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Abstract
A recurrent question in climate risk analysis is determining how climate change will affect heavy
precipitation patterns. Dividing the globe into homogeneous sub-regions should improve the
modeling of heavy precipitation by inferring common regional distributional parameters. In
addition, biases due to model errors in global climate models (GCMs) should be considered to
understand the climate response to different forcing effects. Within this context, we propose an
efficient clustering algorithm that, compared to classical regional frequency analysis (RFA)
techniques, is covariate-free and accounts for dependence. It is based on a new non-parametric
dissimilarity that combines both the RFA constraint and the pairwise dependence. We derive
asymptotic properties of our dissimilarity estimator, and we interpret it for generalized extreme
value distributed pairs. As an application, we cluster annual daily precipitation maxima of 16
GCMs from the coupled model intercomparison project. We combine the climatologically
consistent subregions identified for all GCMs. This improves the spatial clusters coherence and
outperforms methods either based on margins or on dependence. Finally, by comparing the
natural forcings partition with the one with all forcings, we assess the impact of anthropogenic
forcing on precipitation extreme patterns.

1. Introduction

Since the early 19th century, fossil fuels-based human activities have become one of the major forces of
ecosystem and climate change, defining a new geological era, called Anthropocene (Crutzen 2006) or
Capitalocene (Malm and Hornborg 2014, Campagne 2017). The global warming caused by these activities
induces important changes in the climate system (IPCC 2021). Working Group I of the IPCC, which assesses
the physical science of climate change, summarizes the latest advances in climate science to understand the
climate system and assess climate change, by combining data from paleoclimate, observations and global
circulation model (GCM) simulations. The latter are based on differential equations linked to the
fundamental laws of physics, thermodynamics and chemistry. GCMs simulate the evolution of various
climate variables on discretized tridimensional meshes with a typical horizontal resolution of 100 [km] or
more. The coupled model intercomparison project (CMIP) (Meehl et al 2000, Alexander and Arblaster 2017)
aims at comparing the performances of several dozen of GCMs developed by different research centers,
e.g. see table 1 in appendix. As numerical experiments and approximations of the true climate system, these
GCMs can produce different climate responses to different given inputs, e.g. emission scenarios. To reduce
model errors and gain robustness in signal detection, GCMs are often analyzed jointly. In particular, CMIP
models have been used to study the climate response to known external forcings (see, e.g. Naveau et al
(2020), Ribes et al (2021), van Oldenborgh et al (2021)). As a yardstick, the so-called ’natural forcings’ runs
have not been influenced by human activities and were only driven by external forcings, e.g. solar variations,
explosive volcanic eruptions like Mont Pinatubo in 1991 (see, e.g. Ammann and Naveau (2010)).
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Due to their large societal and economical impacts, a vast literature has been dedicated to determining if
and how extreme events change with regard to different forcings. In particular, heavy rainfall and heatwaves
have received specific scrutiny, see chapters 10 and 11 in the Working Group I contribution of IPCC (2021)
report. In this paper, we focus on annual maxima of daily precipitation from 1850 to 2100 provided by the
‘all forcings’ and ’natural only forcing’ models listed in table 1 of the appendix. Note that our main
climatological goal is not to directly assess changes in heavy rainfall intensities and frequencies, but rather to
detect how spatial patterns (clusters) of yearly maxima of daily precipitation could be modified by
anthropogenic forcing.

In contrast to temperatures, extreme precipitation are highly variable in space and time, and also may
strongly differ among GCMmodels. This high variability makes the detection of spatial heavy rainfall spatial
changes challenging. In this context, RCP8.5 for CMIP5 (IPCC 2013) and SSP5-8.5 for CMIP6 (IPCC
2021) will be analyzed in this paper. These scenarios provide the most likely setup to identify changes.

To model yearly block maxima, one classical statistical approach is to impose a parametric generalized
extreme value (GEV) distributions (see e.g. Coles et al 2001, Davison et al 2012). For example, each grid
point of each individual CMIP model could be fitted with a spatial structure embedded within the GEV
parameters (see, e.g. Kharin et al 2013). ‘For example, each grid point of each individual CMIP model could
be fitted with a GEV distribution (see, e.g. Kharin et al 2013) and the spatial information contained in the
GEV parameters can be modeled. However, the computational cost can be high (more than 200 years of
precipitation data at thousands of grid points for 16 models), especially if the spatial dependence is included.
Another aspect is the ease of interpretation. Well defined spatial patterns (clusters) in extreme precipitation
are very useful for climatologists who can interpret them according to known physical phenomena (e.g.Pfahl
et al (2017), Tandon et al (2018), Dong et al (2021)). For example, the so-called regional frequency analysis
(RFA) has been frequently used in hydrology, see Dalrymple (1960), Hosking and Wallis (2005), but it has
been rarely implemented within the CMIP repository. The main idea of RFA is to identity homogeneous
regions with identical distributional features, up to normalizing constants. More precisely two positive
absolutely continuous random variables (r.v.) Y1 and Y2 are said to be homogeneous if there exists a positive
constant λ such that

Y2
d
= λY1,

where
d
= denotes equality in distribution. This condition can be reformulated in terms of their cumulative

distribution functions (cdf) Fi(x) = P(Yi ⩽ x) with i ∈ {1,2} as

F2 (λx) = F1 (x) . (1)

Hence, two climate model grid points are said to belong to the same homogeneous region if they satisfy (1).
To visually understand this condition within the CMIP archive, three grid points, say A, B and C, from the
CCSM4 natural run are plotted in panel (a) of figure 1. For illustrative purposes, each times series of annual
daily maxima at each grid point has been rescaled by its empirical climatological mean. In panel (b), ranked
annual precipitation maxima of point A are compared to the ones from point B. Panel (d) provides the same
information but between point A and point C. It appears that points A and B are likely to satisfy (1) and,
consequently, could belong to the same homogeneous region. In contrast, the rescaled distribution at point A
is much more heavy-tailed than at point C. This is not surprising because A and B are nearby and C far away
from them. Still, panels (b) and (d) only rely on the marginal behaviors, and pairwise dependence
information and/or covariates could help finding of homogeneous regions.

Various RFA techniques based on explanatory covariates (e.g. see Asadi et al 2018, Fawad et al 2018, for
recent work) have been developed to identify homogeneous regions which rely on station location features
and/or weather patterns to explain precipitation spatial distributions (see e.g. Burn 1990, Hosking and Wallis
2005, Evin et al 2016). For example, Toreti et al (2016) let scale parameters vary as a function of weather
station locations. However, selecting relevant covariates is constrained by their availability, expert subjectivity
and the scale of the problem. In particular, finding appropriate covariates for heavy rainfall patterns at the
global scale is tedious.

Convective prone areas are likely driven by orography. Storm track regions have specific covariates, while
monsoon-dominated regions have others, ITCZ dynamics play also a role and arctic regions are driven by
different mechanisms. Hence, it is not obvious to choose a set of relevant covariates at the scale of the globe
that can cover all these different cases. In addition, assessing the homogeneity of regions (Hosking and Wallis
2005) relies on specific moments like skewness and kurtosis that are not necessary robust (based on the

2
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Figure 1. Localization (a), QQ-plots (b) and (d) and scatter plots (c) and (e) of annual precipitation maxima at three grid points
A,B and C in the natural run of the CCSM4 model (1850–2005). Panels (b) and (d) show the QQ-plots of precipitation for pairs
(A), (B) (b) and (A), (C) (d) rescaled by their empirical climatological mean. Panels (c) and (e) display the (rescaled) scatter plots
for the same pairs.

spatial independence assumption). Other techniques bypass the use of covariates by only working with the
data at hand, here precipitation (Saf 2009). For example, Le Gall et al (2022) considered a ratio of probability
weighted moments, see Greenwood et al (1979) and applied a clustering algorithm on this ratio. More
precisely, this ratio, denoted ω ∈ [0,1], is mean and scale invariant, i.e. in compliance with (1), and it is a
simple increasing function of ξ when rainfall extremes can be assumed to either follow a GEV or Pareto
distribution with shape parameter ξ, see appendix A. To illustrate the spatial variability of CMIP rainfall tail
index (i.e. of ω), panel (a) of figure 2 displays the ratio ω at each grid point of a natural CCSM4 annual maxima
run. Note that grid points A and B exhibit similar ω estimates, while grid point C differs (lighter tail).

3
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All aforementioned RFA techniques have one major drawback. They rely on the assumption of pairwise
independence or pairwise conditional independence (given the covariates). Note that equation (1) also
constraints the marginal behavior, but does not take into account of any information about the spatial
dependence strength. Still, precipitation series at two nearby grid points are likely to be dependent. To
illustrate this point, we can go back to figure 1. Panels (c) and (e) display the scatter plots (rescaled by their
empirical climatological means) between points A and B, and between points A and C, respectively. As
expected from their local proximity, not only do A and B have same similar marginals, but the annual
maxima of daily precipitation appear to be strongly correlated. This information coupled with constraint (1)
should play an important role in improving RFA methods.

Modeling the dependence structure in clustering algorithms can be handled in different ways depending
on the assumptions one is ready to make. Fully non-parametric or parametric approaches can be developed.
Explanatory covariates can be included or difficult to find. For example, Kim et al (2019) introduced a
parametric approach based on copulas in the context of cluster detection in mobility networks. They
grouped sites subject to intense traffic according to covariates (e.g. geographical), and checked the
dependence strength within each cluster by fitting a multivariate Gumbel copula. Drees and Sabourin (2021)
and Janß en et al (2020) proposed approaches based on exceedances; after projecting observations onto the
unit sphere, they reduced their dimension through K-means clustering (Janß en et al 2020) and principal
component analysis (Drees and Sabourin 2021). Finally, Bernard et al (2013) applied a non-parametric
approach based on the F-madogram to weekly precipitation maxima. The so-called F-madogram (Cooley
et al 2006) is defined by

d=
1

2
E |F1 (Y1)− F2 (Y2)| , (2)

where Yi is the continuous r.v. with cdf Fi. It is a distance which, by construction, is marginal-free because the
r.v. F1 (Y1) and F2 (Y2) are both uniformly distributed on [0,1]. Note that if Y1 and Y2 are equal in
probability, the distance d= 0. Whenever the bivariate vector (Y1,Y2) follows a bivariate GEV distribution
(see e.g. Gumbel 1960, Tawn 1988), this distance can be interpreted as linear transformation of the extremal
coefficient (see e.g. Cooley et al 2006, Naveau et al 2009, and section 2.2). Bernard et al (2013), Bador et al
(2015)and later Saunders et al (2021) computed this distance to build a pairwise dissimilarity matrix that was
used as an input of a clustering algorithm. In these two former studies, a partitioning around medoids (PAM)
algorithm (Kaufman and Rousseeuw 1990) was applied whereas the latter used hierarchical clustering. But,
the RFA requirement defined by (1) was not imposed, and so the marginal differences between Y1 and Y2

were not taken into account. To visualize this issue within the CMIP repository, it is simple to cluster a
natural CCSM4 annual maxima run with the PAM based algorithm on the distance d. In all our CMIP analysis,
PAM was applied separately to the southern and northern hemispheres. Global analysis (available upon
request) were also made, but the climatological interpretation was not as clear as with the hemispheric scale.
Also, different numbers of clusters were investigated and basic criteria like the silhouette coefficient were
computed. No particular number could be clearly identified. But, in terms of interpretation, four clusters
appear as a reasonable compromise between climate understanding, visual simplicity and statistical criteria.
The resulting map displayed in panel (b) of figure 2 shows a few spatially coherent structures, but, overall is
very patchy. In addition, panel (a) related to the marginals behavior appears to be unrelated to panel (b) that
describes the spatial dependence. This was expected from the F-madogram distance, but it would make sense
to cluster grid points that are both correlated but also the same type of marginal, see (1), the essence of the
RFA.

To reach this goal, we propose the following work plan. In section 2, we integrate the homogeneity
condition (1) into a new definition of the F-madogram distance. The properties of this new dissimilarity,
which we call RFA-madogram, is explained by analyzing a special case: the logistic bivariate GEV model in
section 2.2. A non-parametric estimator of the RFA-madogram is proposed and its asymptotic consistency in
law is detailed in appendix B. Concerning the CMIP database, we compute, in section 3, a RFA-madogram
dissimilarity matrix on annual maxima of daily precipitation for each CMIP models listed in table 1, and
then cluster them with the PAM algorithm. Finally, we propose a method to build a ‘central’ partition that
summarizes the partitions obtained for each model and compare the spatial patterns obtained for natural
(1850–2005) and all forcing (2071–2100) experiments. Section 4 concludes the paper by providing a short
discussion.

4
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Figure 2. Two summaries of the structure of the precipitation annual maxima of natural (1850–2005) CCSM4 model. (a) Pointwise
ω ratio (see Le Gall et al 2022 and appendix A for details). High values of ω̂ correspond to heavy tailed distributions. (b) Results
of PAM clustering with the F-madogram distance (Bernard et al 2013), with four clusters for each hemisphere separately. Each
color corresponds to a cluster.

2. Joint modeling of dependence and homogeneity

2.1. RFA-madogram
To introduce homogeneity criteria, see equation (1), into distance defined in equation (2), we propose to
define and study the following expectation

D(c,Y1,Y2) =
1

2
E
∣∣∣∣F2 (cY1)− F1

(
Y2

c

)∣∣∣∣ , (3)

where c> 0 is a normalizing positive constant. The D(c,Y1,Y2) is always non-negative and equal to zero for
c= λ when Y2

a.s
= λY1. The homogeneous regions are not defined a priori, so the existence of λ and its value

are not known. We denote

c∗12 = argmin{D(c,Y1,Y2) : c> 0} .

5
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Note that D(c,Y1,Y2) = D

(
1

c
,Y2,Y1

)
, for all positive c. Therefore, c∗12 =

1

c∗21
. The particular case of equality

in distribution, Y1
d
= Y2, corresponds to the case where c∗12 = c∗21 = 1. An important feature of equation (3) is

that, under the homogeneity condition of equation (1),

D(λ,Y1,Y2) = d(Y1,Y2) ,

where d is the classical F-madogram, see equation (2). To simplify notations, D or D(c) will be a shortcut for
D(c,Y1,Y2).

The key point from a RFA point of view is that, if equation (1) is satisfied, D behaves as the classical
F-madogram distance. Note that D is not a true distance, but a dissimilarity. The triangle inequality is
satisfied under homogeneity condition but may not be valid in general. Still, D captures information about
the extremal dependence like the F-madogram, and, in addition, it encapsulates marginal information
concerning the departure from equation (1). More precisely, one can show (see appendix A for the proof)
that

2 |d−D|⩽ E [∆(c,Y1)]+E [∆(c,Y2/c)] , (4)

where the function∆(c,x) = |F2 (cx)− F1 (x)|measures the difference between the rescaled cdfs.
To deepen our understanding of D, we comment on the special case of a bivariate-GEV distributions.

2.2. RFA-madogram for bivariate GEVs
In this section, we suppose that the bivariate vector (Y1,Y2) follows a max-stable distribution (Coles et al
2001, Fougères 2004, Guillou et al 2014) with dependence function V(., .)

P(Y1 ⩽ x;Y2 ⩽ y) = exp

[
−V

{
−1

logF1 (x)
,

−1

logF2 (y)

}]
,

where Fi corresponds to a GEV marginal cdf. If Fi(x) = exp

{
−
(

x

σi

)−1/ξi}
with ξ1 = ξ2 = ξ, then the

equality Y2
d
=

σ2

σ1
Y1 holds and we are in the homogeneity case. The shape parameter ξ describes the common

upper-tail behavior. The larger ξ is, the heavier the upper-tail of the distribution. Although complex,
equation (E.1) in appendix E, summarizes how D(c) can be expressed in function of V(., .) and the marginal
parameters.

To simplify the dependence strength interpretation, it is common to focus on the extremal coefficient
defined as the scalar θ12 such that

P(Y1 ⩽ u,Y2 ⩽ u) = {P(Y1 ⩽ u)P(Y2 ⩽ u)}
θ12
2 ,

and θ12 = V(1,1). If Y1 and Y2 are independent, then θ12 = 2, while if they are fully dependent, then θ12 = 1.
Appendix F provides the mathematical details to link the extremal coefficient with D(c). The explicit
parametric expression of D(c) allows to find an optimal value for rescaling parameter c∗12. For example, it is

possible to show that c∗12 =
σ2

σ1
= λ. for the logistic GEV model,

V(x,y) =
(
x−

1
α + y−

1
α

)α
, with α > 0. (5)

In particular, the value of the dissimilarity D(c∗12) can be plotted as a function of the logistic coefficient α and
of the ratio ξ1/ξ2. From figure 3, one can see that the full dependence case corresponds to α≈ 0, and the
independence case to α= 1. In addition, the ratio ξ1/ξ2 varies between 1 (homogeneity case) and 10,
i.e. cases with ξ1 = 0.1 and ξ2 = 0.01. The dissimilarity is small when both the dependence is strong and the
marginals are homogeneous (leftmost corner). Large dissimilarities correspond to the opposite cases, a near
independence and/or strong heterogeneity in the shape parameters (rightmost corner). Note also that, as the
homogeneity and the dependence strength decrease jointly, dissimilarity increases (concavity of the surface).
These features correspond to our goal that, given the same dependence strength, the price to pay is high
when the RFA condition (1) does not hold. In other words, our aim to cluster grid points that are jointly
strongly dependent and in compliance with (1) seems, at least conceptually, to have been reached. To do so,
we need to estimate the expected mean defined by (3). Being a simple average, (3) can be quickly inferred
from a non-parametric empirical estimator, see appendix for a precise definition and its asymptotic
properties. The remaining question is to know if this tool works in practice with the CMIP archive.
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Figure 3. Distance (z-axis) D defined in equation (3) in the logistic bivariate GEV model example. The normalizing coefficient is
chosen as the optimal one, c∗. The x and y-axis indicate the dependency coefficient α in the logistic dependence, see equation (5)
and the ratio of tail parameters i.e. the homogeneity of the two r.v. A ratio equal to one corresponds to the homogeneous case. A
ratio equal to 10 can be illustrated by the realistic case of ξ1 = 0.1, ξ2 = 0.01.

3. Analysis of CMIP precipitation for 16 models under two experiments

We now apply the RFA-madogram to the problem of partitioning annual precipitation maxima from 16
CMIP GCMs (see table 1 in appendix) into homogeneous regions. For each hemisphere of a given GCM run,
we estimate the dissimilarity matrix D(c∗) (equation (3)) between each pair of grid points. First, for each
pair, we estimate D(c) for different values of c in [.1,10]. More precisely, increment between values above 1 is
0.01 and values between .1 and 1 are the inverse of those above 1. Second, for each pair, the lowest value D(c)
is kept as the RFA-madogram dissimilarity (and the corresponding c is kept as c∗). To cluster from a
dissimilarity matrix, the PAM clustering algorithm is implemented as it is fast, adapted to max-stable
distributions (Bernard et al 2013), and it does not require the triangle inequality (Schubert and Rousseeuw
2021). The natural (1850–2005) and all forcing (2071–2100) runs are analyzed separately and later compared
to identify possible differences. In a nutshell, we apply the same RFA-madogram based clustering procedure
to each of the 16× 2 GCMs outputs.

To enable comparison between GCM clusters, we impose the same number of clusters, four, for each
hemisphere and for each GCM. Various criteria exist to select the number of clusters (see e.g. Halkidi et al
2002). However, they provide different ‘optimal’ numbers of clusters and we did not compare them. As a
consequence, we selected the number of clusters according to their physical/climatological interpretability.
With 16 different partitions corresponding to each 16 natural (all forcing) hemispheric runs, GCM
in-between-model error becomes an issue in terms of interpretation. We therefore summarize them in one
‘central’ partitions, which we obtain in two steps. First, partitions for each natural hemispheric runs are
relabeled. The relabelization consists in applying every permutation to each partition and keeping the
permutation that minimizes the pairwise difference. As an example with five grid points, the partitions {1 1 1
2 2 3} and {3 3 3 1 1 2} are equal up to the permutation (1,3,2). Then, we compute the probability of each
grid point to belong to each of the clusters, and associate the corresponding grid point to the cluster of
highest probability. For instance, grid point B is assigned to cluster 1 for 6 models out of 16, to cluster 2 for 9
models and to cluster 3 for only one model. In the so-called central partition, B is then assigned to cluster 2
with probability 9/16. Partitions for the all forcing experiment are relabeled in order to minimize the
difference with the natural central partition.

7
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Figure 4. Central partitions of CMIP models (with four clusters for each hemisphere), for (top) natural runs (1850–2005) and
(bottom) all forcing runs (2071–2100). Each color corresponds to a cluster, with the shade indicating the probability of belonging
to that cluster. In the bottom map, brown crosses indicate points where the most likely cluster is different between the natural and
the all forcing experiments.

For example, figure 4 shows the central partitions in four clusters by hemisphere. Intense colors
correspond to points that belong to the same cluster in most, if not all, model partitions. Beginning with the
natural experiment, we first note that the clusters are very coherent spatially, in stark contrast to marginal-
(ω) and dependence-based (F-madogram) partitions (figure 2), even though no geographical covariates were
used in the clustering.

The Northern Hemisphere is dominated by two clusters (pink and yellow), with two others (blue and
turquoise) with limited spatial extent. The distribution is more even in the Southern Hemisphere, and also
more zonally symmetric.

These partitions, driven both by homogeneity and dependence, are generally consistent with
precipitation climatology. In the Northern Hemisphere, the pink cluster extends over the storm track regions
of the North Atlantic and Pacific Oceans, and over the Inter-Tropical Convergence Zone (ITCZ) around
10◦N. The blue cluster covers the dry subtropics above the Sahara, Southwest Asia and southwest of North
America. The orange cluster is located in the dry zone above the cold Pacific tongue, while the yellow cluster
includes most regions with semi-arid and continental climates. Still, it also includes monsoon-dominated
regions (e.g. India) and the dry Arctic.

In the Southern Hemisphere, arid regions in Antarctica and in the dry descent regions at the eastern edge
of the subtropical anticyclones are grouped together in the purple cluster, while the red cluster covers much
of the wet tropics. The turquoise and green clusters correspond to the Southern Hemisphere storm track.

Most of the clusters appear to be quite robust across GCMs. Notable exceptions are the ITCZ regions in
the Northern Hemisphere, and the equatorial Pacific and the eastern Indian Ocean west of Australia in the
Southern Hemisphere. This lack of robustness may be due to the choice of cluster number. In any case, some
differences are expected across GCMs, as they differ in their representation of storm tracks, monsoons or
ITCZ location and dynamics (Scheff and Frierson 2012).

At first order, it appears that homogeneity of the distributions plays the dominant role, with arid or wet
regions grouped together in both hemispheres. Still, the clustering is by design not only based on marginal
distributions but also on dependence strength. To measure the importance of dependence in the spatial
structure, we apply our clustering algorithm to temporally shuffled annual maxima at each grid point. This
removes any spatial dependence between variables while preserving their marginal distributions.

8
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Figure 5. Partition of CCSM4 model in the natural experiment based on the RFA-madogram dissimilarity D(c∗) and PAM
algorithm, for (top) original data, and (bottom) data randomly shuffled in time at each grid point. The clustering algorithm is
applied to each hemisphere independently.

The results of figure 5 for the CCSM4 model show a much less spatially coherent partition for the shuffled
data. The dependence thus plays an important role in the coherence of the partition. This role can be further
quantified by computing the relative difference between RFA-madogram on shuffled and non-shuffled data
(with respect to the medoids, i.e. the center of each class). For about 2/3 of the grid points, the
RFA-madogram takes lower values on the non-shuffled data, in particular near the medoids. It is interesting
to note that not all spatial structures in figure 2 obtained with ω can be found in the bottom panel of figure 5.
These discrepancies may be due to at least two different factors, one being precipitation variability. Another
aspect is that ω and RFA-madogram are not comparable in nature. Only one time series is needed to
compute a given ω, while two times series are required to estimate the RFA-madogram. The first one is a
summary statistic about local tail heaviness at one location. In contrast, the second one is a dissimilarity
between two locations.

We now turn to the comparison of the central partitions between the all forcing and natural experiments.
The overall partition structure is very similar in both experiments (figure 4). The clusters are better defined
in the natural experiment (i.e. cluster probabilities closer to 1) because the sample size is much larger than
for the all forcing experiment (155 versus 30 years). This may also due to different climate model responses to
forcing changes. Globally, differences between the two central partitions are not significant compared to
variability of model partitions compared to the central partition for either the all forcing or the natural
experiment (see figure G1). Hence, we cannot conclude to more spatial pattern variability in the all forcing
world.

9
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The most likely cluster changes for a number of grid points, however, as indicated by crosses on the
bottom panel of figure 4. In the Northern Hemisphere, the pink (humid) and blue (arid) clusters expand
slightly Northwards. More specifically, the probability of a given grid point to belong to the pink cluster
generally increases at high latitudes, while the probability to belong to the blue cluster increases around the
25◦N latitude. In the Southern Hemisphere the turquoise cluster (humid) also expands Southwards.

While the resolution of our analysis is rather low (5◦), these differences are consistent with the expected
polewards shift of major climate zones under climate change, particularly the arid subtropics and the storm
track regions of both hemispheres (Scheff and Frierson 2012).

4. Conclusion

When considering multivariate data, extreme value theory can be difficult to handle. Reducing the
dimensionality of extreme precipitation data set is then a challenging task. Our main goal in this work was to
show that a simple and fast clustering approach based on an interpretable dissimilarity could highlight
climatologically coherent regions.

The proposed approach coupled the main RFA idea, i.e. a normalizing factor, with the dependence
structure via the F-madogram. The introduced dissimilarity has links with extreme value theory via the
extremal coefficient and tail parameters. The RFA-madogram neither requires estimating any marginal
parameters nor dependence parameters. It is fully data-driven and bypasses the need of selecting relevant
covariates or dependence structure.

Our analysis of annual maxima of daily precipitation from each CMIP model provides more spatially
coherent hemispheric regions than some other non-parametric methods focusing on only one aspect (either
homogeneity or dependence). Another contribution of this work is the handling of multi-partitions as our
selected CMIP set has 16 GCM runs. Our combining approach enables us to compare one multi-model
partition of the all forcing world with another multi-model partition of natural (natural forcings) world. It
appears that spatial variability between all models for the all forcing (resp. natural) experiment appears to be
significantly higher than between the two all forcing and natural experiments.

In this work, we focus on the spatial structure of annual maxima precipitation in CMIP models, and on
the forcing impact. We did not directly study the changes in rainfall distributions and frequencies. One
interesting perspective would be to model precipitation intensities and dependence structure within each
cluster. This could be useful for the D&A community. Another aspect is that the statistical approach
developed therein is easy-to-implement and flexible, e.g. it can be used on non-gridded products. For
example, it could be applied to large weather networks, reanalysis (ERA 5) and radar products. Such datasets
have finer spatial resolution scales than GCMs, and the dependence structure could be stronger, and
consequently the analysis of heavy rainfall spatial patterns at fine spatial scales improved.
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Table 1. List of 16 CMIP models considered, with institutions, belonging countries and native horizontal resolution (longitude by
latitude in degree). AOR (UoT): Atmosphere and Ocean Research Institute (The University of Tokyo); CSIRO: Commonwealth
Scientific and Industrial Research Organisation; DOE: Department of Energy; JAMSTEC: Japan Agency for Marine-Earth Science and
Technology; NIES: National Institute for Environmental Studies; NSF: National Science Foundation. Most models come from the CMIP
phase 5, those coming from phase 6 are indicated by ∗. In this paper, models are regridded to a resolution of 5◦× 5◦.

Model Institute Country Resolution

CanESM2 Canadian Centre for Climate Modelling and Analysis Canada 2.8◦× 2.8◦

CanESM5∗ 2.8◦× 2.8◦

CCSM4 National Center for Atmospheric Research (NCAR) USA 1.3◦× 0.9◦

CESM1-CAM5 NSF, DOE and NCAR USA 1.3◦× 0.9◦

CNRM-CM5 Centre National de Recherches Météorologiques France 1.4◦× 1.4◦

CNRM-CM6-1∗ 1.4◦× 1.4◦

ACCESS1-3 CSIRO and Bureau of Meteorology Australia 1.9◦× 1.3◦

CSIRO-Mk3-6-0 1.9◦× 1.9◦

IPSL-CM5A-LR Institut Pierre Simon Laplace France 3.8◦× 1.9◦

IPSL-CM5A-MR 2.5◦× 1.3◦

IPSL-CM6A-LR∗ 2.5◦× 1.3◦

MIROC-ESM JAMSTEC, AOR (UoT), NIES Japan 2.8◦× 2.8◦

MIROC-ESM-CHEM 2.8◦× 2.8◦

MRI-CGCM3 Meteorological Research Institute Japan 1.1◦× 1.1◦

MRI-ESM2-0∗ 1.1◦× 1.1◦

NorESM1-M Norwegian Climate Centre Norway 2.5◦× 1.9◦

Appendix A. Reminder aboutω

The scalar ω used in figure 2 was introduced in Le Gall et al (2022). We briefly recall its main properties in
this section. It is defined as the ratio

ω =
E(max(Z1,Z2))−E(max(Z1,Z3))

E|Z1 −Z2|
,

where Z1,Z2 and Z3 are three precipitation values and E(Z) denotes the expectation with respect to Z. It is
possible to show that ω is always between 0 and 1, and it is also invariant to shifting and scaling, i.e. adding a
constant and multiplying by a scalar all Zi’s will no change the value of ω. In this context, ω can be considered
without any particular unit. Still, its values between zero and one can be interpreted as the heaviness of the
upper tail. For example, if Z follows a GEV distribution with parameters (µ,σ,ξ), then we have

w=
3ξ − 1

2ξ − 1
− 1.

As expected, this ratio does neither depend on µ nor σ, but only on ξ, the tail index parameter.

Appendix B. RFA-madogram inference

Given X ⊂ Rn and n ∈ N, let ℓ∞(X ) denote the spaces of bounded real-valued functions on X . For
f: X → R, let ‖f‖∞ = supx∈X |f(x)|. The arrows ‘ a.s.−→’, ‘⇒’, and ‘⇝’ denote almost sure convergence,
convergence in distribution of random vectors (see van der Vaart 1998, chapter 2) and weak convergence of
functions in ℓ∞(X ) (see van der Vaart 1998, chapters 18–19), respectively. Let L2(X ) denote the Hilbert
space of square-integrable functions f: X → R, with X equipped with n-dimensional Lebesgue measure; the

L2-norm is denoted by ‖f‖2 =
{´
X f 2(x)dx

}1/2
.

In this section, given a sample of bivariate observations, say (Y1, . . . ,Yn)
t, we focus on the asymptotic

properties of two RFA-madogram estimators. Two cases can be studied: when the marginal distributions, F1
and F2, are known or when we need to use their empirical estimator, say F̂1 and F̂2. In both cases, the copula

11
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function of the bivariate vector (Y1,Y2)
t, say C(u1,u2), that captures the dependence structure needs to be

inferred. To derive our asymptotic results, we adapt the main ingredients of theorem 2.4 from Marcon et al
(2017) to our settings, see appendix B for details. With the notation

ac (u) = F2 {cF←1 (u)} ,

we can write

D(c) =
1

2
E |ac (U1)− a←c (U2)| ,

where the bivariate vector U= (U1,U2)
t follows the copula C(u). This leads us to the estimators

Dn (c) =
1

n

n∑
i=1

Dc (Ui) , with Ui = (F1 (Y1,i) ,F2 (Y2,i))
t and Dc (Ui) = |ac (U1,i)− a←c (U2,i)| .

If F1 and F2 are unknown and are replaced by their empirical estimators, we have, with

âc(u) = F̂2
{
cF̂←1 (u)

}
,

D̂n (c) =
1

n

n∑
i=1

D̂c

(
Ûi

)
, with Ûi =

{
F̂1 (Y1,i) , F̂2 (Y2,i)

}t
and D̂c

(
Ûi

)
=
∣∣∣âc(Û1,i

)
− â←c

(
Û2,i

)∣∣∣ .
In practice, D̂n(c) is directly computed from the expression

D̂n (c) =
1

n

n∑
i=1

∣∣∣F̂2 (cY1,i)− F̂1 (Y2,i/c)
∣∣∣ . (B.1)

Still, the definition of D̂n(c) with Ûi facilitates the derivation of theoretical results by leveraging existing
properties of the empirical copula

Cn (u) =
1

n

n∑
i=1

I(Ui ⩽ u) and by writing Dn (c) =

ˆ
[0,1]2

Dc (U)dCn (u) .

In particular, the following classical smoothness condition on copula C is needed, see example 5.3 in Segers
(2012) for details.

Condition (S). For every i ∈ {1,2}, the partial derivative of C with respect to ui exists and is continuous on
the set {u ∈ [0,1]2 : 0< ui < 1}.

Theorem B.1. Let (Y1, . . . ,Yn)
t be n independent and identically distributed random vectors whose common

distribution has continuous margins and a copula function C that satisfies condition (S).
Let D be a C-Brownian bridge, that is, a zero-mean Gaussian process on [0,1]2 with continuous sample paths

and with covariance function given by

Cov(D(u) ,D(v)) = C(u∧ v)−C(u) C(v) , u,v ∈ [0,1]2 . (B.2)

Here u∧ v denotes the vector of componentwise minima. We define the Gaussian process D̂ on [0,1]2 by

D̂(u) = D(u)− ∂C

∂u1
D(u1,1)−

∂C

∂u2
D(1,u2) (B.3)

Then we can write that

(a) We have ‖Dn(c)−D(c)‖∞→ 0 almost surely as n→∞. Moreover, as n→∞,

√
n{Dn (c)−D(c)}

⇝ {1+D(c)}2

2

[ˆ 1

0
{D(a←c (x) ,1)−D(a←c (x) ,ac (x))}dx+

ˆ 1

0
{D(1,ac (x))−D(a←c (x) ,ac (x))}dx

]
.

(b) We have ‖D̂n(c)−D(c)‖∞→ 0 almost surely as n→∞, and as n→∞,

√
n
{
D̂n (c)−D(c)

}
⇝
[
−{1+D(c)}2

ˆ 1

0
D̂{a←c (x) ,ac (x)} dx

]
c>0

. (B.4)

12
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Appendix C. Proof of equation (4)

We can write that

2D(c) = E |F2 (cY1)− F1 (Y1)+ F1 (Y1)− F2 (Y2)+ F2 (Y2)− F1 (Y2/c)|
⩽ E |F2 (cY1)− F1 (Y1)|+E |F1 (Y1)− F2 (Y2)|+E |F2 (Y2)− F1 (Y2/c)| ,
⩽ 2d+E [∆(c,Y1)]+E [∆(c,Y2/c)] .

In the same way, we can write that

2d = E |F1 (Y1)− F2 (cY1)+ F2 (cY1)− F1 (Y2/c)+ F1 (Y2/c)− F2 (Y2)| ,
⩽ 2D(c)+E [∆(c,Y1)]+E [∆(c,Y2/c)] .

It follows that the inequality expressed in equation (4) is valid. □

Appendix D. Proof of theorem in B.1

Let a(u) be any continuous non-decreasing function from [0,1] to [0,1] and denote its inverse by a←(u). The
map

ϕ : ℓ∞
(
[0,1]2

)
→ ℓ∞ ([0,1]) : f 7→ ϕ( f) (D.1)

defined by

(ϕ( f))(a) =
1

2

(ˆ 1

0
f(a← (u) ,1)du+

ˆ 1

0
f(1,a(u))du

)
−
ˆ 1

0
f(a← (u) ,a(u))du

is linear and bounded, and therefore continuous. To continue, we need the following lemma.

LemmaD.1. For any cumulative distribution function H on [0,1]2 and for any non-decreasing function a(.) on
[0,1], the function

δ (u) =
1

2
|a(u1)− a← (u2)|

satisfies
ˆ
[0,1]2

δ (u)dH(u) = (ϕ(H))(a) . (D.2)

Proof of lemmaD.1. Note that

δ (u) =max(a(u1) ,a
← (u2))−

1

2
(a(u1)+ a← (u2)) .

For any u ∈ [0,1]2, we have

max(a(u1) ,a
← (u2)) = 1−

ˆ 1

0
I (u1 ⩽ a← (u) ,u2 ⩽ a(u))du

and

1

2
(a(u1)+ a← (u2)) = 1− 1

2

(ˆ 1

0
I (u1 ⩽ a← (u))du+

ˆ 1

0
I (u2 ⩽ a(u))du.

)
Subtracting both expressions and integrating over H implies

ˆ
[0,1]2

δ (u)dH(u) =
1

2

(ˆ
[0,1]2

ˆ 1

0
I (u1 ⩽ a← (u))dudH(u1,u2)

+

ˆ
[0,1]2

ˆ 1

0
I (u2 ⩽ a(u))dudH(u1,u2)

)

−
ˆ
[0,1]2

ˆ 1

0
I (a← (u1)⩽ u,a(u2)⩽ u)du(u1,u2) .

The stated lemma can be deduced by applying Fubini’s theorem on the three double integrals.
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By lemma D.1, we obtain for ac(u) = F2(cF←1 (u))

Dn (ac) = (ϕ(Cn))(ac) and D(ac) = (ϕ(C))(ac) .

this leads to

||Dn (ac)−D(ac) ||∞ ⩽ 2||Cn −C||∞.

Classical results about empirical copulas gives uniform strong consistency, see Segers (2012). Similar
arguments can be used for D̂n(âc). Now, we can consider the empirical process

Dn =
√
n(Cn −C) , D̂n =

√
n
(
Ĉn −C

)
.

and we can write

√
n(Dn (ac)−D(ac)) = (ϕ(Dn))(ac) and

√
n
(
D̂n (âc)−D(âc)

)
=
(
ϕ
(
D̂n

))
(âc) .

We recall now that in the space ℓ∞([0,1]d) equipped with the supremum norm, Dn⇝ D, as n→∞, where D
is a C-Brownian bridge, and, as condition (S) holds, then D̂n⇝ D̂, as n→∞, where D̂ is the Gaussian
process defined in (B.3), see Segers (2012) for details. In addition, âc converges in probability to ac. The
continuous mapping theorem then implies, as n→∞,

√
n(Dn (ac)−D(ac)) = ϕ(Dn)⇝ ϕ(D) ,

√
n
(
D̂n (âc)−D(âc)

)
=
(
ϕ
(
D̂n

))
⇝ ϕ

(
D̂
)
,

in ℓ∞([0,1]). From the continuity of its sample paths and by the form of the covariance function (B.2), the
Gaussian process D̂ satisfies

P
{
∀u ∈ [0,1] : D̂(u,1) = D̂(1,u) = 0

}
= 1.

This provides all the elements to conclude the proposition. □

Appendix E. Expression ofD(c) in the bivariate GEV case

As |a− b|= 2max(a,b)− a− b, we have

2D(c) = 2E [max(F2 (cY1) ,F1 (Y2/c))]−E [F2 (cY1)]−E [F1 (Y2/c)]

To deal with each term, we recall that the quantile function of F(x;ξ,σ) = exp

[
−
( x
σ

)−1/ξ]
is

F−1 (u;σ,ξ) = σ (− logu)−ξ = σzξ , with z=−1/ log(u) ,

This implies that

Yi
d
= σiZ

ξi
i ,

where Zi follows an unit Fréchet. If follows that, with a12 =

(
cσ1

σ2

)−1/ξ2
,

F2 (cY1)
d
= exp

[
−
(
cY1

σ2

)−1/ξ2]
d
= exp

(
−a12Z

−ξ1/ξ2
1

)
,

then

F2 (cY1)
d
= exp(−a12W1) withW1 = Z−ξ1/ξ21 .

In the same way, with a21 =

(
σ2

cσ1

)−1/ξ1
,

F1 (Y2/c)
d
= exp

[
−
(

Y2

cσ1

)−1/ξ1]
d
= exp

(
−a21Z

−ξ2/ξ1
2

)
14
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then

F1 (Y2/c)
d
= exp(−a21W2) withW2 = Z−ξ2/ξ12 .

By noticing thatWi follows a Weibull distribution with P(W1 > w) = exp(−w−ξ2/ξ1), the expectation
E[F2 (cY1)] can be linked as the Laplace transform of a Weibull r.v.

E [F2 (cY1)] = E [exp(−a12W1)] and E [F1 (Y2/c)] = E [exp(−a21W2)] .

For the bivariate structure, we can write that, for any u ∈ (0,1),

P [max(F2 (cY1) ,F1 (Y2/c))⩽ u] = P
[
max

(
exp
(
−a12Z

−ξ1/ξ2
1

)
,exp

(
−a21Z

−ξ2/ξ1
2

))
⩽ u
]
,

= P

[
Z1 ⩽

(
−a12
logu

)ξ2/ξ1

, Z2 ⩽
(
−a21
logu

)ξ1/ξ2
]
,

= exp

{
−V

[(
−a12
logu

)ξ2/ξ1

,

(
−a21
logu

)ξ1/ξ2
]}

.

Since the r.v. max(F2 (cY1) ,F1 (Y2/c))⩽ u is positive, in the general setup, we have

D =

ˆ 1

0

(
1− exp

{
−V

[(
a12

− logu

)ξ2/ξ1

,

(
a21

− logu

)ξ1/ξ2
]})

du

−1

2
E [exp(−a12W1)]−

1

2
E [exp(−a21W2)] , (E.1)

whereWi follows a Weibull distribution with P(W1 > w) = exp(−wξ1/ξ2). Note that

(a12)
ξ2
ξ1 =

1

a21
. (E.2)

Conversely, (a21)
ξ1
ξ2 =

1

a12

Appendix F. Homogeneous case

In the special case where ξ1 = ξ2 = ξ, we denote θc = V(a12,a21), where a12 =

(
cσ1

σ2

)−1/ξ
= 1/a21. Then,

we have

P [max(F2 (cY1) ,F1 (Y2/c))⩽ u] = exp

{
V

[(
σ2

cσ1

)−1/ξ
,

(
cσ1

σ2

)−1/ξ]
logu

}
,

= uV(a12,a21).

We can write

D=

ˆ 1

0
1− uθcdu− 1

2
E [exp(−a12W1)]−

1

2
E [exp(−a21W2)] (F.1)

whereWi, i = 1,2 has cdf equal to exp(−x).
Hence,

D=
θc

θc + 1
− 1

2(1+ a12)
− 1

2(1+ a21)
. (F.2)

To minimize D as a function of c, we study the variations of r : x 7−→
V
(
x, 1x
)

1+V
(
x, 1x
) − 1

2(1+ x)
− x

2(1+ x)
.We

suppose that V is differentiable. If the previous function r admits a minimum, its derivative cancels in some
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Figure G1. Boxplots of deviations/error rates between CMIP model partitions and the ‘central’ ones. The left boxplot corresponds
to the variability in the natural experiment (only natural forcing). The right boxplot corresponds to the variability in the all
forcing experiment (worst-case scenario with anthropogenic forcing). The red line indicates the error rate between the two central
partitions (natural vs all forcing).

c0. The r′ cancels if and only if the derivative of x 7−→
V
(
x, 1x
)

1+V
(
x, 1x
) cancels, if and only if there exists x s.t.

∂V

∂x

(
x, 1x
)
=

1

x2
∂V

∂y

(
x, 1x
)
. In the special case where the dependence is logistic i.e.

V(x,y) =

(
1

x1/α
+

1

y1/α

)α

,

we have
∂V

∂x

(
x, 1x
)
=

∂V

∂y

(
x, 1x
)
, for all positive x. Therefore, if r admits a minimum, it is for x=±1.

Eventually, for logistic dependence, D is minimal for

c=
σ2

σ1
.

Appendix G. Additional figure and data sources

The data used in this paper come from the CMIP repository and the guideline to use them can be found at
https://pcmdi.llnl.gov/CMIP6/Guide/dataUsers.html. All runs have been remapped to a common 5◦× 5◦

HadCRUT grid (cdo rmapcon operator), see the website https://code.mpimet.mpg.de/projects/cdo/
embedded/index.html for details about first order conservative remapping.
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