G., McNaughton, R., Carmichael, G., and Weber, R. (2004). Size 37 

distributions and mixtures of dust and black carbon aerosol in Asian outflow: physiochemistry and optical 38 

properties. J. Geophys. Res., 109, D15S09, https//doi.org/10.1029/2003JD004378. 39 

doi:10.1029/2009JD012864.
https://doi.org/10.1029/2021MS002768
https://doi.org/10.1175/1520-0493(2001)129%3C0569:CAALSH%3E2.0.CO;2
https://doi.org/10.1080/02786826.2020.1726867


25 

 

Craig, A., Valcke, S., and Coquart, L. (2017). Development and performance of a new version of the OASIS 1 

coupler, OASIS3-MCT_3.0, Geosci. Model Dev., 10, 3297–3308, https//doi.org/10.5194/gmd-10-3297-2 

2017. 3 

Curci, G., Hogrefe, C., Bianconi, R., Im, U., Balzarini, A., Baro, R., Brunner, D., Forkel, R., Giordano, L., Hirtl, 4 

M., Honzak, L., Jimenez-Guerrero, P., Knote, C., Langer, M., Makar, P. A., Pirovano, G., Perez, J. L., San 5 

Jose, R., Syrakov, D., Tuccella, P., Werhahn, J., Wolke, R., Zabkar, R., Zhang, J., and Galmarini, S. (2015). 6 

Uncertainties of simulated aerosol optical properties induced by assumptions on aerosol physical and 7 

chemical properties: an AQMEII-2 perspective. Atmos. Environ., 115, 541–552, 8 

https//doi.org/10.1016/j.atmosenv.2014.09.009. 9 

Curci, G., Alyuz, U., Barò, R., Bianconi, R., Bieser, J., Christensen, J. H., Colette, A., Farrow, A., Francis, X., 10 

Jiménez-Guerrero, P., Im, U., Liu, P., Manders, A., Palacios-Peña, L., Prank, M., Pozzoli, L., Sokhi, R., 11 

Solazzo, E., Tuccella, P., Unal, A., Vivanco, M. G., Hogrefe, C., and Galmarini, S. (2019). Modelling 12 

black carbon absorption of solar radiation: combining external and internal mixing assumptions, Atmos. 13 

Chem. Phys., 19, 181–204, https//doi.org/10.5194/acp-19-181-2019. 14 

DeLessio, M. A., Tsigaridis, K., Bauer, S. E., Chowdhary, J., and Schuster, G. L. (2024). Modeling atmospheric 15 

brown carbon in the GISS ModelE Earth system model, Atmos. Chem. Phys., 24, 6275–6304, 16 

https//doi.org/10.5194/acp-24-6275-2024.  17 

Derognat, C., Beekmann, M., Baeumle, M., Martin, D., and Schmidt, H. (2003). Effect of biogenic volatile organic 18 

compound emissions on tropospheric chemistry during the Atmospheric Pollution Over the Paris Area 19 

(ESQUIF) campaign in the Ile-de-France region. J. Geophys. Res., 108, 20 

https//doi.org/10.1029/2001JD001421. 21 

Dingle, J. H., Zimmerman, S., Frie, A. L., Min, J., Jung, H., and Bahreini, R. (2019). Complex refractive index, 22 

single scattering albedo, and mass absorption coefficient of secondary organic aerosols generated from 23 

oxidation of biogenic and anthropogenic precursors. Aerosol Sci. Technol., 53, 449–463, 24 

https://doi.org/10.1080/02786826.2019.1571680,. 25 

Drugé, T., Nabat, P., Mallet, M., Michou, M., Rémy, S., and Dubovik, O. (2022). Modeling radiative and climatic 26 

effects of brown carbon aerosols with the ARPEGE-Climat global climate model. Atmos. Chem. Phys., 22, 27 

12167–12205, https//doi.org/10.5194/acp-22-12167-2022. 28 

Dubovik, O., Holben, B., Eck, T. F., Smirnov, A., Kaufman, Y. J., and King, M. D. (2002). Variability of absorption 29 

and optical properties of key aerosol types observed in worldwide locations, J. Atmos. Sci., 59, 590–608, 30 

doi:10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2. 31 

Esteve, A.R., Highwood, E. J., Morgan, W. T., Allen, G., Coe, H., Grainger, R. G., Brown, P., and Szpek, K. 32 

(2014). A study on the sensitivities of simulated aerosol optical properties to composition and size 33 

distribution using airborne measurements, Atmos. Environ., 89, 517-524, 34 

https//doi.org/10.1016/j.atmosenv.2014.02.063. 35 

Eckdahl, J. A., Kristensen, J. A., and Metcalfe, D. B. (2022). Climatic variation drives loss and restructuring of 36 

carbon and nitrogen in boreal forest wildfire. Biogeosciences, 19, 2487–2506, https://doi.org/10.5194/bg-37 

19-2487-2022,. 38 

Feng, Y., Ramanathan, V., Kotamarthi, V. R. (2013). Brown carbon: A significant atmospheric absorber of solar 39 

radiation? Atmos. Chem. Phys., 13, 8607–8621, https//doi.org/10.5194/acp‐13‐8607‐2013. 40 

https://doi.org/10.1080/02786826.2019.1571680


26 

 

Fierce, L., Onasch, T. B., Cappa, D. C., Claudio, M., Swarup, C., Janarjan, B., Davidovits, P., Fischer, D. Al., 1 

Helgestad, T., Lambe, A. T., Sedlacek, A. J., Smith, G. D., and Wolff, L. (2020). Radiative absorption 2 

enhancements by black carbon controlled by particle-to-particle heterogeneity in composition. P.  Natl. 3 

Acad. Sci. USA, 117(10), 5196-5203, https//doi.org/10.1073/pnas.1919723117. 4 

Filonchyk, M. and Peterson, M. P. (2024). Changes in aerosol properties at the El Arenosillo site in Southern 5 

Europe as a result of the 2023 Canadian forest. Environmental Research, 260, 6 

https://doi.org/10.1016/j.envres.2024.119629. 7 

Fleming, L. T., Lin, P., Roberts, J. M., Selimovic, V., Yokelson, R., Laskin, J., Laskin, A., and Nizkorodov, S. A. 8 

(2020). Molecular composition and photochemical lifetimes of brown carbon chromophores in biomass 9 

burning organic aerosol. Atmos. Chem. Phys., 20, 1105–1129, https//doi.org/10.5194/acp-20-1105-2020. 10 

Flanner, M. G., Zender, C. S., Randerson, J. T., and Rasch, P. J. (2007). Present-day climate forcing and response 11 

from black carbon in snow. J. Geophys. Res., 112, D11202, https//doi.org/10.1029/2006JD008003. 12 

Flanner, M. G., Zender, C. S., Hess, P. G., Mahowald, N. M., Painter, T. H., Ramanathan, V., and Rasch, P. J. 13 

(2009). Springtime warming and reduced snow cover from carbonaceous particles. Atmos. Chem. Phys., 9, 14 

2481–2497, https//doi.org/10.5194/acp-9-2481-2009. 15 

Folberth, G. A., Hauglustaine, D. A., Lathière, J., and Brocheton, F. (2006). Interactive chemistry in the Laboratoire 16 

de Météorologie Dynamique general circulation model: model description and impact analysis of biogenic 17 

hydrocarbons on tropospheric chemistry, Atmos. Chem. Phys., 6, 2273–2319, https//doi.org/10.5194/acp-18 

6-2273-2006. 19 

Forrister, H., Liu, J., Scheuer, E., Dibb, J., Ziemba, L., Thornhill, K. L., Anderson, B., Diskin, G., Perring, A. E., 20 

Schwarz J. P., Campuzano-Jost, P., Day, D. A., Palm, B. B., Jimenez J. L., Nenes, A., and Weber, J. (2015). 21 

Evolution of brown carbon in wildfire plumes. Geophys. Res. Lett., 42, 22 

https//doi.org/10.1002/2015GL063897. 23 

Gillett, N.P. (2004). Detecting the effect of climate change on Canadian forest fires. Geophysical Research Letters, 24 

31 (18), doi:10.1029/2004gl020876. 25 

Grell, G. A. and Freitas, S. R.: A scale and aerosol aware stochastic convective parameterization for weather and 26 

air quality modeling, Atmos. Chem. Phys., 14, 5233–5250, https//doi.org/10.5194/acp-14- 5233-2014, 27 

2014. 28 

Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C. (2006). Estimates of global 29 

terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), 30 

Atmos. Chem. Phys., 6, 3181–3210, https//doi.org/10.5194/acp-6-3181-2006. 31 

Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X. (2012). 32 

The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and 33 

updated framework for modeling biogenic emissions. Geosci. Model Dev., 5, 1471–1492, 34 

https//doi.org/10.5194/gmd-5-1471-2012. 35 

Gustafsson, O., and Ramanathan, V. (2016). Convergence on climate warming by black carbon aerosols. P. Natl. 36 

Acad. Sci. USA, 113, 4243–4245, https//doi.org/10.1073/pnas.1603570113. 37 

Hansen, J., and Nazarenko, L. (2004). Soot climate forcing via snow and ice albedos. PNAS, 101 (2), 423-38 

428, https//doi.org/10.1073/pnas.2237157100. 39 

https://doi.org/10.1029/2006JD008003
https://dx.doi.org/10.1073%2Fpnas.1603570113
doi:10.1073/pnas.2237157100


27 

 

Hua, W., Lou, S., Huang, X., Xue, L., Ding, K., Wang, Z., and Ding, A. (2024). Diagnosing uncertainties in global 1 

biomass burning emission inventories and their impact on modeled air pollutants, Atmos. Chem. Phys., 2 

https//doi.org/10.5194/acp-24-6787-2024. 3 

Hecobian, A., Zhang, X., Zheng, M., Frank, N., Edgerton, E. S., and Weber, R. J. (2010). Water-Soluble Organic 4 

Aerosol material and the light-absorption characteristics of aqueous extracts measured over the 5 

Southeastern United States. Atmos. Chem. Phys., 10, 5965–5977, https//doi.org/10.5194/acp-10-5965-6 

2010. 7 

Hems, R. F., Schnitzler, E. G., Bastawrous, M., Soong, R., Simpson, A. J., and Abbatt, J. P. D. (2020). Aqueous 8 

Photoreactions of Wood Smoke Brown Carbon. ACS Earth Space Chem., 4, 1149–1160, 9 

https://doi.org/10.1021/acsearthspacechem.0c00117.  10 

Hems, R. F., Schnitzler, E. G., Liu-Kang, C., Cappa, C. D., and Abbatt, J. P. D. (2021). Aging of Atmospheric 11 

Brown Carbon Aerosol. ACS Earth Space Chem., 5, 722–748, 12 

https//doi.org/10.1021/acsearthspacechem.0c00346e. 13 

Holben, B. N., Tanré, D., Smirnov, A., Eck, T. F., Slutsker, I., Abuhassan, N., Newcomb, W. W., Schafer, J. S., 14 

Chatenet, B., Lavenu, F., Kaufman, Y. J., Vande Castle, J., Setzer, A., Markham, B., Clark, D., Frouin, R., 15 

Halthore, R., Karneli, A., O’Neill N. T., Pietras, C., Pinker, R. T., Voss, K., and Zibordi, G. (2001). An 16 

emerging ground‐based aerosol climatology: Aerosol Optical Depth from AERONET. J. Geophys. Res., 17 

106(D11), 12067–12097. https//doi.org/10.1029/2001JD900014. 18 

Hong, S.-Y., Noh, S.-Y., and Dudhia, J. (2006). A new vertical diffusion package with an explicit treatment of 19 

entrainment processes. Mon. Weather Rev., 134, 2318–2341, https//doi.org/10.1175/MWR3199.1. 20 

Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, W., Clough, S. A., and Collins, W. D. (2008).  Radiative 21 

forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models, J. Geophys. 22 

Res., 113, https//doi.org/10.1029/2008JD009944. 23 

IPCC (2021). Climate Change 2021. Physical Science Basis. Contribution of Working Group I to the Sixth 24 

Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge UK and New York, 25 

NY, USA: Cambridge University Press. 26 

Jacobson, M. Z. (2000). A physically‐based treatment of elemental carbon optics: Implications for global direct 27 

forcing of aerosols. Geophysical Research Letters, 27, 217–220. https://doi.org/10.1029/1999GL010968 28 

Jacobson, M. Z. (2001). Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols. 29 

Journal of Geophysical Research, 106, 1551–1568. 30 

Jo, D. S., Park, R. J., Lee, S., Kim, S.-W., and Zhang, X. (2016). A global simulation of brown carbon: implications 31 

for photochemistry and direct radiative effect, Atmos. Chem. Phys., 16, 3413–3432, 32 

https//doi.org/10.5194/acp-16-3413-2016. 33 

Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N., Jones, L., Morcrette, J.-J., Razinger, M., 34 

Schultz, M. G., Suttie, M., and van der Werf, G. R. (2012). Biomass burning emissions estimated with a 35 

global fire assimilation system based on observed fire radiative power. Biogeosciences, 9, 527–36 

554,  https//doi.org/10.5194/bg-9-527-2012. 37 

Kasthuriarachchi, N. Y., Rivellini, L.-H., Adam, M. G., and Lee, A. K. Y. (2020). Light Absorbing Properties of 38 

Primary and Secondary Brown Carbon in a Tropical Urban Environment. Envir. Sci. Tech., 54(17), 10808-39 

10819, https//doi.org/10.1021/acs.est.0c02414.  40 

https://doi.org/10.1021/acsearthspacechem.0c00117
doi:10.1029/2001JD900014.
doi:10.1029/2008JD009944
hdoi:10.5194/bg-9-527-2012
https://pubs.acs.org/action/doSearch?field1=Contrib&text1=Nethmi+Y.++Kasthuriarachchi
https://pubs.acs.org/journal/esthag
https://doi.org/10.1021/acs.est.0c02414


28 

 

Kaufman, Y. J., Tanré, D., Remer, L. A., Vermote, E. F., Chu, A., and Holben, B. N. (1997).  Operational remote 1 

sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J. 2 

Geophys. Res., 102(D14), 17051–17067, https//doi.org/10.1029/96JD03988. 3 

Kirchstetter, T. W., and Thatcher, T. L. (2012). Contribution of organic carbon to wood smoke particulate matter 4 

absorption of solar radiation, Atmos. Chem. Phys., 12, 6067–6072, https//doi.org/10.5194/acp-12-6067-5 

2012. 6 

Kompalli, S. K., Babu, S. S., Ajith, T.C., Moorthy, K. K., Satheesh, S. K., Boopathy, R., Das, T., Liu, D., Allan, 7 

J., and Coe, H. (2023). Aging of biomass burning emissions in the Indo-Gangetic Plain outflow: 8 

Implications for black carbon light-absorption enhancement, Atmos. Res., 294, 106949, 9 

https//doi.org/10.1016/j.atmosres.2023.106949. 10 

Kong, Y., Zhi, G., Jin, W., Zhang, Y., Shen, Y., Li, Z., Sun, J., and Ren, Y. (2024). A review of quantification 11 

methods for light absorption enhancement of black carbon aerosol, Sci. Tot. Env., 924, 171539, 12 

https//doi.org/10.1016/j.scitotenv.2024.171539. 13 

Konovalov, I. B., Golovushkin, N. A., Beekmann, M., Siour, G., Zhuravleva, T. B., Nasrtdinov, I. M., and 14 

Kuznetsova, I. N. (2023). On the importance of the model representation of organic aerosol in simulations 15 

of the direct radiative effect of Siberian biomass burning aerosol in the eastern Arctic, Atmos. Envir., 309, 16 

119910, https//doi.org/10.1016/j.atmosenv.2023.119910. 17 

Konovalov, I. B., Golovushkin, N. A., and Beekmann, M. (2024a). Wildfire-smoke-precipitation interactions in 18 

Siberia: Insights from a regional model study. Sci. Tot. Env., 951, 175518, 19 

https//doi.org/10.1016/j.scitotenv.2024.175518. 20 

Konovalov, I.B., Golovushkin, N. A. (2024b). Model Analysis of Origination of Semidirect Radiative Effect of 21 

Siberian Biomass Burning Aerosol in the Arctic. Atmos. Ocean. Opt., 37, 382–393, 22 

https://doi.org/10.1134/S1024856024700477 23 

Kuhns, H., Knipping, E. M., and Vukovich, J. M. (2005). Development of a United States–Mexico Emissions 24 

Inventory for the Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study, J. Air Waste 25 

Manage. Assoc., 55, 677–692, https//doi.org/10.1080/10473289.2005.10464648. 26 

Lack, D. A., Langridge, J. M., Bahreini, R., Cappa, C. D., Middlebrook, A. M., and Schwarz, J. P. (2012). Brown 27 

carbon and internal mixing in biomass burning particles. P. Natl. Acad. Sci. USA, 109, 14802–14807, 28 

https//doi.org/10.1073/pnas.1206575109. 29 

Lambe, A. T., Cappa, C. D., Massoli, P., Onasch, T. B., Forestieri, S. D.. Martin, A. T., Cummings, M. J., 30 

Croasdale, D. R., Brune, W. H., Worshop, D. R., and Davidovits, P. (2013). Relationship between oxidation 31 

level and optical properties of secondary organic aerosol, Environ. Sci. Technol., 47, 6349–6357, 32 

https//doi.org/10.1021/es401043j. 33 

Lan, Z. J., Huang, X. F., Yu, K.Y., Sun, T.L., Zeng, L.W., Hu, M. (2013). Light absorption of black carbon aerosol 34 

and its enhancement by mixing state in an urban atmosphere in South China. Atmos. Environ., 69, 118-35 

123, doi.org/10.1016/j.atmosenv.2012.12.009. 36 

Laskin, A., Laskin, J., and Nizkorodov, S. A. (2015). Chemistry of Atmospheric Brown Carbon, Chem. Rev., 115, 37 

4335–4382, https//doi.org/10.1021/cr5006167. 38 

https://doi.org/10.1029/96JD03988
doi:10.1016/j.atmosenv.2023.119910.
doi:10.1021/es401043j


29 

 

Lee, H. J., Aiona, P. K., Laskin, A., Laskin, J., and Nizkorodov, S. A. (2014). Effect of Solar Radiation on the 1 

Optical Properties and Molecular Composition of Laboratory Proxies of Atmospheric Brown Carbon, 2 

Envir. Scie. Tech., 48, 10217-10226, https//doi.org/10.1021/es502515r. 3 

Lesins, G., Chylek, P., and Lohmann, U. (2002). A study of internal and external mixing scenarios and its effect 4 

on aerosol optical properties and direct radiative forcing, J. Geophys. Res., 107, 4094, 5 

https//doi.org/10.1029/2001JD000973. 6 

Levy, R., Hsu, C., et al. (2015). MODIS Atmosphere L2 Aerosol Product. NASA MODIS Adaptive Processing 7 

System, Goddard Space Flight Center, USA: doi:10.5067/MODIS/MYD04_L2.061. 8 

Li, F., Lawrence, D. M., and Bond-Lamberty, B. (2017). Impact of fire on global land surface air temperature and 9 

energy budget for the 20th century due to changes within ecosystems. Environ. Res. Lett., 12, 044014, 10 

https//doi.org/:10.1088/1748-9326/aa6685.  11 

Lin, G., Penner, J. E., Flanner, M. G., Sillman, S., Xu, L., and Zhou, C. (2014). Radiative forcing of organic aerosol 12 

in the atmosphere and on snow: Effects of SOA and brown carbon, J. Geophys. Res., 119, 7453–7476, 13 

https//doi.org/10.1002/2013JD021186. 14 

Lin, P., Liu, J., Shilling, J. E., Kathmann, S. M., Laskin, J., and Laskin, A. (2015). Molecular characterization of 15 

brown carbon (BrC) chromophores in secondary organic aerosol generated from photo-oxidation of 16 

toluene, Phys. Chem. Chem. Phys., 17, 23312-23325, https//doi.org/10.1039/C5CP02563J. 17 

Linares, M., and Ni-Meister, W. (2024). Impact of Wildfires on Land Surface Cold Season Climate in the Northern 18 

High-Latitudes: A Study on Changes in Vegetation, Snow Dynamics, Albedo, and Radiative Forcing. 19 

Remote Sens., 16, 1461, https://doi.org/10.3390/rs16081461. 20 

Liu, P. F., Abdelmalki, N., Hung, H.-M., Wang, Y., Brune, W. H., and Martin, S. T. (2015). Ultraviolet and visible 21 

complex refractive indices of secondary organic material produced by photooxidation of the aromatic 22 

compounds toluene and m-xylene, Atmospheric Chem. Phys., 15, 1435–1446, https://doi.org/10.5194/acp-23 

15-1435-2015. 24 

Liu, J., Lin, P., Laskin, A., Laskin, J., Kathmann, S. M., Wise, M., Caylor, R., Imholt, F., Selimovic, V., and 25 

Shilling, J. E. (2016). Optical properties and aging of light-absorbing secondary organic aerosol, Atmos. 26 

Chem. Phys., 16, 12815–12827, https//doi.org/10.5194/acp-16-12815-2016. 27 

Liu, D., Whitehead, J., Alfarra, M., reyes-Villegas, E., Spracklen, D. V., Reddington, C. L., Kong, S., Williams, P. 28 

I., Ting Y.-C., Haslett, S., Taylor, J. W., Flynn, M. J., Morgan, W. T., McFiggans, G., Coe, H, and Allan, 29 

J. D. (2017). Black-carbon absorption enhancement in the atmosphere determined by particle 30 

mixing state, Nature Geosci., 10, 184–188, https//doi.org/10.1038/ngeo2901. 31 

Liu, Y., Zhang, K., Qian, Y., Wang, Y., Zou, Y., Song, Y., Wan, H., Liu, X., and Yang, X.-Q. (2018). Investigation 32 

of short-term effective radiative forcing of fire aerosols over North America using nudged hindcast 33 

ensembles, Atmos. Chem. Phys., 18, 31-47, https//doi.org/10.5194/acp-18-31-2018 34 

Lukács, H., Gelencsér, A., Hammer, S., Puxbaum, H., Pio, C., Legrand, M., Kasper-Giebl, A., Handler, M., 35 

Limbeck, A., and Simpson, A. (2007). Seasonal trends and possible sources of brown carbon based on 2-36 

year aerosol measurements at six sites in Europe, J. Geophys. Res., 112, D23S18, 37 

https//doi.org/10.1029/2006JD008151, 2007. 38 

Mailler, S., Menut, L., di Sarra, A. G., Becagli, S., Di Iorio, T., Bessagnet, B., Briant, R., Formenti, P., Doussin, 39 

J.-F., Gómez-Amo, J. L., Mallet, M., Rea, G., Siour, G., Sferlazzo, D. M., Traversi, R., Udisti, R., and 40 

http://dx.doi.org/10.5067/MODIS/MYD04_L2.061
https://doi.org/10.1002/2013JD021186
https://doi.org/10.1039/C5CP02563J
https://doi.org/10.3390/rs16081461
https://doi.org/10.5194/acp-15-1435-2015.
https://doi.org/10.5194/acp-15-1435-2015.
doi:10.1038/ngeo2901
doi:10.1029/2006JD008151


30 

 

Turquety, S. (2016). On the radiative impact of aerosols on photolysis rates: comparison of simulations 1 

and observations in the Lampedusa island during the ChArMEx/ADRIMED campaign, Atmos. Chem. 2 

Phys., 16, 1219–1244, https//doi.org/10.5194/acp-16-1219-2016. 3 

Mailler, S., Menut, L., Khvorostyanov, D., Valari, M., Couvidat, F., Siour, G., Turquety, S., Briant, R., Tuccella, 4 

P., Bessagnet, B., Colette, A., Létinois, L., Markakis, K., and Meleux, F. (2017). CHIMERE-2017: from 5 

urban to hemispheric chemistry-transport modeling, Geosci. Model Dev., 10, 2397–2423, 6 

https//doi.org/10.5194/gmd-10-2397-2017. 7 

Menut, L., Schmechtig, C., and Marticorena, B. (2005). Sensitivity of the sandblasting fluxes calculations to the 8 

soil size distribution accuracy, J. Atmos. Ocean. Technol., 22, 1875–1884, 9 

https//doi.org/10.1175/JTECH1825.1. 10 

Menut, L., Flamant, C., Turquety, S., Deroubaix, A., Chazette, P., and Meynadier, R. (2018). Impact of biomass 11 

burning on pollutant surface concentrations in megacities of the Gulf of Guinea, Atmos. Chem. Phys., 18, 12 

2687–2707, https//doi.org/10.5194/acp18-2687-2018. 13 

Menut L., Bessagnet, B., Mailler, S., Pennel, R., Siour, G. (2020). Impact of lightning NOx emissions on 14 

atmospheric composition and meteorology in Africa and Europe, Atmospheres, 11, 1128; 15 

https//doi.org/10.3390/atmos11101128. 16 

Menut, L., Bessagnet, B., Briant, R., Cholakian, A., Couvidat, F., Mailler, S., Pennel, R., Siour, G., Tuccella, P., 17 

Turquety, S., and Valari, M. (2021). The CHIMERE v2020r1 online chemistry-transport model, Geosci. 18 

Model Dev., 14, 6781–6811, doi:10.5194/gmd-14-6781-2021.  19 

Menut, L., Cholakian, A., Siour, G., Lapere, R., Pennel, R., Mailler, S., and Bessagnet, B. (2023). Impact of Landes 20 

forest fires on air quality in France during the 2022 summer, Atmos. Chem. Phys., 23, 7281–7296, 21 

https//doi.org/10.5194/acp-23-7281-2023. 22 

Meredith, M., et al. (2019). Polar Regions. In: IPCC Special Report on the Ocean and Cryosphere in a Changing 23 

Climate [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. 24 

Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weye. 25 

Methymaki, G., Bossioli, E., Boucouvala, D., Nenes, A., and Tombrou, M. (2023). Brown carbon absorption in the 26 

Mediterranean basin from local and long-range transported biomass burning air masses. Atmos. Environ., 27 

306, 119822, https//doi.org/10.1016/j.atmosenv.2023.119822. 28 

Mie, G. (1908). Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen, Ann. Phys., 330, 377–445, 29 

https://doi.org/10.1002/andp.19083300302. 30 

Mischenko, M., Travis, L. D., and Lacis, A. A. (2002). Scattering, absorption and emission of light by small 31 

particles, Cambridge, UK: Cambridge University Press. 32 

Nenes, A., Pilinis, C., and Pandis, S. (1998). ISORROPIA: A new thermodynamic model for inorganic 33 

multicomponent atmospheric aerosols, Aquatic Geochem., 4, 123–152, https//doi.org/10.1023/A:1009604003981. 34 

Moise, T., Flores, J. M., and Rudich, Y. (2025). Optical Properties of Secondary Organic Aerosols and Their 35 

Changes by Chemical Processes, Chem. Rev., 115, 4400–4439, https://doi.org/10.1021/cr5005259. 36 

Park, R. J., Jacob, D. J., Chin, M., and Martin, R. V. (2003). Sources of carbonaceous aerosols over the United 37 

States and implications for natural visibility, J. Geophys. Res., 108, 4355, 38 

https://doi.org/10.1029/2002JD003190. 39 

https://doi.org/10.1021/cr5005259
https://doi.org/10.1029/2002JD003190


31 

 

Palacios-Peña, L., Jiménez-Guerrero, P., Baró, R., Balzarini, A., Bianconi, R., Curci, G., Landi, T. C., Pirovano, 1 

G., Prank, M., Riccio, A., Tuccella, P., and Galmarini, S. (2019). Aerosol optical properties over Europe: 2 

an evaluation of the AQMEII Phase 3 simulations against satellite observations, Atmos. Chem. Phys., 19, 3 

2965–2990, https://doi.org/10.5194/acp-19-2965-2019. 4 

Potter, S., Copperdock, S., Veraverbeke, S., Walker, X., Mack, M.C., Goetz, S. J., Baltzer, J., Bourgeau-Chevez, 5 

L., Burrel, A., Dieleman, C., French, N., Hantson, S., Hoy, E. E., Jenkins, L., Johnstone, J. F., Kane, E. S., 6 

Natali, S. M., Randerson, J. T., Turetsky, M. R., Whitman, E. Wiggins, E., and Rogers, B. M. (2023). 7 

Burned area and carbon emissions across northwestern boreal North America from 2001–2019. 8 

Biogeosciences, 20(13), 2785-2804, https://doi.org/:10.5194/bg-20-2785-2023. 9 

Price, C., and Rind, D. (1993). What determines the cloud-to-ground lightning fraction in thunderstorms?, Geophys. 10 

Res. Lett., 20, 463– 466, https://doi.org/10.1029/93GL00226. 11 

Park, R. J., Kim, M. J., Jeong, J. I, Youn, D., and Kim, S. (2010). A contribution of brown carbon aerosol to the 12 

aerosol light absorption and its radiative forcing in East Asia. Atmos. Environ., 44, 1414–1421, 13 

https://doi.org/10.1016/j.atmosenv.2010.01.042. 14 

Ramnarine, E., Kodros, J. K., Hodshire, A. L., Lonsdale, C. R., Alvarado, M. J., and Pierce, J. R. (2019). Effects 15 

of near-source coagulation of biomass burning aerosols on global predictions of aerosol size distributions 16 

and implications for aerosol radiative effects. Atmos. Chem. Phys., 19, 6561-6577, 17 

https://doi.org/10.5194/acp-19-6561-2019. 18 

Randerson, J. T. et al. (2006). The Impact of Boreal Forest Fire on Climate Warming. Science, 314, 1130-1132, 19 

DOI:10.1126/science.1132075. 20 

Rathod, T. D., Sahu, S. K., Tiwari, M., Bhangare, R.C., and Ajmal, P.Y. (2021). Light absorption enhancement 21 

due to mixing in black carbon and organic carbon generated during biomass burning. Atmos. Pollut. Res., 22 

12, 101236, https://doi.org/10.1016/j.apr.2021.101236. 23 

Riemer, N., Ault, A. P., West, M., Craig, R. L., & Curtis, J. H. (2019). Aerosol mixing state: Measurements, 24 

modeling, and impacts. Reviews of Geophysics, 57, 187–249. https://doi.org/10.1029/2018RG000615. 25 

Romshoo, B., Pöhlker, M., Wiedensohler, A., Pfeifer, S., Saturno, J., Nowak, A., Ciupek, K., Quincey, P., 26 

Vasilatou, K., Ess, M. N., Gini, M., Eleftheriadis, K., Robins, C., Gaie-Levrel, F., and Müller, T. (2022). 27 

Importance of size representation and morphology in modelling optical properties of black carbon: 28 

comparison between laboratory measurements and model simulations, Atmos. Meas. Tech., 15, 6965–6989, 29 

https://doi.org/10.5194/amt-15-6965-2022. 30 

Saleh, R., Robinson, E. S., Tkacik, D. S., Ahern, A. T., Liu, S., Aiken, A. C., Sullivan, R., C., Presto, A. A., Dubey, 31 

M. K., Yokelson, R. J., Donahue, N. M., and Robinson, A. L. (2014). Brownness of organics in aerosols 32 

from biomass burning linked to their black carbon content, Nat. Geosci., 7, 647–650, 33 

https://doi.org/10.1038/ngeo2220. 34 

Saleh, R., Marks, M., Heo, J., Adams, P. J., Donahue, N. M., and Robinson, A. L. (2015). Contribution of brown 35 

carbon and lensing to the direct radiative effect of carbonaceous aerosols from biomass and biofuel burning 36 

emissions, J. Geophys. Res.-Atmos., 120, 10285–10296, https://doi.org/10.1002/2015JD023697. 37 

Schnitzler, E. G., Liu, T., Hems, R. F., and Abbatt, J. P. D. (2020). Emerging investigator series: heterogeneous 38 

OH oxidation of primary brown carbon aerosol: effects of relative humidity and volatility. Environ. Sci.-39 

Proc. Imp., 22, 2162–2171, https://doi.org/10.1039/D0EM00311E.  40 

https://doi.org/10.1029/93GL00226
https://doi.org/10.1016/j.atmosenv.2010.01.042
https://doi.org/10.5194/acp-19-6561-2019
https://doi.org/10.1126/science.1132075
https://doi.org/10.1016/j.apr.2021.101236
https://doi.org/10.1029/2018RG000615.
https://doi.org/10.1002/2015JD023697
https://doi.org/10.1039/D0EM00311E


32 

 

Schwarz, J. P., Gao, R. S., Spackman, J. R., Watts, L. A., Thomson, D. S., Fahey, D. W., Ryerson, T. B., Peischl, 1 

J., Holloway, J. S., Trainer, M., Frost, G. J., Baynard, T., Lack, D. A., de Gouw, J. A., Warneke, C., and 2 

Del Negro, L. A. (2008). Measurement of the mixing state, mass, and optical size of individual black carbon 3 

particles in urban and biomass burning emissions, Geophys. Res. Lett., 35, L13810, 4 

https://doi.org/10.1029/2008GL033968. 5 

Seinfeld, J. N., and Pandis, S. N. (2016). Atmospheric Chemistry and Physics: From Air Pollution to Climate 6 

Change. 3th Edition, New York, US: John Wiley & Sons. 7 

Sinyuk, A., Holben, B. N., Eck, T. F., Giles, D. M., Slutsker, I., Korkin, S., Schafer, J. S., Smirnov, A., Sorokin, 8 

M., and Lyapustin, A. (2020). The AERONET Version 3 aerosol retrieval algorithm, associated 9 

uncertainties and comparisons to Version 2, Atmos. Meas. Tech., 13, 3375–3411, 10 

https://doi.org/10.5194/amt-13-3375-2020. 11 

Sofiev, M., Ermakova, T., and Vankevich, R. (2012). Evaluation of the smoke-injection height from wild-land fires 12 

using remote-sensing data. Atmos. Chem. Phys., 12, 1995–2006, https://doi.org/10.5194/acp-12-1995-13 

2012. 14 

Soulie, A., Granier, C., Darras, S., Zilbermann, N., Doumbia, T., Guevara, M., Jalkanen, J.-P., Keita, S., Liousse, 15 

C., Crippa, M., Guizzardi, D., Hoesly, R., and Smith, S. J. (2024). Global anthropogenic emissions (CAMS-16 

GLOB-ANT) for the Copernicus Atmosphere Monitoring Service simulations of air quality forecasts and 17 

reanalyses, Earth Syst. Sci. Data, 16, 2261–2279, https://doi.org/10.5194/essd-16-2261-2024. 18 

Tanré, D., Kaufman, Y. J., Herman, M., and Mattoo, S. (1997). Remote sensing of aerosol properties over oceans 19 

using the MODIS/EOS spectral radiances. J. Geophys. Res., 102(D14), 16971–16988, 20 

https://doi.org/10.1029/96JD03437. 21 

Thompson, G., Field, P. R., Rasmussen, R. M., and Hall, W. D. (2008). Explicit Forecasts of Winter Precipitation 22 

Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. 23 

Mon. Weather Rev., 136(12), 5095-5115, https://doi.org/10.1175/2008MWR2387.1. 24 

Toon, O. B., and Ackerman, T. P. (1981) Algorithms for the calculation of scattering by stratified spheres. Appl. 25 

Opt., 20, 3657–3660, https://doi.org/10.1364/AO.20.003657. 26 

Torres, O., Decae, R., Veefkind, J. P., and de Leeuw, G. (2002). OMI aerosol retrieval algorithm, in OMI 27 

Algorithm Theoretical Basis Document: Clouds, Aerosols, and Surface UV Irradiance, vol. 3, version 2 28 

(ATBD-OMI-03, pp. 47–71) NASA Goddard Space Flight Cent., Greenbelt, Md. (Available at 29 

https://eospso.nasa.gov/sites/default/files/atbd/ATBD-OMI-03.pdf) 30 

Torres, O., A. Tanskanen, B. Veihelmann, C. Ahn, R. Braak, P. K. Bhartia, P. Veefkind, and P. Levelt (2007). 31 

Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview. J. 32 

Geophys. Res., 112, D24S47, doi:10.1029/2007JD008809. 33 

Torres, O., Ahn, C., and Chen, Z. (2013). Improvements to the OMI near-UV aerosol algorithm using A-train 34 

CALIOP and AIRS observations, Atmos. Meas. Tech., 6, 3257–3270, https://doi.org/10.5194/amt-6-3257-35 

2013. 36 

Tuccella, P., Thomas, J. L., Law, K. S., Raut, J.-C., Marelle, L., Roiger, A., Weinzierl, B., Denier van der Gon, H. 37 

A. C., Schlager, H., and Onishi, T. (2017). Air pollution impacts due to petroleum extraction in the 38 

Norwegian Sea during the ACCESS aircraft campaign, Elem. Sci. Anth., 5, 25, 39 

https://doi.org/10.1525/elementa.124. 40 

https://doi.org/10.1002/2015JD023697
https://doi.org/10.1029/96JD03437
https://eospso.nasa.gov/sites/default/files/atbd/ATBD-OMI-03.pdf
https://doi.org/10.1029/2007JD008809


33 

 

Tuccella, P., Menut, L., Briant, R., Deroubaix, A., Khvorostyanov, D., Mailler, S., Siour, G., and Turquety, S. 1 

(2019). Implementation of Aerosol-Cloud Interaction within WRF-CHIMERE Online Coupled Model: 2 

Evaluation and Investigation of the Indirect Radiative Effect from Anthropogenic Emission Reduction on 3 

the Benelux Union. Atmosphere, 10(1), 20, https://doi.org/10.3390/atmos10010020. 4 

Tuccella, P., Curci, G., Pitari, G., Lee, S., and Jo, D. S. (2020). Direct radiative effect of absorbing aerosols: 5 

sensitivity to mixing state, brown carbon and dust refractive index and shape, J. Geophys. Res., 125, 6 

e2019JD030967, https://doi.org/10.1029/2019JD030967. 7 

Tuccella, P., Pitari, G., Colaiuda, V., Raparelli, E., and Curci, G. (2021). Present-day radiative effect from 8 

radiation-absorbing aerosols in snow, Atmos. Chem. Phys., 21, 6875–6893, https://doi.org/10.5194/acp-21-9 

6875-2021. 10 

Updyke, K. M., Nguyen, T. B., and Nizkorodov, S. A. (2012). Formation of brown carbon via reactions of ammonia 11 

with secondary organic aerosols from biogenic and anthropogenic precursors, Atmos. Env, 63, 22–31, 12 

https://doi.org/10.1016/j.atmosenv.2012.09.012. 13 

van Bellen S., Garneau, M., and Bergeron, Y. (2010). Impact of Climate Change on Forest Fire Severity and 14 

Consequences for Carbon Stocks in Boreal Forest Stands of Quebec, Canada: a Synthesis. Fire Ecol., 6, 15 

16-44, https://doi.org/10.4996/fireecology.0603016. 16 

Veira, A., Kloster, S., Wilkenskjeld, S., and Remy, S. (2015). Fire emission heights in the climate system – Part 1: 17 

Global plume height patterns simulated by ECHAM6-HAM2, Atmos. Chem. Phys., 15, 7155–7171, 18 

https://doi.org/10.5194/acp-15-7155-2015. 19 

Veraverbeke, S. et al. (2017). Lightning as a major driver of recent large fire years in North American boreal forests. 20 

Nature Climate Change, 7 (7), 529–534, doi:10.1038/nclimate3329. 21 

Walker J.X., Rogers, B. M., Baltzer, J. L., Cumming, S. G., Day, N. J., Goetz, S. J., Johnstone, J. F., Schuur, E. A. 22 

G., Turetsky, M. R., and Mack M. C. (2018). Cross-scale controls on carbon emissions from boreal forest 23 

megafires, Glob. Change. Biol., 24(9), 4251-4265, https://doi.org/10.1111/gcb.14287. 24 

Wang, X., Heald, C. L., Ridley, D. A., Schwarz, J. P., Spackman, J. R., Perring, A. E., Coe, H., Liu, D., and Clarke, 25 

A. D. (2014). Exploiting simultaneous observational constraints on mass and absorption to estimate the 26 

global direct radiative forcing of black carbon and brown carbon, Atmos. Chem. Phys., 14, 10989–11010, 27 

https://doi.org/10.5194/acp-14-10989-2014. 28 

Wang, X., Zhang, L., and Moran, M. D. (2014). Development of a new semi-empirical parameterization for below-29 

cloud scavenging of size-resolved aerosol particles by both rain and snow, Geosci. Model Dev., 7, 799–30 

819, https://doi.org/10.5194/gmd-7-799-2014.  31 

Wang, X., Heald, C. L., Sedlacek, A. J., de Sá, S. S., Martin, S. T., Alexander, M. L., Watson, T. B., Aiken, A. C., 32 

Springston, S. R., and Artaxo, P. (2016). Deriving brown carbon from multiwavelength absorption 33 

measurements: method and application to AERONET and Aethalometer observations, Atmos. Chem. 34 

Phys., 16, 12733–12752, https://doi.org/10.5194/acp-16-12733-2016. 35 

Wang, X., Heald, C. L., Liu, J., Weber, R. J., Campuzano-Jost, P., Jimenez, J. L., Schwarz, J. P., and Perring, A. 36 

E. (2018). Exploring the observational constraints on the simulation of brown carbon, Atmos. Chem. Phys., 37 

18, 635–653, https://doi.org/10.5194/acp-18-635-2018. 38 

https://doi.org/10.1029/2019JD030967
https://doi.org/10.1016/j.atmosenv.2012.09.012
https://doi.org/10.5194/acp-15-7155-2015


34 

 

Wang, Y., Li, W., Huang, J., Liu, L., Pang, Y., He C., He, C., Liu, F., Liu, D., Bi, L., Zhang, X., and Shi, Z. (2021). 1 

Nonlinear enhancement of radiative absorption by black carbon in response to particle mixing structure. 2 

Geophys. Res. Lett., 48, e2021GL096437, https://doi.org/10.1029/2021GL096437. 3 

Wang, J., Wang, J., Cai, R., Liu, C., Nie, W., Wang, J., Moteki, N., Zaveri, R. A., Huang, X., Ma, N., Chen, G., 4 

Wang, Z., Jin, Y., Cai, J., Zhang, Y., Chi, X., Holanda, B. A., Xing, J., Liu, T., Qi, X., Wang, Q., Pöhlker, 5 

C., Su, H., Cheng, Y., Wang, S., Hao, J., Andreae, M. O., and Ding, A. (2023).  Unified theoretical 6 

framework for black carbon mixing state allows greater accuracy of climate effect estimation, Nat. 7 

Commun., 14, 2703, , 2023.https://doi.org/10.1038/s41467-023-38330-x. 8 

Wesely, M. (1989). Parameterization of Surface Resistances to Gaseous Dry Deposition in Regional-Scale 9 

Numerical Models, Atmos. Environ., 23, 1293–1304, https://doi.org/10.1016/0004-6981(89)90153-4. 10 

Wild, O., Zhu, X., Prather, and Fast-J, M. J. (2000). Accurate Simulation of In- and Below-Cloud Photolysis in 11 

Tropospheric Chemical Models. J. Atmos. Chem., 37, 245–282, 12 

https://doi.org/10.1023/A:1006415919030. 13 

Zeng, L., Tan, T., Zhao, G., Du, Z., Hu, S., Shang, D., and Hu, M. (2024). Overestimation of black carbon light 14 

absorption due to mixing state heterogeneity. npj Clim. Atmos. Sci., 7, 2, https://doi.org/10.1038/s41612-15 

023-00535-8. 16 

Zhang, L., Gong, S., Padro, J., and Barrie, L. (2001). A size-segregated particle dry deposition scheme for an 17 

atmospheric aerosol module. Atmos. Environ., 35(3), 549–560,  https://doi.org/10.1016/S1352-18 

2310(00)00326-5. 19 

Zhang, Y., Forrister, H., Liu, J., Dibb, J., Anderson, B., Schwarz, J. P., Perring, A. E., Jimenez, J. L., Campuzano-20 

Jost, P., Wang, Y., Nenes, A., and Weber R.W. (2017). Top-of-atmosphere radiative forcing affected by 21 

brown carbon in the upper troposphere. Nat. Geosci., 10, 486–489, https://doi.org/10.1038/ngeo2960, 22 

2017. 23 

Zhang, A., Wang, Y., Zhang, Y., Weber, R. J., Song, Y., Ke, Z., and Zou, Y. (2020). Modeling the global radiative 24 

effect of brown carbon: a potentially larger heating source in the tropical free troposphere than black 25 

carbon. Atmos. Chem. Phys., 20, 1901–1920, https://doi.org/10.5194/acp-20-1901-2020. 26 

Zhao, R., Lee, A. K. Y., Huang, L., Li, X., Yang, F., and Abbatt, J. P. D. (2015). Photochemical processing of 27 

aqueous atmospheric brown carbon, Atmos. Chem. Phys., 15, 6087–6100, https://doi.org/10.5194/acp-15-28 

6087-2015. 29 

Zhao, G., Tan, T., Zhu, Y., Hu, M., and Zhao, C. (2021). Method to quantify black carbon aerosol light absorption 30 

enhancement with a mixing state index. Atmos. Chem. Phys., 21, 18055–18063, 31 

https://doi.org/10.5194/acp-21-18055-2021. 32 

Zhong, M., and Jang, M. (2014). Dynamic light absorption of biomass-burning organic carbon photochemically 33 

aged under natural sunlight. Atmos. Chem. Phys., 14, 1517–1525, https://doi.org/10.5194/acp-14-1517-34 

2014. 35 

  36 

https://doi.org/10.1029/2021GL096437
https://doi.org/10.1023/A:1006415919030
https://doi.org/10.1038/s41612-023-00535-8
https://doi.org/10.1038/s41612-023-00535-8
https://doi.org/10.1023/A:1006415919030
https://doi.org/10.1023/A:1006415919030
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1038%2Fngeo2960?_sg%5B0%5D=oFbM6W5GsM1SZnadULnsIfSOf2fyUrHfOXkZZ9ko_2DXEIqWVFX6yjL5e-xUcl8NFQzcAkTUVqASh_gdFE3O44FxLA.Bnhvsa1pqG87UuKx4ptdY9takgAP-9FUSNA6FzaZH3FdvWnYO4dVBIRqENskglOH1oJ8tBKd-Nf4BsvYlCSNiA
https://doi.org/10.5194/acp-20-1901-2020


35 

 

Tables 1 

 2 

Table 1.  Summary of the numerical experiments.  3 

Simulation Description 

CTRL Control simulation. Default model. 

BCEabs Only BC absorption enhancement  

BEST BC absorption enhancement and BrC absorption  

H-ABS High absorption scenario: EabsCS=1.9, no BB-BrC ageing  

L-ABS Low absorption scenario: EabsCS=1.2, all BB-BrC is aged  

 4 

 5 
 6 

Table 2. Statistical comparison of the predicted and observed AOD with MODIS at 550 nm, OMI at 7 

354 nm, and AERONET stations at 440 nm.  8 

Database r NMB (%) RMSE NSE TS STDE 

MODIS1 0.77 -14 0.17 0.57 0.79 0.16 

OMI1 0.65 -30 0.64 0.35 0.70 0.60 

AERONET2,3 0.79 -23 0.22 0.58 0.88 0.21 

AERONET-R12 0.78 -35 0.47 0.56 0.81 0.44 

AERONET-R22 0.77 -20 0.27 0.54 0.88 0.26 

AERONET-R32 0.76 -16 0.14 0.54 0.86 0.13 

1The comparison is done with monthly average 9 

2The comparison is done with daily data 10 

3This comparison is done with all AERONET data 11 

 12 

 13 

 14 

 15 
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Table 3. Statistical comparison of the predicted monthly AAOD at 354 nm in CTRL, BCEabs, and BEST 1 

simulations with that and observed by OMI.  2 

Simulation r NMB (%) RMSE NSE TS STDE 

CTRL 0.53 -78 0.059 -0.32 0.34 0.044 

BCEabs 0.54 -75 0.058 -0.25 0.41 0.044 

BEST 0.50 -55 0.055 -0.14 0.73 0.049 

 3 

 4 

Table 4. Total aerosol and BB average AAOD at 550 nm for June 2023, calculated CTRL and BEST 5 

simulations.  6 

 CTRL BEST UNCERTAINTY1 

AAOD 0.0068 0.0089  0.0080/0.0110 (-10/+24%) 

BB-AAOD 0.0047 0.0066 0.0057/0.0086 (-14/+30%) 

1The uncertainty has been assessed relative to BEST simulation, using L-ABS and H-ABS sensitivity tests. 7 

 8 

Table 5. June 2023 average clear-sky and all-sky TOA DRE (W/m2) of BB calculated from CTRL and 9 

BEST simulations. 10 

 CTRL BEST UNCERTAINTY1 

Clear-sky -3.1 -2.8 -3.0/-2.6 (±7%) 

All-sky -2.1 -1.9 -2.0/-1.8 (±5%) 

 11 

1The uncertainty has been assessed relative to BEST simulation, using L-ABS and H-ABS sensitivity tests. 12 

  13 
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Figures 1 

 2 

Figure 1: The domain used to run WRF-CHIMERE. The grid had horizontal resolution of 78 km with 3 

189x109 grid points. 4 

  5 
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 1 

 2 

Figure 2: Biomass burning emission flux of black carbon during the month of June 2023 obtained from 3 

the CAMS database.  4 
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 1 

Figure 3: AERONET stations used to evaluate the model simulations. The colour scale represents the 2 

fraction of data coverage in June 2023 for the aerosol optical depth (AOD) (a) and the absorption aerosol 3 

optical depth (AAOD) (c), and the mean AOD (b) and AAOD (d) at 440 nm measured at AERONET 4 

sites. Average AOD is calculated at the stations with at least 75% of monthly data coverage, while 5 

monthly AAOD is calculated at sites with at least 55% of data coverage. The regions R1, R2, and R3 6 

outlined by blue rectangles indicate the area most affected by Canadian boreal fires (see Section 2.5).  7 
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 1 

 2 

Figure 4: Aerosol optical depth (AOD) monthly average at 550 nm for June 2023, as measured by 3 

MODIS (upper panel) and modelled by CHIMERE (lower panel). 4 
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 1 

Figure 5: As in Figure 4, but for AOD at 354 nm measured by OMI. 2 
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 1 

Figure 6. Comparison of modelled and observed aerosol optical depth (AOD) at 440 nm at AERONET 2 

sites. The left panels show the predicted and measured daily time series of AOD, averaged across all 3 

stations in regions R1, R2, and R3. The right panels present the scatter plots of observed versus predicted 4 

daily AOD in R1, R2, and R3. The lines 1:1, 2:1, and best least-squares linear fit shown for reference.   5 
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 1 

Figure 7: June 2023 monthly average absorption aerosol optical depth (AAOD) at 354 nm, a) as measured 2 

by OMI and modelled by CHIMERE in b) CTRL, c) BCEabs, and d) BEST simulations. 3 
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 1 

Figure 8. Comparison observed and modelled average time series of absorption aerosol optical depth 2 

(AAOD) at 440 (left panels) and 675 nm (right panels), for the CTRL (blue), BCEabs (green), and BEST 3 

(red) simulations at AERONET sites in regions R1, R2, and R3. Please, note that at 675 nm BCEabs, and 4 

BEST give the same results, since BrC is not absorbing at this wavelength.    5 
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 1 

Figure 9. Scatter plots of observed and modelled daily absorption aerosol optical depth (AAOD) at 440 2 

nm, for the CTRL, BCEabs, and BEST simulations at AERONET sites in regions R1, R2, and R3. The 3 

lines 1:1, 2:1, and best least-squares linear fit shown for reference.   4 

 5 
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 1 

Figure 10. Statistical summary of the comparison of observed and modelled daily absorption aerosol 2 

optical depth (AAOD) at 440 nm, for the CTRL, BCEabs, and BEST simulations, at AERONET sites in 3 

regions R1, R2, and R3. 4 
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 1 

Figure 11. Mean total (left panels) and biomass burning (BB, right panels) absorption aerosol optical 2 

depth (AAOD) at 550 for June 2023, calculated by the CTRL (upper panels) and BEST (middle panels) 3 

models, and their difference (lower panels). 4 

 5 

 6 
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 1 

 2 

Figure 12. Mean all-sky DRE of biomass burning aerosols at top of the atmosphere (TOA) for June 2023, 3 

calculated by the CTRL (upper panel) and BEST (middle panel) models, and their difference (lower 4 

panel). 5 

 6 
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 17 

S.1 Statistical indices  18 

The first index used is the Pearson correlation coefficient: 19 

𝑟 =
∑ (𝑀𝑖−𝑀̅)(𝑂𝑖−𝑂̅)𝑛

𝑖=1

√∑ (𝑀𝑖−𝑀̅)2(𝑂𝑖−𝑂̅)2𝑛
𝑖=1

  (6) 20 

where Mi and Oi are the i-th modelled and observed value, respectively. 𝑀̅ and 𝑂̅ represent 21 

the mean of simulated and measured value, respectively. n is the total number of observations. In our 22 
evaluation, we also considered the Normalized Mean Bias: 23 

𝑁𝑀𝐵 = ∑
𝑀𝑖−𝑂𝑖

𝑂𝑖

𝑛
𝑖=1       (7) 24 

In addition, we also employed the Root Mean Square Error: 25 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑀𝑖 − 𝑂𝑖)2𝑛

𝑖=1       (8) 26 

Nash-Sutcliffe Efficiency (NSE) is another metrics that we adopted to evaluate how well 27 
WRF-CHIMERE predicts the observations: 28 

𝑁𝑆𝐸 = 1 −
∑ (𝑀𝑖−𝑂𝑖)2𝑛

𝑖=1

∑ (𝑂𝑖−𝑂̅)2𝑛
𝑖=1

        (9) 29 



NSE=1 indicates perfect correspondence between model and observations; NSE=0 indicates 30 

that model predictions are as accurate as the mean of the observed data; NSE<0 represents model 31 
predictions that are worse than using the mean of the observed data.  32 

We also calculated the Taylor score (TS): 33 

𝑇𝑆 =
4(1+𝑟)

(
𝜎𝑜
𝜎𝑀

+
𝜎𝑀
𝜎𝑜

)
2

(1+𝑅𝑜)
               (10) 34 

where 𝜎𝑀 and 𝜎𝑜 are the standard deviation of modelled and observed value, respectively. R0 35 
is the maximum obtainable correlation that we fixed at 1. The lower limit of TS is zero, larger values 36 
indicate higher model accuracy. The last metrics employed was the Standard Deviation Error (STDE): 37 

𝑆𝑇𝐷𝐸 = √
1

𝑛
∑ (𝑀𝑖 − 𝑂𝑖)2 − 𝑀𝐵2𝑛

𝑖=1   (11) 38 

where MB is the mean bias defined as  39 

𝑀𝐵 =
1

𝑛
∑ (𝑀𝑖 − 𝑂𝑖)

𝑛

𝑖=1
 40 

 41 

 42 

S.2 DRE calculation 43 

DRE has been calculated for a beam of solar light impinging an aerosol layer, with the 44 

following relationship: 45 

𝐷𝑅𝐸 =  𝐹0(1 − 𝐹𝑐)𝑇𝑎
2 [(𝑟 +

𝑡2𝑅𝑠

1 − 𝑟𝑅𝑠
) − 𝑅𝑠] 46 

where F0 is the incident solar flux, Fc is the cloud fraction, Ta the atmospheric transmittance, 47 

r is the fraction of radiation reflected upward by aerosol layer, t is the fraction of radiation incident 48 

on the layer that is transmitted downward, and Rs is the surface albedo.  49 

F0 has been evaluated in each grid point for the analysed period, Ta was set 0.75, Fc and Rs 50 

were taken from WRF simulations. r and t were calculated as follows:  51 

𝑟 = (1 − 𝑒−𝜏)𝜔𝛽 52 

𝑡 = 𝑒−𝜏 + 𝜔(1 − 𝛽)(1 − 𝑒−𝜏) 53 

where τ is the AOD, ω the SSA, and β the upscatter fraction (the fraction of light that is 54 
scattered by a particle into the upward hemisphere). These parameters are optical averages, obtained 55 
averaging τ, ω, and β over a typical solar spectrum.  56 
  57 



 58 

Figure S1: Comparison of modelled and observed AOD at 675 nm at AERONET sites. The left panels 59 
show the predicted and measured daily time series of AOD, averaged across all stations in regions R1, 60 
R2, and R3. The right panels present the scatter plots of observed versus predicted daily AOD in R1, 61 
R2, and R3. The lines 1:1, 2:1, and best least-squares linear fit shown for reference.   62 

 63 

 64 

Figure S2: Comparison of AOD at 550 nm retrieved by MODIS with that measured at AERONET sites. 65 
a) June 2023 monthly average of AOD at AERONET sun photometers, b) June 2023 monthly average 66 
of AOD measured by MODIS at AERONET stations, c) scatter plot of MODIS AOD versus AERONET 67 
measurements. AERONET AOD at 550 nm have been obtained using the Angstrom exponent calculated 68 
between the AOD at 440 and 675 nm.  69 

70 



 71 

Figure S3: As in Figure S2, but for AOD at 354 nm measured by OMI. 72 

 73 

  74 



 75 

Figure S4. Scatter plots of observed and modelled daily AAOD at 675 nm, for the CTRL, BCEabs, and 76 
BEST simulations at AERONET sites in regions R1, R2, and R3. The lines 1:1, 2:1, and best least-77 
squares linear fit shown for reference.  78 

 79 

Figure S5. Statistical summary of the comparison of observed and modelled daily AAOD at 440 nm, 80 
for the CTRL, BCEabs, and BEST simulations, at AERONET sites in regions R1, R2, and R3. 81 

  82 



 83 

Figure S6: As in Figure S2, but for AAOD at 354 nm measured by OMI. 84 

 85 

 86 

Figure S7: Relative AAOD at 550 nm changes between BEST and CTRL simulations. 87 

 88 

 89 

  90 



Table S1. Statistical comparison of the predicted and observed AOD with AERONET stations at 675 nm.  91 

Database r NMB (%) RMSE NSE TS STDE 

AERONET1,2 0.75 -27 0.15 0.52 0.80 0.14 

AERONET-R11 0.77 -40 0.34 0.45 0.62 0.31 

AERONET-R21 0.76 -32 0.22 0.45 0.81 0.20 

AERONET-R31 0.69 -22 0.12 0.38 0.80 0.38 
1The comparison is done with daily data 92 
2This comparison is done with all AERONET data 93 

 94 

 95 

 96 


