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SUMMARY

Continuous seismological observations provide valuable insights to deepen our understanding of geological processes and
geohazards. We present a systematic analysis of two months of seismological records using an AI-based Self-Supervised
Learning (SSL) approach revealing previously undetected seismic events whose physical causes remain unknown but that
are all associated with the dynamics of the Mayotte submarine volcano. Our approach detects and classifies known and
new event types, including two previously unknown eruptive sequences displaying properties similar to other sequences
observed at underwater and aerial volcanoes. The clustering workflow identifies seismic events that would be difficult to
observe using conventional classification approaches. Our findings contribute to the understanding of submarine eruptive
processes and the rare documentation of such events. We further demonstrate the potential of SSL methods for the analysis
of seismological records, providing a synoptic view and facilitating the discovery of rarely observed events. This approach
has wide applications for the comprehensive exploration of diverse geophysical datasets.

Key words: Volcano seismology, Computational seismology, Machine learning, Neural networks, fuzzy logic, Persis-
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1 INTRODUCTION

Analyzing seismic signals is a central area of research in Earth

Sciences. However, the origin of a substantial proportion of these

signals remains poorly understood. This knowledge gap is partic-

ularly critical for seismological stations deployed to monitor geo-

hazards such as glaciers, landslides and volcanoes. Seismological

instruments deployed in these areas record thousands of events in

a broad spectrum of magnitudes. Cataloging these events, and ex-

ploring their spatial and temporal distribution allows deepening our

understanding of the dynamics and physics of these geological pro-

cesses.

One of the primary objectives of the seismologists is to con-

struct catalogs of seismic events. However, real-time monitoring

and retroactive exploration of seismological time series requires

substantial human resources. Artificial Intelligence provides so-

lutions for exploring and extracting information from continuous

and massive seismological records. Mousavi & Beroza (2023) and

Kubo et al. (2024) reviewed the recent advances in earthquake seis-

mology using various machine learning approaches. They partic-

ularly explored the current solutions for earthquakes catalog cre-

ation, from the detection and picking of events to the earthquake lo-

cation. The common approach for classifying seismic signals con-

sists of training machine/deep learning models with large quanti-

ties of labeled data which is time-consuming and sensitive to ex-

pert knowledge. The amount of labeled samples needed to train

those algorithms is most of the time not enough when studying

other sources than regional and global earthquakes. Although good

performances are achieved in the creation of high-magnitude earth-

quake catalogs (Liu et al. 2020; Mousavi et al. 2020; Yang et al.

2024), the approaches are still not fully operational for construct-

ing low-magnitude micro-seismic event catalogs. Creating micro-

seismic catalogs further faces challenges in achieving consensus on
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nomenclature and a standardized labeling process, especially for

unidentified seismic events. This is particularly true for volcanoes

where seismic signals describing similar source mechanisms can

look different from one volcano to another, and even for the same

volcano over several time periods.

A large underwater eruption started in Mayotte (Comoros

archipelago, Indian Ocean) in 2018, 50 km east from the island

coast (Fig. 1a) (Cesca et al. 2020; Lemoine et al. 2020; Feuillet et

al. 2021). The activity started on 2018 May 10 with a seismic cri-

sis that culminated with a Mw 5.9 earthquake. It was followed by

deflation and eastward displacement of the island and the occur-

rence of very-long period events. Because the eruption was subma-

rine it could not be observed easily and remote observations have

been employed to understand the volcano edification (Rinnert et al.

2019; Saurel et al. 2021, land surface seismometers and ocean bot-

tom seismometers). Numerous earthquakes linked to the volcanic

system have been recorded. These events include Volcano-Tectonic

earthquakes (VT), Long-Period earthquakes (LP) and Very-Long

Period earthquakes (Lavayssière et al. 2022; Retailleau et al. 2022b;

Laurent, 2023, respectively). These events, apart from the early

stages of activity and the first magma propagation towards the sur-

face, have been located deeper than 20 km. The eruption also gen-

erated numerous hydro-acoustic signals (HA) that can be used to

understand the volcanic activity (Saurel et al. 2022, e.g. monitor

the eruption flows,). A wide range of HA signals are generated dur-

ing eruptions but only a few submarine volcanoes have been mon-

itored leading to a partial knowledge of the diversity of those sig-

nals (Chadwick, et al. 2019; Caplan-Auerbach et al. 2017; Wilcock

et al. 2016, e.g.). Since the start of the eruption, several offshore

prospecting campaigns have been conducted to take in-situ mea-

surements and in particular to deploy Ocean Bottom Seismometers

(OBS), leading to a comprehensive catalog for the period of Octo-

ber and November 2019.

Constructing manually this first event catalog was labor-

intensive and subjective, as experts discovered new types of seismic

sources while sequentially analyzing the data. To explore seismo-

logical records, unsupervised machine learning algorithms can be

employed. Retailleau et al. (2022a) proposed a wrapper for earth-

quake monitoring based on a deep-neural-network automatic phase

picker, which is used operationally for the Mayotte monitoring.

Other developments in unsupervised algorithms showed promise in

identifying seismic signals. Mousavi et al. (2019) employed deep

embedded clustering to distinguish teleseismic events from local

earthquakes, while Jenkins et al. (2021) used deep neural networks

coupled with a Gaussian Mixture Model (GMM) to cluster impul-

sive seismic events recorded at the Antarctica Ice Shelf. Following

the same idea, Hu et al. (2024) proposed to explore detected events

on the Dalk glacier, East Antarctica, with deep auto-encoders and

GMM clustering on the resulting embedding. They highlighted

three main event classes linked with the wind activity, the basal

slip of the glacier and the thermal variations. Recently, Kinzel et

al. (2024) proposed a Siamese-based workflow for clustering time

series of pre-detected seismic events containing icequakes, earth-

quakes and spikes. The authors applied a centroı̈d-based clustering

(k-means) directly on the feature space in order to capture meaning-

ful learned information. These approaches rely on a priori detected

events and, in the case of GMM and k-means, necessitate the selec-

tion of a specific number of clusters which might prevent the dis-

covery of new and rare seismic events. Moreover, seismic signals

have to be extracted from the seismological records with detection

algorithms (Allen, 1982; Baillard et al. 2014; Zhu & Beroza, 2019;

Mousavi et al. 2020, respectively, STA/LTA, PSPicker, PhaseNet

and EQTransformer) which introduce selection bias in the catalogs

as they limit the variability in both amplitude and type of the de-

tected events (Yoon et al. 2015). To avoid a priori event detection

and enable the analysis of complete seismic traces, Seydoux et al.

(2020) proposed to transform the continuous seismic signal with

deep scattering-network and perform clustering on the model out-

puts. By analyzing day-long windows of three-components seismic

signals recorded at a single station, they recovered precursory sig-

nals of the Nuugaatsiaq (Greenland, June 2017). Using the same

approach Steinmann et al. (2022) analyzed two day-long three-

components seismological observations along the North Anatolian

Fault (Turkey) leading to the clustering of events within which

earthquakes were identified.

Due to the predominance of background noise and the rela-

tive rarity of the seismic signals of interest in continuous seismic

records, designing an unsupervised classification approach to de-

tect those signals is challenging. In this work, we propose a work-

flow (Fig. 2a) that combines Self-Supervised Learning (SSL) with

dimension reduction and clustering to offer a complete and ex-

haustive exploration of the seismological data acquired during the

MAYOBS6 and MAYOBS7 campaigns. SSL is the process of train-

ing models to produce meaningful representations using unlabeled

data. In other words, SSL starts with finding correlations between

the data in order to auto-label them thus allowing the creation of

generalist models that can be further fine-tuned for many domain

applications. Among the various SSL algorithms available (Grill el

al., 2020; Caron et al. 2020; Zheng et al. 2021, respectively, BYOL,

SwAV or ReSSL), we used the Simple Siamese (SimSiam) network

(Chen & He, 2021), which architecture is displayed in Fig. 2b. The

SimSiam network is a robust deep learning method designed to

maximize the similarity between two representations of the same

image; it possesses the advantage of not requiring a large amount

of data to be trained to recognize efficiently similar events (Chen &

He, 2021). This statistical property makes it more competitive than

other unsupervised clustering algorithms for seismological appli-

cations.

2 DATA

During MAYOBS6, MAYOBS7 and MAYOBS8 campaigns

(Guyavarch, 2019; Pelleau, 2019a; Pelleau, 2019b), in October and

November 2019, short-period OBS were deployed close (1 km) to

the active volcanic lava flows. They are composed of a 3-channels

4.5 Hz geophones and an hydrophone. The OBS were deployed in

two stages: IF07C from 1 October 2019 to 25 October 2019 and

IF07D from 26 October 2019 to 19 November 2019. They were

both deployed in free fall from the ocean water surface making their

exact location unknown and different up to a few hundred meters.

A group of seismological experts scanned manually the seis-

mic signals recorded by the vertical components of the OBS for the

two periods and produced a first seismic catalog (SefraN, Beaudu-

cel et al. 2020; Saurel et al. 2021). The goal was to explore the

dataset and identify unusual events. The catalog is divided in four

categories: VT events, HA events, single detected events (SDE) and

events of unknown origin. The VT are high-frequency seismic sig-

nals with most of the signal energy concentrated in the 1 to 20 Hz

frequency band, and which exhibit a characteristic exponential de-

crease of the amplitude after the maximum of the envelope (Fig.

1b). VT are thought to be linked to the deep volcanic system, such

as magma propagation in the volcanic edifice (Lahr et al. 1994; Du-

putel, Lengliné & Ferrazzini 2019; Wilcock et al. 2016; Taisne et
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Figure 1. (a) Mayotte island and Fani Maoré submarine volcano. The red cross on the world map indicates the location of the Mayotte island. The blue and

yellow triangles are the deployment positions of the seismological OBS stations IF07D and IF07C, respectively. The red patch represents the active lava flow

area observed during the OBS deployment (Revosima, 2020; Berthod et al. 2022). (B) VT earthquake. (C) HA event. (D) SDE.

al. 2011). Their duration is usually short, ranging from 1 to 20 s.

The HA seismic signals exhibit complex waveforms. They usually

start with a very impulsive and high-frequency (> 20 Hz) energy

burst (Fig. 1c), followed by one or several phases with energy in

the 1 to 20 Hz frequency band. Their origin is subject to discus-

sion due to the depth of the volcano and the limited studies on the

subject but these events might be caused by fast cooling lava flows

(Saurel et al. 2022). SDE are short events only detected at a sin-

gle station. Their origin is therefore uncertain however the highly

energetic onset observed on the seismic and acoustic sensors could

be explained by events occurring near the volcano surface (shallow

VT) or by short HA sources at the surface.

The SimSiam based workflow uses images as inputs. To trans-

form the seismological data into images, we extract the seismic sig-

nals over non-overlapping 30 s-duration windows. We have chosen

this duration in order to fully capture most of the VT and HA events

included in the first catalog. Images are constructed by combin-

ing a temporal and a spectral representation of the seismic signals.

The representation in the temporal domain is the seismic signal

recorded on the vertical component of the OBS, filtered between 1

and 30 Hz and detrended from the daily mean. The filtering allows

removing high-frequency noise and increasing the signal-to-noise

ratio for the seismic source of interest. The representation in the

spectral domain is a spectrogram which shows the evolution of the

seismic signal frequency content with time and is computed from

the non-filtered seismic traces to include frequencies greater than

30 Hz (Fig. 3a). The spectrograms are constructed using short time

Fourier transforms, with windows of 0.12 s length, an overlap of

90 %, a sampling of 2048 points for the frequency vector and no

smoothing. The dataset consists of a total of 138,712 images for

a period of 50 days. Labeled events in the catalog represent a few

part of these images. 2008 images correspond to labeled VT events,

453 images to HA events and 1173 images to SDE.

3 METHODS

3.1 Self-Supervised Learning approach

We propose a SSL clustering workflow (Fig. 2a) based on the Sim-

Siam network (Chen & He, 2021) based on contrastive learning of

two transformed views of the same input image (Fig. 2b). It aims

to maximize their similarity, using their common intrinsic informa-

tion.

The network is composed of several encoders f and a predic-

tion layer h (Fig. 2b). Encoders are deep neural networks, com-

posed of a succession of layers whose purpose is to extract rele-

vant features from the input image thanks to filters organized in

convolution layers. The prediction layer serves to adapt the out-

put of the first encoder to better match the output of the second

encoder, thereby maximizing the similarity between the two aug-
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Figure 2. (a) Flowchart of the clustering workflow from the input images to the final clusters. The workflow uses three algorithms: SimSiam which is the SSL

network; t-SNE (t-distributed stochastic neighbors embedding) as a dimension reduction tool and DBSCAN (density based spatial clustering of application

with noise) for clustering application. (b) Architecture of the SimSiam network (after Chen & He (2021), figure 1). x1 and x2 represent the two augmented

views of the original high dimension image. f is an encoder network, composed of an encoder and a projection multi layer perceptron. x1 and x2 are processed

by the same encoder network f . The prediction MLP h is then applied on one side. On the other side, a stop-gradient operation is applied. Finally the model

maximizes the similarity between both sides.

mented views. The prediction layer plays a crucial role in ensur-

ing that the representations learned are useful and informative.

The encoders correspond to the ResNet-18 backbone (i.e. feature-

extracting network) (He et al. 2016), a 18 layers deep convolu-

tional neural network, and are initialized with random weights. The

weights affect the filters’ outputs and are updated at each epoch to

optimize the network’s performances at maximizing the similarity

of the two augmented views.

The SimSiam network works with two parallel encoders. The

first one is the input to the prediction layer; the second one ap-

plies a stop-gradient operation, consisting in blocking the back-

propagation of the gradient (Fig. 2b). This approach avoids col-

lapsing the model into a constant value with each image being de-

scribed with the exact same feature values. The input images are

first resized into square images of 256 x 256 pixels. Then, data aug-

mentation is performed on each input image to create pairs of trans-

formed images. The data augmentation consists of random rota-

tion, horizontal and vertical flip and random changes of brightness,

contrast, saturation and hue. The model does not aim to include

any physics in these transformations; e.g. a flipped spectrogram re-

mains understandable for seismologists even if it losses its physical

sense. The idea behind data augmentation is to train a model be-

ing robust to variations and transformations in the inputs. In this

way, the model focuses on meaningful information, which are col-

ors and invariant shapes on the images, useful for events discrimi-

nation. Then, we use a batch size of 64 pairs of augmented views to

train the model. The negative cosine similarity (Chen & He, 2021),

is used for measuring the dissimilarity between two vectors in a

vector space. It is defined with the equation:

D(p1, z2) = −
p1

||p1||2
·

z2

||z2||2
, (1)

where || · ||2 represents the l2-norm. p1 is defined as the

output vector of the transformation of x1 through f and h as

x1 = h(f(x1)) while z2 is defined as the output vector of the

application of f on x2 as z2 = f(x2). Then, the symmetric loss is

computed for each image as:

L =
1

2
D(p1, stopgrad(z2)) +

1

2
D(p2, stopgrad(z1)), (2)

where stopgrad(·) represents the stop-gradient operation ap-

plied on one side of the network (Fig. 2b). Finally, the total loss is

defined as the average of all the image loss, leading to a minimum

possible value of -1.

Once trained, we use the encoder part of the network with the
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Figure 3. (a) t-SNE representation with few associated input images. This synoptic view of the dataset may be interesting for seismologists as it allows in a

short time to visually inspect the dataset, in an organized matter. For the high-quality version, see Fig. S1 (available online). (b) t-SNE representation with

the associated DBSCAN clusters. Black dots represent isolated points. Clusters of interest are marked with their associated number. (c) t-SNE representation

with the associated labels of the events present in the REVOSIMA catalog for the two OBS. The histogram represents the proportion of labeled events in each

clusters.
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learned weights to encode all the original input images. The num-

ber of features is set to 512. This results in a group of 512 value

vectors of features which is called a 512 dimensions embedding.

3.2 Dimension reduction and clustering

For the visual evaluation of the clustering, we use a dimension re-

duction techniques to transform the 512 dimensions embeddings

into a two dimensions embeddings. We explored three algorithms:

t-SNE (Van der Maaten & Hinton, 2008), Principal Component

Analysis (PCA) and Uniform Manifold Approximation and Pro-

jection (McInnes, Healy & Melville 2018, UMAP). t-SNE aims to

preserve the neighborhood of samples while reducing the dimen-

sion of the embedding. This allows neighbor samples in the 512

dimensions space to be described in two dimensions with close co-

ordinates, preserving their neighborhood. PCA creates new features

that are linear combinations of the original ones and that are un-

correlated with each others. In this way, PCA extracts information

from the original embedding to represent the data in a lower di-

mension space and highlight trends specific to different groups of

samples. UMAP is a non-linear dimension reduction method based

on algebraic topology (McInnes, Healy & Melville 2018). In oppo-

sition to PCA, UMAP does not suggest linear relationships between

features, which makes it possible to capture complex structures in

high dimensions embeddings. It also aims to preserve the topol-

ogy of the high dimension embedding, which results in a preserva-

tion of local and global structures. Compared to t-SNE, UMAP per-

forms better in the global structure preservation, giving more sense

to sample distances in the two dimensions embeddings (McInnes,

Healy & Melville 2018). However, with t-SNE, local structures

are well preserved which makes easier the identification of clus-

ters (Van der Maaten & Hinton, 2008).

While t-SNE, PCA and UMAP share a common parameter

(number of components) driving the output size, they work differ-

ently and are controlled with distinct parameters. t-SNE is mainly

dependent on the perplexity and the early exaggeration that will act

on the preservation of local and global structures and the distance

between clusters. PCA can be tuned with the svd solver parameters

which defines the method used to compute the Singular Value De-

composition. Finally, UMAP uses a number of neighbors to adjust

the focus on local or global structure preservation, a metric used to

calculate the distance between the samples and a number of epochs

used to optimize the embedding dimension reduction.

4 RESULTS

The procedure for model training consists in 15 epochs as it con-

verges quickly to a loss value close to -1 with a collapse level below

0.1. We thus obtain the 512 dimensions embeddings of the encoded

dataset.

4.1 Dimension reduction methods and clustering

The comparison of the dimension reduction techniques (Fig. 4)

shows that t-SNE and UMAP provide a sparser two dimensions

space than PCA, whether using a default or tuned parameterization.

PCA has difficulties in two dimensions to separate samples from

the stations IF07C and IF07D. t-SNE, PCA and UMAP parameter-

ization are tuned in order to favor local structures and small dense

groups of samples as these groups could represent consistent clus-

ters . For t-SNE we use a perplexity of 40 and an early exaggeration

of 1. PCA is tuned using svd solver = arpack and UMAP is opti-

mized with number of neighbors = 10, metric = euclidean, number

of epochs = 100 and init = random. By comparing tuned parameter-

izations, we observe that t-SNE yields more scattered patches than

UMAP for which the samples corresponding to the IF07D OBS re-

main grouped in a single patch (Fig. 4d, 4f). This is promising as

it means that the t-SNE transformation is able to isolate groups of

samples that can be considered afterward as clusters. t-SNE is also

able to create patches consistent with the pre-existing knowledge

by creating patches of almost only VT events. Thanks to its ability

to preserve the neighborhood of the embedded samples, we thus

use t-SNE as dimension reduction technique.

Cluster extraction is the last step of the workflow. Density-

Based Spatial Clustering of Applications with Noise (Ester et al.

1996, DBSCAN) aims at clustering together points in the same

neighborhood as long as they have a certain minimal number of

samples with a distance lower than epsilon around them. If points

are isolated, the algorithm assumes that the points are noise. There-

fore, DBSCAN is a relevant technique to cluster the t-SNE patches

delineations. DBSCAN is mainly sensitive to the epsilon and the

minimum number of samples parameters. The values are respec-

tively set to 0.51 and 10 as this combination allows the best match

with the t-SNE delineations (Fig. 3).

4.2 Clusters analysis

Plots of input images based on their t-SNE transformed embed-

dings highlight similarities between groups of samples as displayed

in Fig. 3(a). The processing yielded 95 clusters and 202 isolated

samples (Fig. 3b). In Fig. 3(b), each point represents a 30 s dura-

tion window of seismic signal. The clusters are visually well de-

fined with clear separations. The analysis identified clusters with

21,086 events for the largest cluster and 10 events for the smallest

cluster. The median size of a cluster is 341 events. We obtained 7

clusters with more than 5000 samples and 36 clusters with less than

100 samples.

The manually labeled seismic events are grouped into a small

number of clusters and are not randomly scattered in the t-SNE 2-

dimensions embedding. This suggests that the clustering process

is consistent (Fig. 3c). VT events are aggregated mainly in five

clusters (clusters 3, 12, 39, 63, 94), while SDE in one (cluster 8).

Some clusters agglomerate both VT events and SDE (clusters 0, 1,

6 and 59) suggesting proximity between these two types of seismic

signals. The SDE are mainly observed on the IF07C records. The

few labeled HA events are distributed in the clusters 51, 55-57, 61

and 65. As shown on Fig. 3(c), all the clusters containing known

events include a large proportion of new events. We also observe

that many clusters present the particularity of being composed by

events only recorded at one of the two OBS station. This might be

attributed to various factors, including their potential variations in

distance from the seismic sources and the local deployment condi-

tions. These conditions may include differences in seafloor proper-

ties beneath the stations or variations in tilt and orientation of the

sensor. Nevertheless, several clusters (3, 4, 7, 9, 11, 12, 39, 41 and

53) group events recorded by the two stations over the whole time

period.

Some clusters are correlated in time as shown by the number

of events per hour for these clusters (Fig. 5). The temporal correla-

tions between clusters seem to be organized around two sequences:

the first sequence occurs on the 15 October 2019 and the second

starts on the 31 October 2019. During the first sequence, clusters 3,

4, 11, 39 and 53 are observed. In the second sequence, cluster 53
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Figure 4. (a) and (d): 2d t-SNE embeddings with, respectively, default and chosen parameters. (b) and (e): 2d PCA (Principal Component Analysis) embeddings

with, respectively, default and chosen parameters. (c) and (f): 2d UMAP (Uniform Manifold Approximation and Projection) embeddings with, respectively,

default and chosen parameters. All the embeddings are colored based on the events present in the REVOSIMA catalog for the two OBS.

is initially observed, followed by clusters 11, 12, 39, and 51 in suc-

cession. Cluster 53 exhibits seismic signals with all the features of

eruptive volcanic tremors which are high energy continuous seis-

mic signals (hereinafter referred to as ”high-energy tremor”) that

can last from a few dozens of minutes up to several months. Clus-

ter 4, 51 and 68 also exhibit complex intertwined or continuous

low-frequency (< 20 Hz) seismic signals (hereinafter referred to as

”tremor-like”), which form tremor-like sequences albeit with less

energy in the highest frequency band than observed in cluster 53.

Clusters 12, 39, and 64 encompass highly energetic events with du-

ration exceeding 10 seconds and waveforms with multiple phases

(hereinafter referred to as ”high-energy long-duration multiphase

events”). Cluster 3 gathers seismic signals identified as highly en-

ergetic VT seismic signals.

In order to gain a deeper understanding of the physical pro-

cesses underlying the clustered sequences depicted in Fig. 5, we

explore days of data surrounding these sequences (Fig. 6). The

groups called VT, HA, VT/HA and OTHER include all the clusters

not considered in the Fig. 3(b) and were labeled following manual

inspection of each cluster and a priori knowledge of the seismic

events. The VT/HA group contains events whose sources have not

been clearly identified because they combine seismic signals with

VT or HA features, or a hybrid of these features.

With this new representation, we are able to provide a phe-

nomenological description of the two eruptive sequences. The first

sequence starts on 2019 October 14 with the increase in the occur-

rence of VT events. Subsequently, around noon on October 15, we

observe the activation of the cluster 4 (tremor-like), followed by

clusters 3 (VT-like), 11 (tremor-like) and 53 (high-energy tremor).

This marks the beginning of a period in which VT, HA, and VT/HA

events occur, with a notable increase in HA events. Finally, the

sequence ends with the activation of clusters 3 and 4, along with

the emergence of cluster 39 (high-energy long-duration multiphase

events) followed by a drastic decrease in VT and HA activity. The

second sequence exhibits a similar overall pattern. It initiates on

October 31, marked by an increase in the occurrence of VT earth-

quakes and VT/HA events. Within this period, two short episodes

of tremors are observed. The first is mainly composed of events

from cluster 68, while the second (starting on 2019 November 2) is

characterized by the activation of clusters 3, 4, 11, 12 (high-energy

long-duration multiphase events), 39, and 53. Approximately 12

hours later, synchronous activity is observed among clusters 11, 12,

39, 51 (tremor-like signals), 64 (high-energy long-duration mul-

tiphase events), and 68 (tremor-like signals). Throughout this se-

quence, the clusters of tremor-like signals and high-energy long-

duration multiphase events dominate the activity. The number of

events per hour in clusters 11, 12, 39, 51 and 64 abruptly decreases

after an episode dominated by events from clusters 4 and 39 on

November 3, which is clearly discernible on the spectrogram (Fig.

6e). Following this episode, the activity transitions to being primar-

ily dominated by VT events. The entire sequence concludes rapidly

after noon on 2019 November 4.

5 DISCUSSION AND CONCLUSION

The proposed work aims at clustering continuous seismic data

through a contrastive learning of images representing the spectro-
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Figure 5. Number of events per hour for some specific clusters. See Fig. S2 (available online) for the entire representation. The right subplots give a repre-

sentation of the clustered signals. VT, HA and VT/HA groups are defined based on our prior knowledge and are composed with the following clusters : VT

(clusters 6, 55 and 60), HA (clusters 1 and 8) and VT/HA (clusters 2, 59 and 63). The OTHER group is composed by all the remaining clusters.

gram associated to 30 s length time series. Our choice of using

images is motivated by the wish to reproduce the same approach

as handmade seismic and micro-seismic catalog. It therefore justi-

fies the choice of SSL approaches coming from the field of com-

puter vision. Using images also provides access to a synoptic and

comprehensive representation (Fig. 3a) of the dataset. Siamese net-

works for time series input have to be further explored as time se-

ries contain more information, which could be useful to achieve

high clustering performance for more complex datasets, such as

dense nodal network datasets. In fact, these datasets typically con-

tain seismic information from several dozen stations. This dramati-

cally increases the number of windows to be analyzed (several mil-

lion) and increases the possibility of simultaneous events. Finally,

some sites such as landslides present a high noise level, regrouping

the faunal activity but also the human activity, resulting in difficul-

ties to observe low-magnitude events that could be masked by the

high-energy noise level. For these datasets, new representations of

the input data need to be explored to take into account the spatial

information.

The objective of the proposed clustering workflow (t-SNE +

DBSCAN) is not to achieve a one-to-one correspondence between

the number of clusters and the number of source mechanisms. In-

stead, it aims to obtain coherent clusters of noise and events, en-

compassing the complete dataset. Consequently, scientists are only

required to identify several dozen clusters, as opposed to labori-
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(a)
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Figure 6. (a) and (d) Seismic traces after processing. (b) and (e) Spectrograms of the associated waveforms. (c) and (f) Number of events per hour for selected

clusters and groups of seismic events. Selection and color of clusters are consistent with Fig.5.
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ously labeling thousands of individual events. It also offers the pos-

sibility of having sub-clusters of a pre-defined group of events.

Our SSL-based exploration of two months of seismological

records allows discovering a wealth of new seismic events poten-

tially associated with the volcanic activity of the Fani Maoré sub-

marine volcano. In particular, we identified two sequences start-

ing with the increasing occurrence of VT events and followed by

complex seismic signals including tremors (Fig. 6). During the first

sequence, we observed an increase in the number of HA events,

potentially indicating shallow volcanic activity, which may result

from lava-water interactions (Fig. 6c). The sequence concluded

abruptly with low-amplitude tremor activity and the emergence of

highly energetic, long-duration events, resembling to the dynamics

seen in surface eruptions (McNutt and Nishimura, 2008), particu-

larly those at effusive volcanoes like Piton de la Fournaise (Peltier

et al. 2021). These eruptions typically involve seismo-volcanic

crises reflecting deep magma migration, followed by tremors and

degassing indicative of possible lava extrusion, and ultimately end

with surface activity. Similar observations align with data from

the 2015 eruption of Axial Seamount underwater volcano (Tepp &

Dziak, 2021). The second sequence, starting on October 31, 2019,

is more complex (Fig. 6f). It started with an increase in VT and HA

events, followed by tremors of varying energy levels close to those

observed in the first sequence. The events marking the end of the

first sequence reappeared. Approximately twelve hours later, clus-

ters of high-energy, long-duration multiphase events and tremors

are observed simultaneously. Interpretation of the 36 hours pe-

riod between 2 November 2019, and 3 November 2019, presented

challenges due to the difficulty in interpreting high-energy, long-

duration multiphase signals. These events displayed characteristics

of VT and HA signals but had longer durations and significantly

higher amplitudes. Furthermore, these events were intertwined with

tremors. Without detailed information on station site conditions, we

cannot rule out the possibility of instrumental noise such as ocean

currents, local vibrations and resonances. However, given the fea-

tures of these seismic signals and their chronological appearance,

we believe that these clusters are associated with ongoing eruptive

activity.

Cui, Li & Huang (2021) studied a four-month period of seis-

mic events in the vicinity of the Kilauea volcano that preceded a

series of eruptions and collapse events. In their characterization of

the seismicity, the authors consider a hybrid class whose frequency

content is a mixture of long-period events and VTs. Since this study

relies on a pre-computed catalog that includes the locations of the

events, the authors hypothesize that the hybrid class is a mixture

of fluid resonance and shear failure. The VT/HA events identified

in the present article do not appear to be the same type of hybrid

signals as those defined by Chouet et al. (2013), McNutt & Ro-

man (2015) and Cui et al. (2021). A detailed study of the frequency

content of the identified VT/HA events, coupled with the location,

would definitely help to better interpret these complex signals and

may have implications for their characterization in other volcano-

seismological studies. Obtaining accurate locations of the events

based on a single OBS is not possible considering the uncertainty

of the OBS locations and their coupling with the seafloor. Including

seismological stations at land will not change the fact that part of

events are only detected in the OBS, which are deployed close to

the volcano area. Investigating higher-energy events that could be

recorded by land stations is therefore reserved for future studies.

The documentation of underwater volcanoes is crucial for un-

derstanding submarine eruptive processes and direct observations

(e.g., Embley et al. 2014; Tepp & Dziak, 2021) are rarely available.

The proposed SSL and clustering workflow highlights sequences

of seismic events that would have been difficult to observe on the

raw seismic signals and on the spectrograms as they were occur-

ring in a long and complex sequence of intertwined seismic sig-

nals. Additionally, our analysis shows that the volcano activity over

this period occurred intermittently in paroxismic sequences with

complex dynamics. Further analysis will enable to understand and

model the processes underlying the different clusters of observed

signals and explore other periods of time to find similar or new

seismic signals. The SSL workflow does not only provide a com-

prehensive and synoptic view of the dataset (Fig. 3a) but also fa-

cilitates the identification of rare seismic events, crucial for under-

standing the natural phenomena. The ability to capture both overall

trends and short-lived anomalies is what makes these AI-based ap-

proaches compelling for seismological data processing and also for

other geophysical time series exploration.

The scope of the SSL approach extends to various applica-

tions including the exploration of numerous historical and recent

datasets, such as for studying other volcanoes, landslides, glaciers,

faults and surface/underground aquifers that generate a wide and

complex variety of seismic signals. The organizational and visual-

ization capabilities of the approach enable a systematic exploration

of continuous seismic data which also simplifies the analysis of

dense instrumental arrays that demand extensive labeling efforts

from experts. The approach might also be used to extract coherent

noise periods for seismic studies based on background noise. The

approach only requires expert inputs for labeling clusters rather

than individual events which saves many human-labeling hours.

Moreover, pertinent results can be obtained with a limited num-

ber of epochs. This allows similar studies to be conducted without

requiring high computing resources. Lastly, as demonstrated in this

study by considering several time periods and seismological sta-

tions, the SSL approach also paves the way for transfer learning for

event class identification in seismology.
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