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Abstract. Event attribution methods are increasingly routinely used to assess the role of climate change in indi-
vidual weather events. In order to draw robust conclusions about whether changes observed in the real world can
be attributed to anthropogenic climate change, it is necessary to analyse trends in observations alongside those in
climate models, where the factors driving changes in weather patterns are known. Here we present a quantitative
statistical synthesis method, developed over 8 years of conducting rapid probabilistic event attribution studies, to
combine quantitative attribution results from multi-model ensembles and other, qualitative, lines of evidence in a
single framework to draw quantitative conclusions about the overarching role of human-induced climate change
in individual weather events.

1 Introduction

Extreme-event attribution aims at answering questions of
whether and to what extent anthropogenic climate change
– or other drivers external to the climate system – have al-
tered the likelihood and intensity of extreme weather events.
Over recent years, methods to quantify this change based on
historic weather observations and climate model data have
been developed (National Academies of Sciences, Engineer-
ing, and Medicine, 2016; Stott et al., 2016; van Oldenborgh
et al., 2021) alongside more qualitative approaches or story-
lines, conditional on aspects of the event, e.g. the thermody-
namics (Shepherd, 2016; Vautard et al., 2016; Jézéquel et al.,
2018). Exact quantification of the role of climate change
strongly depends on the geographical and temporal defini-
tions of the event (Leach et al., 2020) but also on the obser-
vational datasets and the climate model simulations included
in the study. In order to provide assessments that incorpo-
rate these sources of uncertainty, methodologies have been
developed that use a range of models and modelling frame-
works as well as multiple simulations from the same model
that differ by initial conditions, thus allowing for systematic

uncertainties from differences between models to be taken
into account (model uncertainty) as well as uncertainties aris-
ing from internal variability (sampling uncertainties) (Philip
et al., 2020; Li and Otto, 2022). If the aim of an attribution
study is not only to highlight uncertainties but also to provide
an overarching attribution statement, the estimated changes
in intensity and likelihood from different data sources need
to be combined. While it might be appropriate in some cases
to provide a simple average, this will in many cases not rep-
resent the statistical properties and underlying scientific un-
derstanding correctly, because uncertainties will differ for
each line of evidence. Below in Sect. 2 we discuss how these
can be taken into account to provide a formal synthesis of
changes in likelihood and intensity by combining different
observational and model datasets, taking sampling and sys-
tematic uncertainties into account.

Such formal syntheses do not however allow for informa-
tion not contained in the data. In many cases we do have more
knowledge than the data represent, which usually only pro-
vides one line of reasoning and which can be complemented
by knowledge about physical processes, emerging trends in
the future or studies based on other methods and models that
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corroborate a particular interpretation of the statistical data.
Section 3 provides a detailed discussion of how a system-
atic assessment of these additional lines of evidence leads to
different interpretations of the statistical results and thus the
overarching attribution statement. We close with a discussion
of limitations and future research needs (Sect. 4).

2 Formal synthesis

A standard method of probabilistic attribution using time se-
ries of observations is to fit the data to a statistical distri-
bution – typically a generalised extreme-value distribution
– that varies with a covariate that describes global warm-
ing, such as the smoothed global mean surface temperature
(GMST) (Philip et al., 2020; Otto, 2023; Chen et al., 2021).
Because all of the observed warming in the global mean
temperature is attributable to anthropogenic climate change
(Eyring et al., 2021), this can be translated into an estimate
of the human influence on this extreme if other local fac-
tors such as land use changes do not play a role. As the
latter can never be known perfectly in the real world, true
attribution requires one to repeat this analysis for climate
models, in which such factors play no part and so changes
in probability or intensity can be directly linked to anthro-
pogenic emissions. As in other uses of climate model infor-
mation, it is important to use a large number of climate mod-
els with a range of framings wherever possible: multi-model
ensembles give information about model uncertainties from
the model spread, while multi-member ensembles can pro-
vide information about uncertainty arising from the choice of
initial conditions (Stocker et al., 2013; National Academies
of Sciences, Engineering, and Medicine, 2016; Hauser et al.,
2017). Each individual model is evaluated on the extreme un-
der study (van Oldenborgh et al., 2021). If the model deviates
too much from the observations in the statistical properties of
these extremes or selected meteorological properties, it is not
considered further.

For each observational series and each model that passes
the evaluation, we compute the factor of change in the proba-
bility that an event of similar or greater magnitude will occur
(known as the probability ratio, PR) and the change in in-
tensity of the event (1I ) for a fixed change in the GMST
covariate: this reflects the change in likelihood and intensity
due to anthropogenic climate change. Along with the best
estimate of these two measures, PR and 1I , a bootstrapping
procedure is used to estimate the upper and lower bounds of
a 95 % confidence interval for each (Philip et al., 2020). A
synthesis of each measure is done separately.

The bootstrapped PRs are first transformed to be more nor-
mally distributed by taking a logarithm, and their distribu-
tion is assumed to be Gaussian. Depending on the statisti-
cal model fitted, the change in intensity 1I can be a shift,
in which case we assume that the bootstrapped values are
normally distributed, or a percentage change, in which case

a logarithmic transformation is applied to make them more
normally distributed. When dependence on the smoothed
GMST is linear, the absolute change in intensity per unit in-
crease in the covariates remains constant for events of any
magnitude. Percentage changes are best used when the de-
pendence on the smoothed GMST is exponential, e.g. for
heavy precipitation, in which case the relative change in in-
tensity per unit change in the covariates is constant.

The synthesis is performed in three steps. First, the ob-
servational estimates are combined in a single best estimate
with confidence intervals including uncertainties from natu-
ral variability and (if there are multiple observed datasets)
representativity errors. Next, we do the same for the model
uncertainties, accounting for the effect of model natural vari-
ability and model spread. Finally, these two sub-results are
combined to get the overall attribution result.

We now describe the assumptions about the structure of
the observations and models and the relationships between
them that underlie the synthesis algorithm. To simplify the
explanation, the following development is presented in terms
of the means and standard deviations of the normally dis-
tributed (log-transformed) PRs or intensity changes. In this
simplified symmetric model, we assume that the change es-
timated from the ith observational dataset has mean µi and
variance σ 2

i . Similarly, the change obtained from the j th cli-
mate model is assumed to be normally distributed with mean
µj and variance σ 2

j . This is illustrated in Fig. 1, which shows
examples from different studies. A description of the datasets
used in each panel can be found in the references mentioned
in the caption. Intervals associated with these distributions
appear as coloured bars (light blue for observations, light
red for models) against individual datasets in the examples
in Fig. 1. The same procedure is applied to each of the nor-
malised measures, so we do not distinguish between them in
the description below. In practice, it is easier to work directly
with the bootstrapped confidence intervals, and the uncer-
tainty ranges that come out of the extreme-value fits are of-
ten very asymmetric around the central value. Working with
these confidence bounds and accommodating asymmetry in
the intervals is discussed in Sect. 2.4. As noted above, we
recommend that the changes to be synthesised be estimated
over a common increase in GMST (or other covariates of
interest). However, it is possible to synthesise responses to
changes of different magnitudes or over different time peri-
ods; a discussion of the necessary adjustments can be found
in Appendix A.

2.1 Observations

The light-blue bars in Fig. 1 represent 95 % confidence in-
tervals estimated by bootstrapping, corresponding to approx-
imately µi±1.96σi for the ith model. Assuming that the ob-
servational data product is a reliable representation of the true
climate and that the statistical model is a good fit to the data,
these intervals represent natural variability and sampling un-
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certainty within each dataset. However, the observations can-
not be assumed to be perfectly representative of the “real”
extreme under study, and additional uncertainty may arise
from a poor fit in the statistical model. We therefore intro-
duce an additional term to account for this “representation
error”. Because the observational datasets are all based on
the same realisation of reality over similar or at least over-
lapping time intervals, they can be assumed to have strongly
correlated natural variability; we therefore assume that dif-
ferences between the best estimates {µi} are due to represen-
tation errors, which are in theory independent of the natural
variability. Natural variability in this case encompasses both
unforced variability as well as variability forced by drivers
not assessed in the study, e.g. large-scale modes of variabil-
ity like the AMO or PDO (Atlantic Meridional Oscillation or
Pacific Decadal Oscillation). The representation error may be
large because the observational data products disagree on the
strength of the climate change signal or because the chosen
statistical model is unable to provide a reliable estimate of
the quantity of interest. The latter issue is particularly likely
to arise when estimating return periods and probability ratios
for very extreme or unprecedented events, which may arise
from physical processes that are different from those driving
less rare events and so may appear to be drawn from an en-
tirely different statistical distribution; typically, estimates of
the change in intensity are more robustly estimated and the
representation error is smaller. In reality, the natural variabil-
ity sampling will include observational errors and vice versa.
As the natural variability estimated by bootstrapping is usu-
ally very large, we take the assumption to be justified in prac-
tice and note that it can only produce an overly conservative
statement, not overconfidence in the results. We further as-
sume that there is no systematic bias in the representation er-
rors, so that they are normally distributed with mean zero and
variance σ 2

rep and that this representation error, which is esti-
mated using the spread of the best estimates {µi}, is roughly
the same for all the observational datasets. If one or more of
the datasets were known a priori to have a much larger repre-
sentation error than the others, it would be better to exclude
them from the analysis. If only one observational dataset is
available for the analysis, there is no way of estimating σ 2

rep,
and this source of additional uncertainty is disregarded. We
acknowledge that the assumption that there is no systematic
bias in the representation error may not be fully justified, par-
ticularly when estimating probability ratios using a gener-
alised extreme value (GEV) distribution: model parameters
are usually fitted using maximum likelihood estimation, and
this is known to induce a bias in estimated return periods and
therefore probability ratios, particularly when using short ob-
servational records (Zeder et al., 2023). In the absence of a
reliable method of estimating the magnitude of such a bias,
we keep the simplifying assumption but note that, in this sit-
uation, the bootstrapped uncertainties around the probability
ratios are likely to be much higher than those around the cor-

responding changes in intensity. This should be highlighted
when interpreting the results, as discussed in Sect. 3.

In this framework, the overall change estimated using the
nobs observational datasets is assumed to follow a normal dis-
tribution with mean µobs and variance σ 2

obs accounting for
both natural variability and representation errors, with

µobs =
1
ni

∑
i

µi and σ 2
obs = σ

2
nat+ σ

2
rep, (1)

where

σ 2
nat =

1
ni

∑
i

σ 2
i and σ 2

rep =
1

ni − 1

∑
i

(µi −µobs)2, (2)

where ni is the number of observational datasets included in
the analysis.

2.2 Models

For the model estimates we again assume that the total vari-
ability can be decomposed into contributions from natural
variability and representation error, so that σ 2

mod = σ
2
mnat+

σ 2
mrep. Our aim is to combine the model results in a single

estimate by taking a weighted average, where the weight wj
represents our degree of confidence in model j ; this is an
approach used in meta-analyses to combine the results from
multiple studies in a single minimal-variance result. Defining
appropriate weights is notoriously difficult, and in many cli-
mate model applications an agnostic approach is used, giv-
ing equal weight to each model. Other weighting schemes
have mainly been tested with respect to their performance of
large-scale future warming (e.g. Merrifield et al., 2020) and
thus might not necessarily be most appropriate in the context
of attribution. Abramowitz et al. (2019) suggest that simi-
lar models should be down-weighted, but there is no con-
sensus on how this should be carried out, especially when
models show very different behaviour; experience has shown
that most ensembles in use for attribution consist of a few
different models, and their similarities can usually be ne-
glected. Similarly, weighting models according to their per-
formance is not a trivial task (Sansom et al., 2013; Haughton
et al., 2015). It is not uncommon for a few models to es-
timate outlying values with high uncertainty, in which case
an unweighted mean would likely result in an overall esti-
mate with extremely high variance and risks producing sta-
tistically insignificant results, underestimating the role of cli-
mate change (Lloyd and Oreskes, 2018). While in science
avoiding type-1 errors is usually treated as the highest prior-
ity, in the case of climate change attribution this could lead
to dangerously false feelings of security; thus, we use the
minimal-variance scheme to reduce the risk of type-2 errors.
As a first step, we note that the obviously unrealistic mod-
els have already been dropped in the model evaluation stage
prior to synthesis (Philip et al., 2020), which is equivalent to
giving those models a weight of 0. We also note that, while
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inverse-variance weighting is used to combine the model out-
puts, the final combination of the observational and model
results may use either a weighted or unweighted mean, as
discussed in Sect. 3.

For the models that pass evaluation, we use a precision-
weighted average in which the weights wj are determined
by the inverse square of the total variance for each model, so
that

µmod =
1∑
jwj

∑
j

wjµj where wj =
(
σ 2
j + σ

2
mrep

)−1
. (3)

However, the situation differs from that described in
Sect. 2.1 above in that the chaotic nature of the weather
means that atmospheric fields usually decorrelate within
about 2 weeks: if the models are initialised more than 2
weeks before the event, their realisations of natural variabil-
ity are expected to be uncorrelated1, and we cannot simply
average the estimates of

{
σj
}

to estimate the contribution
from natural variability, as we did for the observations in
Eq. (2). Because the natural variability is not shared between
models, it is no longer straightforward to estimate the relative
contribution from natural variability – and hence the shared
representation error – in the way that we could for the obser-
vational datasets, and the model representation error σ 2

mrep is
therefore not known. However, we now have two estimates
of the variability: the variances

{
σ 2
j

}
estimated from the cli-

mate models and the spread of the best estimates
{
µj
}
. A

logical step is then to compare these two estimates: if the
two are roughly equal, then the spread of

{
µj
}

is compatible
with

{
σj
}
: the natural variability explains the spread between

the models, and other sources of variability are assumed to be
much smaller. If the differences between

{
µj
}

are too large
to be explained by natural variability alone, the representa-
tion error is significant. If an ensemble of runs is available,
the ensemble spread may be used to estimate the natural vari-
ability for an individual model. However, in many cases only
one model realisation is available, so in general the method
suggested here will be required. We therefore impose the
constraint that the sum of the ratios between these two esti-
mates of variability (denoted as χ2) should be equal to the to-
tal degrees of freedom (that is, the number of models nj −1)
and estimate σ 2

mrep by solving

χ2
=

∑
j

(
µj −µmod

)2
σ 2
j + σ

2
mrep

= nj − 1. (4)

Initially, σ 2
mrep is assumed to be zero: if χ2

≤ nj−1, then the
spread of the best estimates µj is smaller than would be ex-
pected from natural variability alone, and we assume that the

1This is typically true except in regions where the weather is
strongly influenced by slowly varying boundary conditions such as
sea surface temperatures, in which case noticeably different model
behaviour would be observed for models forced with SSTs com-
pared to coupled models.

differences between the model estimates are due to internal
variability only. However, if χ2 > nj−1, then σ 2

mrep is found
by numerical optimisation and added to σ 2

j for each model:
these are the white uncertainty boxes around the individual
model bars in Fig. 1b. As with the observations, we assume
that there is no common bias in the model representation er-
ror; while this may not be true for models within a single
ensemble or single framing, the use of models from different
framings – for example, SST-forced, regional and coupled
global models, as suggested by Philip et al. (2020) – is ex-
pected to reduce the effect of biases due to shared modelling
assumptions between related families of models.

Having estimated σ 2
mrep and hence

{
wj
}
, we can now cal-

culate

µmod =
1∑
jwj

∑
j

wjµj

and σ 2
mod =

1∑
jwj

∑
j

wj

(
σ 2
j + σ

2
mrep

)
. (5)

This is illustrated by the bright-red bar in Fig. 1a, b. Note
that this uncertainty may not represent the full model uncer-
tainty, which can be larger than the spread due to biases that
are shared by all the models.

2.3 Combination

We finally combine the observational and model results.
We apply two different weighting approaches to combin-

ing models with observations. An unweighted average gives
observations and models equal weight, as described below,
and a variance-based weighting that is commonly applied in
statistics but rarely when combining climate models. Given
that we combine models and observations and that observa-
tions tend to have a very large variance simply due to the
very small sampling, an unweighted combination could have
overly large variance and in many cases end up producing
statistically insignificant results (see the magenta and white
bars in Fig. 1a) and thus lead to overly conservative estimates
of the role of climate change (Lloyd and Oreskes, 2018).
While in science avoiding type-1 errors is usually treated
as the highest priority, in the case of climate change attri-
bution this could lead to dangerously false feelings of secu-
rity. Thus, to avoid type-2 errors, we chose a weighted vari-
ance scheme. This can however become overconfident (see
the magenta and white bars in Fig. 1b) when some models
have a small sampling uncertainty or systematically miss cer-
tain processes. We thus also calculate an unweighted mean.
A level of expert judgement is required to interpret between
the two, as discussed in Sect. 3.

If models and observations are clearly incompatible – that
is, if (µmod−µobs)2

� σ 2
mod+ σ

2
obs – the conclusion has to

be that the representation error in the models is so large that
the two numbers cannot be compared. A common cause of
this is that an essential mechanism with a trend is missing
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in the models, such as the effects of irrigation on heat waves
in India (van Oldenborgh et al., 2018) or the likely effect of
roughness changes on wind trends (Vautard et al., 2019), as
seen in Fig. 1c.

If the difference and uncertainty are compatible, the over-
all synthesis is constructed as the weighted average of these
two estimates from observations and models, with weights
again given by the inverse total variances

µsynth =
wobsµobs+wmodµmod

wobs+wmod
,

σ 2
synth =

wobsσ
2
obs+wmodσ

2
mod

wobs+wmod
,

where

wobs =
1
σ 2

obs
andwmod =

1
σ 2

mod
.

However, the weighted average neglects the unknown differ-
ence between the model spread σ 2

mrep and the true model un-
certainty. This is especially acute when, for example, there is
one model with much more data and therefore much smaller
sampling variability than the others: if the results for that
model fall within the range of results from other models
with larger uncertainties, the algorithm will conclude that the
model spread is compatible with natural variability and will
therefore return a very narrow confidence interval in the syn-
thesis, which is likely to be unduly influenced by that particu-
lar model. It is obvious that the true model error is larger, but
there is no information available to estimate it from the multi-
model ensemble results. In principle, the model evaluation
conducted prior to the attribution could provide an estimate,
but this is not a trivial task and requires detailed knowledge
about the individual models, which is not necessarily easily
available.

The only comparison we have left to give an estimate of
the true model uncertainty is with the observations. We there-
fore also give the unweighted average of the means and vari-
ances from the observations and models as an alternative syn-
thesis:

µuw =
µobs+µmod

2
andσ 2

uw =
σ 2

obs+ σ
2
mod

2
.

The unweighted average disregards the differing precision of
the two estimates and emphasises their systematic uncertain-
ties. Only judgement of the fidelity of the models in the ex-
treme under study can determine which of the two averages
describes the final attribution statement better. In Sect. 3 we
discuss ways to decide whether to use the weighted or un-
weighted synthesis.

2.4 Asymmetric confidence intervals

In practice, when carrying out the synthesis, we obtain boot-
strapped estimates of the upper and lower bounds of 95 %

confidence intervals, which may be very asymmetric around
the central value (as in Fig. 2, for example). A crude way to
propagate this information is to consider the probability dis-
tribution function (PDF) in each case to be the weighted sum
of two half-normal distributions that meet at the modal value
but have different variances; the representation errors are still
assumed to be symmetric. In the analysis of the observations
this simply means that the upper and lower bounds of the
confidence intervals, denoted as q(l)

· and q(u)
· respectively, are

calculated separately, so that

q
(l)
nat =

1
ni

∑
i

q
(l)
i andq(u)

nat =
1
ni

∑
i

q
(u)
i . (6)

σrep is found using Eq. (2) and added in quadrature to these
estimates to obtain a 95 % confidence interval that incorpo-
rates both natural variability and representation errors into
the observational datasets:

q
(l)
obs = µobs−

√(
q

(l)
nat−µobs

)2
+ (1.96σrep)2,

q
(u)
obs = µobs+

√(
q

(u)
nat −µobs

)2
+ (1.96σrep)2. (7)

The interval from q
(l)
obs to q(u)

obs is plotted as a dark-blue bar
on either side of µobs in the synthesis plots shown in Fig. 1.
The white bars added to each observational dataset account
for representation uncertainty in the same way, showing

µi −

√(
q

(l)
i −µobs

)2
+ (1.96σrep)2

and µi +

√(
q

(u)
i −µobs

)2
+ (1.96σrep)2. (8)

When we estimate the weights used to combine the models
in Eq. (3), the standard deviations

{
σ 2
j

}
are derived from the

widths of the corresponding 95 % confidence intervals, with

wj =

(q(u)
j − q

(l)
j

2× 1.96

)2

+ σ 2
mrep

−1

, (9)

and similarly Eq. (4) becomes

χ2
=

∑
j

1{µj>µmod}

(
µj −µmod

)2(
q

(l)
j −µj

1.96

)2

+ σ 2
mrep

+1{µj≤µmod}

(
µj −µmod

)2(
q

(u)
j −µj

1.96

)2

+ σ 2
mrep

 , (10)

where 1 is an indicator function taking the value 1 if the con-
dition in the subscript is true and 0 otherwise.
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Finally, to combine the estimates from the models and ob-
servations, the weights are redefined as

wobs =
(
q

(u)
obs− q

(l)
obs

)−2
and wmod =

(
q

(u)
mod− q

(l)
mod

)−2
. (11)

Then,

q
(l)
synth = µsynth

−

√√√√√wobs

(
µobs− q

(l)
obs

)2
+wmod

(
µmod− q

(l)
mod

)2

(wobs+wmod)2 , (12)

q
(u)
synth = µsynth

+

√√√√√wobs

(
µobs− q

(u)
obs

)2
+wmod

(
µmod− q

(u)
mod

)2

(wobs+wmod)2 . (13)

These quantities are indicated by the magenta bars in Fig. 1.
Finally, we find the unweighted average of the observational
and model-averaged confidence bounds measured as devia-
tions from the direct average of the best estimates of the ob-
servational and model averages, and combined in quadrature
(white box around or overlapping the magenta weighted av-
erage in Fig. 1) they are

q(l)
uw = µuw −

1
2

√(
µobs− q

(l)
obs

)2
+

(
µmod− q

(l)
mod

)2
, (14)

q(u)
uw = µuw +

1
2

√(
µobs− q

(u)
obs

)2
+

(
µmod− q

(u)
mod

)2
. (15)

2.5 Interpreting synthesis plots

In Fig. 1, three examples are shown. Figure 1a shows the
probability ratio for 3 d extreme precipitation in the Seine
basin in May–June (Philip et al., 2018). The meteorology of
large-scale mid-latitude precipitation was captured well by
the models used, which resulted in good model evaluation
(not shown) and is reflected in the synthesis in the low model
spread that is well within the observational uncertainty in the
absence of white bars. We therefore quoted the weighted av-
erage and stated that the probability of an event like this in-
creased by at least 40 % (lower bound of the overall synthe-
sis, given by the magenta bar) but probably more than dou-
bled, as the best estimate is very consistent between obser-
vations and models. In contrast, Fig. 1b shows the change in
potential evaporation in western Ethiopia (Kew et al., 2021),
where both the different “observations” (re-analyses) and
models diverge widely. Given our knowledge of model per-
formance in this part of the world, we think that the model
uncertainty is even larger than the spread indicated by the
white boxes, so we consider the unweighted white box syn-
thesis statement to be more reliable than the weighted colour
bar. We use this for at least the upper bound. For the lower
bound, physical constraints provide additional knowledge.
For example, the fact that increasing temperatures strongly

Figure 1. Example synthesis plots. Panel (a) is dominated by nat-
ural variability (PR of 3 d extreme precipitation in the Seine basin,
Philip et al., 2018), panel (b) is dominated by model spread (change
in potential evaporation in western Ethiopia, Kew et al., 2021), and
panel (c) shows incompatible values (PRs of extreme wind speeds
similar to Cyclone Friederike, Vautard et al., 2019).

increase evaporation should be taken into consideration, as
discussed in Sect. 3. Figure 1c shows an example where ob-
served and modelled trends are incompatible. The models do
not include changes in roughness and possibly other relevant
factors that cause the strong decline in storminess over land
in the observations (Vautard et al., 2019). Thus, no synthesis
is shown.
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Finally, Fig. 2a shows an example where observa-
tions and models both show the same result qualitatively
but disagree quantitatively by orders of magnitude. The
example shown here is a heat wave in Madagascar
(https://www.worldweatherattribution.org/extreme-poverty-
rendering-madagascar-highly-vulnerable-to-underreported-
extreme-heat-that-would-not-have-occurred-without-
human-induced-climate-change/, last access: 29 Octo-
ber 2024), but similar results are commonly found in many
heat-wave studies (van Oldenborgh et al., 2022). As this is
a known deficiency in models when underestimating the
observed trend in heat extremes, we only report the lower
bound.

2.6 Impossible extreme events

Especially in recent years extreme events have occurred,
most notably heat waves that lie beyond the upper limit
of what the non-stationary model deems possible in a pre-
industrial climate, leading to infinite PRs: typically this af-
fects the best estimate of the PR or the bootstrapped upper
bound of the confidence interval but can occur even in the
bootstrapped lower bound. In these cases, in order to still
numerically combine results in a synthesis and visualise the
results, it is necessary to translate infinity into a numerical
value. In earlier studies, where only a few upper bounds were
infinite, missing PRs were arbitrarily set to 10 000. However,
this practice, when applied to more than the odd upper bound,
distorts the relative weights wobs and wmod given to the ob-
servations and models in the synthesised result, because both
depend on the range q(u)

· − q
(l)
· (Eq. 11), as do the weights{

wj
}

assigned to the individual climate models (Eq. 9). The
synthesis results are therefore sensitive to the choice of re-
placement value. We first discuss the theoretical effects of
this replacement and subsequently give recommendations for
how to handle infinite values in practice. However, it is im-
portant to highlight that this is only in order to enable the
visualisation of the results. The exact or approximate num-
bers are meaningless for probability ratios approaching in-
finity, and any conclusion would need to clearly state that the
event in question is too rare to quantify in a counter-factual
climate.

2.6.1 theoretical effects of replacing infinite values

We now discuss the theoretical effects of replacing infinite
values in the upper bounds with finite ones, which provides
a framework for deciding how infinite values should be re-
placed. While this gives an indication of the expected effect
of replacing different values, the sensitivity of the results will
depend on where the infinite values occur, how many infinite
values occur and the finite value into which they are trans-
lated. In general, the aim should be to select a replacement
value large enough that the resulting weights from Eqs. (9)

and (11) reflect the level of relative confidence that we would
wish to place in each element.

Suppose that the nv of the upper bounds q(u)
i estimated

from the observations is infinite and truncated to some value
v�max

{
q

(u)
i

}
. Then, from Eqs. (1)–(2), µobs and σ 2

rep will

be unaffected while, from Eq. (6), q(u)
nat will be inflated by ap-

proximately vnv/nobs. The synthesised variance will there-
fore be inflated by wobsvnv/nobs(wobs+wmod) and the un-
weighted variance by vnv/2nobs.

The situation is slightly different for models, which are
weighted according to their precision rather than equally, as
the observations are. From Eq. (9), the relative weight wj

assigned to the j th model is determined by
(
q

(u)
j − q

(l)
j

)−1
;

thus, if only some of the models have infinite upper bounds
replaced by v�max

{
q

(u)
j

}
, then those models are down-

weighted and effectively ignored by the synthesis algorithm.
If all of the models have infinite upper bounds replaced
by some very large v, then the models are given roughly
equal weights in the model synthesis (dark-red bar), but from
Eq. (11) the total weight wmod will be very low compared
to wobs, and so the models will contribute very little to the
synthesis (magenta bar), although the upper bound of the un-
weighted synthesis will be increased to reflect the additional
uncertainty.

If v is not much larger than the other finite bounds, then
the models are still down-weighted, but not to the extent that
they are effectively dropped from the synthesis altogether.
The choice of v is therefore critical in determining how the
models and observations are weighted to produce the over-
all synthesis statement. The replacement value v may there-
fore be chosen to reflect reduced confidence in the model
projections by down-weighting their contribution to the syn-
thesis. Recall that we work with log-transformed probability
ratios, which are assumed to be approximately normally dis-
tributed; we might therefore choose to set the replacement
value q∗(u)

j = µj + 3
(
µj − q

(l)
j

)
, reflecting an approximate

6σ interval above the best estimate based on the width of the
finite lower interval. By doing this, we halve the weight wj
that would be assigned to model j if the confidence interval
were symmetric, because

q∗
(u)
j − q

(l)
j = µj + 3

(
µj − q

(l)
j

)
− q

(l)
j = 4

(
µj − q

(l)
j

)
= 2× 2

(
µj − q

(l)
j

)
.

This approach can easily be modified to reflect differing lev-
els of confidence in the information from those climate mod-
els that produce infinite upper bounds.

2.6.2 Replacing infinite values in practice

Given the theoretical considerations above, the main objec-
tive when replacing infinite values in any given study is to
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Figure 2. PR of the 2023 heat wave in Madagascar where observations and models are incompatible in order of magnitude with numerical
replacements for (a) infinite values in the synthesis routine of 10 000 and (b) the 6σ replacement discussed in Sect. 2.6.2. Models with one
infinite value replaced are flagged with “!”; models with two or more infinite values replaced are flagged with “!!”.
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keep the relative weights of the individual datasets consis-
tent after replacement. The actual numbers, as mentioned
above, are comparably meaningless anyway. We thus sug-
gest in cases where only the upper bound is infinite to cal-
culate the numerical upper bound for the visualisation as 6
times the standard deviation, as proposed above. This value
is chosen as it is a common indicator of virtually impos-
sible risks in engineering contexts. When the lower bound
and best estimate are finite, this can simply be calculated by
adding the difference between the lower bound and the best
estimate multiplied by 3 to the best estimate given that the
lower bound represents a deviation of 2σ . When the best es-
timate is also infinite, we suggest using the highest finite up-
per bound from other models as the best estimate in these
models and repeating the calculation above to obtain the nu-
merical upper bounds. If the lower bound is also infinite, we
choose the highest best estimate of the other models as the
lower bound and proceed as above. Any models for which
infinite values have been replaced with finite values should
be clearly marked. In Fig. 2 we show the results of the syn-
thesis when applying this method compared with the previ-
ously applied method of setting infinity to 10 000 for the up-
per bounds (and 9999 for the best estimates and 9998 for
the lower bounds). The overall synthesised results are not
very different with respect to the orders of magnitude, with
a PR of 4920 (860–30 000) when replacing infinities with
10 000 and 3660 (906–199 000) when using the method sug-
gested here, which keeps the relative weights according to
the actual modelling results. However, the range of uncer-
tainty captured by the second method is slightly narrower
for the weighted uncertainties (magenta bar) and, crucially,
given the consistency of the relative weights, a preferred
methodology that represents the actual results better. For the
unweighted synthesis, the upper bounds are at 497 000 and
431 000 respectively and thus identical for all practical pur-
poses. However, all the methods are comparably arbitrary,
and we can only conclude with high confidence that there is
a strong trend, but we have low confidence in the exact num-
ber.

2.7 Conclusions about the formal synthesis

The formalism described here gives a practical and opera-
tional way of combining the information of various observa-
tional and model-based estimates of the PRs and changes in
intensity (1I ) of extreme events, taking into account several
sources of uncertainties: natural variability in both observa-
tions and models, observation representativity and model un-
certainty. The true representativity uncertainty and model un-
certainty can be either smaller or larger than the spread. It can
be smaller if there are values that are known to be less accu-
rate than the others included in the synthesis, e.g. less reliable
observations or a model with known deficiencies. It can be
larger because the observations and models suffer from com-
mon (shared) flaws that are not reflected in the spread. How-

ever, without additional information these deviations cannot
be estimated. The additional information would have to come
from the observational dataset and model evaluations, but it
is unclear at the moment how to best use these evaluations to
weigh the results beyond the include–exclude step we have
adopted. This additional knowledge can however be used af-
ter the analysis is carried out to decide whether to present the
best estimate, the lower or upper bound respectively or the
range as the overarching result. As this is done after the syn-
thesis, where models are either included or excluded but not
otherwise reweighted, this requires an additional step but has
the advantage of making assumptions much more transparent
than they would be if included in an algorithm.

3 Combining statistics with other lines of evidence

The formal statistical synthesis methodology introduced here
allows us to transparently combine the evidence estimated
using the available climate data. The errors from insufficient
sampling of variability and structural uncertainties are higher
when fewer data are available. Structural uncertainty is fur-
thermore strongly influenced by the quality of the data with
respect to observations, reanalysis and the climate models
used. A lot of knowledge is available beyond what can be
captured with formal, quantitative or qualitative model eval-
uation. The synthesis thus only represents the available data,
not the available knowledge. For a meaningful overarching
attribution statement, both need to be combined. To do this,
we qualitatively address the lines of evidence and available
knowledge beyond the statistical analysis. Based on these,
we create an overarching message.

3.1 Structured assessment of lines of evidence

This approach essentially follows an assessment of the fol-
lowing points:

1. Goodness of fit of the statistical model

2. Quality of observations, including differences between
different observational datasets and uncertainties in ob-
served trends

3. Model results, including known deficiencies of the mod-
els, the agreement between models and the agreement
between observations and model averages

4. Agreement between observations and models

5. Analysis of future trends

6. Physical understanding, e.g. the Clausius–Clapeyron re-
lationship

7. Other published research or research syntheses such as
included in IPCC reports and government assessments.
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The assessment of any of these points helps to judge how
much confidence to put in the overarching synthesised result
and whether to report lower or upper bounds, the full range
or the best estimate.

For example, in the Ethiopian drought case shown in
Fig. 1b, no actual observations are available, but only re-
analysis data, which differ widely. Hence, the quality of the
observations is low (2) and the quality of the fit (1) is also
questionable, rendering the best estimate essentially mean-
ingless. This also means that the model evaluation is con-
ducted against low-quality data, and thus the tests are not
very meaningful. The only conclusions that can be drawn
in a case like this, other than “we don’t know”, need to be
strongly informed by physics (see below). In this example,
the agreement between the best estimate of the models and
observations is also poor, which means that the weighted av-
erage provides too small an uncertainty range that is not sup-
ported by what we know about the data, so in this case the
white bars are judged to represent a better uncertainty esti-
mate. In Fig. 1a, models and observations agree very well,
and thus the magenta box indicating the weighted average
would be the chosen result. In contrast, the observations for
the example of Cyclone Friederike are actual high-quality
observations showing a clear trend that is in opposition to
the models, indicating that the observed trend is not driven
by human-induced climate change through processes present
in models.

In a recent study performed in western Asia
(https://www.worldweatherattribution.org/human-induced-
climate-change-compounded-by-socio-economic-water-
stressors-increased-severity-of-drought-in-syria-iraq-and-
iran/, last access: 28 October 2024), the model evaluation
step showed that, while models represented temperatures
overall well in the flat basin of the Euphrates and Tigris,
this was not the case over Iran. This is not surprising, given
the known difficulty of models in representing mountainous
terrain well (3). This led to the overall conclusion to regard
the two results with different levels of confidence: “It is
important to highlight that the models represent temperatures
over the river basin well, but less so over Iran with much
more varied topography, hence confidence is high for the
assessment over the Tigris-Euphrates basin, but medium
over Iran.”

The analysis of future trends (5) is important in every
study, as a qualitatively different trend from the past and
present is always an indicator that any trend found up to
today is not, or at least not only, driven by human-induced
climate change. If however there is a significant trend in fu-
ture simulations, even if it is not significant in the past, the
reported result will be that a trend is emerging rather than
favouring the assumption of no trend at all. An example is
the 2022 floods in Pakistan (Otto et al., 2023), where an as-
sessment of future trends led to the conclusion that “intense
rainfall has become heavier as the world has warmed, [and]

that climate change indeed increased the rainfall intensity up
to 50 % as the best estimate in some models.”

This latter conclusion in the case of the Pakistan floods has
not only been informed by an assessment of future trends, but
has also been informed by the knowledge that “we do know,
for the 5 day rainfall event that the Clausius–Clapeyron re-
lationship will hold” (Otto et al., 2023). Hence, these are
well-known physical mechanisms (6). In this study two dif-
ferent event definitions to characterise the observed floods
were analysed: the physics and future assessments provided
additional lines of evidence to draw a strong conclusion for
the 5 d event. They do not hold for the 60 d event that was
also assessed. In this case the only line of evidence to draw
from in the face of the highly uncertain results is the pub-
lished literature (7). While not allowing for any quantitative
conclusions, IPCC reports and individual studies did provide
support for the conclusion that “climate change increased ex-
treme monsoon rainfall” as the overarching headline result.

3.2 Overarching message

Following this structured assessment, there is of course a
wider context to be taken into account before finalising the
overarching message. The approach of extreme-event attri-
bution taken here is one of different possible framings of at-
tribution studies and, as has been discussed extensively, dif-
ferent framings lead to different attribution results (see e.g.
Jézéquel et al., 2018; Stott et al., 2016; Otto et al., 2016;
Chen et al., 2021). The same is true for different event defini-
tions (Leach et al., 2020). Thus, there is always an element of
choice of definition and framing in the overarching message,
but in some cases this plays a smaller role than in others. For
example, the definition for the rainfall associated with Hur-
ricane Harvey (van Oldenborgh et al., 2017) is temporally
and spatially very distinct, while the rainfall is also Gumbel-
distributed, so that the probability ratio is independent of the
return period and thus the magnitude of the event. In other
cases however the event definition is much less clear, e.g.
when impacts accumulate over several individual storms or
no impacts are reported. Thus, confidence in the case of Har-
vey is higher than in the case of the Emilia-Romagna floods,
despite similarly strong evidence.

Furthermore, the framing used in this approach tends to
underestimate the role of climate change in data-sparse re-
gions, as discussed e.g. in Otto et al. (2022), which means
that focusing more on the upper bounds could be the more
appropriate approach if e.g. the physical reasoning would
support an increase, but the models do not show a significant
change.

4 Future research and conclusion

“What is the role of climate change?” This is a simple ques-
tion climate scientists get asked constantly that very often
does not have an easy answer. While there are many papers
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discussing the value of different methods of attribution, e.g.
that of Jézéquel et al. (2018), there is a lack of methods be-
yond what we describe here to quantitatively combine obser-
vation and model-based results to reach overarching attribu-
tion statements. One exception is a Bayesian framework im-
plemented by Robin and Ribes (2020) in which climate mod-
els are used to define prior distributions for the parameters of
the extreme-value distribution and, combined with observa-
tions, to estimate the extent to which the event of interest has
been affected by climate change. With meteorological ser-
vices around the world starting to implement event attribu-
tion in operational frameworks, we hope that new methods
to synthesise different data sources and other lines of evi-
dence in addition to the one we have shown here will evolve
to establish best practices and trustworthy methods to inform
policy, e.g. in the context of loss and damage (Noy et al.,
2023). The methods used here are chosen to be quick to im-
plement so that they can be used in rapid or even automated
attribution studies and be transparent in the weightings and
assumptions that go into the synthesis routine. These meth-
ods were tested and improved in over 50 rapid attribution
studies undertaken with the World Weather Attribution ini-
tiative and were found to be on the one hand standardised,
which makes it easy to compare different studies with each
other and keep a degree of methodological neutrality. On the
other hand, they are flexible enough to allow different inter-
pretations given very different contexts. The logical next step
would be to implement a Bayesian framework following e.g.
Robin and Ribes (2020) that would include some of the lines
of evidence we now use on top of the statistical method to in-
terpret the results and craft overarching messages to be used
as a prior, e.g. physical understanding. Such a framing would
also allow for more conditional methods of event attribution
to be included in the same overarching framing (Shepherd,
2016). When developing these it would be important to in-
vestigate how results obtained in a Bayesian framework can
be assessed alongside studies using the synthesis routine de-
veloped here together with other previous probabilistic attri-
bution studies as Bayesian methods are more elegant but less
transparent. Simple and transparent methods to understand
the role of climate change across a large range of geogra-
phies and types of hazard become increasingly important,
with the increasing realisation that a more comprehensive ev-
idence base of the impacts of human-induced climate change
is needed to inform international climate policy (Otto and
Fabian, 2023).

Appendix A: Dealing with changes over different
time intervals

Changes can be defined over different time intervals. For in-
stance, due to a lack of observational or model data, changes
can be defined relative to 1950 rather than 1900 or another es-
timate of “pre-industrial”. Similarly, for a model with a time

slice, the difference between the past and present climates
can be different from the current difference in GMST levels
(or years) between pre-industrial and “now”. It is preferable
to calculate all measures over the same interval. However, if
this is not possible because too few data would be left, the
first step is to convert the PR and 1I to a common time in-
terval (Y1,Y2) from the individual observational and model
intervals (y1,i,y2,i). For this we take the largest time inter-
val: Y1 =mini(y1,i),Y2 =maxi(y2,i). Assuming a linear de-
pendence on the smoothed global mean temperature T (y),
the change in intensity can then be adjusted as

1Ii(Y1,Y2)=1Ii(y1,i,y2,i)+α[T (Y2)− T (Y1)

− T (y2,i)+ T (y1,i)]

=1Ii(y1,i,y2,i)
T (Y2)− T (Y1)
T (y2,i)− T (y1,i)

, (A1)

where we assume that we can extrapolate with the trend α
given by the change in intensity divided by the change in
smoothed global mean temperature. The same expression
holds for log(PR). The bounds on the uncertainty interval are
similarly transformed. As levels of warming in models can be
very different from the observed change of 1.2, an alternative
and recently more widely used method is to fix the warming
level rather than the time period. This is done by assuming
that the logarithm of the risk ratio depends linearly on the
global mean temperature, just like for the probabilities them-
selves. This is done by transforming the model 1 GMST by
a factor f , e.g. transforming a model 1 GMST of 1.0 to the
observed 1 GMST of 1.2, where f = 1.2.

PR : f logPR= log(PRnew) PRnew = PRf

1I (scale) : f log
(

1+
1I

100

)
= log

(
1+

1Inew

100

)
1Inew = 100

((
1+

1I

100

)f
− 1

)
1I (shift) : f1I =1Inew 1Inew = f1I

Data availability. The algorithms have been implemented
in the public KNMI Climate Explorer web application at
https://gitlab.com/KNMI-OSS/climexp/climexp_numerical/-/
blob/master/src/synthesis.f90?ref_type=heads (Kew, 2024),
and an R package, including functions to carry out non-
stationary model fitting and analysis, currently available at
https://github.com/WorldWeatherAttribution/rwwa (Barnes, 2024).
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