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Computational Fluid Dynamics - Discrete Element Method (CFD-DEM) is a powerful approach to 
simulate particulate flow in porous media at the pore-scale, and hence decipher the complex 
interplay between particle transport and retention. Two separate CFD-DEM approaches are 
commonly used in the literature: the unresolved (particle smaller than the grid cell size) and 
the resolved (particle bigger than the grid cell size) approach. In this paper, we propose a novel 
CFD-DEM coupling approach that combines both unresolved and resolved coupling. Our new 
modeling technique allows for the simulation of particulate flows in complex pore morphology 
characteristic of porous materials. It relies on an efficient searching strategy to find grid cells 
covered by the particles and on an appropriate calculation of the fluid-solid momentum exchange 
term. The robustness and efficiency of the computational model are demonstrated using cases 
for which reference solutions – analytical or experimental – exist. The new unresolved-resolved 
four-way coupling CFD-DEM is used to investigate pore-clogging and permeability reduction due 
to the sieving and bridging of particles.

1. Introduction

There is a growing interest in simulating particulate flow in porous media at pore-scale [1–3]. Applications include diesel partic-
ulate filters [4,5], filtration of solid aerosols [6], groundwater treatment [7,8], production and injection of fluids in the subsurface 
in geothermal operations [9,10], carbon dioxide storage in underground reservoirs [11], and rock-based hydrogen production and 
storage [12,13]. In porous media, particles are suspended in a carrier fluid or attached at the fluid-solid interface clogging the pores 
[14–16]. Pore-clogging can be a desired phenomenon in filtration processes as it increases filter efficiency [17], or on the contrary, 
an unwanted effect during subsurface exploitation because it induces permeability damage near wellbore that reduces drastically the 
operating times [18].

The heterogeneity of porous media structure made of a network of pores of various sizes and shapes leads to complex feedback 
between particle transport, deposition, and pore-clogging. The description of the clog formation at the pore-scale – where the pore 
space is fully resolved – enables to decipher and characterize these processes [19]. Three mechanisms are responsible for pore-
clogging: (i) sieving, (ii) bridging, and (iii) aggregation of particles [20]. Sieving refers to the blockage of particles based on size 
exclusion. Bridging consists in the formation of bridge-like structures composed of a few particles arriving at the same time at the 
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pore entrance in which the flow is converging. Aggregation of particles results from successive depositions of colloidal particles driven 
by long-range electrochemical forces between the fluid, particles, and the solid surface [21]. Thus, a good comprehension of those 
clogging mechanisms passes through an accurate method for modeling particle transport at the pore-scale. In this paper, we focus on 
the first two mechanisms (sieving and bridging) that depend only on hydromechanical forces.

Several computational approaches exist in the literature for solving the carrier fluid flow combined with particulate transport in 
porous media. They are divided into two main families: Euler-Lagrange and Euler-Euler. In the first one, the fluid flow is solved on an 
Eulerian grid, and the particles are tracked individually using a Lagrangian frame [22]. In the second one, the motion of the particles is 
described by continuum equations solved on the Eulerian grid. Accurate Euler-Euler models for simulating particle retention in porous 
media up to pore-clogging are still scarce because the description of deposition and plugging relies on constitutive relationships that 
depend on the physicochemical properties of the suspension [23]. Euler-Lagrange approaches based on the Discrete Element Method 
(DEM) resolve the hydrodynamic interactions between the fluid and the particles and the mechanical contacts between the particles. 
In this kind of model, the fluid flow can be solved by the Lattice-Boltzmann (LBM) method or by Navier-Stokes equations using 
Computational Fluid Dynamics (CFD) including the Finite Volume Method. For example, Li and Prigiobbe [24] and Zhou et al. [25]
used an LBM-DEM approach coupled with an Immersed Boundary Method (IBM) for the migration of fine particles. CFD-DEM is 
commonly used to simulate particle motion and its feedback on the flow [26].

State-of-the-art Euler-Lagrange methods including CFD-DEM rely on the so-called four-way coupling which states that the fluid 
transports the particles, the presence of particles impacts the fluid flow, and particle-particle and particle-wall interactions are con-
sidered [27]. Two different fluid-particle coupling approaches exist whether particle diameter, 𝐷𝑝 , is bigger or not than the grid size, 
Δ𝑥. On the one hand, the unresolved coupling approach is used if the particle size is smaller than the grid resolution. The drag force 
between fluid and particle is calculated using a sub-grid model. On the other hand, in resolved coupling, the particle size is bigger 
than the grid resolution and the fluid-particle shear stress forces acting on the particle are an output of the simulation. LBM-DEM 
is not commonly used for unresolved particles because the locality of LBM calculation is lost and numerical issues may occur when 
particles are close to each other [28]. Su et al. [29] and Elrahmani et al. [30] use resolved CFD-DEM to simulate sieving and bridging 
mechanisms. Nan et al. [31] use a coupled Volume Of Fluid method with DEM to investigate clogging mechanisms during concrete 
seepage under multiphase flow (water+air) with comparison to experiments. For good accuracy of their model, they need cells 3 to 
6 times larger than particle sizes to satisfy the relative size requirement.

Limitations exist in both resolved and unresolved approaches (see Table 1). Pirker et al. [32], Marshall and Sala [33] reported 
that unresolved coupling leads to significant errors and instabilities if 𝐷𝑝∕Δ𝑥 > 1∕3. Despite its faster calculation time, this approach 
presents discontinuities in the calculation of the particle velocity because the particle oscillates when it crosses two adjacent cells 
that have different fluid velocities [34]. Importantly, sieving cannot be simulated using unresolved coupling because the grid size is 
necessarily smaller than the pore-throat and particle size. In resolved coupling, the size ratio has to be at least 𝐷𝑝∕Δ𝑥 > 10 to ensure 
an accurate resolution of the particle surface on the Eulerian grid [35,3]. This results in large computational times that increase with 
the particle number which limits this method for simulating large quantities of particles. Moreover, the complexity of the porous 
geometry with pores of different sizes often requires computational grids made of cells with different sizes, and the same particle 
might be resolved in some parts of the domain and unresolved in others.

Some approaches intend to overcome the aforementioned limitations by developing hybrid unresolved-resolved approaches. For 
example, the semi-resolved CFD-DEM described in Wang et al. [36] corrects the fluid velocity around the particle and the volume 
fraction in the drag force model using kernel-based approximations. Their model half-theoretical half-empirical leads to inaccurate 
calculations of the fluid-particle forces for dense suspensions of large particles. Kuruneru et al. [37] proposed a mixed resolved-
unresolved CFD-DEM approach that uses an immersed boundary method (IBM), a specific contact handling algorithm to compute 
particle contact forces, and a Brinkman penalization technique for the momentum sink term of the fluid phase. However, their model 
works only for regular grids which is limiting for heterogeneous porous media with confined pores.

In this work, we introduce a novel hybrid unresolved-resolved CFD-DEM four-way coupling method to simulate particulate flows 
in porous media at the pore-scale with a cloud of spherical, rigid particles as the dispersed phase. The proposed model includes a drag 
force to encounter both particles resolved and unresolved, the associated hydrodynamic torque, an algorithm for identifying particle-
fluid cells, and a diffusive layer to smooth the particle-fluid interface. The paper is organized as follows. In section 2, we describe 
the governing equations of the fluid and particles and the coupling algorithms. In section 3, we show the accuracy, consistency, and 
efficiency of our approach using cases for which reference solutions exist. Then, in section 4, we use our new CFD-DEM approach to 
investigate clogging mechanisms due to the injection of particles in porous media. Finally (section 5), we close with a summary and 
concluding remarks.

2. Computational model

In this section, we present our new resolved-unresolved four-way coupling CFD-DEM. First, we introduce the CFD approach to 
model fluid flow in an Eulerian grid (Section 2.1). Then, we introduce the DEM approach to simulate the particle displacement in a 
Lagrangian frame (Section 2.2). Finally, we show our strategy to couple CFD and DEM together (Section 2.3).

2.1. Fluid motion in the CFD Eulerian grid

The Eulerian computational grid is used to solve fluid flow accounting for the presence of the particles. The latter is described by 
2

a local porosity field 𝜖, defined as,
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Table 1

Features of the resolved, semi-resolved [36], unresolved and unresolved-resolved CFD–DEM. DNS = Direct Numerical Simulation, FVM = Finite 
Volume Method.

Resolved 
CFD-DEM

Semi-resolved 
CFD-DEM

Unresolved 
CFD-DEM

Unresolved-resolved 
CFD-DEM

Particle surface Resolved Not resolved Not resolved Resolved for 𝐷𝑝∕Δ𝑥 ≥ 1 and unresolved 
for 𝐷𝑝∕Δ𝑥 < 1

Particle-fluid force Particle-resolved DNS Drag force model Drag force model Combined particle-resolved DNS and 
drag force model

Background velocity Fluid velocities 
resolved in FVM cells

Fluid velocities 
resolved in 
neighboring FVM 
cells

Fluid velocities in the 
local FVM cell only

Fluid velocities calculated in FVM cells 
around resolved particles and in local 
FVM cells for unresolved particles

Particle to cell 
ratio 𝐷𝑝∕Δ𝑥

> 10 ≃ 1 < 1∕3 No restriction

Fig. 1. Mapping of the porosity field, 𝜖, on the Eulerian grid for resolved particles (a) and for unresolved particles (b).

𝜖 =
⎧⎪⎨⎪⎩
1, if the cell is occupied by fluids only,

]0,1[, if the cell contains a fluid-solid aggregate or a fluid-solid interface,

0, if the cell is occupied by solids only.

(1)

The two situations illustrated in Fig. 1 can exist concomitantly whether the particle diameter is larger or smaller than the cell size. 
On the one hand, in unresolved cases (see Fig. 1.b), particles are smaller than the cell size. A cluster of particles can occupy a 
computational cell and in this case, 𝜖 ∈ ]0,1[. On the other hand, in resolved cases (see Fig. 1.a), the particle is larger than the 
cell size, and its shadow covers an ensemble of cells. The particle shadow is obtained by a projection on the Eulerian-covered cells 
identified through a searching algorithm described in Section 2.3.1. In this situation, intermediate values of the phase indicator 
𝜖 ∈ ]0,1[, correspond to cells occupied by the fluid-particle interfaces. If a cell is fully covered by a particle, we impose a minimum 
porosity value, 𝜖𝑚𝑖𝑛 = 0.001, instead of 𝜖 = 0 to have flow equations defined everywhere in the computational domain regardless of 
the cell content [38].

The fluid motion is modeled by solving incompressible Volume-Averaged Navier-Stokes (VANS) equations [39,40]. The mass 
balance equation for the fluid phase reads

𝜕(𝜖𝜌𝑓 )
𝜕𝑡

+∇.(𝜖𝜌𝑓v𝑓 ) = 0, (2)

where 𝜌𝑓 is the fluid density, and v𝑓 is the cell-averaged fluid velocity and 𝑡 is the time.
The fluid momentum balance equation is:

𝜕(𝜖𝜌𝑓v𝑓 )
𝜕𝑡

+∇.(𝜖𝜌𝑓v𝑓v𝑓 ) = −𝜖∇𝑝+ 𝜖𝜌𝑓g + 𝜖∇.(𝜇𝑓 (∇v𝑓 + (∇v𝑓 )⊺) − 𝜖2𝜇𝑓 (v𝑓 − v
𝑝)∕𝐾, (3)

where 𝑝 is the fluid pressure, 𝜇𝑓 is the fluid dynamic viscosity, g is the gravitational acceleration, v𝑝 is the averaged particle velocity 
on the Eulerian grid, and 𝐾 is the local cell-permeability. The operator (⋅)⊺ refers to the transpose of the matrix. The last term of 
3

the right-hand side is a drag force corresponding to the flow resistance due to the presence of particles. VANS momentum tends 
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Fig. 2. Illustration of the forces acting on particle 𝑖 from contacting particle 𝑗 and the wall 𝑤.

asymptotically towards the Navier-Stokes equation in regions that contain fluid only (𝜖 = 1 and the drag force vanishes) and toward 
Darcy’s law in cells containing fluid-solid aggregates (0 < 𝜖 < 1) because inertia and viscous dissipation are negligible in front of the 
drag force [41].

The transition between these two asymptotic behaviors is obtained using a cell-permeability that varies with the cell porosity in a 
way that 𝐾−1 ←←→ 0 if 𝜀 = 1 and to a finite value if 𝜖 < 1. In the latter case, 𝐾 is determined differently whether the cell is occupied by 
resolved or unresolved particles. In resolved cases, particles are seen as low-porosity (𝜖 = 𝜖𝑚𝑖𝑛) low-permeability media and the drag 
force acts as a penalization term to drop the velocity within the occupied cells near zero value and to approach no-slip condition on 
the particle-fluid interfaces [42,43]. In this case, 𝐾 is calculated using a modified Kozeny-Carman formula [44],

𝐾 =𝐾0
𝜖3

(1 − 𝜖)2
, (4)

where 𝐾0 is a sufficiently low given permeability. In unresolved cases, 𝐾 is the permeability field of the ensemble of particles seen 
as a porous medium and obtained using the drag forces applied on particles (see section 2.2.1).

2.2. Particle motion in the DEM Lagrangian frame

The motion of a cloud of particles is solved in a Lagrangian frame using a four-way coupling Discrete Element Method (DEM). In 
this approach, the particle flow is driven by interactions with the carrier fluid, and particle-particle and particle-wall interactions. 
The total velocity, v𝑝

𝑖
, of particle 𝑖 reads,

v
𝑝

𝑖
= U

𝑝

𝑖
+𝝎𝑖 × r𝑖, (5)

where U𝑝

𝑖
and 𝝎𝑖 are the translational and the angular velocity of particle 𝑖, respectively, and r𝑖 is the position vector. The description 

of the translational and rotational motions in DEM is based on Newton’s second law applied to a spherical particle of mass 𝑚𝑖 and 
moment of inertia 𝐼𝑖 in contact with 𝑗 objects (𝑗 = 1, 2, .., 𝑛𝑐

𝑖
particles and walls). The balance of forces is illustrated in Fig. 2. We 

have [45]:

𝑚𝑖

𝑑U
𝑝

𝑖

𝑑𝑡
=

𝑛𝑐
𝑖∑
𝑗

F𝑐
𝑖𝑗
+ F

𝑓

𝑖
+ F

𝑔

𝑖
, (6)

and,

𝐼𝑖
𝑑𝝎𝑖

𝑑𝑡
=

𝑛𝑐
𝑖∑
𝑗

M𝑐
𝑖𝑗
+ M

ℎ𝑦𝑑

𝑖
, (7)

where F𝑓

𝑖
and F𝑔

𝑖
are the particle-fluid interactions and gravitational forces acting on particle 𝑖 at time 𝑡, respectively. F𝑐

𝑖𝑗
, M𝑐

𝑖𝑗
and 

M
ℎ𝑦𝑑

𝑖
are the contact forces, the contact torques, and the hydrodynamic torque acting on particle 𝑖, respectively. 𝑛𝑐

𝑖
is the number of 

objects (particles and walls) in contact with particle 𝑖 at time 𝑡. All these forces and torques are described in the following.

2.2.1. Hydrodynamic forces

In the four-way approach, the surrounding fluid in contact with a particle creates particle-fluid interactions on the particle 𝑖
4

among which the drag, the pressure gradient, the virtual mass, and the lift forces. We only considered the drag force. The drag force 
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Table 2

Different formulations of the fluid-solid momentum exchange coefficient 𝛽 are implemented, where 𝐶𝑑 is the 
drag coefficient, 𝑅𝑒𝑝 is the particle Reynolds number, 𝐷𝑝,𝑖 is the diameter of particle 𝑖 and 𝑉𝑝,𝑖 is the volume of 
particle 𝑖.

𝛽 formulation Description

Stokes law 𝛽 = 3𝜋𝜇𝑓𝐷𝑝,𝑖
(1−𝜖)
𝑉𝑝,𝑖

, and 𝑅𝑒𝑝 = 𝜌𝑓 |v𝑓 − v
𝑝

𝑖
| 𝐷𝑝,𝑖

𝜇𝑓

For a single particle with 
𝑅𝑒𝑝 < 1

Kozeny-Carman law 𝛽 = 180 (1−𝜖)3

𝜖2

𝜇𝑓

𝐷2
𝑝,𝑖

For dense suspensions 
(𝜖 < 0.8) and 𝑅𝑒𝑝 < 1

Ergun law [46] 𝛽 = 150 (1−𝜖)2

𝜖

𝜇𝑓

𝐷2
𝑝,𝑖

+ 1.75 (1 − 𝜖) 𝜌𝑓

𝐷𝑝,𝑖

|v𝑓 − v
𝑝

𝑖
| For dense suspensions 

(𝜖 < 0.8) and 𝑅𝑒𝑝 > 1

Wen and Yu law [47] 𝛽 = 3
4
𝐶𝑑

𝜖(1−𝜖)
𝐷𝑝,𝑖

𝜌𝑓 |v𝑓 − v
𝑝

𝑖
|𝜖−2.65 , with 

𝐶𝑑 =

{ 24
𝑅𝑒𝑝

(1 + 0.15𝑅𝑒0.687
𝑝

) if 𝑅𝑒𝑝 ≤ 1000,
0.44 if 𝑅𝑒𝑝 > 1000.

For dilute suspensions 
(𝜖 ≥ 0.8)

applied on particles is calculated through the appropriate porosity-permeability relationship if particles are unresolved and with the 
summation of the stress divergence terms over the cells containing the particle for resolved coupling. We have,

F
𝑓

𝑖
=
⎧⎪⎨⎪⎩
𝑉𝑝,𝑖𝛽

(
v𝑓 − v

𝑝

𝑖

) 1
(1−𝜖) , if unresolved coupling.∑𝑛𝑘

𝑘
𝑉𝑐,𝑘

(
1 − 𝜖𝑘

)(
−𝜌𝑓∇𝑝𝑘 +∇.𝝉𝑘

)
, if resolved coupling.

(8)

where 𝑛𝑘 is the total number of cells covered by the particle 𝑖, 𝑉𝑐,𝑘 the volume of cell 𝑘, 𝝉𝑘 = 𝜇𝑓 (∇v𝑓 + (∇v𝑓 )⊺) the fluid shear-rate 
tensor of cell 𝑘, 𝑝𝑘 and 𝜖𝑘 the fluid pressure and the porosity in cell 𝑘, 𝑉𝑝,𝑖 the volume of the particle 𝑖, and 𝛽 is the fluid-particle 
momentum exchange coefficient. In the code, we implemented different formulations to calculate the fluid-solid momentum exchange 
coefficient (see Table 2).

The gravitational force for a spherical particle considering buoyancy effects reads,

F
𝑔

𝑖
= 4

3
𝜋𝜌𝑖𝑅

3
𝑖
g − 4

3
𝜋𝜌𝑓𝑅

3
𝑖
g =𝑚𝑖g

(
1 −

𝜌𝑓

𝜌𝑖

)
, (9)

where 𝜌𝑖, is the particle’s density and 𝑅𝑖 is the particle’s radius.

2.2.2. Contact forces

A particle can be in contact with other particles (particle-particle interactions) or with walls (particle-wall interactions). We 
consider rigid spherical particles, and the contact between two elements is not at a single point but a finite area corresponding to the 
overlapping of the two objects [27]. The overlapping distance obeys the Hertzian spring-slider-dashpot model [48,26] in which the 
spring realizes the elastic deformation, the dashpot realizes the viscous dissipation, and the slider realizes the frictional dissipation. 
These effects act on particles through the stiffness 𝑘, the damping coefficient 𝜂, and the friction coefficient 𝜇. These parameters are 
based on particle properties including radius, mass, Poisson coefficient, and Young modulus (see Table 3). The contact force F𝑐

𝑖
has 

two components – a normal and a tangential – described as follows:

(a) Normal component
The normal component of the inter-particle and particle-wall contact (F𝑐

𝑛𝑖𝑗
) acting on particle 𝑖 in contact with object 𝑗 (particle 

or wall) is given by the sum of the forces related to the spring and dashpot

F𝑐
𝑛𝑖𝑗

= (−𝑘𝑛𝑖𝑗 |𝜹𝑛𝑖𝑗 |3∕2 − 𝜂𝑛𝑖𝑗v
𝑝

𝑖𝑗
⋅ n𝑖𝑗 )n𝑖𝑗 , (10)

where 𝑘𝑛𝑖𝑗 and 𝜂𝑛𝑖𝑗 are respectively the equivalent normal stiffness and damping coefficients of particles 𝑖 with object 𝑗. |𝜹𝑛𝑖𝑗 | is 
the normal overlapping distance given by,

|𝜹𝑛𝑖𝑗 | ={
𝑅𝑖 +𝑅𝑗 − |p𝑗 − p𝑖|, for particle-particle contact,

𝑅𝑖 − |p𝑖 − p𝑤|, for particle-wall contact,
(11)

where p𝑖 and p𝑗 are the position vector of particle 𝑖 and 𝑗, respectively. The vector p𝑤 corresponds to the nearest point to p𝑖

located on the wall. The relative velocity, v𝑝

𝑖𝑗
, is given by v𝑝

𝑖𝑗
= v

𝑝

𝑖
−v

𝑝

𝑗
, where for a wall, v𝑝

𝑗
is the slip velocity of any sphere-wall 

contact point. The unit vector n𝑖𝑗 points either from the center of particle 𝑖 to that of particle 𝑗 in particle-particle contact, or 
points from the wall to the computational domain and is normal to the wall for particle-wall contact.

(b) Tangential component
The tangential component of the particle-particle and particle-wall forces (F𝑐

𝑡𝑖𝑗
) acting on particle 𝑖 depends on the tangential 
5

overlap, 𝜹𝑡𝑖𝑗 , and on the tangential slip velocities, v𝑝

𝑡𝑖𝑗
, according to
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Table 3

Parameters for the DEM model. For the equivalent quantities, the case of particle-wall 
interaction is obtained assuming that the wall has infinite radius and mass. 𝜈 is the 
Poisson’s ratio, E is the Young modulus and 𝛼 is given by the coefficient of elasticity.

Parameter Equation

Equivalent normal stiffness 𝑘𝑛𝑖𝑗 =
4
3
√

𝑟𝑖𝑗𝐸𝑖𝑗

Equivalent normal damping coefficient 𝜂𝑛𝑖𝑗 = 𝛼 𝛿0.25
𝑛𝑖𝑗

√
𝑚𝑖𝑗𝑘𝑛𝑖𝑗

Equivalent tangential stiffness 𝑘𝑡𝑖𝑗 = 8𝐺𝑖𝑗

√
𝑟𝑖𝑗 𝛿𝑛𝑖𝑗

Equivalent tangential damping coefficient 𝜂𝑡𝑖𝑗 = 𝜂𝑛𝑖𝑗

Equivalent Young modulus 𝐸𝑖𝑗 =
(

1−𝜈2
𝑖

𝐸𝑖

+
1−𝜈2

𝑗

𝐸𝑗

)−1

Equivalent shear modulus 𝐺𝑖𝑗 =
(

2
(
1+𝜈𝑖

)(
2−𝜈𝑖

)
𝐸𝑖

+ 2
(
1+𝜈𝑗

)(
2−𝜈𝑗

)
𝐸𝑗

)−1

Equivalent mass 𝑚𝑖𝑗 =
(

1
𝑚𝑖

+ 1
𝑚𝑗

)−1

Equivalent radius 𝑟𝑖𝑗 =
(

1
𝑅𝑖

+ 1
𝑅𝑗

)−1

F𝑐
𝑡𝑖𝑗

= −𝑘𝑡𝑖𝑗𝜹𝑡𝑖𝑗 − 𝜂𝑡𝑖𝑗v
𝑝

𝑡𝑖𝑗
, (12)

where 𝑘𝑡𝑖𝑗 and 𝜂𝑡𝑖𝑗 are the tangential equivalent stiffness and damping coefficients of particle 𝑖 with object 𝑗. The formula for the 
tangential overlap 𝜹𝑡𝑖𝑗 for particle-particle and particle-wall contacts is found on [49]. The tangential slip velocities are given by 
v
𝑝

𝑡𝑖𝑗
= v

𝑝

𝑖𝑗
− (v𝑝

𝑖𝑗
⋅ n𝑖𝑗 )n𝑖𝑗 + (𝑅𝑖𝝎𝑖 +𝑅𝑗𝝎𝑗 ) × n𝑖𝑗 . Notes that for particle-wall contact with immobile walls, 𝝎𝑗 = 0.

If the relation, |F𝑐
𝑡𝑖𝑗
| ≥ 𝜇|F𝑐

𝑛𝑖𝑗
|, is satisfied with 𝜇 the friction coefficient, then particle 𝑖 is sliding over object 𝑗 and the tangential 

force is modeled by Coulomb-type sliding friction,

F𝑐
𝑡𝑖𝑗

= −𝜇 ||||||F𝑐
𝑛𝑖𝑗

|||||| 𝜹𝑡𝑖𝑗||||||𝜹𝑡𝑖𝑗 |||||| . (13)

To reduce the computational costs, we consider that only the objects 𝑗 (particles and walls) within a kernel centered on the 
centroid of particle 𝑖 and with a radius equal to the particle diameter are candidates for particle-particle and particle-wall 
interactions. If an object 𝑗 covers a cell that is overlapping with that radius, the object 𝑗 is added to the interactions list of 
particle 𝑖.

2.2.3. Torques

The torque due to inter-particle and particle-wall contacts acting on a particle 𝑖 is,

M𝑐
𝑖𝑗
=𝑅𝑖n𝑖𝑗 × F𝑐

𝑡𝑖𝑗
. (14)

Rolling is the dominant hydrodynamic mechanism that can cause particle removal from a wall under laminar flow. For an un-
resolved particle, the hydrodynamic torque is calculated when approaching an object 𝑗. For a resolved particle, the hydrodynamic 
torque is calculated over the cells covered by its shadow. The influence of the hydrodynamic shear on particle 𝑖 is given by

M
ℎ𝑦𝑑

𝑖
=
⎧⎪⎨⎪⎩
1.4 𝑅𝑖 n𝑖𝑗 × F

𝑓

𝑖
, if unresolved coupling,∑𝑛𝑘

𝑘
s𝑘 × 𝑉𝑐,𝑘

(
1 − 𝜖𝑘

)(
−𝜌𝑓∇𝑝𝑘 +∇.𝝉𝑘

)
, if resolved coupling,

(15)

where s𝑘 is the position vector relative to the particle 𝑖 center and pointing to the center of the covered cell 𝑘. As the velocity increases 
with the distance from the obstacle, Torkzaban et al. [50] pointed out that the drag force effectively acts on the particle at a distance 
equal to 1.4 𝑅𝑖.

2.3. CFD-DEM coupling strategy and numerical implementation

The unresolved-resolved four-way coupling CFD-DEM is implemented within the open-source finite-volume toolbox OpenFOAM 
version 9 (https://www .openfoam .org). Our implementation is built on top of the existing denseParticleFoam solver coupled with 
the OpenFOAM internal DEM package to simulate dense particle packing. This solver has strong limitations for simulating particle 
transport in porous media at the pore-scale. First, it uses an unresolved approach. Second, numerical instabilities occur when particles 
cross the Eulerian cell faces. In addition to the DEM model in which we implemented the unresolved-resolved hydrodynamic drag and 
torque described in Section 2.2, we developed an efficient searching algorithm to identify the Eulerian cells covered by the shadow 
of the resolved particles (Sec. 2.3.1), we implemented a velocity-pressure solution algorithm free of numerical errors when a particle 
centroid crosses a cell face (Sec. 2.3.2), and we constrained the time-stepping with appropriate stability criteria (Sec. 2.3.3). The 
detailed algorithmic procedure of the unresolved-resolved four-way coupling CFD-DEM is illustrated in Fig. 3. Below is a step-by-step 
6

guide on how the coupling is made. (i) The coupling strategy is based on the four-way coupling: this includes both particle-fluid 

https://www.openfoam.org
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Fig. 3. Detailed flowchart of the numerical procedure for solving the unresolved-resolved four-way coupling CFD–DEM. At t = 0, we set appropriate boundary 
conditions for the fluid and we define the particle-boundary interactions. Within a time-step, the CFD solver: i) updates the particle position and the associated volume 
fraction and momentum transfer term, ii) solve the pressure-velocity coupling using a PIMPLE algorithm. The particle position is obtained by the DEM package that 
computes collisions and force balance for every particle. The coupling between CFD and DEM is done by projecting the particle presence (i.e. volume fraction) onto 
the fixed grid using the search algorithm. The drag force applied on particles is computed differently either the particle is resolved or unresolved.

interactions and particle-particle collisions and is often required in systems with dense particle suspensions or granular flows. (ii)
The model uses particle-to-fluid coupling: the DEM solver computes particle positions, velocities, and forces (e.g., from collisions), 
and updates the fluid with the momentum transfer or volume displacement caused by the particles. This affects the fluid flow fields 
in the CFD solver. (iii) Coupling time step: typically, the CFD solver takes larger time steps than the DEM solver (since DEM involves 
particle collisions, the time step for the DEM solver is often much smaller than for the CFD solver to resolve collisions accurately). 
After every CFD time step, the DEM solver may perform multiple sub-steps. After each complete DEM step, the results are fed back 
into the CFD solver.

2.3.1. Mapping the resolved/unresolved local porosity: searching strategy of covered cells
A key aspect of the CFD-DEM coupling is the projection of the particle presence onto the Eulerian grid. In unresolved cases, the 

particle is smaller than the grid size and the local porosity is lower than 1. In a resolved case, the particle shadow covers an ensemble 
of cells. In both cases, the local porosity within a cell is obtained by calculating the sum of each volume of particle contained in the 
cell using

𝜖 = 1 −
∑

𝑗 Δ𝑉𝑝,𝑗

𝑉𝑐

, (16)

where Δ𝑉𝑝,𝑗 is the volume of each particle 𝑗 contained within the cell, and 𝑉𝑐 is the cell volume. In CFD-DEM, the cell label in which 
a particle centroid is located is an attribute of the particle. This attribute changes if the particle moves to a neighboring cell. Other 
attributes include particle mass and diameter. Therefore, in unresolved cases, if the particle is not overlapping two or more cells, then 
the volume of particles within computational cells is known and the mapping operation is straightforward.

In resolved coupling (Δ𝑥 <𝐷𝑝) and in unresolved coupling with particle overlapping 2 or more cells, however, the cells covered 
by the particle shadow have to be identified by a searching algorithm knowing the particle position and diameter. The process of 
identifying all the cells covered by the particles can highly impact the computational cost if a search method such as traversal search 
(going individually through all the cells of the Eulerian grid) is used, in particular, if the numbers of particles and grid cells are 
extremely large. Here, we present a peer-to-peer search algorithm whose objective is to identify efficiently the cells neighboring any 
7

given cell up to a certain distance.
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Fig. 4. Principle of the peer-to-peer search algorithm. (a)–(d) Illustrations of the steps for searching nearby grid points in a two-dimensional 4 ×4 grid. Points correspond 
to cell centers. Lines correspond to the path to a newly identified cell. Their color changes gradually at each iteration. From an initially identified cell (black empty 
circle), the algorithm searches for cells adjacent to the newly identified cells, and iterates. (e) The peer-to-peer search is an efficient way to identify cells covered 
by particles. The red lines describe the path the algorithm took to research covered cells. (f) The peer-to-peer search also works in three-dimensional structured and 
unstructured grids – here, a 3 × 3 × 3 regular domain. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

An example of the peer-to-peer algorithm applied to a two-dimensional 4 × 4 regular grid is shown in Fig. 4a-d. The black points 
represent the cell centers. The cell containing the particle centroid is identified as the starting cell (step 0) depicted with the black 
empty circle. The search algorithm is as follows:

• Step 1: Identification of the cells adjacent to the starting cell (Neumann neighborhood in red points).
• Step 2: Identification of the cells adjacent to the newly identified cells. The algorithm ignores a cell previously identified to avoid 

duplicates. In the 4 ×4 grid example (Fig. 4a-4d), we see that the 4 cells in the square lattice surrounding the starting cell (Moore 
neighborhood in red stars) are now identified.

• Step ≥ 3: Repeat the identification of the cells adjacent to the newly identified cells until the grid is mapped.

Note that, as this algorithm is mesh-independent, it can operate on unstructured or non-regular grids, including triangular, tetrahedral, 
or polyhedral cells without any supplementary steps. To find all the neighboring cells (Neumann and Moore points) of a starting cell 
using the peer-to-peer search, it takes only 2 steps in 2D and 3 steps in 3D (Fig. 4f) for both structured and unstructured grids.

To search the cells covered by particles, two rules are necessary to unmark newly identified cells: (i) the particle-to-cell-center 
distance is greater than the particle radius, (ii) the intersection point between the particle surface and the particle-to-cell-center line 
is outside the cell. Eventually, the algorithm has marked all the cells covered by particles including the particle-fluid interfaces as 
shown in Fig. 4e.

2.3.2. Solution strategy for solving VANS equations in CFD

In this part, we describe our solution strategy for solving the Volume-Averaged-Navier-Stokes equations using the Finite-Volume 
Method. The system has three unknown variables solved on a collocated grid, namely the void fraction, 𝜖, the fluid pressure, 𝑝, 
and the fluid velocity, v𝑓 . The void fraction results from the projection of the particle shadow onto the grid. The pressure-velocity 
coupling is solved using a semi-implicit time integration scheme adapted from the Pressure Implicit with Splitting of Operators (PISO) 
8

algorithm developed by Issa [51].
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A known issue in CFD-DEM coupling is the presence of numerical instability on the velocity profile when the centroid of the 
particle is crossing a cell boundary [34,33]. A way to stabilize the particle-fluid coupling is to smooth 𝜖 after its mapping on the 
computational grid [32]. We use an isotropic diffusive smoothing controlled by the smoothing length 𝜆𝑠 . This is achieved using the 
parabolic filter:

𝜕𝜖

𝜕𝑡
=∇2

(
𝜆2
𝑠

Δ𝑡𝐶𝐹𝐷

𝜖

)
, (17)

where Δ𝑡𝐶𝐹𝐷 is the time step used to solve Eqs. (2) and (3). A smoothing length of 𝜆𝑠 ≤
𝐷𝑝

103 is found necessary to improve the stability 
of the simulations.

The pressure-velocity coupling is solved by forming a pressure equation from the continuity equation, Eq. (2), and a semi-discrete 
form of the momentum equation, Eq. (3). The latter is obtained using a forward Euler time integration between two successive times 
𝑛 + 1 and 𝑛 for each cell. We obtain,

𝜖
v𝑛+1
𝐶

− v𝑛
𝐶

Δ𝑡𝐶𝐹𝐷

= −𝑎′
𝐶

v𝑛+1
𝐶

+
∑
𝑁𝐶

𝑎′
𝑁𝐶

v𝑛+1
𝑁𝐶

+
𝜖2𝜇𝑓

𝐾
v𝑝 − 𝜖∇𝑝′, (18)

where the subscript 𝐶 indicates the cell owner and 𝑁𝐶 the neighboring cells. The coefficients 𝑎′
𝐶

and 𝑎′
𝑁𝐶

are the diagonal and off-
diagonal coefficients of the space discretization of the momentum equation that includes advection and viscous dissipation effects. 
The pressure variable 𝑝′ divided by the fluid density, corresponds to the actual pressure including the hydrostatic pressure as ∇𝑝′ =
1
𝜌𝑓

(
−𝜌𝑓g +∇𝑝

)
.

The semi-discrete momentum equation can be recast into,

𝑎𝐶v𝑛+1
𝐶

=𝐻(v) − 𝜖∇𝑝′, (19)

where 𝑎𝐶 =
(

𝜖

Δ𝑡𝐶𝐹𝐷
+ 𝑎′

𝐶

)
is the diagonal coefficients of the matrix for the velocity, and 𝐻(v) =

∑
𝑁𝐶 𝑎′

𝑁𝐶
v𝑛+1
𝑁𝐶

+
(

𝜖

Δ𝑡𝐶𝐹𝐷

)
v𝑛
𝐶
+

𝜖2𝜇𝑓
𝐾

v𝑝, contains the off-diagonal coefficients and the source terms.
Finally, the pressure equation is formed from the combination of the fluid mass balance equation (Eq. (2) divided by the fluid 

density), the parabolic filter (Eq. (17)), and the semi-discretized momentum (Eq. (19) divided by 𝑎𝐶 ),

∇.

(
𝜖2

𝑎𝐶
∇𝑝′

)
=∇.

(
𝜖𝐻(v)
𝑎𝐶

)
+∇2

(
𝜆2
𝑠

Δ𝑡𝐶𝐹𝐷

𝜖

)
. (20)

PISO is a predictor-corrector scheme for solving pressure-velocity coupling. Within a time step, the procedure is as follows. (i)
Solve the discretized momentum equation (Eq. (18)) to compute a predicted velocity field, v∗, for given boundary conditions and 
the pressure field, 𝑝𝑛 calculated at the previous time step. At this stage, the resulting guessed velocity does not satisfy the mass 
conservation. (ii) Solve the pressure equation (Eq. (20)) and guess the pressure field, 𝑝∗∗. (iii) Get the corrected velocity field using 
Eq. (19) and 𝑝∗∗. (iv) Update the boundary conditions. (v) Repeat the steps 2 to 5 for at least 2 iterations [51]. At the end of these 
steps, you get the velocity, v𝑛+1, and pressure fields, 𝑝𝑛+1, for the next time-step.

2.3.3. Time-stepping stability criteria
Three numerical stability criteria are necessary for the fluid-particle coupling model proposed in this work: (i) a criterion for the 

pressure-velocity coupling algorithm, (ii) a constraint due to the calculation of colliding particles, and (iii) a stability criterion related 
to the fluid-particle interactions.

The PISO-like pressure-velocity algorithm for solving the VANS equations is not unconditionally stable and the time integration, 
Δ𝑡𝐶𝐹𝐷 , is limited by a Courant-Friedrich-Lewy (CFL) condition [52,53],

𝐶𝐹𝐿 =Δ𝑡𝐶𝐹𝐷 𝑚𝑎𝑥

(|v𝑓 |
Δ𝑥

)
< 1, (21)

where Δ𝑥 is the cell characteristic size.
The time-step requirements to capture the particle-particle and particle-wall collisions is the minimum of the particle relaxation 

time 
(
𝜏𝑝 =

𝐷2
𝑝𝜌𝑝

18𝜇𝑓

)
and a portion of the Rayleigh time 𝑇𝑅𝑎 [54,55]. The latter corresponds to the time a shear wave takes to propagate 

through a solid particle [56]. The time-step criterion for DEM reads,

Δ𝑡𝐷𝐸𝑀 =min(𝛼𝑡𝑇𝑅𝑎, 𝜏𝑝) with 𝑇𝑅𝑎 =
𝜋𝐷𝑝

2 Γ

√
𝜌𝑝

𝐺
, (22)

where 𝛼𝑡 is a positive constant lower than 1, 𝐺 =𝐸∕4(2 − 𝜈)(1 + 𝜈) is the particle shear modulus with 𝜌𝑝 the particle density, 𝐸 being 
the particle Young modulus, 𝜈 the particle Poisson ratio, and Γ is a coefficient approximated by Γ = 0.1631𝜈 + 0.8766 [56]. As the 
constraints on the particle dynamics are stronger than on the fluid flow, Δ𝑡𝐷𝐸𝑀 is used as a sub-cycling within a CFD time-step to 
9

capture particle collision events accurately as shown in Fig. 5.
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Fig. 5. Temporal evolution for the fluid flow calculation compared to that of the particle dynamics calculation.

Fig. 6. Schematic representation of the flow past a stationary single particle, (b)-(d) CFD-DEM approach with different mesh resolution, and (a) CFD approach.

The stability of the unresolved coupling results from the impact of the fluid-solid interaction on the DEM equations of each particle 
though the drag force is linked to the particle relaxation time. By assuming an explicit scheme on the source term integration, the 
coupling stability criterion is defined as:

Δ𝑡𝑐 ≤
4
3
𝐷𝑝

𝐶𝑑

𝜌𝑝

𝜌𝑓

1|v𝑓 − v
𝑝

𝑖
| . (23)

In practice, Δ𝑡𝐶𝐹𝐷 is taken as min(Δ𝑡𝐶𝐹𝐷, Δ𝑡𝑐) and is, therefore, satisfying both Eq. (21) and Eq. (23).

3. Model verification

In this section, we present test cases to verify the robustness and efficiency of the unresolved-resolved four-way coupling CFD-
DEM. First, we verify the implementation of the resolved-unresolved momentum exchange term (Section 3.1). Second, we assess the 
accuracy of our model in the case of a steel ball sedimenting in a water tube for which experimental data exists (Section 3.2). Then, 
we analyze the efficiency of our search algorithm for mapping the covered cells (Section 3.3).

3.1. Assessment of the resolved momentum transfer calculation

The purpose of this section is to verify the implementation of the resolved drag force acting on both the particle (in DEM) and the 
fluid (in CFD). In resolved cases, the mutual drag between the fluid and the particle is not modeled by constitutive laws but it is an 
output of the simulation. Here, we run two sets of simulations to verify that: (i) in CFD, the fluid velocity profile around a resolved 
particle is accurate, (ii) in DEM, the drag applied to the particle is correct.

First, we consider a single stationary particle of diameter 𝐷𝑝 = 10 μm located in the middle of a 50 μm × 50 μm square domain. 
The inlet is on the left-hand side and the outlet is on the right. A constant velocity 𝑣0 = 10−3 𝑚∕𝑠 (𝑅𝑒𝑝 = 0.01) is applied at the inlet 
and the pressure is set to zero at the outlet. Lateral boundaries are set as walls with no-slip conditions. In CFD-DEM simulations, we 
use regular grids with different levels of refinement defined as the ratio of the particle diameter 𝐷𝑝 to the smallest cell size Δ𝑥𝑚𝑖𝑛

as illustrated in Fig. 6b-6d. The cells mapping the particle presence are penalized according to Eq. (4). A reference solution, denoted 
“CFD” hereafter, is obtained by solving the incompressible Navier-Stokes equations (using the so-called simpleFoam OpenFOAM solver) 
on a refined conformal grid ( 𝐷𝑝

Δ𝑥𝑚𝑖𝑛
= 40) in which no-slip condition is applied at the particle surface (see Fig. 6a). The velocity profile 

along the vertical axis that crosses the particle center is plotted in Fig. 7 for the 𝑥 and 𝑦 components. We observe a good agreement 
of the CFD-DEM with the reference CFD solution, especially for resolutions > 3.

Second, we focus on the calculated drag force acting on the particle surface. The simulation setup is similar to the first case, 
except that the square box is larger, corresponding to 80𝐷𝑝 × 80𝐷𝑝, to avoid boundary effects, and that the particle-fluid interface 
10

is resolved through a local mesh refinement as shown in Fig. 8. The level of refinement at the vicinity of the particle corresponds 
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Fig. 7. (a) and (b), comparison of fluid velocity components 𝑈𝑥 and 𝑈𝑦 between results obtained from the model and a steady CFD solver of OpenFOAM (simpleFoam) 
calculated at the vertical line passing by the particle centroid.

Fig. 8. Shematic representation of the domain, with (a)-(c) the local meshes refinement.

to 𝐷𝑝

Δ𝑥𝑚𝑖𝑛
= 3, 5, and 7, respectively. The inlet velocity, 𝑣0, is set such that the Reynolds number varies from 0.001 to 100. In Fig. 9, 

we compare the resultant drag coefficient, 𝐶𝑑 , with the empirical model proposed by Schiller and Naumann [57] which is used as a 
reference solution (the values come from Nguyen et al. [58]). It is calculated using 𝐶𝑑 = 2|F𝑑 |

𝜌𝑓 𝑣
2
0𝐴𝑝

where F𝑑 is the drag force acting on 

the particle in DEM calculated using Eq. (8), and 𝐴𝑝 is the particle surface projected on the Eulerian grid. We observe a very good 
agreement between the drag coefficient calculated with our resolved CFD-DEM model and the reference solution.

These simulations highlight the accuracy of the calculation of the drag force in our resolved CFD-DEM both from the CFD and the 
DEM sides. They also document the optimal mesh refinement in resolved CFD-DEM.

3.2. Sedimentation of a steel ball in a water tube

In this test case, we simulate the sedimentation of a steel ball in a water tube and compare the results with the experimental data 
of Allen [59]. The experiment consists of a 3.18 𝑚𝑚 diameter steel (density of 7820 𝑘𝑔∕𝑚3) bead falling by gravity in a 11.5 𝑐𝑚 long, 
3 𝑐𝑚 wide, and 28 𝑐𝑚 high rectangular water tube. The fall of the particle initially placed at the top center of the domain without 
initial velocity is simulated using the new unresolved-resolved CFD-DEM coupling on different mesh resolutions (𝐷𝑝

Δ𝑥
= 1

3 , 
1
2 , 1, 2, 3). 

The results are also compared with the prediction made by the original unresolved CFD-DEM solver of OpenFOAM (denseParticleFoam) 
for 𝐷𝑝

Δ𝑥
= 1 (which corresponds to a 33 × 9 × 88 regular grid).

We see in Fig. 10 that the unresolved-resolved solver predictions are very close to the experimental value for both the resolved 
(
𝐷𝑝

Δ𝑥
≥ 1) and unresolved (𝐷𝑝

Δ𝑥
< 1) cases. The terminal particle velocity calculated by the standard OpenFOAM unresolved CFD-DEM 

solver, however, does not match the reference data for 𝐷𝑝

Δ𝑥
= 1. These simulations highlight the ability of the hybrid CFD-DEM model 
11

to capture accurately the particle trajectory regardless of the mesh resolution.
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Fig. 9. Comparison between the drag coefficient obtained with the unresolved-resolved CFD-DEM model and the empirical data of Schiller and Naumann [57] for the 
flow around a stationary spherical particle.

Fig. 10. Comparison of the falling velocity obtained with unresolved CFD–DEM coupling on 𝐷𝑝∕Δ𝑥 = 1, with the resolved-unresolved CFD-DEM coupling on different 
mesh resolutions.

3.3. Searching algorithm efficiency analysis

In this section, we compare the time efficiency of our peer-to-peer search algorithm with the most frequently-used searching 
strategies, namely, the traverse search, the tree search (quadtree for 2D and octree for 3D) [60], and the linked-list search such as the 
Hilbert curve search [61,62]. In traditional traverse search, the computation time is devoted to traversing all the cells of the domain, 
which can become very important with a large number of cells and particles. Tree search continuously divides the current domain 
into 8 parts until it has no overlapping with the neighborhood area or it only contains one cell. Linked-list search organizes all the 
cells with the advantage of positioning spatially adjacent cells close to each other in the form of a linked list and then searching for 
it. The peer-to-peer search belongs to the family of linked-list search. Supposing that there are 𝑁 cells and 𝑁 particles in the domain, 
12

the time cost of traverse search, octree search, and Hilbert curve search are 𝑂(𝑁2), 𝑂(𝑁 log𝑁), and 𝑂(𝑁), respectively [36].
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Fig. 11. Efficiency of the peer-to-peer search compared with the traverse, octree, and Hilbert curve search results taken from Wang et al. [36]. (a) Efficiency for an 
increasing number of particles in a case with 10000 cells. (b) Efficiency for an increasing number of cells in a case with 10000 particles.

The benchmark setup and data come from Wang et al. [36]. In this test case, the cells covered by particles are sought through 
traverse, octree, and Hilbert searching strategies. Particles of 1 𝑐𝑚 diameter are placed randomly in a regular grid made of 1 𝑐𝑚 ×
1 𝑐𝑚 ×1 𝑐𝑚 cubic cells. Because the cell and particle center coordinates do not match, a particle can overlap up to 8 cells. Two test cases 
are considered. First, we investigate the efficiency of the algorithms for an increasing number of particles in a 10 𝑐𝑚 ×10 𝑐𝑚 ×100 𝑐𝑚

grid (i.e. 104 cells). Second, we compare their efficiency for a fixed number of 104 particles within a domain whose size varies from 
10 𝑐𝑚 × 10 𝑐𝑚 × 50 𝑐𝑚 (i.e. 5 × 103 cells) to 10 𝑐𝑚 × 10 𝑐𝑚 × 500 𝑐𝑚 (i.e. 5 × 104 cells). In each case, the simulation is run for 100 
iterations.

We see in Fig. 11b and Fig. 11a that the peer-to-peer search efficiency is comparable to the Hilbert curve search when the number 
of cells increases (time cost of 𝑂(𝑁)) and to the octree search when the particle number increases (time cost of 𝑂(𝑁 log𝑁)). In both 
cases, it is more efficient than the traverse search. One of the advantages of the peer-to-peer search is the easy implementation of the 
algorithm regardless of the structure of the mesh.

4. Application: pore-scale modeling of pore-clogging due to particulate flows

In this section, we use our unresolved-resolved four-way coupling CFD-DEM to simulate pore-clogging in porous media at the 
pore-scale. Section 4.1 investigates pore-clogging by sieving and bridging in a single pore. Section 4.2 discusses retention capacity 
and permeability reduction in a network of pores under different particle concentrations.

4.1. Clogging of a single pore

Sieving and bridging are two of the main pore-clogging mechanisms. In sieving, particles larger than the pore throat block at 
the pore entrance (exclusion of particles by size). In bridging, particles arrive simultaneously at the pore throat forming an arch. In 
this part, we simulate such processes in a single pore using our CFD-DEM package. The pore geometry is made of a two-dimensional 
converging-diverging channel of diameter, 𝐷𝑐 = 2 𝑚𝑚, and a throat of diameter, 𝐷𝑡 = 500 μm, gridded with a 150 × 50 conformal 
mesh. We consider two cases: (i) we inject three particles, one every three seconds, at the middle of the inlet. Particles have different 
diameters (100 μm, 300 μm, 550 μm) to simulate the sieving of the biggest particle (𝐷𝑝 > 𝐷𝑡). (ii) We continuously inject for 50 
seconds, 2 particles per second, a polydisperse distribution of particles with sizes ranging from 100 to 300 μm to simulate the arch 
formation of particles with different sizes.

A constant pressure difference Δ𝑝 = 2 μbar is applied between the inlet and the outlet, and the simulations are stopped when 
the pore is clogged. The fluid is water, the particles are in polystyrene, and the pore walls are in PDMS (Polydimethylsiloxane) (see 
properties in Table 4).

Snapshots of the two clogging mechanisms are presented in Figs. 12–13. In the first simulation (sieving, Fig. 12), we see that 
particles smaller than the pore throat (𝐷𝑝 < 𝐷𝑡) can pass through the constriction as expected, until a big particle (𝐷𝑝 > 𝐷𝑡) is 
filtered by its size. At that point, the pore permeability decreases and the flow velocity drops to a near-zero value as shown in Fig. 14. 
13

Notes that pore-clogging by size exclusion cannot be captured by the standard unresolved CFD-DEM solver of OpenFOAM because 
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Fig. 12. Sieving of a large particle at different times. The background color corresponds to the fluid velocity magnitude.

Fig. 13. Bridging formation of 2 particles (214 μm and 287 μm) at different times. The background color corresponds to the fluid velocity magnitude.

Fig. 14. Evolution of the permeability damage in the case of sieving and bridging.

the size of particles is larger than the cell size (𝐷𝑝 > Δ𝑥), and the particle trajectories become unphysical. Our resolved-unresolved 
approach, however, is not constrained by such limitations and can be used in all configurations. In the second scenario (bridging, 
Fig. 13), the suspension flows in the domain until two particles arrive simultaneously at the pore entrance, forming an arch, and 
blocking the flow. The time-to-plug by arch formation depends on the probability that such an event happens, the closer the ratio 𝐷𝑝

𝐷𝑡

is to 1, the higher the probability of bridging [20]. Pore-scale modeling of particulate flow with CFD-DEM will bring new insights 
into the assessment of the time-to-plug according to flow conditions and suspension properties.

4.2. Clogging in a pore-network

In this part, we use our CFD-DEM package to investigate particle retention and permeability reduction in a porous medium 
that represents a PDMS (Polydimethylsiloxane) microfluidic device [63]. The pore geometry and the meshing procedure are found 
in Soulaine [64]. We obtain a two-dimensional 1050 μm × 310 μm pore-scale domain is shown in Fig. 15. The typical pore size 
is 𝑑50 = 26 μm, porosity is 𝜖𝑖 = 0.62, and permeability is 𝐾𝑖 = 1.1 × 10−11 𝑚2. The domain is discretized into an unstructured 
mesh with 49330 cells using snappyHexMesh, the OpenFOAM automatic gridder. The left and right sides are inlet and outlet 
boundaries, respectively. The top, bottom, and grain surfaces are walls described with no-slip conditions. We consider a cloud of 
𝐷𝑝 = 6 μm diameter monodispersed polystyrene particles. The mean mesh resolution is 𝐷𝑝∕Δ𝑥 ≃ 5, which allows for an accurate 
calculation of the drag forces (see Section 3.1). Fluid, particle, and PDMS properties as well as simulation parameters are listed in 
14

Table 4.
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Fig. 15. (a) Geometry of the 2D simulation model of the porous media.

Table 4

Parameters of the CFD-DEM simulations.

CFD and fluid parameters DEM and particle parameters

CFD time-step Δ𝑡𝐶𝐹𝐷 2 × 10−5 𝑠 DEM time-step Δ𝑡𝐷𝐸𝑀 5 × 10−9 𝑠

Fluid density 𝜌𝑓 103 𝑘𝑔∕𝑚3 Particle density 𝜌𝑝 1050 𝑘𝑔∕𝑚3

Fluid viscosity 𝜇𝑓 10−3 𝑃𝑎.𝑠 Particle concentration 𝐶0 (mass percentage) 0.05% ; 0.1% ; 0.15%
Model depth ℎ 20 μm Poisson ratio 𝜈𝑝 / 𝜈𝑤 0.34∕0.5

Young modulus 𝐸𝑝 / 𝐸𝑤 3 𝐺𝑃𝑎 / 2 𝑀𝑃𝑎

Friction coefficient 𝜇𝑝 / 𝜇𝑤 0.4 / 0.84

Fig. 16. Particle deposition and velocity magnitude field for 𝐶0 = 0.1% during the injection of particles (𝑃𝑉 = 2.8) and post-injection (𝑃𝑉 = 6.8). The orange spheres 
are particles and the color map represents the fluid velocity magnitude. The clogs formed during the particle injection and remain stable when the particle injection 
is stopped.

Simulations are run in 3 consecutive steps. First, a constant pressure difference, Δ𝑝 = 0.2 𝑚𝑏𝑎𝑟, is applied between the inlet and 
the outlet. The fluid (water) flows through the porous formation until the flow field is stable. Pore volume (PV) – a measure of time 
defined as the ratio of the injected volume of water to the pore-space volume – is set to 𝑃𝑉 = 0. Then, a concentration of particles, 
𝐶0, is continuously injected from the inlet until 𝑃𝑉 = 4. Finally, the injection of particles is stopped, and the simulation is run until 
steady-state. Simulations use a Hele-Shaw correction term, 12𝜇𝑓 𝜖v𝑓∕ℎ2, in Eq. (3) to account for the hydrodynamic effects in the 
thickness, ℎ, of the microfluidic device [65].

Snapshots of the particle migration and retention are shown in Fig. 16 (𝐶0 = 0.1%) and Fig. 17 (𝐶0 = 0.15%). We observe that 
15

some particles percolate while others remain trapped within the porous medium clogging pores. The retention of particles changes 
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Fig. 17. Particle deposition and velocity magnitude field for 𝐶0 = 0.15% during the injection of particles (𝑃𝑉 = 2.88) and post-injection (𝑃𝑉 = 6.9). Arches of particles 
are formed during the injection, but they are unstable, and most of them are remobilized.

the system porosity and reroutes the local flow lines which affect the system permeability. The particle contact frequency and the 
probability of simultaneous arrival of particles at a pore entrance to form a clog (arch formation) increase with the particle concen-
tration. For 𝐶0 = 0.05% (results not shown here), there is no clog inside the porous medium – although, a few isolated particles are 
trapped in dead-end pores – which is not the case for higher concentrations. For 𝐶0 = 0.1% (Fig. 16), we see several clogs formed 
by the bridging of 2 particles at the entrance of small pores and others that grow until they reach their filling limit. The clogs are 
very stable and remain even after we stopped the injection of particles (𝑃𝑉 > 4). For 𝐶0 = 0.15%, the possibility of arch formation 
increases because the particles are more likely to be near each other as they reach a pore entrance due to converging trajectories. 
We observe (Fig. 17), however, several non-permanent pores clogged. These observations are also seen in the particle cumulative 
breakthrough curves (Fig. 18a) and the plot of the number of clogs over time. Once the injection stops, we see that almost all particles 
go through the porous structure for 𝐶0 = 0.05%, and up to 6% of particles remain trapped for 𝐶0 = 0.1%, and 3% for 𝐶0 = 0.15%. For 
the highest concentration, more clogs are formed but they are less stable and remobilized, eventually (see Fig. 18b).

Pore-clogging leads to permeability reduction. The evolution of the porosity damage severity, 𝜖𝑟 = ⟨𝜖⟩∕𝜖𝑖, with ⟨𝜖⟩ the domain-
averaged porosity, and the permeability damage severity, 𝐾𝑟 = 𝐾𝑓∕𝐾𝑖, is shown in Fig. 19a. The permeability, 𝐾𝑓 , of the porous 

system is obtained using Darcy’s law, 𝐾𝑓 = ⟨𝑣𝑓𝑥 ⟩𝜇𝑓𝐿
Δ𝑝

, where ⟨𝑣𝑓𝑥 ⟩ is the domain-averaged fluid velocity, 𝐿 is the length of the domain, 
and Δ𝑝 is the pressure difference. For identical hydrodynamic conditions, permeability reduction increases with the particle concen-
tration in agreement with experimental observations [66,67,14]. A permeability reduction of 10% is also observed for 𝐶0 = 0.05% for 
which there is no pore-clogging. This reduction corresponds to the flow resistance related to the suspension itself. The permeability 
recovers its initial value after all the particles have been flushed out. For 𝐶0 = 0.1% and 𝐶0 = 0.15%, we observe a hysteresis between 
the initial and final permeability/porosity values. It is related to the clogs formed with the retention of particles.

The Probability Density Function (PDF) presented in Fig. 19b gives information about the redistribution of local flow rates during 
pore-clogging. For 𝐶0 = 0.05%, it is superimposed with the PDF without particles. Indeed, as almost all the particles percolate and the 
remaining particles are trapped individually in dead-end pores, they do not affect the fluid flow. For 𝐶0 = 0.1% and 0.15%, we observe 
an increase in the densities of low fluid velocities and a reduction of the highest value of the fluid velocities. This is characteristic 
of pore-clogging [68]. The multiple permanent clogs formed with 𝐶0 = 0.1% create additional dead-end pores and subsequent fluid 
recirculations that increase negative values of the velocity fluid.

These simulations illustrate the potential of the resolved-unresolved four-way coupling CFD-DEM to investigate the complex 
interplay between particle migration, deposition, and remobilization in porous media.

5. Conclusions

Clogging of porous media by particulate flow is a complex process that relies on many different physical phenomena and depends 
on a wide range of parameters including particle size and concentration, flow conditions, and the geometry of porous microstructure. 
We proposed an unresolved-resolved four-way coupling CFD-DEM to simulate particle migration, deposition, and retention in porous 
16

media at the pore-scale, and therefore to investigate locally the permeability reduction due to the injection of particles.
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Fig. 18. (a) Particle cumulative BTC (Breakthrough Curves) normalized by the total number of injected particles. (b) Evolution of the current number of clogs (Current 
Nclog) in the system, and the number of clogs formed at different positions (Different Nclog) for different 𝐶0 . For 𝐶0 = 0.1%, each clog formed at a unique position. 
The pink zone represents the particle injection period.

Fig. 19. (a) Permeability damage severity, 𝐾𝑟 , and porosity damage severity, 𝜖𝑟 , for different particle concentration, 𝐶0 . (b) The probability density function of the 
fluid longitudinal velocity 𝑣𝑓𝑥 for different 𝐶0 at the end of the simulation compared with the case without particles.

Unlike other CFD-DEM, our approach is independent of the grid resolution and type (i.e. structured and unstructured) and is 
not limited to particles smaller than the cell size. It relies on a hybrid resolved-unresolved formulation of the drag force calculation 
and an efficient searching strategy – called peer-to-peer search – to identify the CFD cells covered by DEM particles. Moreover, 
a diffusive smoothing filter removes unphysical oscillations when particles cross the cell-to-cell interface. The method has been 
successfully validated using cases for which reference solutions exist. The peer-to-peer search is as efficient as the Hilbert curve 
search and easier to implement. This searching algorithm as well as the unresolved-resolved CFD-DEM can operate on unstructured 
or non-regular grids, including triangular, tetrahedral, or polyhedral meshes which are used when refining the grid near complex 
17

boundaries.
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Our method has great potential to investigate the complex feedback due to the injection, retention, and remobilization of particles 
in porous media. Our case studies show the ability of the resolved-unresolved four-way coupling CFD-DEM to capture two of the pore-
clogging mechanisms, namely clogging by size exclusion (sieving) and by arch formation (bridging, due to the simultaneous arrival 
of particles at a pore entrance). The physics of the third clogging mechanism by aggregation of particles relies on electrochemical 
interactions that act on the particle surfaces. The numerical implementation of these forces in the CFD-DEM framework is discussed 
in Maya et al. [69].

Nomenclature

𝛼 Constant related to elasticity coefficient
𝛼𝑡 Constant related to DEM time-step
𝛽 interphase momentum exchange coefficient
𝜹𝑛 Normal overlap
𝜹𝑡 Tangential overlap
𝝎 Particle angular velocity
Δ𝑝 Fluid pressure difference
Δ𝑡 Time-step
Δ𝑥 Cell characteristic length
𝜖 Local cell porosity or void fraction
𝜖𝑟 Porosity damage severity
𝜖𝑚𝑖𝑛 Minimum porosity value
𝜂 Particle damping coefficient
𝜂𝑛 Particle normal damping coefficient
𝜂𝑡 Particle tangential damping coeffciient
Γ Coefficient related to DEM time-step
𝜆𝑠 Smoothing length⟨𝜖⟩ Domain-averaged porosity⟨𝑣𝑓𝑥 ⟩ Domain-averaged fluid velocity
𝜇 Particle friction coefficient
𝜇𝑓 Fluid dynamic viscosity
𝜈 Particle Poisson ratio
v𝑝 Averaged particle Velocity
𝜌𝑓 Fluid density
𝜌𝑝 Particle density
𝜏 Fluid shear-rate
𝜏𝑝 Particle relaxation time
F𝑐 Particle contact force
F𝑓 Particle-fluid force
F𝑔 Particle gravitational force
F𝑐
𝑛

Particle normal contact force
F𝑐
𝑡

Particle tangential contact force
G Particle shear modulus
g Gravitational acceleration
M𝑐 Particle contact Torque
Mℎ𝑦𝑑 Particle hydrodynamic Torque
n unit vector
p Position vector pointing particle center
s Position vector pointing cell center
U𝑝 Particle translational velocity
v∗ Predicted fluid velocity
v𝑓 Fluid velocity
v𝑝 Particle velocity
v
𝑓
𝑐 Fluid velocity of cell owner at time n

v
𝑝

𝑖𝑗
Particles relative velocity

v
𝑝

𝑡
Particle tangential slip velocity

𝑎𝐶 Diagonal coefficients of matrix for fluid velocity
𝑎′
𝐶

Diagonal coefficients of momentum equation sapce 
discretization

𝐴𝑝 Particle area
𝑎′
𝑁𝐶

Off-diagonal coefficients of momentum equation 
space discretization

𝐶0 Affluent particle concentration
𝐶𝑑 Drag coefficient
𝐶𝑓 Effluent particle concentration
𝐶𝑟 Remaining particle concentration
𝐶𝐹𝐿 Courant number
𝐷𝑐 Channel diameter
𝐷𝑝 Particle diameter
𝐷𝑡 Throat diameter
𝑑50 Mean diameter pore size
𝐸 Particle Young modulus
𝐹𝑑 Drag force
𝐻(𝑣) Off-diagonal coefficients and source terms
ℎ Geometry depth
𝐼 Particle moment of inertia
𝐾 Cell-permeability
𝑘 Particle stiffness
𝐾0 Low given permeability
𝐾𝑓 Final domain permeability
𝐾𝑖 Initial domain permeability
𝑘𝑛 Particle normal stiffness
𝐾𝑟 Permeability damage severity
𝑘𝑡 Particle tangential stifness
𝐿 Geometry length
𝑚 Particle mass
𝑛𝑐 Number of contacting objects
𝑛𝑘 Number of covered cells
𝑝 Fluid pressure
𝑝′ Fluid pressure including hydrostatic pressure
𝑝∗∗ PISO calculated fluid pressure
𝑃𝑉 Pore volume
𝑅 Particle radius
𝑟𝑖𝑗 Equivalent particle radius
𝑅𝑒𝑝 Particle Reynolds number
𝑡 Time
𝑇𝑅𝑎 Rayleigh time
𝑣0 Inlet fluid velocity
𝑉𝑐 Cell volume
𝑉𝑝 Particle volume

𝑣
𝑓
𝑥 Longitudinal fluid velocity
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