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Fracture networks are preferential flow paths playing a critical role in a wide range of 
environmental and industrial problems. Their complex multiscale structure leads to 
broad distributions of fluid travel times, affecting many biogeochemical processes. 
Yet, the relationship between the fracture network structures, their hydrodynamic 
properties, and the resulting anomalous transport dynamics remains unclear. We use 
a large database of fracture network models to investigate the factors controlling fluid 
velocity and travel-time distributions across a wide range of networks, from synthetic 
to field-calibrated models, with aperture variability at both fracture and network 
scales. Analysis reveals that transport statistics have generic properties across inves-
tigated networks, including notably heavy-tailed travel time distributions. Networks 
of increasing complexity and heterogeneity lead to broader velocity distributions and 
more channeled velocity fields, where flow concentrates in a narrow channel web in 
the three-dimensional (3D) fracture structure. While heterogeneity in point-velocity 
statistics increases travel-time variability, channeling tends to reduce it. This counter-
intuitive phenomenon challenges current theories, which assume that long travel time 
power law exponents are determined solely by point-velocity statistics. By analyzing 
velocity and travel time statistics for different flow structures, we develop a coupled 
Continuous Time Random Walk framework capturing the unexpected control of 
the velocity field’s spatial structure on anomalous transport in fracture networks. 
This leads to a unique class of random walk models capturing the respective roles of 
velocity heterogeneity and spatial structure on transport in networks. These findings 
open a prospective for characterizing, modeling, and predicting transport dynamics 
in complex networks, with potential applications to geological, biological, and engi-
neered networks.

fracture networks | anomalous transport | DFN | hydrogeology

 Fractures are present in all geological material on Earth, where they constitute preferential 
flow paths for fluids and elements ( 1     – 4 ). The complex, heterogeneous, and multiscale 
structure of fracture networks leads to large hydrodynamic dispersion characterized by 
broad fluid travel time distributions. Such anomalous transport dynamics play a major 
role in driving contaminant transport ( 5 ), water chemistry ( 6 ), deep microbial commu-
nities ( 7 ), CO2  and hydrogen storage ( 8 ), energy extraction, ( 9 ) and rock weathering ( 10 ). 
Understanding the transport dynamics in complex networks is also a fundamental problem 
with direct applications in different contexts, including epidemic or rumor spreading 
( 11   – 13 ), brain microvascular dysfunction ( 14 ), or traffic flow ( 15 ). Fractured rocks are 
examples of such complex systems, where dispersion originates from the heterogeneity of 
flow due to both a complex network made of a wide range of fracture sizes ( 2 ) enhanced 
by the variability of fracture apertures within fracture planes or between fractures ( 16 ).

 Transport in heterogeneous media has been studied for several decades with the objective 
of linking the transport parameters to the heterogeneity structure of the media ( 3 ,  4 ). 
Basically, the problem can be seen as a particle visiting a distribution of local velocities, 
whose total travel time is the sum of successive time increments controlled by particle 
velocities and step sizes. When the time steps are independent, the problem is close to the 
one treated by the central limit theorem, which predicts that the distributions in cumu-
lative time tend to α﻿-stable forms ( 17 ). Among them is the normal (gaussian) distribution, 
which attracts all local distributions with finite variance. The normal distribution was the 
basis for the widely used Advection Dispersion Equation (ADE, e.g., ref.  18 ), hereafter 
referred to as the ADE or Fickian model. The latter assumes a constant macroscopic 
dispersion depending only on the mean velocity field and scale parameters. However, this 
model has been contradicted by many observations of transport heterogeneous media 
(e.g., refs.  3 ,  19 , and  20 ), where dispersion was suggested to be non-Fickian.
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 Three main mechanisms have been identified for these anom-
alous transport dynamics ( 21   – 23 ): The first cause of anomalous 
transport, called the “Noah” effect ( 23 ,  24 ), is an abnormally high 
occurrence of very small velocities – or long local time increments. 
If the time increment distribution has a power-law tail with a 
density exponent larger than −3 (i.e., a tail exponent α  of the 
﻿α﻿-stable distribution smaller than 2), the variance is infinite and 
the total residence time distribution has also a power-law tail with 
the same density exponent ( 25 ). As a particular case, if the density 
exponent is larger than −2, the average travel time is also infinite. 
This mechanism is the basis of non-Fickian transport frameworks 
such as the Continuous Time Random Walk (CTRW) model, 
broadly used for modeling transport in the subsurface ( 3 ). The 
second cause, called the “Joseph” effect ( 23 ), results from broadly 
distributed spatial steps, that may be associated to long-range 
correlations in particle velocities. In this case (e.g., ref.  26 ), the 
central limit theorem does not apply and the velocity and 
residence-time exponents differ ( 24 ). Lévy flights and Levy walks 
belong to this class of systems ( 27 ). In the context of geological 
systems, such long-range velocity correlation could be induced by 
the broad distribution of fracture sizes. The third cause, called the 
“Moses” effect ( 21 ), is due to nonstationarity in the velocity/trans-
missivity field, which entails an ergodicity breaking in velocities 
(e.g., the velocity distribution changes as a function of distance). 
This can be produced by several geologically relevant processes: 
nonstationary boundary conditions as when the particles are not 
introduced in proportion to the input flow as stationary condi-
tions would require (e.g., refs.  28  and  29 ); a hierarchy of scales in 
the spatial distribution of permeability or transmissivity identified 
when comparing laboratory and field tests ( 30 ,  31 ) (see also the 
discussion in ref.  32 ); or temporal fluctuations ( 33 ).

 Anomalous transport is the norm rather than the exception 
in fractured rocks, as shown by field tracer testing experiments 
( 34   – 36 ) as well as numerical simulations ( 37     – 40 ) but why and 
how it emerges, and how it relates to the network structure and 
flow properties is still an open question. Since fractured rock are 
characterized by a broad distribution of velocities, of fracture 
sizes and a multiscale organization, all of the three effects dis-
cussed above may contribute to the observed anomalous trans-
port behavior. Recent studies on transport in fracture networks 
have suggested that heavy-tailed travel time exponents can be 
directly linked to point-velocity statistics using the CTRW 
model (e.g., refs.  41   – 43 ). Yet, when considering different frac-
ture network structures and aperture heterogeneities, this 
approach was found to overestimate the tailing of travel time 
distributions ( 38 ,  39 ). These findings indicate that the spatial 
structure of velocity—particularly its channeling properties—
also influences anomalous transport exponents, beyond what 
can be explained by point statistics alone. As a result, it remains 
unclear how to effectively capture both velocity statistics and 
their spatial organization in a transport model that applies across 
different fracture network structures. Additionally, how these 
velocity statistics are influenced by the distribution of fracture 
hydraulic properties, sizes, and connectivity is still unknown. In 
porous media, percolation theory and critical path analysis have 
offered insights into how pore network structures affect flow and 
transport properties (e.g., refs.  44     – 47 ). To date, the applicability 
of these frameworks to describe transport dynamics in fracture 
networks remains an open question.

 Prior to flow and transport modeling, geological fracturing is 
in itself a complex process which can result in a diversity of fracture 
structures and hydraulic properties with no consensus about a 
unified description ( 2 ,  48 ). Recent advances in this area have been 
obtained from Discrete Fracture Network (DFN) approaches, 

which represent the fractured media as a population of discrete 
fractures with orientation, size, transmissivity, and aperture dis-
tributions ( 49   – 51 ). Fractured systems are acknowledged as intri-
cate multiscale networks, featuring fracture sizes ranging from 
millimeters to tens of kilometers. However, translating this obser-
vation into a statistical distribution remains a challenge [see the 
discussion in Bonnet et al. ( 2 )]. The characteristics of open frac-
tures (density, size, and orientation distributions) control network 
connectivity ( 52     – 55 ), while the bulk permeability and the organ-
ization of flow, including channeling, depends also on the trans-
missivity/aperture distribution in the fracture plane and in 
between fractures ( 56 ,  57 ).

 Here, we present a large database of DFN simulations, covering 
synthetic, genetic, and field-calibrated models, to investigate the 
structural controls on transport dynamics in fractured rocks. 
Furthermore, for a given network structure, we investigate the 
effect of aperture fluctuations both at fracture scale and at network 
scale. We show that travel time statistics follow a generic distribu-
tion, whose analysis reveals the mechanisms driving transport 
dynamics across fracture networks. Networks of increasing com-
plexities exhibit both broader velocity distributions and more 
channelized velocity fields. Strikingly, we find that the two prop-
erties have antagonist effects on travel time distributions, leading 
to a breakdown of established theories. We suggest a theoretical 
framework that captures both the effect of velocity distributions, 
induced by the network structures, and that of velocity correlation 
along particle trajectories, linked to flow channeling. These find-
ings hence shed light on the mechanisms governing fluid travel 
times within fracture networks.     

Field Observations of Travel Time Distributions in Fracture 
Networks. Travel time distributions can be measured in the field 
using cross-borehole tracer tests, an experiment in which a tracer 
is injected in a borehole and recovered at a different location 
where the breakthrough curve is measured in time (Fig. 1A). Such 
experiments have been performed in a broad range of geological 
contexts, systematically showing power law statistics of long travel 
times (e.g., refs. 58 and 59). The classical mechanism generally 
invoked to explain these long travel times is diffusion in the rock 
matrix, which leads to the power law p(t ) ∼ t−3∕2  (58). Yet, the 
−1.5 scaling is generally not observed in field data that report 
power law evolutions with different exponents p(t ) ∼ t−a  (36, 
60). In Fig. 1A, we show field tracer test data measured in one of 
the most instrumented fractured rock sites, the Äspö Hard Rock 
Laboratory in Sweden (34). This dataset covers the largest range 
of time scales measured for tracer tests in fractured rocks, from 1 
h to almost one year. The general shape of a breakthrough curve 
(BTC) is a spread-out peak after the first arrival time, followed by 
a long tail in a log–log plot, showing a power-law trend. The latter 
significantly differs from the power law trend expected for matrix 
diffusion (Fig.  1A) suggesting the important role of advective 
dispersion processes, even over yearly time scales. As discussed 
in the following, the shape of field BTCs is very similar as those 
observed in our fracture network simulations (Fig. 1 B and C) 
that cover a broad range of fracture structures. Hence, although 
such simulations are necessarily simplified compared to the reality, 
they offer a relevant database to understand the key mechanisms 
driving long travel time statistics observed in the field.

Assumptions and Database of DFN Models. We approached the 
question of the relationship between DFN structures and transfer 
time distribution with a two-dimensional approach to complexity 
(Table  1): structural complexity (number and organization of 
fractures) on the one hand, and transmissivity variability (aperture D
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fluctuations both at fracture scale and at network scale) on the 
other hand. The models studied explore these two complexity 
axes, with the central model being the genetic DFN, the validity 
of which was established with extensive field data (32). We thus 
use a large model database including networks of increasing 
complexities (Table 1 and Fig. 2), from generic networks with 
constant or power-law fracture size distributions (41, 56) to 
genetic models calibrated to field data (32). We consider three 
main fracture network topologies (Table  1): Poissonian, open 
genetic, and In-Plane PAtches (IPPA).

 In the Poissonian models, fractures are randomly positioned in 
the 3D domain. We first consider constant size fracture networks. 
Although these idealized models are very simple and far from the 
reality, they can generate very heterogeneous velocity and travel 
time distributions. This occurs particularly close to the percolation 
threshold, at low fracture densities, where connected flow paths 
become fractal ( 61 ). We then consider power-law fracture size 
distributions with Poisson generation and uniform fracture ori-
entation distribution. Power-law distributions acknowledge the 
widespread observation that fracture sizes typically span several 
orders of magnitudes ( 2 ,  62 ). Such generic models have been 
broadly used to investigate basic properties of fracture network 
and thus constitute a reference (e.g., refs.  38 ,  41 ,  63 , and  64 ).

 The second type of fracture network topology is called open 
genetic, in which DFNs are generated from genetic rules of frac-
ture nucleation growth and arrest ( 62 ). The fracture size distri-
bution, which is an emerging property of these genetic rules, is a 
double power law with a small-scale exponent related to the size 
dependence of the fracture growth rate [an equivalent of Charles’ 
law ( 65 )] and a universal large-scale exponent that depends on 
the arrest rules (see also ref.  66 ). This genetic DFN model is 
consistent with statistics derived from fracture network mapping 
( 62 ) and has been shown to reproduce key flow characteristics in 
relevant geologic contexts ( 32 ). Here, we use genetic models cal-
ibrated to the Forsmark site in Sweden ( 67 ), likely the most char-
acterized fractured rock site. Field data (SI Appendix, section S1 ) 
were collected and managed by the Swedish Nuclear Fuel and 
Waste Management Company (Svensk Kärnbränslehantering 
AB). The structure of these realistic DFN models rely on an initial 
description of the DFN geometrical properties (fracture size, 
aperture, transmissivity, orientation, shape, and spatial distribu-
tions), named geo-DFN model. As very commonly observed in 

the field, fractures are fully or partly sealed, and conversely open. 
In Forsmark, for example, the open fraction, defined as the cumu-
lative area of fracture open surface divided by the total fracture 
area, is estimated to be between 15 and 25% ( 68 ,  69 ). The com-
bination of the geo-DFN model and the open fraction defines 
the open DFN model (i.e., the DFN model once all the sealed 
parts are removed, leaving only the open parts). The open-DFN 
structure is the main determinant of the DFN connectivity. In 
the DFN model database, two models of open fraction were used. 
In the “open genetic” model, some fractures were fully open while 
others were sealed depending on the fracture size, in order to 
ensure flow connectivity similar to that measured at Forsmark ( 32 ).

 The third type of fracture network topology is called IPPA, 
where fractures were partially sealed with open patches distributed 
within the fracture planes ( 32 ), representing contacts or filled 
areas. The fracture network generation is based on the open genetic 
model. Open patches in fracture planes are then generated by 
thresholding a correlated random field (CRF )—sealed if greater 
than the threshold, otherwise open—to a level such that the per-
centage of open area satisfies to the prescribed  f﻿op  . The details of 
the patch generation are given in SI Appendix, section S2 .

 Transmissivity models are then assigned to the open fractures. 
The transmissivity models start from very basic, with constant 
transmissivity everywhere (transmissivity model T  = 1, thereafter 
called T 1). Then, following Follin and Stigsson ( 70 ), a second 
transmissivity model captures the observed positive correlation 
between transmissivity, normal stress acting on the fracture, and 
fracture size [SI Appendix, section S2  and ref.  32  for the detailed 
implementation]. It is noted TSL  in the following with a fracture 
transmissivity exponentially decreasing with normal stress and 
linearly increasing with fracture size, consistently with field obser-
vations ( 35 ,  65 ). A third transmissivity model introduces in-plane 
variations of transmissivity based on a CRF  spatial distribution 
with a lognormal variability of 1 and 2. The in-plane geometric 
mean is either the same in all fractures (T 1) or distributed as in 
the TSL  model. These transmissivity models are called T 1 & CRF  
and TSL  & CRF , respectively. Finally, we use the conventional 
assumption that relates fracture transmissivity and transport aper-
ture by the classical cubic law ( 71 ). The DFN models are listed in 
 Table 1  and illustrated in  Fig. 2 .

 Flow and transport calculations were performed for all net-
works using the DFN.lab software developed by our team 
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Fig. 1.   (A) Examples of BTC obtained from tracer test experiments carried out with nonsorbing tracers, 82Br and HTO, resp., at the Äspö Hard Rock Laboratory 
(Sweden) during the True Block Scale Test campaign (34). The solid lines are the power-law fits of the long-term trends; the dashed lines are the stretched 
inverse gamma fits for short and intermediate times (Eq. 1). For comparison, the classical power law t−3∕2 representative of matrix diffusion processes is given 
in a dash-dotted line. (B and C) Illustration of a simulation run (open genetic DFN with variable aperture in the fracture plane, transmissivity structure T1&CRF in 
Table 1) with a visualization of particle paths on the DFN colored with hydraulic head values on a red-blue scale (B), and the resulting time distribution (C). As for 
field data, the gamma and power-law fits are indicated in solid and dashed lines, respectively, and the matrix diffusion scaling is shown as a dash-dotted line.
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(https://fractorylab.org/dfnlab-software/ ). We computed the travel 
time distributions from particle tracking ( 72 ). We considered 
advective travel time distribution that characterize the fluid resi-
dence times in the fracture network and thus excluded diffusion 
into the rock matrix. The effect of matrix diffusion on travel time 
distributions has been extensively studied and shown to lead to a 
power-law trend at large travel times with an exponent of −1.5 
(e.g., ref.  58 ). Yet this exponent is generally not observed in field 
tracer tests ( Fig. 1A  ), suggesting that heterogeneous advection and 
structural heterogeneities play a major role on travel time statistics. 
Hence, including matrix diffusion would hide other important 
effects controlled by the fracture network structures. Following 
the broadly used assumption in DFN modeling ( 73 ), we assume 
here complete mixing in the fracture thickness as it is not possible 
to resolve flow in the fracture thickness when running simulations 
in networks of hundreds of thousands of fractures. This assump-
tion is consistent with the range of time scale considered. For 
typical solute diffusion coefficients D  and fracture apertures α , the 
diffusion time  � = a2∕D    in the fracture thickness is on the other 
of seconds to minutes while the considered transport time scales 
range from days to years ( Fig. 1A  ). Note however, that complete 
mixing is assumed only in the fracture thickness, not transversely. 
Hence, the redistribution of transported particles at intersections 
is explicitly resolved by tracking the partitioning of streamlines in 
different fractures. We used a flux weighted injection of particles 
to ensure the stationarity of the particle velocity distributions. 
Note that different injection modes may be used, such as resident 
injection, where particles are injected uniformly at the inlet inde-
pendently of the local flow rate. Nevertheless, such injection 
modes introduce a long transient phase where the velocity statistics 
of particles evolves from the initial distribution to the asymptotic 
flux weighted distribution ( 38 ). This transient phase would poten-
tially obscure the characterization of the relationship between 
transfer time and flow structure.

 To investigate the variability of transport dynamics for a given 
structure, some models were generated several times with the same 
statistics but different seeds (SI Appendix, Table S2 and sec-
tion S2 ). To characterize the structure of the DFN models and 
the corresponding flow networks, we used two dimensionless 
properties. The first is the percolation parameter p , which controls 
the network connectivity. The existence of a connected network 
across the domain is statistically obtained for p  greater than a 
threshold pc   that depends on fracture shape and orientation ( 54 , 
 74 ). For uniformly distributed orientations and disk fractures, the 
percolation threshold is pc   = 2.7 regardless of the fracture size 
distribution ( 53 ,  54 ). We have calculated the percolation threshold 
for all orientation distributions in the model database and found 
approximately the same value. The percolation parameter p  is given 
in SI Appendix, Table S2 and section S2 . It is much larger than 
the percolation threshold, i.e., p  ≫ pc  , for most of the simulations 
except for the first (p  = 3). For such relatively densely connected 
networks, based on field observations as discussed above, a large 
number of independent pathways connect the input and output 
sides and the connected backbone is not fractal, contrary to net-
works at the percolation threshold p  ≈ p﻿c , (e.g., ref.  45 ). The second 
indicator is the ratio,  f = p32∕dq  , between the total fracture sur-
face p﻿32  and the one occupied by the flow dq   (SI Appendix, sec-
tion S2 and Table S2 ). dq   is equal to p﻿32  when the flow is uniform; 
it decreases with flow heterogeneity ( 56 ,  57 ). The ratio f  is an 
indicator of flow localization and channeling. The larger f  is, the 
stronger is the flow localization. In the limit of constant flow in 
the network, f  = 1. SI Appendix, Fig. S1D  and section S4  shows f  
for the different runs. Channeling increases with the complexity 
of the DFN structure (IPPA > open genetic > power law > constant 
size), and with the variability of the transmissivity model 
(TSL &CRF  > TSL  > T1 &CRF  > T 1). The variability from one 
realization to another within a model (same percolation parameter, 
structure model, and transmissivity model) is quite small.  

Table 1.   Table of DFN structure (columns) and permeability (rows) models

﻿

Structural complexity

Poissonian
constant size

Poissonian
power law

Open 
genetic IPPA

Transmissivity 
variability

- Constant transm. everywhere
p=3  
p=8

a=4
a=3.5
a=3

- Constant transm. within fracture
- Variable transm. in network,

- Variable transm. within fracture 
- Constant average transm. in 
network

- Variable transm. within fracture 
- Variable average transm. in 
network

﻿
The shape of the symbol indicates the open DFN structure model. The color indicates the transmissivity model: fracture transmissivity exponentially decreasing with normal stress and 
linearly increasing with fracture size (TSL, blue), lognormally distributed within fracture planes with constant mean transmissivity and SD �

logT
= 1 (T1&CRF yellow) and �

logT
= 2 (T1&CRF 

light brown), lognormally distributed within fracture planes with variable mean transmissivity (according to TSL) and SD �
logT

= 1 (TSL&CRF red) and �
logT

= 2 (TSL&CRF dark brown). For 
constant fracture sizes, two different densities are simulated with a percolation parameter of three (square) and eight (double cross symbol). The DFN structures with power-law size 
distribution are generated with a power-law exponent of −4 (up triangle), −3.5 (down triangle), and −3 (diamond). The list of simulations is given in SI Appendix, Table S2.
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Velocity Distributions. We systematically compute the Eulerian 
and Lagrangian velocity distributions (nL and nE, respectively) from 
DFN realizations of the models listed in Table 1 (72). The Eulerian 
distribution is directly calculated from the DFN flow field while 
the Lagrangian distribution is computed along streamlines from 
advective particle tracking at fixed spatial steps. Results are plotted 
as probability density functions of the inverse velocities ( v−1  ), to 
emphasize small velocities that correspond to large particle time 
steps (SI Appendix, Fig. S1 A and B and section S4). The tail of 
these distributions for large values of v−1  typically follows a power 
law trends that potentially controls the statistics of particle transport 
times according to the Noah hypothesis (3, 41). We compute the tail 
power law exponents (Eulerian �E and Lagrangian �L ) in the range 
where the power law trend is established, over the same velocity 
range for both distributions. As expected, the resulting exponents 
�E and �L display a significant correlation (SI Appendix, Fig. S1C).

 The Eulerian velocity statistics generally become more heteroge-
neous (I.e. exponents become smaller) for increasingly complex and 
realistic networks (SI Appendix, Fig. S1C﻿ ). The Lagrangian and 
Eulerian distributions are related because they both sample the same 
velocity structure. In the Lagrangian distribution, each velocity  vL  is 
weighted by the number of particles passing through the location, 
which is proportional to the flux (q ), giving  qnL(v) = qnE (v)  , where 
﻿q  is the mean value of q . The flux q  is locally related to the velocity 
with q  = bv , where b  is the fracture aperture. For ideal sampling 
conditions and for constant apertures ( −q = b−v ), it follows that 
﻿nL(v) ∼

v

v
nE (v)    ( 28 ), leading to ﻿�L = �E + 1 . This result is recovered 

for constant aperture networks (open symbols in  Fig. 5A   and 
﻿SI Appendix, Fig. S1C﻿ ). For variable aperture networks, simulations 
exhibit significant differences with this simple relationship as they are 
modulated by the flow-velocity relation, i.e., by the effect of the 

aperture distribution. For open genetic models, aperture fluctuations 
tend to reduce the heterogeneity of velocities sampled by particles, 
which is characterized by an increase in the power law exponents  �L    
compared to the simple flux weighting prediction (colored disks above 
the dashed line in  Fig. 5A  ). This could possibly occur by increasing 
the flow toward low velocity areas characterized by larger apertures. 
For IPPA modes, with strong heterogeneity in the fracture plane, 
aperture fluctuations tend on the opposite to increase the heteroge-
neity of velocities (colored stars below the dashed line in  Fig. 5A  ). 
Similarly, this could be produced by reducing the flux toward low 
velocity zones located in smaller aperture fractures.

 Note that, while we compute the Lagrangian velocity distribution 
with a large number of particles (ranging from 400,000 to 1,000,000), 
some extremely small velocity regions are not visited by advective 
particles. In 3D DFNs, these dead ends are generally created by clus-
ters with a single connection to the main flow paths, where flow is 
induced only by the gradients along the connecting intersection ( 75 ). 
These gradients are very small, and the resulting fluid flow in dead 
ends is several orders of magnitude smaller than in the rest of the 
network. This is shown in SI Appendix, Fig. S1A﻿ , where the distribu-
tion of dead-end velocities v  is visible for v  < 10−9  (i.e., v﻿−1  > 109 ), 
where the velocity distribution deviates from the long-tail power law. 
The probability of particles to enter these dead ends is about six orders 
of magnitude smaller that the slowest velocity sampled by particles. 
While our simulation already covers six orders of magnitudes in travel 
time probability ( Fig. 1C  ), these dead ends would thus start affecting 
travel times of much lower probability of occurrence.  

A Generic Model for Travel Time Distributions in Fracture 
Networks. Breakthrough Curves (BTC) are obtained from 
distributions of particle travel times between injection and 
recovery locations (Fig. 3A). The shapes of simulated BTCs are 

Structure model

Constant-size Poisson DFN
Percolation param. 2 to 10

Power-law Poisson DFN
Exponents 3, 3.6, 4

Open genetic structure with FFM01orientations and reduced 
density of small fractures

UFM structure with FFM01 orientations and open patches 
(IPPA)

p=10
p=2 p=10

Transmissivity model

Constant 
everywhere

Constant in fracture
Vary in network

Vary in fracture
Constant in network

Vary in fracture
Vary in network

= 1
=

= ( ∞, )

= CRF 1

= 1

= CRF

= ( ∞, )

(1) CRF: correlated random field

Fig. 2.   Examples of realizations for the simulated open-DFN structures (above), and for the four considered transmissivity models (below). We investigated the 
effect of structural heterogeneity by considering different structures for a constant transmissivity (Table 1). We then tested the effect of hydraulic heterogeneity 
for the open genetic structure, which represents a baseline structure model validated with extensive field data (32).
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similar as the field data (Fig.  1A), showing a spread-out peak 
after the first arrival time, followed by a long power-law trend 
(Fig.  1C). The corresponding power law exponents are similar 
as observed in the field (Fig. 1A) and significantly different from 
the −3/2 exponent expected for matrix diffusion. The strong 
similarity between field tests and numerical simulations does not 
directly validate the DFN model’s predictability for field BTCs. 
Nevertheless, this resemblance in the shapes of BTC and the 
long travel time exponents suggests that our extensive simulation 
database is relevant for explaining these properties, particularly in 
terms of the key structural and hydrodynamic factors controlling 
travel time distributions. The analysis of simulated travel time 
distributions suggests that, with a few exceptions and limits 
discussed hereafter, the BTCs can be described by the combination 
of a stretched inverse gamma (SIG) for early travel times and a 
power-law for the late travel times.

 At short to intermediate times, the BTCs are often fitted by an 
IG function ( 28 ), which is considered as a good candidate to 
describe a long-tail power-law trend with a rollover at small time 
( 76   – 78 ). To better represent the whole simulation database at 
short and intermediate times, we extend this IG model to a SIG 
with a power exponent parameter s  in the exponential term:

﻿   

  where  Γ()    is the gamma function, k  and s  are exponents, and  �    is 

related to the average travel time  t  :  � = t
Γ
(

k−1
s

)

Γ
(

k
s

)  . Like the IG, the 

SIG function has a power-law tail  t−k    for large t . The shorter travel 
times, around the rollover, are controlled by the exponent s  with 
a tighter distribution around the peak than IG when s  > 1. For s  
= 1, the SIG is the standard IG function.

 While it describes well the bulk of the BTC for both field and 
simulation data, the SIG does not describe the latest arrival times 
( Fig. 1 A  and C  ), where a power-law trend different from the SIG 
tail is observed beyond a transition time tc   with an exponent α  
lower than k :

﻿﻿  

  We thus identify a transition in the BTC at travel times (approx-
imately equal to six times the mean in the example of  Fig. 1C  ). 
that marks a transition between two regimes). The first part is well 
described by a SIG function and the second part by a power law 
decay whose exponent differs from the IG power law tail. This 
makes the travel time distributions more complex than usually 
assumed ( 76   – 78 ). The combination of the two functions is the 
model with the least number of parameters (five parameters) that 
ensures a good agreement with the simulated data. It describes the 
probability density function of travel times over six orders of mag-
nitude in probabilities and three orders of magnitude in travel 
times (SI Appendix, section S6 ). The BTC model parameters are 
the average travel time  t  , the transition time tC   and three expo-
nents hereafter called the stretched exponent (s ), the gamma expo-
nent (k ), and the long-tail exponent (a ). The parameters are 
calculated from a three-stage maximum likelihood procedure 
described in SI Appendix, section S6 .

 The gamma/power-law model generally applies to all models 
(see examples in  Fig. 1C   and SI Appendix, Figs. S2 A  and D and 
S4 and sections S5–S7 ). The first moment  t     evolves linearly with 
distance (SI Appendix, Fig. S2 B  and E ). The evolution of the SD 
of travel time  �t    ranges from Fickian  �t ∼

√

x    for the least heter-
ogeneous structures (SI Appendix, Fig. S2B﻿ ) to non-Fickian for 
most structures  �t ∼ x�    with  1

2
< 𝛽 < 1    (SI Appendix, Fig. S2E﻿ ). 

The contribution of the long-tail power law to the second moment 
can be as much as 70% (SI Appendix, Fig. S6 and section S8 ). It 
thus exerts a strong control on the dispersion rate for all models 
that are sufficiently complex in structure or in transmissivity. Note 
that for the IPPA structures characterized by variable transmissiv-
ity (TSL ), the travel time distributions exhibit a pronounced 
long-tailed power law distribution that dominates most of the 
travel time distribution. Hence, the exponents k  and a  are close 
to each other and the BTCs can be fully described by the SIG 
(SI Appendix, Fig. S4 and section S7 ).  

Noah, Joseph, and Moses Effects. As discussed in the introduction, 
three main mechanisms can explain the observed power 
statistics of long travel times: the Noah effect (the abnormally 
high occurrence of very small velocities), the Joseph effect (the 
abnormally high occurrence of large numbers of steps), the Moses 
effect (the nonstationarity of the velocity field). Here, the Moses 
effect is minimized by the large domain sampled and the fact that 
particles are introduced proportionally to the flow, which leads to 
a stationary distribution of Lagrangian velocities.

[1]

[2]pw(t ) ∼
a − 1

tc

(

t

tc

)−a

.
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Fig. 3.   Illustration of the determinant of a particle travel time in an open genetic model with TSL transmissivity distribution. (A) 3D visualization of a particle 
path. The fractures in which the particle traveled are shown in transparency. (B) Analysis of a particle path in terms of cumulative travel time, head gradient ▽h 
between successive intersections, and local transmissivity T; each color corresponds to a fracture. In this trajectory, most of the particle travel time is spent in 
one fracture (in black) at a distance of about 220. The corresponding trap time represents a large fraction of the total time. (C) Plot of the trap time, defined as 
the longest time spent between two successive fracture intersections during the travel, as a function of the average head gradients along particle path between 
successive intersections. The color indicates the tortuosity corresponding to this trap time.
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 To discriminate the dominant mechanism between the Noah 
and Joseph effects, we investigated the statistics of transport times, 
transmissivities, head gradients, and tortuosity along particle 
paths.  Fig. 3A   shows an example of particle trajectory in an open 
genetic model with TSL transmissivity distribution. Along this 
trajectory, the total travel time was dominated by one event at 
position x  = 220 ( Fig. 3A  ), corresponding to an extremely low 
velocity fracture. In this example, such low velocity was caused by 
an extremely low hydraulic head gradient ∇h , while the transmis-
sivity T  was close to average. This trapping effect is typical of the 
Noah mechanism. To test the generality of this effect, we com-
puted the trap time, defined as largest time increment for transport 
across a fracture along the particle trajectory, for all trajectories. 
﻿SI Appendix, Fig. S8A﻿  shows the trap time as a function of the 
total particle travel time, indicating a clear positive correlation 
between these two variables (SI Appendix, section S9 ). This anal-
ysis suggests the travel time of a given particle across the network 
is generally dominated by one extreme event characterized by the 
occurrence of a very low velocity at a specific fracture visited by 
this particle. The magnitude of trap times is mostly driven by the 
occurrence of abnormally small local hydraulic head gradients 
( Fig. 3C  ) and is poorly correlated other parameters such as the 
local transmissivity (SI Appendix, Fig. S8D﻿ ) or the path tortuosity 
(SI Appendix, Fig. S8C﻿ ). This suggests that among the different 
factors that could cause low velocities and large trap times (i.e., 
network topology, aperture variability between fractures, aperture 
variability within fracture planes), the network topology is the 
most important. While aperture variation can lead to locally small 
transmissivities, the network structure can connect areas of very 
similar pressure, leading to close to zero hydraulic head gradients 
applied on certain fractures.

 The Joseph effect is not identified as playing an important role 
since travel times are dominated by the occurrence of a localized 
event along the particle trajectory and not by a property of the 
whole trajectory, such as tortuosity. Furthermore, the tortuosity 
of particle paths, and therefore the number of steps, varies in a 
relatively narrow range compared to the trap times (SI Appendix, 
Fig. S8C﻿ ). We also note that most of the considered fracture net-
works are well above the percolation threshold, which implies that 
the structure of the flowing network is not fractal. This is con-
firmed by the linear evolution of the mean particle travel time 
with distance (SI Appendix, Fig. S2 B  and E and section S5 ).

 The dominant control of the Noah effect on travel time distri-
butions observed here for fracture networks is similar as observed 
in other studies on transport in fracture networks (e.g., refs.  36  
and  41 ) and in porous media (e.g., refs.  26  and  79   – 81 ). The broad 
occurrence of this mechanism in both porous and fractured media 
is linked to the existence of broadly distributed velocity distribu-
tions with sufficient probabilities for particles to encounter abnor-
mally low velocities that dominate the travel time distributions.

 The Noah effect has been successfully described by the CTRW 
framework (e.g., refs.  3  and  19 ). This theory explains the broad 
travel time statistics p (t ) by the power law distribution of fluid 
velocities p (v ) (SI Appendix, section S10 ). When velocity statistics 
follow a power law  p(v−1) ∼

(

v−1
)−� , as observed in our simu-

lations (SI Appendix, Fig. S1A﻿ ), this implies  a = � . For  a ≤ 3 , 
power law statistics are stable upon summation since the sum is 
dominated by the occurrence of extreme events. This leads to 
power statistics of the total travel time,  p(t ) ∼ t−a . For most frac-
ture networks studied, the probability of transported particles to 
encounter an extreme event in terms of travel time is sufficiently 
large for the power law statistics to be independent on system size 
(SI Appendix, Fig. S2D  and section S5 ). For all the DFNs expect 

one, the long-tail exponents a  are less than three and thus stable, 
i.e., independent of the distance traveled by the particles 
(SI Appendix, Fig. S2F﻿ ). This implies that the power law statistics 
of travel time distributions are independent on the system size. 
The only exception is the most homogeneous model with constant 
fracture size and high density (p  = 8), which has a long tail BTC 
exponent a > 3, placing it within the conditions of the central 
limit theorem where BTCs tend toward Gaussian distributions 
(SI Appendix, Fig. S2C﻿ ).  

Control of Velocity Field Heterogeneity and Structure on 
Fluid Travel Times. To describe and model the Noah effect in 
fracture networks, we focus on the link between the velocity field 
properties and the travel time statistics. We first investigate the 
effect of single point velocity statistics. In the CTRW framework 
(SI Appendix, S10), the scaling of small velocities (or at large v−1) 
controls the long-time power-law regime of the BTC. The relevant 
velocity distribution is that sampled by transported particles at 
fixed spatial steps (28, 41, 42), i.e., p(v) = nL(v) . The latter is also 
often assumed to follow a simple flux weighting of the Eulerian 
distribution (82), leading to p(v) ≈ vnE (v) . We thus test the two 
corresponding hypotheses for the long tail transport exponent:

  The  Fig. 4A   shows the BTC long-tail exponent a  as a function 
of the Eulerian  �E  exponents. Although there is a general positive 
correlation, it is relatively weak and different from the expected 
trend predicted by Eq.  3   with  a >> 𝛿E + 1  for all simulations. This 
implies that transport is less anomalous than expected from a simple 
analysis of the Eulerian distribution, diverging from recent theo-
retical predictions ( 41 ). For a given fracture network topology (e.g., 
Poissonian, open genetic, IPPA), the Eulerian exponent  �E  does 
not vary much while the long travel time exponents are much more 
variable ( Fig. 4A  ). The IPPA models have the smallest exponents 
between 1.15 and 1.20; open genetic structures have a slightly 
larger  �E  in the range of 1.2 to 1.3; and the Poissonian models 
(power-law and constant-size) models have an exponent  �E  around 
1.3 to 1.32. The two outliers are the constant-size DFN with a high 
density of p  = 8 ( �E = 1.8  ) and the power-law DFN with a fracture 
size exponent of −4 ( �E = 1.6  ). The latter model has a narrow 
fracture size distribution that makes it almost similar to the con-
stant size models in terms of fracture connectivity ( 53 ). The intro-
duction of aperture fluctuations in fracture planes did not 
significantly change the velocity statistics. For open genetic models, 
both constant aperture and variable aperture simulations remained 
within the blue shaded area in  Fig. 4A  , with less than 5% variability. 
When including locally closed patches within fracture planes, 
which represent contacts or filled areas (IPPA model), we observed 
a slight increase in velocity fluctuations (transition from blue 
shaded area to red shaded area in  Fig. 4A  ). The long travel time 
exponents display a stronger correlation with the Lagrangian veloc-
ity exponents than with Eulerian exponents ( Fig. 4B  ). However, 
they are still well above the prediction of the classical CTRW theory 
(Eq.  4   shown as a dashed red line in  Fig. 4B  ). A dozen simulations 
are consistent with the relationship  a = �L + 0.15 , which includes 
most of the open genetic and Poissonian structures with constant 
fracture transmissivity. For the IPPA structure and for the runs with 
a variable transmissivity model (TSL  and/or CRF ), the long-tail 
exponents a  are also larger than  �L    and appear to follow different 
trends (blue dashed lines in  Fig. 4B  ).        

[3]a = �E + 1,

[4]a = �L.
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 The SIG exponents k , which quantifies the power-law trend for 
the first travel time regime (small to intermediate times), also 
follow a general positive correlation with the Lagrangian velocity 
exponents ( Fig. 4D  ), although with a much larger slope. Hence, 
most of them are larger than three and thus not stable. For the 
most heterogeneous DFN, the SIG exponents are less than three 
and tend to be close to the late time travel time exponents a . In 
the limit where they are identical, the SIG describes the entire 
BTC. The SIG exponents show a negative correlation with the 
channeling factor ( Fig. 4E  ), meaning that stronger channeling 
induces more dispersed travel times in this range of intermediate 
time scales.

 We now investigate how the spatial structure of the velocity 
field affects the transport properties. For this we analyze the cor-
relation of the long travel time exponents with the channeling 
factor f . The latter describes the formation high velocity channels 
that focus a large fraction of the flow. The increase in channeling 
is caused by three main sources of heterogeneity: 1) the DFN 
structure either (Poisson, open genetic, Ippa), 2) the variability in 
transmissivity from one fracture to another (TSL ) and 3) the var-
iability in transmissivity within the fracture plane (CRF). All these 
elements also display significant variability from one realization 

to another.  Fig. 4C   shows the evolution of the long travel time 
exponents as a function of the channeling factor f . The trend 
depends on the DFN structure ( Fig. 4C  ). For the simplest model 
(power-law and constant-size DFN), a  varies over a large range 
over a small range of channeling indicators f . For the most complex 
DFN structure (IPPA), large variations in  f     induce only small, if 
any, variations in  a    with a large scatter from one realization to 
another. For the open genetic models, the long-tail exponent 
increases approximately linearly with  f     ( a = 2.25 +

f −1

25
 ) for all 

transmissivity models T1 and TSL. This trend is counterintuitive 
and opposite to the variations in the intermediate time exponent 
( Fig. 4E  ). It means that more channelized velocity fields lead to 
less anomalous transport. In-plane transmissivity variability (mod-
els T1-CRF and TSL-CRF) induces an increase in channeling but 
without significant changes in the long-time exponents (see brown 
and dark red disks compared to white and yellow disks in  Fig. 4C  ). 
All together, these results indicate that channeling influences 
long-time travel time statistics in unexpected ways. In the follow-
ing, we propose a framework allowing us to decipher the respective 
role of flow heterogeneity and structure in controlling long travel 
time statistics.  
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Fig. 4.   Evolution of the long-tail exponent a as a function of (A) the Eulerian velocity exponent of v−1�
E
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L
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L
 and (E) the channeling factor f. The red dashed lines 

in panels A and B show the classical trends expected from Eqs. 3 and 4 respectively. The red line in panel C shows the trend a = 2.25 +
f − 1

25

 . The legend (Bottom 
row, Right) shows the DFN models. The hatched areas in A include the Poissonian models with both constant-size and power-law fracture sizes (black hatched), 
the open genetic models (blue hatched), and the IPPA models (red hatched), respectively. The pink and brown arrows indicate models with and without in-plane 
transmissivity variations.
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Coupled CTRW model for transport in fracture networks. 
The mismatch between the Lagrangian velocity and travel time 
exponents highlighted in Fig.  4B suggests a breakdown of the 
assumptions used in the classical CTRW framework. While this 
model was recently successfully used to model transport in one 
specific type of fracture network (41), it does not fully hold when 
considered across a broad range of network structures. Following 
the above analysis, we hypothesize that channeling may play a key 
role in this discrepancy.

 The channeling structures of velocity fields in heterogeneous 
media implies that high velocities are organized in long and narrow 
channels while low velocities have more isotropic structures ( 54 , 
 55 ). When considering velocity fluctuations along streamlines, 
the consequence is that large velocities tend to have a larger spatial 
correlation length than low velocities ( 26 ). This effect is generally 
absent in standard CTRW models where the step size is assumed 
to be constant and independent of the particle velocity ( 28 ,  41 , 
 42 ). It can, in principle, be described by the correlated CTRW 
model that quantifies the full velocity transition probability of 
successive velocities experienced by particles. Thus, Kang et al. 
( 39 ) used such spatial Markov process to define two velocity classes 
with distinct correlation properties—stronger correlations for the 
high-velocity class compared to the low-velocity class. They 
observed that this velocity-dependent correlation structure reduces 
anomalous transport compared to cases with velocity-independent 
transitions. However, the physical mechanism behind this process 
and its broader applicability remain unclear.

 To understand and quantify the effect of flow channeling on 
anomalous transport, we introduce here a coupled CTRW model, 
in which the spatial step continuously depends on the particle’s 
velocity. Let us assume that the velocity correlation length, quan-
tified by the step size  �    depends on the velocity as

﻿﻿   

 with μ > 0 the channeling exponent. It quantifies the possibility 
of particles to remain for a longer distance in a high-velocity chan-
nel than in a low-velocity zone. The travel time Δt  over a step size 
﻿�    is therefore:

﻿﻿   

 This leads to:
﻿﻿  

  which differs from the temporal increment statistics assumed in 
current models (SI Appendix, section S10 ). Transport dynamics 
with coupled step size and velocity as proposed in Eq.  5   have been 
studied in the context of Levy walks ( 23 ). However, these theories 
have considered cases where μ < 0, where long travel times take 
longer steps than short travel times. For broadly distributed travel 
times, the latter assumption leads to broadly distributed step sizes 
and thus to a coupling of the Noah and Joseph effects discussed 
above. Here, the relation between step size and duration is 
﻿�∼Δt

−�

1−�  with 0 < μ < 1, leading to a narrow distribution of step 
sizes according to Eq.  5  , so that the Joseph effect is absent.

 The total travel time is the sum of the elementary time steps 
whose distribution is p (Δt ). For  μ <

(3−𝛿L)
2

 , p (Δt ) is stable upon 
summation leading to the long tail exponent for  p(t ) ∼ t−a    with,

﻿﻿  

  Note that, contrary to the usual Levy Walk formulations, the step 
size distribution does influence the long tail exponent here because 
it is sufficiently narrow. We verified the validity of Eq.  8   with ran-
dom walk simulations using a coupled CTRW algorithm

 Using random walk simulations of both the coupled CTRW 
we have validated the predicted scaling heavy tailed scaling  
(Eq.  8  ), confirming its stability with distance (SI Appendix,  
section S11 ). A consequence of Eq.  8   is that for μ > 0,  a >> 𝛿L . 
Hence, the flow channeling mechanism described by Eq.  5   tends 
to reduce anomalous transport. The comparison of the BTC sim-
ulated with the standard CTRW (curve in SI AppendixFig. S9.b, 
section S11  with μ = 0) and the coupled CTRW model (curves 
in Fig. S11b with μ > 0) clearly illustrates the reduction of anom-
alous transport by flow channeling (Eq. 10 in SI Appendix,  
section S11 ), described here by increasing the value of the coupling 
exponent μ. When the channeling exponent μ is large enough, 
i.e.,  𝜇 >>

(3−𝛿L)
2

 , this can even breakdown the stability of anoma-
lous transport since a  > 3, leading to a transition to Fickian 

[5]� ∼ v�,

[6]Δt ≈
�

v
∼ vμ−1.

[7]p(Δt ) = p(v)
dv

dΔt
∼ Δt

�L−�

1−� ,

[8]a =
�L − �

1 − �

.
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Fig. 5.   (A) the Lagrangian velocity exponent �
L
 as a function of the Eulerian velocity exponent �

E
 (dots) with the reference lines y = x + 1 (solid line) and y = x + 

1 ± 0.05 (dashed lines). (B and C) Channeling exponent μ calculated from Eq. 9 as a function of the channeling intensity factor f (B) and the Lagrangian velocity 
exponent. (C) The dashed lines in B are y = 0.01x and y = 0.03x. The oblique lines in C are iso-values of the long-tail exponent α according to Eq. 9; the yellow top 
right corner area corresponds to nonanomalous transport (α > 3). The DFN model symbols are the same as shown in the legend of Fig. 4.
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transport (in SI Appendix, Fig. S9.b ). The coupled CTRW model 
hence provides a general framework for understanding and quan-
tify the effect of the velocity field’s spatial structure on anomalous 
transport dynamics through the coupling exponent μ. The qual-
itative similarity with the results of the two velocity-class spatial 
Markov model of Kang et al. ( 39 ) suggests a potential for relating 
the correlated CTRW and coupled CTRW models in a unified 
framework.

 We hypothesize that the velocity-dependent correlation induced 
by channeling may explain the discrepancy betweent transport 
exponent a  and the Lagrangian exponent  �L  predicted to be equal 
in the standard CTRW framework ( 41 ,  42 ). From Eq.  8  , 
we deduce:

﻿﻿   

 In our series of simulations, μ varies between 0.05 and 0.3 and 
increases with channeling ( Fig. 5 B  and C  ). The rate of increase 
between μ and the channeling factor f  depends on the transmis-
sivity model (dashed lines in  Fig. 5B  ). On average, models, it is 
greater for models with constant transmissivity (T 1) than for those 
with transmissivity that varies across the network from a fracture 
to next (TSL , T 1&CRF , TSL &CRF ). The flow channeling model 
of Eq.  5   thus provides a mechanism for transport exponents to be 
larger than the velocity exponents ( Figs. 4 A  and B   and  5C  ). This 
leads to less anomalous transport than expected from current 
anomalous transport theories.           

Discussion

 In this study, we have used a large DFN model database to analyze 
the structural and hydrodynamic controls of fluid travel time dis-
tributions across a range of fracture networks. across the range of 
investigated fracture structures or transmissivity variabilities, travel 
time distributions exhibit a generic two-regime travel time distri-
bution. For small to intermediate times, travel time distributions 
follow a SIG. At late times, we identify a transition between the 
SIG and a power law trend, whose exponent gives a large weight 
to very long travel times. Although it represents a small mass, the 
contribution of this long-tail power law on the dispersion is dis-
proportionately large. The long-tail exponent can therefore be 
used as a metric to evaluate the anomalous nature of transport.

 Analyzing the transport statistics along particle trajectories, we 
have shown that the observed anomalous transport dynamics are 
mostly driven by the Noah effect, i.e., the abnormally high occur-
rence of very small velocities. Hence, the travel time of a trans-
ported particle is generally dominated by one extreme event 
characterized by the occurrence of a very low velocity at a specific 
fracture visited by this particle. We have shown that these low 
velocities are mostly driven by the occurrence of low hydraulic 
head gradients and not so much by low fracture transmissivities. 
It remains an open question as to which properties of the DFN 
control the head distribution at the intersections, but studies on 
equivalent graphs suggest that the network topology exerts a strong 
control on it ( 83 ,  84 ).

 The heterogeneity in fluid velocities increases with the com-
plexity, and realism, of fracture networks. However, for a given 
network structure, there is surprisingly low variability in Eulerian 
velocity statistics ( Fig. 4A  ), even when including fracture aperture 
fluctuations either at network or fracture scale. Consistently with 
the identified predominant role of hydraulic head gradients, 
Eulerian velocity statistics are mainly governed by the network 
topology, and are, to some extent, independent on the transmis-
sivity model. This gives a special emphasis to the topology of the 
DFN with respect to other parameters ( 57 ,  85 ).

 In contrast to recent findings that focused on a specific DFN 
structure ( 41 ), there is no clear link between the exponents char-
acterizing the Eulerian velocity and travel time statistics when 
analyzing all networks together ( Fig. 4A  ). We identified two 
mechanisms to explain this. The first mechanism is the sampling 
of the velocity field by transported particles. Aperture fluctua-
tions alter the standard flux weighting law ( 28 ) ( Fig. 5A  ) and 
can either give more weight to large velocities (open genetic mod-
els) or to low velocities (IPPA models). This significantly disperses 
the Lagrangian velocity exponent compared to the narrow range 
of Eulerian velocity exponents ( Fig. 5A  ). The second mechanism 
is the channeling of the velocity field, which results in shorter 
distances spent by particles in low-velocity regions than in 
high-velocity channels, as quantified by Eq.  8  . The counterintu-
itive consequence is that channeling, i.e., the localization of large 
velocity areas in elongated channels, induces less anomalous trans-
port for given point velocity statistics. This is quantified by the 
flow channeling exponent μ, which tends to decrease the impact 
of point velocity statistics on anomalous transport, as quantified 
by Eq.  8  . Although there is some scatter, this exponent shows a 
positive correlation with the channeling factor f  ( Fig. 5B  ), con-
firming the physical interpretation of this process.

 These mechanisms are quantified by a coupled CTRW framework 
that captures the respective role of point velocity statistics, charac-
terized by the Lagrangian velocity exponent, and flow structure, 
characterized by the channeling exponent ( Fig. 5C  ). Networks with 
enhanced flow heterogeneity are generally more channelized due to 
flow conservation. Hence, the two mechanisms tend to compensate 
each other, leading to similar transport exponents for networks with 
different degrees of heterogeneity ( Fig. 5C  ). Introducing aperture 
fluctuations tends to increase flow channeling ( Fig. 5B  ), leading 
generally to less anomalous transport ( Fig. 5C  ). This counterintuitive 
effect hence provides a mechanism controlling anomalous transport 
in fractured media. This conclusion may be dependent on the type 
of considered injection mode. For instance, a resident injection may 
lead to an oversampling of low velocity zones, which, in the case of 
highly channeled flows, may enhance anomalous transport.

 These findings establish a general framework for linking flow 
heterogeneity and structure to transport dynamics across a wide 
range of fracture networks. They also highlight the need to inves-
tigate how fracture network structures control velocity field prop-
erties and trap formation driven by low hydraulic head gradients. 
The q-model originally developed to quantify the force fluctua-
tions in random bead packs ( 86 ), and applied by some of us to 
brain microvascular networks could possibly explain why low head 
gradients form and how they relate to the network topology ( 87 ). 
Similarly, percolation theory and its extension, the Critical Path 
Analysis, may provide a rationale for the control of network struc-
ture and heterogeneity on velocity field properties, following the 
methodologies developed in the context of porous media ( 45 ,  47 ).

 In summary, for most of the DFN consistent with field data, 
transport is anomalous in the sense that dispersion is controlled by 
the longest travel time, and the BTC results mostly from the “Noah” 
effect (abnormally high occurrence of very small velocities). Velocity 
correlation properties resulting from channeling lead to a break-
down of expected relationships between velocity and transport sta-
tistics. Surprisingly, this implies that channeling reduces the impact 
of low velocities on anomalous transport. This study has covered a 
range of models more than any other study (see refs.  1 ,  36 ,  38 ,  41 , 
 56 , and  88       – 92 ). Nevertheless, despite our caution to extract con-
clusions as general as possible, we do not exclude the possibility that 
specific DFN configurations may diverge from these generic dynam-
ics. Note also that we have considered here fluid travel times esti-
mated from advective transport simulations. In the future, these 

[9]� = (a − �L)∕(a − 1).
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dynamics should be investigated with coupled advection–diffusion, 
hence opening opportunities to understand solute dispersion in 
fracture networks across different Peclet number regimes.    

Data, Materials, and Software Availability. The probability distributions of 
travel time, Eulerian and Lagrangian velocities for all calculated DFNs as well as 
the simulation data have been deposited in Gitlab (https://gitlab.com/fractorylab/
saft-project) (72).
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