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Abstract In September 2020, the Western United States experienced anomalously severe wildfires that
resulted in carbon monoxide (CO) emissions almost three times the 2001–2019 average. In this study, we
investigate the influence of wildfires on atmospheric carbon monoxide (CO) variability through a comparative
analysis of observations from the Measurements of Pollution in the Troposphere (MOPITT), the Infrared
Atmospheric Sounding Interferometer (IASI), and the Tropospheric Monitoring Instrument (TROPOMI). Our
focus is on the North American domain, aiming to understand the differences among these products. In general,
all instruments show excellent agreement under typical atmospheric CO conditions. However, notable
discrepancies were observed in the CO data from the three sensors, particularly in regions with elevated CO total
column (TC) values. IASI and TROPOMI consistently showed higher CO values over the western U.S.
compared to MOPITT. During the fire episodes, we found that the IASI retrievals suggested higher CO
abundances near the surface than the MOPITT thermal infrared retrievals that are probably the result of the
differences in the covariance matrices used in IASI and MOPITT retrievals. We also found that the high IASI
and TROPOMI CO observations over the western U.S. coincided with high values of the TROPOMI aerosol
index (AI), suggesting the presence of absorbing aerosols. The analysis exhibited better agreement between
TROPOMI and MOPITT CO TC when the AI values were low. Our results suggest that appropriate quality
filtering should be employed when analyzing pollution events with these data. In particular, utilizing the AI for
quality filtering may be useful when analyzing extreme pollution events with these satellite products.

Plain Language Summary In September 2020, wildfires in the Western U.S. caused large smoke
plumes that spread across the continent, significantly increasing atmospheric carbon monoxide (CO) levels.
Using data from the MOPITT, IASI, and TROPOMI satellite sensors, this study found strong CO enhancements
from the fires. The sensors showed good agreement under moderate CO conditions but diverged in areas of high
CO and heavy aerosol loads, suggesting aerosol interference in CO retrievals. TROPOMI's UV Aerosol Index
(AI) and CALIPSO data were used to evaluate aerosol impacts, emphasizing the need for quality filtering when
analyzing CO during intense pollution events.

1. Introduction
Wildfires significantly impact atmospheric composition by emitting both long and short‐lived trace gases and
aerosols into the atmosphere (Voulgarakis et al., 2015), which can have adverse effects on air quality. Air quality
is crucial for human health and quality of life, and the influence of fires on air quality is becoming increasingly
concerning (Finlay et al., 2012). Notably, wildfires can lead to significant increases in the concentrations of
carbon monoxide (CO), ozone (O3), nitrogen oxides (NOX), and fine particulate matter (PM2.5), all of which can
adversely affect air quality (Phuleria et al., 2011). Exposure to wildfire smoke emissions is associated with a range
of health impacts for communities near the wildfires and those downwind due to long‐range transport (Bates
et al., 1995; Youssouf et al., 2014). For instance, wildfires in the Pacific Northwest (PNW) region have been
observed to significantly impact tropospheric composition in the North Atlantic Basin (Lapina et al., 2006),
indicating that these fires play a substantial role in shaping tropospheric composition throughout much of the
Northern Hemisphere. Moreover, the release of greenhouse gases such as carbon dioxide (CO2) from forest fires
contributes to global warming and climate change, thereby impacting weather patterns and ecosystems (McClure
& Jaffe, 2018).
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The frequency and size of wildfires in the United States, particularly in the Western region, have been increasing
over the past decades and are expected to continue rising due to global climate change (Scholze et al., 2006;
Westerling, A. L., 2016; Schneising et al., 2020). Satellite observations of the burned area from the Moderate
Resolution Imaging Spectrometer (MODIS) and satellite‐based estimates of fire CO2 emissions from the global
fire emissions database (GFED4s) indicate hotspots over the PNW (Pacific Northwest) in August and September.
The inter‐annual variability of fires in this region is characterized by increased fire activity in certain years,
notably in 1988, 2006, 2012, 2017, 2018, and 2020, with the highest level recorded in 2020 (Xie et al., 2022). In
particular, the year 2020 experienced an anomalously large wildfire season in theWestern U.S. Numerous fires in
California, Colorado, Washington, and Oregon resulted in the burning of over 10 million acres. It was reported
that those fires resulted in extensive damage, including fatalities and property loss (Abatzoglou et., 2021; Higuera
& Abatzoglou, 2021). Albores et al. (2023) highlighted the remarkable significance of the 2020 U.S. wildfire
season, noting that carbon monoxide (CO) emissions surpassed three times the average annual emissions
observed between 2001 and 2019. Additionally, their study showed that Western U.S. fires contributed to more
than half of the U.S. wildfire emissions in 2020.

During the latter half of the summer of 2020, the Pacific Northwest (PNW) experienced above‐normal tem-
peratures and below‐normal precipitation (Reilly et al., 2022). The region's vegetation primarily consists of dense
conifer forests and brush, with the PNW containing the world's largest seasonal temperate rainforests along the
Oregon Cascades (DellaSala, 2014). By early September, an exceptionally warm environment and severe drought
conditions led to vegetation becoming highly dry and combustible. These circumstances, coupled with strong,
unusual easterly and north‐easterly winds, played a significant role in the rapid spread of fires (Abatzoglou
et al., 2021; Mass et al., 2021; Varga et al., 2022).

Additionally, the atmospheric transport of biomass emissions in the PNW is impacted by the complex topog-
raphy, which consists of a basin with high mountains along the coastal region (Nakata et al., 2022). High‐
resolution numerical simulations suggested the importance of high‐amplitude mountain waves that produce
strong easterly winds over and to the west of the crest of the Oregon Cascades (Mass et al., 2021). Evers
et al. (2022) found that burn severity was linked to vegetation type and the elevation and slope of the topography
of the region, with slope having the greatest effect. The steep slopes enhanced the fire severity as trees have more
wind exposure, convective heating, and higher fire ventilation and turbulence. As a result of stronger winds, the
fire activity is amplified at relatively higher elevations (Evers et al., 2022).

Despite efforts made in recent decades to mitigate human‐made pollution, the air quality in fire‐prone regions of
North America has deteriorated due to the increasing frequency of wildfires (Buchholz et al., 2022; McClure &
Jaffe, 2018). Thus, understanding the impact of local and transported pollution on air quality is critical for the
mitigation of future adverse health effects. However, the quantification of wildfire emissions and impacts has
many challenges as fires often ignite sporadically in remote regions that are hard to access from the ground.
Aircraft can sample wildfire plumes but are not able to sample close to the fire or for the entire fire season. On the
other hand, satellite instruments can measure directly over plumes with consistent, frequent, and extensive data
coverage at regional and global scales, but with a relatively large footprint.

One approach for estimating fire carbon emissions (Liu et al., 2017; Yin et al., 2016) involves utilizing satellite
observations of atmospheric CO, which is commonly emitted alongside gases like CO2 during incomplete
combustion in wildfires, and which serves as a vital tracer for fire activity (Andreae & Merlet, 2001). Analyzing
CO distributions resulting from wildfire emissions provides insights into related atmospheric species, such as
tropospheric ozone and aerosols. Furthermore, given its relatively long lifetime in the atmosphere, CO acts as an
indicator for long‐range pollution transport (Andreae & Merlet, 2001).

A critical aspect of evaluating fire carbon emissions involves comparing satellite observations from several in-
struments such as: MOPITT (Measurements of Pollution in the Troposphere), TROPOMI (TROPOspheric
Monitoring Instrument), and IASI (Infrared Atmospheric Sounding Interferometer). These satellites offer valu-
able insights into atmospheric CO emissions. However, these instruments differ in several aspects including
sampling regime, pixel size, instrumental technology, and retrieval scheme. Understanding the discrepancies and
agreements among these instruments is crucial for accurate interpretation, ensuring the reliable use of the ob-
servations for quantifying emission inventories and informing policy decisions. Reconciling the differences
between the instruments is also important since the use of multiple data sets in any analysis increases the
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robustness of the results. This study focuses on the comparability of retrieved CO measurements from MOPITT,
IASI, and TROPOMI, in the context of wildfire conditions, particularly in September 2020 across North America.

The paper is structured as follows: Section 2 introduces the satellite data utilized in this study. In Section 3.1, we
conduct a regional analysis of CO levels over the North American domain in September 2020. Section 3.2
presents the analysis of MOPITT and IASI daily CO profiles, followed by a detailed analysis of a case study in
Section 3.3. Section 3.4 presents the analysis of contrasting regions. Finally, Section 4 provides a summary of the
study and suggestions for future research.

2. Data
2.1. MOPITT

MOPITT is a nadir‐viewing gas correlation radiometer that was launched in 1999 on board the NASA Earth
Observing System (EOS)/Terra satellite to measure atmospheric CO. Terra is in a sun‐synchronous orbit at an
altitude of∼700 km, with an equator crossing at∼10:30 LT (local time) each morning and evening. TheMOPITT
instrument has a swath width of ∼640 km that makes approximately 14–15 orbits per day and it achieves near‐
global coverage every 3–4 days with a spatial resolution of 22 × 22 km2 (Drummond et al., 2022). MOPITT
products have been consistently validated using ground‐based remote sensing and aircraft data (Buchholz
et al., 2022; Deeter et al., 2012, 2013, 2019; Emmons et al., 2002, 2004).

MOPITT is the only space‐based instrument deriving CO simultaneously from near‐infrared (NIR, 2.3‐μm),
thermal infrared (TIR, 4.7‐μm), and multispectral radiances (TIR+NIR). TIR radiances are most sensitive to CO
in the middle and upper troposphere, with better sensitivity over regions with greater thermal gradients such as
deserts (Deeter et al., 2011). Since NIR retrievals depend on reflected solar radiation, observations are limited to
daytime over land. Additionally, the NIR data exhibit approximately uniform sensitivity throughout the tropo-
sphere. The MOPITT joint (TIR/NIR) CO retrieval product provides improved sensitivity to CO in the lower
troposphere compared to the TIR‐only product (Deeter et al., 2011, 2012, 2013; Worden et al., 2010).

MOPITT CO retrieval products are generated using an iterative optimal estimation algorithm (Rodgers, 2000)
involving both MOPITT calibrated radiances and a priori CO data (Deeter et al., 2003) under cloud‐free con-
ditions. The MOPITT retrieval algorithm is described in detail by Deeter et al. (2019) andWorden et al. (2013). It
uses a priori CO profiles that are derived from a model climatology which varies seasonally and geographically
(Deeter et al., 2003; Lamarque et al., 2003). The MOPITT products consist of the volume mixing ratio (VMR) of
CO profiles on 10 vertical layers from the surface to 100 hPa which are integrated to provide the total column
(TC) amounts (Deeter et al., 2003, 2014, 2017).

TheMOPITTV9 product exhibits enhanced observational coverage, particularly during extreme pollution events,
when compared to previous versions (Deeter et al., 2022; Marey et al., 2022). We use V9, Level‐2 CO profiles,
and TC CO retrievals of TIR and Joint (NIR + TIR) data over land and/or ocean scenes, depending on the region
of interest.

2.2. IASI

IASI is a Fourier transform infrared spectrometer (FTS) that detects the TIR radiation emitted by the earth and the
atmosphere, between 645 cm− 1 and 2,760 cm− 1, with a spectral resolution of 0.5 cm− 1. There are three IASI
instruments on board the Metop sun‐synchronous satellites: IASI‐A, B, and C, launched in 2006, 2012, and 2018,
respectively. IASI sensors view the ground through a cross‐track rotary scan mirror with a horizontal resolution of
12 km at nadir, which increases at larger viewing angles (Clerbaux et al., 2009; Turquety et al., 2009). Each IASI
instrument scans the atmosphere with a swath width of 2,200 km which achieves global coverage twice daily at
09:30 LT (Clerbaux et al., 2009).

IASI provides information on the atmospheric concentrations of several trace gases such as O3 (Barret et al., 2011;
Boynard et al., 2016), CO (George et al., 2009) and N2O (Barret et al., 2021), but in this study, we will be using
level 2 CO profiles and TC observations (https://iasi.aeris‐data.fr/co/, last access: 20 December 2021). The nadir
spectral radiance in the range of 2143–2181.25 cm− 1 is used to retrieve CO. The retrieval is based on the Fast
Optimal Retrievals on Layers for IASI (FORLI) algorithm (Barret et al., 2024), using single a priori. The IASI CO
product consists of retrieved VMR profiles in 19 fixed layers corresponding to vertical layers of 1 km thickness
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starting from the surface to 18 km. The last level represents a layer from 18 km to the top of the atmosphere
(Clerbaux et al., 2009). IASI CO data are retrieved for a cloud fraction of less than 25% and have been validated
against ground‐based observations (Kerzenmacher et al., 2012), aircraft data (Klonecki et al., 2012; Pommier
et al., 2010) and other satellite measurements (George et al., 2009). CO IASI data (Astoreca et al., 2021) that are
utilized in this study were computed after filtering for Super Quality Flag (SQF) = 0 (see https://iasi.aeris‐data.fr/
CO_readme/).

2.3. TROPOMI

TROPOMI is a push‐broom imaging spectrometer onboard the Sentinel‐5 Precursor (S‐5P) satellite that was
launched on 13 October 2017. It is flying in a sun‐synchronous orbit at 824 km altitude with a 13:30 LT Equator‐
crossing time. The TROPOMI grating spectrometer measures solar spectra reflected by Earth's surface in the
UV− vis (270–500 nm), near‐IR (675–775 nm), and the shortwave‐infrared (SWIR) (2,305–2,385 nm) spectral
bands. TROPOMI provides spectral measurements with daily global coverage with a swath of 2,600 km and a
spatial resolution at nadir up to 5.5 × 7.0 km2 in the SWIR (updated from 7.0 × 7.0 km2 in August 2019).

TROPOMI CO data are processed with the Shortwave Infrared CO Retrieval (SICOR) algorithm that was
developed for Copernicus operational data processing (Landgraf et al., 2016). The SICOR algorithm is based on a
scattering forward simulation that retrieves cloud properties together with trace gas columns. The inversion
deploys a profile‐scaling approach (Borsdorff et al., 2014) where a CO reference profile is scaled to fit the
TROPOMI reflectance measurements based on monthly averaged (3° × 2°) vertical CO a priori profiles from the
TM5 chemical transport model (Krol et al., 2005). It provides total vertical columnmeasurements of CO retrieved
from the SWIR measurements, for clear‐sky and cloudy conditions over land and for cloudy conditions over the
ocean. Under clear‐sky conditions over oceans, the signal is too low due to the dark sea surface in the SWIR to
give a meaningful retrieval. The high reflectance of the cloud enables retrieval over the ocean.

The SICOR algorithm consists of two steps. In the first step, the SICOR algorithm (the forward simulation)
retrieves the total amount of CH4 from the TROPOMI radiances between 2,315 and 2,324 nm to filter optically
thick clouds and aerosols assuming a non‐scattering atmosphere (Borsdorff et al., 2017). A full‐physics algorithm
retrieves CO in the second step from radiances between 2,324 and 2,338 nm. The CH4 retrievals from the first step
are used to derive the effective cloud parameters (i.e., cloud optical thickness and cloud center height). A detailed
outline of all settings for the CO retrieval for example, spectral windows, priori profiles, and other auxiliary data
are given by Landgraf et al. (2016).

One of the advantages of the SICOR algorithm is that it provides retrievals for cloudy conditions using the
sensitivity of the measurement to the CO above the cloud. The TROPOMI CO TC data sets include total‐column
averaging kernels (AVKs) for individual measurements that describe the vertical sensitivity of the retrieved CO
columns. The CO retrieval under clear‐sky atmospheric conditions has good sensitivity throughout the atmo-
sphere, with minor variations due to the observation geometry of the satellite The AVKs provided for individual
retrievals under cloudy atmospheric conditions indicate the sensitivity loss resulting from shielding by clouds
(Borsdorff et al., 2018).

The TROPOMI CO data set was validated with TCCON (Total Carbon Column Observing Network) mea-
surements to show that the data set fulfills the mission requirements (10% precision and 15% accuracy for single
soundings). However, the measurements of the TCCON stations are located mainly in unpolluted remote areas
that represent the CO background concentration (Borsdorff et al., 2018, 2022). The BBFLUX (Biomass Burning
Fluxes of trace gases and aerosols) team conducted an intercomparison of TROPOMI CO with airborne mea-
surements under high aerosol loads from wildfires. By using FLEXPART simulations to account for the time
mismatch of the TROPOMI and airborne measurements, in addition to accounting for the TROPOMI AVKs, they
showed that TROPOMI COwas+9.0% systematically higher for the operational product (+7.4% for the scientific
product) relative to the aircraft measurements. They showed that the TROPOMI CO product can be used to
evaluate global wildfire emission fluxes with careful consideration taken for background corrections, ground
pixel size, and atmospheric variability (Rowe et al., 2022).

For this study, we use TROPOMI offline Version 1.03.02 data (Apituley et al., 2020), which were downloaded
through the Copernicus Open Access Hub (https://s5phub.copernicus.eu/dhus/#/home). TROPOMI quality
assurance has four discrete levels: 0, 0.4, 0.7, and 1, which are based on Aerosol optical depth (AOD) and cloud
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height (CL) criteria (/https://sentinels.copernicus.eu/documents/247904/3541451/Sentinel‐5P‐Carbon‐Monox-
ide‐Level‐2‐Product‐Readme‐File). The definition for each quality flag (qf) is given in Table 1 (Landgraf
et al., 2016). Note: In later versions of the TROPOMI retrieval qf is a continuous variable in contrast with these
discrete values. In this study, we limit the analysis to scenes under clear‐sky (qf = 1) and few‐cloud (qf = 0.7 and
1) atmospheric conditions.

Additionally, the Aerosol Index (AI) product retrieved by S5P TROPOMI is utilized in this study. AI is a
qualitative index that measures the presence of aerosols with considerable absorption properties. AI is a measure
of the occurrence of aerosols in the atmosphere, which is calculated using the 354 nm/388 nm wavelength pair
(Torres et al., 2020). The wavelengths used have low ozone absorption, so unlike aerosol optical thickness
measurements, AI can be calculated in the presence of clouds. AI values can be positive or negative. The
magnitude of the aerosol AI signal (which range in values from a slightly negative background to values as high as
15) depends mainly on AOD, aerosol height, and aerosol absorption features (carbonaceous aerosol) (Torres
et al., 2013). The positive AI values (range from 1 up to 15) indicate the presence of elevated absorbing aerosols
which can be desert dust and biomass‐burning aerosols. In contrast, the negative AI values indicate non‐absorbing
aerosols (Pandey, 2022).

2.4. CALIOP

CALIOP is a polarization lidar instrument onboard the CALIPSO satellite which was launched in April 2006. The
CALIPSO satellite is in a 705‐km sun‐synchronous polar orbit with a 16‐day repeat cycle, with an overpass time
of around 01:30/13:30 local solar time at the equator. It measures the total attenuated backscatter of aerosols at
532 and 1,064 nm providing detailed atmospheric vertical structure (Vaughan et al., 2004; Winker et al., 2009). It
can observe both daytime and night‐time aerosol and cloud backscatter profiles from the sea level to ∼30 km
(Winker et al., 2006; Kim et al., 2018). Backscattered signals are sampled at a vertical resolution of 30 m below
8.2 km altitude and 60 m between 8.2 and 20.2 km altitude. The diameter of CALIOP laser footprints on the
ground is 70 m, with a 333‐m horizontal spacing between footprint centers along the ground track (Kittaka
et al., 2011; Winker et al., 2007). The latest CALIPSO data products are available from the Langley Atmospheric
Science Data Center. In this study, CALIPSO Version 4.11 aerosol products were used (https://www.earthdata.
nasa.gov/learn/find‐data).

2.5. Gridding and Collocation Methods

In this paper, the data were gridded into 0.25° × 0.25° bins. Each of the satellite instruments have different
observational coverage as described above, but all the instruments were operating continuously through the
period considered for the study. The data were collocated using the following three consecutive steps.

1. Gridding the CO TC data into 0.25° × 0.25° bins for daytime and nighttime each day in September.
2. Retention of the data in each bin and day if all three instruments have observations in that bin on that day.
3. Temporally averaging of the data over September 2020 for the spatial analysis or spatially averaging of the

data over certain regions for the temporal analysis.

3. Results and Discussion
3.1. Spatiotemporal Distribution of Atmospheric CO Observations

In this section, we investigate the spatial distribution of atmospheric CO concentrations during the September
2020 wildfire season. Figures 1a–1e show the gridded spatial variations of daytime TC CO over North America

Table 1
TROPOMI Quality Flag Description

Quality flag Criteria Condition

1 AOD < 0.5 and CL < 500 m clear‐sky and clear‐sky like observations

0.7 AOD ≥ 0.5 and CL < 5,000 m mid‐levels cloud

0.4 AOD ≥ 0.5 and CL ≥ 5,000 m) or AOD ≤ 0.5 and CL ≥ 500 m) high clouds, experimental data set

0 SZA > 80° or defective product corrupted or defective data
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(NA) from TROPOMI with qf = 0.7, 1 (low cloud + clear) and qf = 1 (clear), IASI, and MOPITT TIR‐only and
MOPITT J (joint retrieval). The CO total columns from all data sets exhibit a similar pattern over North America,
with significant enhancements over both the eastern and western regions of the United States. Notably, TRO-
POMI shows prominent high CO levels in the Western U.S. region, whereas IASI and MOPITT display com-
parable values for both the western and eastern regions. The elevated CO values in the western region are
associated with a series of wildfires that extended across eastern Washington state and southward into western
Oregon and northern California. The fires commenced on 7 September 2020 and continued until around October
2020 (Abatzoglou et al., 2021; Albores et al., 2023; Mass et al., 2021; Reilly et al., 2022). The high CO values in
the central and eastern regions of the US are a result of transported CO from the fires (Albores et al., 2023).
Topography (higher elevation regions) affects (Dillon et al., 2011) the spatial distribution of CO TCwhere all data
sets exhibit lower values in the Intermountain West.

The spatial distribution of atmospheric CO concentrations during the September 2020 wildfire season over North
America was influenced by various factors, including topography, atmospheric dynamics, and synoptic‐scale
weather patterns (Nakata et al., 2022). High‐elevation regions, such as those in the Intermountain West with
valleys and basins surrounded by mountains, significantly impacted CO pollutant dispersion, acting as traps for
pollutants and resulting in elevated CO TC values. Mountains obstructed air mass movement, creating localized
pollution hotspots on the windward side and lower CO TC values on the leeward side (Dillon et al., 2011).
Furthermore, the presence of high‐amplitude mountain waves generated strong easterly winds over western
Oregon, further influencing pollutant dispersion and facilitating rapid wildfire spread, particularly in the Oregon
Cascades. The strong easterly winds observed in September 2020, particularly over the Pacific Northwest,
exacerbated wildfire activity, emphasizing the crucial role of atmospheric dynamics in wildfire behavior and
pollutant dispersion (Mass et al., 2021; Reilly et al., 2022). Thus, there would be a reduced amount of CO in the
atmosphere above these areas compared to regions at lower elevations (e.g., in regions between 110°–100°W and
30°N–40°N).

Finally, regions with higher elevations theoretically would exhibit lower CO TC values due to smaller air column
mass. Elevated CO values were evident in both western and eastern regions, contrasting with lower concentra-
tions observed around 110°–100°W and 30°–40°N. Overall, the complex interaction among topography, atmo-
spheric dynamics, synoptic‐scale weather patterns, and vegetation characteristics contributed to shaping spatial

Figure 1. Spatial variations of non‐collocated CO Total Column of TROPOMI data with qf > 0.7 (a), TROPOMI data with qf = 1 (b), IASI (c), MOPITT TIR (d), and
MOPITT Joint (e), for September 2020. The data were gridded on a 0.25° x 0.25° grid.
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variations in atmospheric CO concentrations during the September 2020 wildfire events (Mass et al., 2021; Reilly
et al., 2022; Russell et al., 2024).

While IASI and TROPOMI CO exhibit higher CO values over the Western U.S. relative to MOPITT, MOPITT
and IASI display higher values over Hudson Bay (HB) and the central and eastern U.S. compared to TROPOMI.
Also, the MOPITT and IASI CO TC data demonstrate more consistency over the eastern U.S., with higher values
relative to TROPOMI. However, MOPITT CO TC has less coverage and a larger pixel size than IASI, resulting in
MOPITT showing CO levels over broader regions. In contrast, IASI can capture finer variations and has more
coverage.

Several factors could lead to differences in the observed CO between the three satellite measurements. First is the
Equator‐crossing time of the instrument. TROPOMI has a cross time of 13:30, whereas for MOPITT it is at 10:30
and 22:30, and for IASI it is at 09:30 and 21:30. Morning measurements by MOPITT and IASI capture CO
concentrations influenced by overnight transport and mixing processes, while TROPOMI's afternoon measure-
ments reflect the accumulation of pollutants throughout the day. These differences in measurement timing be-
tween afternoon (for TROPOMI) and morning (for MOPITT and IASI) can lead to variations in observed CO
values due to diurnal fluctuations, and differences in transport and dispersion patterns (Busa el al., 2022). During
the September 2020 wildfires in the western US, diurnal variations in CO TC can be expected to mirror the
dynamics of the fires and atmospheric conditions. Wildfires tend to be more active during the daytime due to
factors such as higher temperatures, increased solar radiation, and stronger winds, resulting in peak CO emissions
during the late morning to afternoon hours. Although wildfires may continue to burn at night, their intensity
typically diminishes compared to daytime, leading to lower CO emissions and concentrations in the early morning
hours. Furthermore, the transport and dispersion of smoke plumes and CO emissions vary throughout the day
because of changes in wind patterns and atmospheric boundary layer dynamics. These variations contribute to
spatial differences in CO TC values, with downwind areas experiencing higher levels during specific times of the
day (Andreae & Merlet, 2001).

Second is the treatment of clouds in the field‐of‐view. The TROPOMI retrieval algorithm retrieves CO under both
clear and cloudy conditions, whereas IASI CO data are retrieved for a cloud fraction of less than 25% (Clerbaux
et al., 2009) and MOPITT CO data are retrieved with a cloud fraction of less than 5% (Deeter et al., 2021; Marey
et al., 2022). For many cloud‐clearing regimes in high aerosol locations, aerosol can be flagged as clouds.

Third is the wavelength at which the measurements are made. TROPOMI measures in the NIR range
(∼2,350 nm), utilizing reflected solar radiation to estimate CO levels, which is sensitive to atmospheric scattering
and absorption effects. In contrast, IASI measures CO in the TIR range (∼4,700 nm), relying on thermal radiation
emitted by Earth's surface and atmosphere, which is sensitive to the atmospheric temperature and emissivity.
Additionally, TIR measurements are influenced by surface temperature contrast, which affects the retrieval of
atmospheric composition information. The TIR measurements usually provide up to two independent pieces of
information, rather than a complete vertical profile. MOPITT's joint product takes advantage of both wavelengths,
allowing for complementary information on CO distribution and concentration (Borsdorff et al., 2014; Clerbaux
et al., 2009; Veefkind et al., 2012; Worden et al., 2010).

Fourth is the different spatial resolution and swath widths of the measurements. MOPITT has a significantly
smaller swath than IASI or TROPOMI which leads to lower temporal resolution. TROPOMI has the smallest
pixel size (5.5 × 7.0 km2), followed by IASI (12 km diameter), and then MOPITT (22 × 22 km2).

Fifth and finally, the retrieval approaches are different as discussed in Section 2 above (Borsdorff et al., 2014;
Clerbaux et al., 2009; Deeter et al., 2007; Veefkind et al., 2012).

To account for some of these factors, we collocated the CO TC data (see Section 2.5 above) and the results are
shown in Figure 2. The collocated values over the HB region, and the central and eastern US regions are in better
agreement across all three instruments. However, over the western region, the IASI and TROPOMI values are
higher than the corresponding MOPITT TIR and Joint observations. While the collocation approach considers
data within the same bin, it is worth noting that TROPOMI's smaller footprint allows for more effective sampling
of smaller‐scale features like smoke plumes, potentially resulting in higher TC CO (TCO) values even within the
0.25° × 0.25° grid. Hence, due to the varying spatial resolutions among the instruments, the spatial information
captured within each collocated grid cell may differ. If an area has partial cloud or smoke obscuration, a higher
resolution measurement may find clear areas whereas the lower resolution measurement may mask these areas as
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cloudy, resulting in fewer data points due to the coarse resolution. This difference in spatial coverage can in-
fluence overall TCO measurements and contribute to discrepancies among the instruments. Therefore, when
comparing TCO values across instruments, it is crucial to consider both spatial resolution and coverage.

We selected the following four regions for a time series analysis to examine the daily variations of CO: North
America (NA), HB, the central and eastern U.S. (CEUS), and the Pacific Northwest (PNW). The boundaries of the
four selected regions are given in Table 2 and the time series for the regions are shown in Figure 3. Data from
TROPOMI (qf = 0.7 and 1, cloudy and clear), IASI, and MOPITT (TIR and Joint products) were separated for
day and night conditions. In the North American domain (Figure 3a), the daily mean time series for the three
instruments exhibit a similar overall pattern, characterized by low CO values at the beginning and end of the
month and a peak in the middle of the month. Generally, all sensors show good agreement at low CO values
(typical CO TC levels), however, they exhibit larger discrepancies when CO values are high. For instance, be-
tween September 10–25, notable discrepancies arise at certain times, with differences that can exceed 50%.
Looking at the time series of the non‐collocated data (Figure 3a, left side), on September 13th, MOPITT TIR
nighttime data (black) records a value of approximately 1.5 × 1018 molecules/cm2, while IASI nightime data
(pink) show a value of around 2.6 × 1018 molecules/cm2. On September 15, IASI daytime observations (orange)
show a value of around 3.3 × 1018 molecules/cm2, while MOPITT J and TROPOMI data record TC CO values of
around 2.5 × 1018 molecules/cm2. With the collocated data (Figure 3a‐right panel), CO TC values from the three
sensors are more consistent with the highest values from IASI and the lowest values from the MOPITT TIR data.

All the regions experienced several fire‐driven CO peaks between September 8–25. However, these peaks
differed in terms of timing, frequency, and intensity. The peaks were most prominent over the CEUS (Figure 3c)
and PNW regions (Figure 3d), while the HB region only experienced one peak between 20 and 25 September

(Figure 3b). In the non‐collocated data (Figure 3b‐left), the highest CO TC
values were observed for daytime from IASI (4.5 × 1018 molecules/cm2)
followed by TROPOMI (4 × 1018 molecules/cm2), and MOPITT J
(2.8× 1018molecules/cm2). However, during the nighttime, the COTC values
were slightly lower, with IASI recording 3.5 × 1018 molecules/cm2 and
MOPITT TIR recording 2.5 × 1018 molecules/cm2. In contrast, the collocated
data (Figure 3b‐right) showed the highest CO TC values for nighttime IASI
and MOPITT, with values of 4 × 1018 and 3 × 1018 molecules/cm2,
respectively. It is reasonable to attribute this late CO peak to long‐range
transport from the PNW fires. MODIS AOD (not shown) also indicates high

Figure 2. Spatial variations of collocated CO Total Column of TROPOMI data with qf > 0.7 (a), IASI (b), MOPITT TIR (c),
and MOPITT Joint (d), for September 2020. The data were gridded on a 0.25° x 0.25° grid.

Table 2
The Boundaries of the Four Selected Regions for the Daily Time Series

Region Latitude Longitude

NA 35°–60°N 60°–130°W

HB 50°–60°N 80°–95°W

CEUS 34°–46°N 80°–100°W

PNW 35°–48°N 115°–130°W
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Figure 3. Daily time series of Measurements of Pollution in the Troposphere, Infrared Atmospheric Sounding Interferometer and Tropospheric Monitoring Instrument
averaged over (a) North America, (b) Hudson Bay, (c) CEUS and (d) and (e) PNW for qf ≥ 0.7, 1 on September 2020. The left panels show the time series of all
(non‐collocated) of the available observations (after quality assurance filtering), while the right panels contain the time series of only the collocated data. TROPOMI AI
data are plotted in cyan, with AI values (unitless) indicated on the right y‐axis.
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values over HB during the same time. The high aerosol levels are consistent with the eastward and northward
transport of the biomass burning smoke as indicated by true‐color images on September 20th (Figure S1a in
Supporting Information S1).

During wildfire events, smoke plumes containing aerosols and pollutants can be injected into the upper tropo-
sphere and even the lower stratosphere by strong convective updrafts associated with the fires. Once in the upper
atmosphere, these emissions can be transported horizontally by high‐altitude winds, such as the jet stream, over
large distances (Russell et al., 2024; Wilmot et al., 2022). Measurements from CALIPSO were utilized to monitor
the height of the smoke plumes. Figure S1a in Supporting Information S1 illustrates true‐color images from
September 20th overlaid with the trajectory of CALIPSO as it traversed over HB during nighttime on 20
September 2020. Figure S1b in Supporting Information S1 shows the vertical distribution of the aerosol back-
scatter coefficient recorded by CALIPSO on the same date (for the yellow path). It indicates that the plume height
ranged from 5 to 10 km, consistent with the intercontinental transport of the smoke.

The temporal variations observed in the CEUS region (as depicted in Figure 3c) are indicative of the potential
influence of emissions transported from the Western U.S. fires. This inference is supported by the prevailing
westerly mean wind in the free troposphere, particularly at around 750 hPa, during September 2020, as reported
by Albores et al. (2023). The magnitude of CO TC values over the CEUS region (Figure 3c, left panel) in the non‐
collocated daytime data shows that IASI recorded the highest CO TC value of 3.5 × 1018 molecules/cm2, while
TROPOMI and MOPITT measured a maximum of approximately 3 × 1018 molecules/cm2. During nighttime,
IASI recorded the highest values of 3.5 × 1018 molecules/cm2. Conversely, in the collocated daytime data
(Figure 3c, right panel), IASI registered the highest CO TC value of 4.5 × 1018 molecules/cm2. In the collocated
nighttime data, IASI recorded the highest value of 4 × 1018 molecules/cm2. In all cases, the MOPITT TC values
showed a maximum of about 3 × 1018 molecules/cm2. Our results are consistent with Albores et al. (2023), who
observed a significant increase in background pollution levels across the entire North American domain because
of fire emissions transported from the western part of the U.S.

The CO TC maximum in all the regional subsets did not exceed 5 × 1018 molecules/cm2, except in the PNW (see
Figure 3d, but note that the y‐axis scale is different) which experienced a strong peak between 8 and 15 September.
The PNW TROPOMI CO TC values of non‐collocated (all data) increased to 6.5 × 1018 molecules/cm2 and the
collocated data for TROPOMI and IASI exceeded 8× 1018molecules/cm2. These extremely high values reflect the
contribution of Western U.S. fires to the total CO (Abatzoglou et al., 2021; Albores et al., 2023; Mass et al., 2021;
Varga et al., 2022).

In the PNW region (Figure 3d), the IASI and TROPOMI data exhibit significant discrepancies relative to
MOPITT when CO TC levels are extremely high, specifically for the second week of September. On 10
September 2020, the left panel (all data, not co‐located) showed high values in the TROPOMI, IASI, and
MOPITT Joint CO data. However, the TROPOMI magnitude is 6–7 × 1018 molecules/cm2, much higher than the
IASI and MOPITT Joint CO data that have values around 4–5 × 1018 molecules/cm2, and the MOPITT TIR data
with values of about 2.5 × 1018 molecules/cm2. Following this peak on 10 September 2020, the MOPITT (both
Joint and TIR) CO values decreased to∼2 × 1018 molecules/cm2, while the IASI and TROPOMI values remained
high until about 18 September. This behavior could be attributed to differences in the temporal and spatial
sampling density between the sensors. The MOPITT temporal resolution of about 3 days could account for less
sampling of the fire CO emission compared to IASI and TROPOMI (with daily temporal resolution). The less
frequent sampling of MOPITT compared to IASI and TROPOMI means that MOPITT might not capture the full
range of short‐term variations in CO concentrations, particularly during intense fire events when CO emissions
can peak rapidly and then decrease. This lower temporal resolution of MOPITT could lead to underestimation or
smoothing of CO concentrations, resulting in lower observed values compared to instruments with higher tem-
poral resolution like IASI and TROPOMI.

The collocated data (Figure 3d, right panel) on 10 September 2020 show substantial discrepancies, with IASI and
TROPOMI values greater than 8 × 1018 molecules/cm2, about double the CO values in the MOPITT Joint data.
While the non‐collocated data (Figure 3d, left panel) might exhibit discrepancies due to differences in temporal
sampling, the variations between MOPITT and the other instruments in the collocated data set (Figure 3d, right
panel) suggest that factors beyond sampling frequency may contribute to these differences. These factors could
encompass all of the five issues enumerated above. Thus, while temporal sampling frequency may influence non‐
collocated discrepancies, it is evident that additional factors play a role when examining collocated data.
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Rowe et al. (2022) emphasized the significant effect of smoke aerosols on the CO retrievals. To assess the in-
fluence of high aerosol loading on the CO data, a similar time series of the daily AI from TROPOMI is displayed
in Figure 3, on the right y‐axis (cyan dashed). The high AI values (Figure 3d) coincide with the corresponding
extremely high IASI and TROPOMI CO observations. The magnitude of the AI maximum over the PNW was
approximately 4 for non‐collocated (all data) and 7 for collocated data. These exceptionally high AI levels
indicate heavy smoke aerosol loading (Torres et al., 2020) resulting from the wildfires in the western U.S. The
observed correlation between the notably high TROPOMI CO levels and the AI data underscores the complex
interactions between aerosols, trace gases, and measurement techniques, particularly in environments affected by
wildfires. Elevated levels of aerosols, such as smoke particles from wildfires, can enhance the scattering of
sunlight, leading to an increase in measured AI values. Furthermore, under conditions of high aerosol loading,
multiple scattering of light within the atmosphere becomes more pronounced, amplifying the signals detected by
TROPOMI, including the CO and AI measurements. These findings are consistent with earlier studies; for
example, Juliano et al. (2022) documented persistent smoke plumes in the region during September 7–11, 2020,
which had a significant impact on solar power generation in California, resulting in potential reductions of
approximately 10%–30%.

Rowe et al. (2022) also suggested that under high aerosol load conditions, TROPOMI CO signals can be enhanced
due to multiple scattering. According to their study, multiple scattering phenomena within these plumes can lead
to an overestimation of vertical column densities (VCDs) observed by TROPOMI. Additionally, it is noted that
TROPOMI retrievals for qf ≥ 0.7 (low cloud conditions) are sensitive to CO in slightly cloudy conditions, which
might indicate the presence of smoke aerosols (Landgraf et al., 2016). This study shows such a potential rela-
tionship between the high TROPOMI CO levels and AI data. Although the TROPOMI CO retrieval process
already incorporates a multi‐scattering forward calculation to mitigate this issue, a more sophisticated model may
be necessary to fully account for aerosol scattering effects, especially in scenarios involving optically thick smoke
from wildfires.

Aerosol algorithms are designed to discriminate various atmospheric particles, including clouds and aerosols, in
satellite imagery. However, during specific conditions, such as dust storms and biomass burning events, these
algorithms may erroneously classify thick smoke plumes as clouds. This misclassification arises because both
clouds and dense smoke plumes can exhibit similar traits in satellite observations, such as high reflectivity and
opacity. Consequently, the algorithm might inaccurately interpret the smoke as clouds, leading to errors in
analyzing atmospheric composition and air quality (Robbins et al., 2022). To isolate the influence of clouds that
might result from thick smoke plumes, a daily time series of TROPOMI CO observations with qf = 1 (clear
conditions) is compared to the IASI and MOPITT time series over the PNW (Figure 3e). In the non‐collocated
data with qf = 1 (Figure e‐left), the intensity of the TC CO enhancements is generally lower than that of the
corresponding data with qf ≥ 0.7 (0.7, 1) (Figure 3d, left panel), except on September 11th. However, in the
collocated data with qf = 1 (Figure 3e, right panel), the high CO peak observed on September 10th for the cloudy
TROPOMI data (Figure 3d, right panel) is absent when flagging this area as cloudy. This result aligns with the
argument that high aerosol levels can be misinterpreted as clouds in smoky conditions. Such misinterpretations
can lead to missing the sampling and subsequently lower detected CO values due to smoothing averages (Deeter
et al., 2022; Marey et al., 2022).

Thus, it suggests that the high TROPOMI CO signal is associated with dense smoke plumes. The absence of the
high CO peak observed on September 10th for the cloudy TROPOMI data (Figure 3d, right panel) in the clear
TROPOMI CO observations (Figure 3e) further supports this conclusion. To further explore the variations in the
CO retrievals in smoke plumes, a case study during the Western U.S. wildfire season is presented in Section 3.3.

3.2. Analysis of MOPITT and IASI Daily CO Profiles

Figure 4a displays MOPITT and IASI collocated profiles over North America (NA), while Figure 4b illustrates
the same profiles after filtering out data based on CO TC values greater than 3 × 1018 molecules/cm2, isolating
fire pollution events from background/typical pollution conditions. It was observed that globally CO TC values
do not exceed 3 × 1018 molecules/cm2 unless there are severe pollution conditions (Parrish, D.D. et al., 2011;
Emmons, L.K. et al., 2004).

The comparison of MOPITT TIR and IASI daily CO profiles is performed over the whole NA domain for
September 2020. Data from both instruments are gridded in 0.25° × 0.25°, for each day in September then the
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collocated profiles are averaged over the NA domain for all of September 2020. High CO concentrations are
observed near the surface by the IASI instrument, with a mean of about 220 ppb, whereas the corresponding
MOPITT TIR retrievals are about 150 ppb. These differences decrease in the middle to upper troposphere,
typically around the 400 hPa level. However, with increasing altitude into the upper troposphere, the differences
between MOPITT and IASI values begin to rise again and MOPITT has higher values compared to IASI, with the
differences becoming comparable in magnitude to those observed in the middle to upper troposphere.

The retrieved CO profile is essentially a combination of the true atmospheric profile and the a priori profile,
weighted by the AVK matrices. Moreover, errors associated with both the observation process and other pa-
rameters further contribute to the discrepancies (Rodgers, 2000). A crucial aspect of the retrieval process is the
choice of the a priori profile, which comprises an expected profile and its associated covariance matrix, and which
constrains the retrieved CO profile to fall within the range of physically realistic solutions (based on the known
variability of this species).

IASI and MOPITT use different prior profiles in their retrievals. IASI utilizes a single prior (Clerbaux
et al., 2009), while MOPITT relies on a climatology of the MOZART‐4 chemistry transport model. For each
retrieval, the climatology is spatially and temporally interpolated to match the date and location of the MOPITT
observation (Deeter et al., 2017). For the covariance matrix, IASI retrievals exhibit greater variability around the
prior, especially at the surface, leading to higher CO variations at the surface, whereas MOPITT retrievals tend to
remain closer to the prior (Clerbaux et al., 2009). The MOPITT covariance matrix allows for a 30% variability in
each retrieved layer (Deeter et al., 2010). In contrast, the IASI covariance matrix allows a maximum variability of
63% in the first layer, decreasing to 35% between 5 and 6 km, 30% between 6 and 10 km, and then increasing
again, reaching 45% between 15 and 16 km (George et al., 2015; Turquety et al., 2009). This variability pattern
reflects the nature of infrared (IR) radiative retrieval, which exhibits the greatest sensitivity in the middle
troposphere. George et al. (2015) observed that IASI demonstrates better performance in capturing sudden spikes
in CO levels during unexpected events. However, IASI's covariance matrix has larger values in the off‐diagonal
elements especially at lower altitudes, enabling it to adapt more effectively to rapid changes in atmospheric CO
levels. George et al., 2015 found that MOPITT generally agrees better with aircraft profiles for observations with
persisting high levels of CO throughout the year because of its climatology‐based a priori, which closely ap-
proximates the actual atmospheric state except in situations of pollution or seasonal fire activity. Therefore,
providing the retrieval with more freedom is beneficial during extreme events because these events are inade-
quately represented by any prior, even one like MOPITT's which includes some variability.

Figure 4. Mean Measurements of Pollution in the Troposphere and IASI daily CO profiles averaged over NA for September
2020. The profiles were calculated using the collocated data, however, data with CO total column (TC) values greater than
3 × 1018 molecules/cm2 were omitted in the panel (b). “F” represents filtered data where CO TC values exceeding
3 × 1018 molecules/cm2 have been omitted.
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After removing the high CO TC data (values greater than 3× 1018 molecules/cm2), the two data sets exhibit closer
agreement within the error bars, as illustrated in Figure 4b. The improvement in agreement between the data sets
is particularly evident in the lower to middle troposphere. However, differences persist in the upper troposphere,
specifically between 400 and 200 hPa. George et al. (2015) stated that this disparity can be attributed to the larger
sensitivity observed in this altitude range.

Figure 5a–5c show the daily collocated MOPITT Joint and IASI CO profiles over the whole NA domain in
September 2020. They show that MOPITT is comparable to IASI in the upper troposphere and considerably lower
in the middle and lower troposphere, especially during episodic fire event times. While the MOPITT Joint CO
profiles exhibited higher concentrations near the surface compared to the corresponding TIR data, the IASI CO
concentrations were approximately double (>500 ppb) those of the corresponding MOPITT Joint data during the
fire episode. The high IASI values near the surface relative to the corresponding MOPITT values are probably the
result of the different covariance matrices used in the retrievals. Additionally, a correlation exists between the
surface and the middle troposphere, allowing the projection of information from layers with high sensitivity to
layers where the sensitivity is weaker. Since the AVK indicates that the peak sensitivity of IASI is in the middle
troposphere, it is expected that information from the middle troposphere layer is projected to the lower tropo-
sphere layer (George et al., 2015; Lutsch et al., 2022).

3.3. Case Study

Figure 3d displays the time series analysis of daily CO which shows extremely high values on 10 September 2020
over the PNW that is associated with the western wildfires. By 10 September, the smoke from the western Oregon
fires had merged into a single dense smoke plume extending from the Cascade crest in northern California to
southwestern Washington (Mass et al., 2021). We also further consider the satellite CO TC (MOPITT, IASI, and
TROPOMI) and the TROPOMI AI along the CALIPSO path during day and night on 10 September 2020
(Figure 6). CALIPSO data of aerosol backscatter at 532 nm is used to investigate the atmospheric aerosol profile.
Thus, in this section, a detailed analysis of CO TC derived from the three instruments along with TROPOMI AI
will be conducted on 10 September 2020. Figure 6a–6f show the spatial variations of the TROPOMI CO, IASI CO
(daytime and nighttime), MOPITT CO (daytime and nighttime), and TROPOMI AI data, respectively, over North
America.

The TROPOMI and IASI CO TC in Figures 6a and 6b show substantial CO enhancement in the western region
with values greater than 6 × 1018 molecules/cm2. The TROPOMI AI (Figure 6f) values exceed 8 with a similar
spatial distribution to the TROPOMI CO distribution (Figure 6a). Both IASI daytime and nighttime maps reveal
CO enhancements in the western region, with evidence of transport of CO over the Pacific Ocean coast. This
coastal transport of CO across the ocean is evident in the MOPITT data, but MOPITT has less dense sampling and
retrieves CO data only under clear conditions, resulting in low sampling over fire‐affected regions. Note that

Figure 5. Time‐altitude plots on September 2020 over the North American region of collocated (a) Infrared Atmospheric Sounding Interferometer profiles, (b) MOPITT
TIR and (c) Measurements of Pollution in the Troposphere Joint profiles.
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heavy smoke aerosols can also sometimes be misinterpreted as clouds (Deeter et al., 2022; Marey et al., 2022).
Due to these issues, it is anticipated that capturing the entire plume path with MOPITT may be challenging. The
nighttimeMOPITT (Figure 6e) and IASI (Figure 6c) data capture some of the CO from the western fire emissions,
indicating that the fire emissions persisted for a relatively long time. Indeed, other studies have shown that the
duration of the extraordinary September 2020 fire season spanned over two weeks (Evers et al., 2022).

Figure 7a shows the satellite CO TC and TROPOMIAI along the CALIPSO daytime track on 10 September 2020.
There are two fire‐driven peaks in CO, between 30°–40°N and 40°–50°N, whereas the nighttime data shown in
Figure 7b exhibits only one peak, between 30° and 40°N. The two CO TC daytime peaks are about 15 × 1018 and
6 × 1018 molecules/cm2, which are associated with AI values of 14 and 14, respectively (Figure 7a). The IASI and
TROPOMI CO TC peaks (daytime) follow the TROPOMI AI values, reflecting the potential smoke impact on the
high CO retrieval values.

The magnitude of the aerosol AI signal depends mainly on AOD, aerosol height, and aerosol absorption features
(carbonaceous aerosol) (Torres et al., 2013). The cause of the AI enhancements is possibly increased aerosol
height and/or an enhanced aerosol absorption characteristic. The AI increases rapidly with AOD and aerosol
height up to AOD of about 4. Large AI values are generally associated with the injection of large quantities of UV‐
absorbing aerosol particles in the upper troposphere and lower stratosphere (UTLS), such as wildfire‐triggered
pyro‐cumulonimbus (pyroCb) episodes (Torres et al., 2020). Thus, high AI values effectively become a mea-
sure of aerosol height (Torres et al., 2020), which is consistent with the CALIPSO profiles (Figures 7d–7c). For
example, the high altitude (∼8 km) and dense aerosols that are seen in the daytime CALIPSO data (reds and greys
in the color scale) coincide with the high TROPOMI AI values of around 14. Regarding the nighttime data,
Figure 7b shows high IASI CO TC values that are consistent with the corresponding CALIPSO data, which
suggest heavy aerosol loading (red color scale) at high altitudes (6–8 km). Nakata et al. (2022) suggested that the
complex mountain topography of the region influenced the wind dynamics causing smoke to rise to high altitudes.

The consistent pattern observed between the high CO TC mirrors the findings of Rowe et al. (2022), who
examined the TROPOMI CO measurements during a 2018 biomass‐burning event, revealing TROPOMI's
sensitivity to CO enhancements across wildfire plumes. By integrating simulations from the FLEXible PARTicle

Figure 6. Spatial distribution on 10 September 2020 of (a) TROPOMI CO TC, (b) and (c) IASI CO TC for day and night, (d) and (e) MOPITT CO TC for day and night,
and (f) TROPOMI AI. The cyan and yellow lines are the CALIPSO daytime and night track respectively.
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(FLEXPART) dispersion model and accounting for TROPOMI's vertical sensitivity as reflected by the AVKs, the
average bias between TROPOMI and aircraft remote sensing measurements was reduced to +10%. Rowe
et al. (2022) highlighted the intricate relationship between aerosols and trace gases and stressed the importance of
careful interpretation of satellite data, particularly in wildfire‐affected regions.

Repeating the previous analysis using the clear TROPOMI CO retrieval (qf = 1) shown in Figure 8 leads to the
removal of most of the CO data along the CALIPSO daytime track (cyan) compared to Figure 6a (qf ≥ 0.7
(cloudy)). This suggests that the high CO values are linked to the presence of thick aerosol layers, which are
sometimes misinterpreted as cloudy conditions, as indicated by Figure 8b.

3.4. The Impact of Aerosols

The analysis in Section 3.1, along with the case study in Section 3.3, indicates that during periods of elevated
aerosol loading within dense smoke plumes during the 2020 Western U.S. wildfire season, TROPOMI retrievals
showed significantly higher CO values compared to MOPITT. Similarly, IASI recorded higher CO TC values
during these events than the corresponding MOPITT measurements. These discrepancies are attributed to larger
CO concentrations near the surface, as reflected in the CO profiles from each instrument.

To explore the aerosol loading issue, we selected contrasting cases in which the aerosol load is low, but the CO TC
levels are relatively high, above 3 × 1018 molecules/cm2. Three regions were chosen for this contrasting analysis:
the Amazon, southern Africa, and central Asia. Figure 9a–9c display the spatial distribution of the gridded

Figure 7. (a, b) Tropospheric Monitoring Instrument (TROPOMI), Infrared Atmospheric Sounding Interferometer (IASI), and Measurements of Pollution in the
Troposphere (MOPITT) CO TC, (c, d) CALIPSO for day and night, respectively on 10 September 2020. TheMOPITT, IASI, and TROPOMI data are typically averaged
over longitude widths along the CALIPSO path. The unit “km/sr” stands for “kilometers per steradian.”
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(0.25° × 0.25°) collocated CO TC data averaged for September, derived from TROPOMI (with qf = 0.7, 1, low
clouds), IASI, and MOPITT data, respectively, over the Amazon region. The corresponding figures for southern
Africa and central Asia are shown in Figs 2s–5s in Supporting Information S1. CO total columns from the three
data sets display a similar spatial pattern. In general, the Amazon region experiences high biomass fire activity
during the dry season, between June and November. The fire activity begins in June and peaks in September. The
enhanced CO columns shown in Figure 9 are mainly influenced by extreme wildfire emissions that occurred in
September 2020, when about 40,000 km2 were burned because of a severe drought in the region (Pugh
et al., 2022).

The daily CO TC values derived from the three sensors along with the TROPOMI AI, averaged over the Amazon
region for September, are presented in Figure 10. Figure 10a shows the non‐collocated CO data (all the data),
while Figure 10b shows the collocated data. The daily TROPOMI AI is low although the measurements were
made during the time of a pollution event driven by biomass burning. Unlike the PNW fires, where the AI values
exceeded 8 (Figuresure 3d and 7), the AI values over the Amazon region did not exceed 0.5. In Figure 10, all
sensors exhibit a generally similar temporal pattern, with a peak occurring in the middle of the month. However,
IASI's peak values are more prominent and tend to be higher compared to those from MOPITT and TROPOMI,
especially between September 15th and twentieth. While MOPITT and TROPOMI show a generally consistent
pattern, MOPITT's data fluctuates, whereas TROPOMI's data is smoother, as shown in Figure 10a (non‐collo-
cated). This difference can be attributed to the lower MOPITT sampling frequency relative to TROPOMI,
resulting from its lower temporal resolution (3 days). Consequently, in the collocated data sets, this agreement is
more pronounced, although IASI's peaks are still higher (Figure 10b).

Figure 8. (a) TROPOMI CO TC (non‐collocated) over North America and (b) Tropospheric Monitoring Instrument
(TROPOMI), Infrared Atmospheric Sounding Interferometer, and MOPITT CO TC data along CALIPSO track on 10
September 2020 for the case with qf = 1 for the TROPOMI retrievals.

Figure 9. Spatial variations of collocated CO Total Column over the Amazon region of TROPOMI data with qf> 0.7 (a), MOPITT Joint (b), and IASI (c), for September
2020. The data were gridded on a 0.25° x 0.25° grid.
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Since the magnitude of the aerosol AI signal depends mainly on AOD, aerosol height, and aerosol absorption,
amazon biomass burning aerosols possibly are mixed with sulfate aerosols (Patra et al., 2005) (non‐absorbing) at
lower altitudes (Torres et al., 2013). Also, this highlights the different transport mechanisms of fire emissions over
the PNW and the Amazon region. Torres et al. (2020) examined the TROPOMI AOD and AI over many fire‐
prone regions and found that the very high AI values are associated with pyroCb events such as the Australian
smoke plume on 2 January 2020. In contrast, they found that the monthly average values of TROPOMI AI over
South America during the September 2019 fires did not exceed 1.5, which is consistent with the current results.
Unfortunately, CALIPSO profiles are not available for the same region and time to validate the aerosol height.
Accordingly, there is better agreement among the three sensors when the AI values are low (Figures 9 and 10),
while the discrepancies increase at very high AI values (Figures 3d and 7), as observed in the PNW analysis. This
agreement is more pronounced between TROPOMI and MOPITT CO TC, whereas IASI still shows some higher
values, particularly during the period of September 15–20.

The same analysis was repeated over southern Africa (Figures 2s and 3s) and central Asia (Figures 4s and 5s)
during September 2020 and both regions demonstrated good general consistency, especially between TROPOMI
and MOPITT CO TC data, where the AI values were small, less than one. Regarding IASI's discrepancies on
some days, this can be attributed to the greater variability in the lower and middle troposphere layers, along with
the correlation between layers, allowing information from the middle tropospheric layer to be projected to the
lower troposphere layer (George et al., 2015; Lutsch et al., 2022).

Specific fire types, such as pyroCb may lead to differences in the vertical distribution of CO over the affected
areas, impacting the sensitivity of each instrument to detect and measure CO concentrations. This is evidenced by
the observed variation in offset between TROPOMI and MOPITT/IASI, highlighting the importance of
considering the influence of different fire types and aerosol distributions when interpreting satellite‐based CO
measurements. This might explain the varying offset between TROPOMI and MOPITT/IASI CO values across
different AI levels and the association of high AI conditions with pyroCb fire types.

4. Summary and Conclusions
In September 2020, the western United States experienced unprecedented severe wildfires relative to the recent
fire record in terms of human impact, burn severity, and size. The major difference between the 2020 fires and
previous fires was the occurrence of extreme regional scale drying and rapid strong winds blowing from the west
that simultaneously occurred with multiple ignitions (Reilly et al., 2022). Strong westerly winds that developed
during the 2020 fires and were notable for their intensity and timing and contributed to the spread and severity of
the wildfires. These westerly winds likely played a significant role in driving the rapid expansion of the fires
across the affected regions (Reilly et al., 2022). The CO emissions of the western U.S. 2020 wildfire season were
more than three times the 2001–2019 averaged emissions (Albores et al., 2023).

This study investigated the comparability of CO retrievals from MOPITT, IASI, and TROPOMI, particularly
under wildfire conditions, to understand the factors influencing discrepancies between the sensor measurements.
In general, all the instruments show excellent agreement under typical atmospheric CO conditions (column

Figure 10. Daily time series of MOPITT, IASI and TROPOMI data, averaged over Amazon region, in September 2020 of
non‐collocated data (a) and collocated data (b). TROPOMI AI is indicated by the cyan dashed line, with the AI values shown
in the right y‐axis.
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abundances less than 3 × 1018 molecules/cm2). Strong enhancements in the CO TCs were clearly observed by all
sensors over the western United States, and parts of the eastern U.S. because of atmospheric transport of the fire
emissions. However, notable discrepancies were observed in the CO data from the three sensors, particularly in
regions with elevated CO TC values. IASI and TROPOMI consistently showed higher CO values over the
western U.S. region compared to MOPITT. These discrepancies highlighted the importance of the differences in
sampling, vertical sensitivity, and retrieval algorithms of the three sensors. Rowe et al. (2022) demonstrated that
biases observed in TROPOMI data compared to aircraft remote sensing measurements may be attributed to the
influence of aerosols on the retrieval of CO. They suggested that TROPOMI CO signals can be enhanced under
high aerosol load conditions due to multiple scattering.

Analysis of MOPITT TIR and IASI daily CO profiles over the NA domain in September 2020 revealed that the
IASI retrievals suggested higher CO abundances near the surface than the MOPITT TIR retrievals during the fire
episodes. The high IASI CO values near the surface are probably the result of the differences in the covariance
matrices used in the IASI and MOPITT retrievals. Relative to MOPITT, the IASI covariance matrix provides a
loose constraint on the retrievals near the surface, which could lead to high surface concentrations due to cor-
relations in the retrievals between the surface and the middle troposphere, especially during episodic fire events
(George et al., 2015; Lutsch et al., 2022). The extremely high IASI and TROPOMI CO observations over the
PNW coincide with the high TROPOMI AI values. High positive AI values typically indicate the presence of
absorbing aerosols. Analysis of CALIPSO data suggested that these high TROPOMI AI values were associated
with dense (absorbing) smoke aerosols at high altitudes (∼8 km) which coincided with the period of exceptionally
high CO observations by IASI and TROPOMI instruments over the PNW. One possible explanation is that high
AI conditions are associated with specific fire types, such as pyroCb, leading to differences in the vertical dis-
tribution of CO over these fires and affecting the sensitivity of each instrument. Other regions, such as the
Amazon, with relatively low aerosol loading but high CO TC levels (above 3× 1018 molecules/cm2), were chosen
to explore the aerosol impact on the CO columns. Unlike the PNWwhere the AI values exceeded 8, the averaged
AI over the other regions did not exceed 0. The analysis here demonstrated better agreement between TROPOMI
andMOPITT CO TCwhen the AI values are low, whereas discrepancies between the two sensors increase at high
AI values, as was shown in the case of the PNW analysis. Under extreme conditions of high aerosol loading within
thick smoke plumes, the TROPOMI CO retrievals exhibited high values relative to the corresponding MOPITT
retrievals. The current analysis highlights the potential challenges with TROPOMI's retrieval under high AI
conditions. These challenges may be attributed to the association of high AI conditions with specific fire types,
such as pyrocumulonimbus (pyroCb) events. PyroCb events can lead to differences in the vertical distribution of
CO over affected areas, which in turn impacts the sensitivity of each instrument in detecting and measuring CO
concentrations.

Given the correlation between TROPOMI high CO levels and AI values, it is important to independently validate
the use of AI data for quality filtering to ensure reliability and accuracy. This validation process may include
comparing AI data with measurements from aircraft or ground‐based instruments. Additionally, modeling
techniques can be employed to optimize the utilization of AI data by simulating various scenarios and evaluating
their impact on data quality.

While this study offers insights into the differences in the CO distribution from the three satellite instruments,
further investigations using model‐based analyses are recommended to address existing gaps. Integrating satellite
data with atmospheric models can provide a deeper understanding of the underlying processes driving CO
variations and refine interpretations. Expanding the scope of this study to include other regions and a longer time
period would also be valuable. By examining CO distributions over diverse geographical areas and over an
extended timeframe, we can better understand the factors contributing to discrepancies, reliability, and limitations
of satellite‐based CO retrievals.

Data Availability Statement
MOPITT data were obtained from the NASA Earthdata website (https://search.earthdata.nasa.gov/search?
q=carbon%20monoxide&fi=MOPITT, last access: 30 March 2024). TROPOMI data were obtained from the
NASA Earthdata website https://search.earthdata.nasa.gov/search?q=carbon%20monoxide&fi=TROPOMI, last
access: 3 April 2024). IASI data were obtained through the AERIS website (https://iasi.aeris‐data.fr/co/, last
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access: 9 May 2024). CALIPSO data were obtained (https://asdc.larc.nasa.gov/data/CALIPSO/LID_L1‐Stan-
dard‐V4‐11/2020/09/, last access: 1 June 2024).

References
Abatzoglou, J. T., Rupp, D. E., O'Neill, L. W., & Sadegh, M. (2021). Compound extremes drive the western Oregon wildfires of September 2020.

Geophysical Research Letters, 48(8), e2021GL092520. https://doi.org/10.1029/2021gl092520
Albores, I. S., Buchholz, R. R., Ortega, I., Emmons, L. K., Hannigan, J. W., Lacey, F., et al. (2023). Continental‐scale atmospheric impacts of the

2020 western US wildfires. Atmospheric Environment, 294, 119436. https://doi.org/10.1016/j.atmosenv.2022.119436
Andreae, M. O., &Merlet, P. (2001). Emission of trace gases and aerosols from biomass burning.Global Biogeochemical Cycles, 15(4), 955–966.

https://doi.org/10.1029/2000gb001382
Apituley, A., Pedergnana, M., Sneep, M., Pepijn Veefkind, J., Loyola, D., Landgraf, J., & Borsdorff, T. (2020). Sentinel‐5 precursor/TROPOMI

level 2 product user manual carbon monoxide [Dataset]. Royal Netherlands Meteorological Institute (KNMI). https://sentinel.esa.int/
documents/247904/2474726/Sentinel‐5P‐Level‐2‐Product‐User‐Manual‐Carbon‐Monoxide.pdf

Astoreca, R., Hurtmans, D., Coheur, P., Hadji‐Lazaro, J., George, M., Safieddine, S., & Clerbaux, C. (2021). PRODUCT USER MANUAL near
real‐time partial and total IASI CO Metop‐C [Dataset]. https://acsaf.org/docs/pum/Product_User_Manual_IASI‐C_CO_Nov_2021.pdf

Barret, B., Gouzenes, Y., Le Flochmoen, E., & Ferrant, S. (2021). Retrieval of Metop‐A/IASI N2O profiles and validation with NDACC FTIR
data. Atmosphere, 12(2), 219. https://doi.org/10.3390/atmos12020219

Barret, B., Le Flochmoen, E., Sauvage, B., Pavelin, E., Matricardi, M., & Cammas, J. P. (2011). The detection of post‐monsoon tropospheric
ozone variability over south Asia using IASI data. Atmospheric Chemistry and Physics, 11(18), 9533–9548. https://doi.org/10.5194/acp‐11‐
9533‐2011

Barret, B., Loicq, P., Le Flochmoën, E., Bennouna, Y., Hadji‐Lazaro, J., Hurtmans, D., & Sauvage, B. (2024). Validation of 12 years (2008–2019)
of IASI‐CO with IAGOS aircraft observations. EGUsphere, 2024, 1–29.

Bates, T. S., Kelly, K. C., Johnson, J. E., & Gammon, R. H. (1995). Regional and seasonal variations in the flux of oceanic carbon monoxide to the
atmosphere. Journal of Geophysical Research, 100(D11), 23093–23101. https://doi.org/10.1029/95jd02737

Borsdorff, T., Campos, T., Kille, N., Volkamer, R., & Landgraf, J. (2022). Vertical information of CO from TROPOMI total column mea-
surements in context of the CAMS‐IFS data assimilation scheme. Atmospheric Measurement Techniques Discussions, 1–20.

Borsdorff, T., Hasekamp, O. P., Wassmann, A., & Landgraf, J. (2014). Insights into tikhonov regularization: Application to trace gas column
retrieval and the efficient calculation of total column averaging kernels. Atmospheric Measurement Techniques, 7(2), 523–535. https://doi.org/
10.5194/amt‐7‐523‐2014

Borsdorff, T., Hu, H., Hasekamp, O., Sussmann, R., Rettinger, M., Hase, F., et al. (2018). Mapping carbonmonoxide pollution from space down to
city scales with daily global coverage. Atmospheric Measurement Techniques, 11(10), 5507–5518. https://doi.org/10.5194/amt‐11‐5507‐2018

Borsdorff, T., Hu, H., Nédélec, P., Aben, I., & Landgraf, J. (2017). Carbon monoxide column retrieval for clear‐sky and cloudy atmospheres: A
full‐mission data set from SCIAMACHY 2.3 µm reflectance measurements. Atmospheric Measurement Techniques, 10(5), 1769–1782. https://
doi.org/10.5194/amt‐10‐1769‐2017

Boynard, A., Hurtmans, D., Koukouli, M. E., Goutail, F., Bureau, J., Safieddine, S., et al. (2016). Seven years of IASI ozone retrievals from
FORLI: Validation with independent total column and vertical profile measurements. Atmospheric Measurement Techniques, 9(9), 4327–4353.
https://doi.org/10.5194/amt‐9‐4327‐2016

Buchholz, R. R., Park, M., Worden, H. M., Tang, W., Edwards, D. P., Gaubert, B., et al. (2022). New seasonal pattern of pollution emerges from
changing North American wildfires. Nature Communications, 13(1), 1–9. https://doi.org/10.1038/s41467‐022‐29623‐8

Busa, E., Gugamsetty, B., Kalluri, R. O. R., Kotalo, R. G., Tandule, C. R., Thotli, L. R., & Palle, S. N. R. (2022). Diurnal, seasonal, and vertical
distribution of carbon monoxide levels and their potential sources over a semi‐arid region, India. Atmósfera, 35(1), 165–178. https://doi.org/10.
20937/atm.52808

Clerbaux, C., Boynard, A., Clarisse, L., George, M., Hadji‐Lazaro, J., Herbin, H., et al. (2009). Monitoring of atmospheric composition using the
thermal infrared IASI/MetOp sounder. Atmospheric Chemistry and Physics, 9(16), 6041–6054. https://doi.org/10.5194/acp‐9‐6041‐2009

Deeter, M., Francis, G., Gille, J., Mao, D., Martínez‐Alonso, S., Worden, H., et al. (2022). The MOPITT version 9 CO product: Sampling en-
hancements and validation [Dataset]. Atmospheric Measurement Techniques, 15(8), 2325–2344. https://doi.org/10.5194/amt‐15‐2325‐2022

Deeter, M. N., Edwards, D. P., Francis, G. L., Gille, J. C., Mao, D., Martínez‐Alonso, S., et al. (2019). Radiance‐based retrieval bias mitigation for
the MOPITT instrument: The version 8 product. Atmospheric Measurement Techniques, 12(8), 4561–4580. https://doi.org/10.5194/amt‐12‐
4561‐2019

Deeter, M. N., Edwards, D. P., Francis, G. L., Gille, J. C., Martínez‐Alonso, S., Worden, H. M., & Sweeney, C. (2017). A climate‐scale satellite
record for carbon monoxide: The MOPITT version 7 product. Atmospheric Measurement Techniques, 10(7), 2533–2555. https://doi.org/10.
5194/amt‐10‐2533‐2017

Deeter, M. N., Edwards, D. P., Gille, J. C., & Drummond, J. R. (2007). Sensitivity of MOPITT observations to carbon monoxide in the lower
troposphere. Journal of Geophysical Research, 112(D24). https://doi.org/10.1029/2007jd008929

Deeter, M. N., Edwards, D. P., Gille, J. C., Emmons, L. K., Francis, G., Ho, S. P., et al. (2010). The MOPITT version 4 CO product: Algorithm
enhancements, validation, and long‐term stability. Journal of Geophysical Research, 115(D7). https://doi.org/10.1029/2009jd013005

Deeter, M. N., Emmons, L. K., Francis, G. L., Edwards, D. P., Gille, J. C., Warner, J. X., et al. (2003). Operational carbon monoxide retrieval
algorithm and selected results for the MOPITT instrument. Journal of Geophysical Research, 108(D14). https://doi.org/10.1029/2002jd003186

Deeter, M. N., Mao, D., Martínez‐Alonso, S., Worden, H. M., Andreae, M. O., & Schlager, H. (2021). Impacts of MOPITT cloud detection
revisions on observation frequency and mapping of highly polluted scenes. Remote Sensing of Environment, 262, 112516. https://doi.org/10.
1016/j.rse.2021.112516

Deeter, M. N., Martínez‐Alonso, S., Edwards, D. P., Emmons, L. K., Gille, J. C., Worden, H. M., et al. (2013). Validation of MOPITT Version 5
thermal‐infrared, near‐infrared, and multispectral carbon monoxide profile retrievals for 2000–2011. Journal of Geophysical Research: At-
mospheres, 118(12), 6710–6725. https://doi.org/10.1002/jgrd.50272

Deeter, M. N., Martínez‐Alonso, S., Edwards, D. P., Emmons, L. K., Gille, J. C., Worden, H. M., et al. (2014). The MOPITT version 6 product:
Algorithm enhancements and validation. Atmospheric Measurement Techniques, 7(11), 3623–3632. https://doi.org/10.5194/amt‐7‐3623‐2014

Deeter, M. N., Worden, H. M., Edwards, D. P., Gille, J. C., & Andrews, A. E. (2012). Evaluation of MOPITT retrievals of lower‐tropospheric
carbon monoxide over the United States. Journal of Geophysical Research, 117(D13). https://doi.org/10.1029/2012jd017553

Deeter, M. N., Worden, H.M., Gille, J. C., Edwards, D. P., Mao, D., &Drummond, J. R. (2011). MOPITTmultispectral CO retrievals: Origins and
effects of geophysical radiance errors. Journal of Geophysical Research, 116(D15), D15303. https://doi.org/10.1029/2011jd015703

Acknowledgments
The authors would like to thank the
Canadian Space Agency (CSA) for their
financial support of this research. NCAR
(National Center for Atmospheric
Research) is sponsored by the National
Science Foundation and operated by the
University Corporation for Atmospheric
Research. The NCAR MOPITT project is
supported by the National Aeronautics and
Space Administration (NASA) EOS
Program. The MOPITT team
acknowledges support from the CSA. The
authors acknowledge the AC SAF project,
EUMETSAT and the AERIS infrastructure
for generating and distributing the IASI
CO data. We acknowledge TROPOMI
science teams for making TROPOMI
Level 2 data publicly available. Sentinel‐5
Precursor is part of the EU Copernicus
program, and Copernicus Sentinel data
have been used.

Journal of Geophysical Research: Atmospheres 10.1029/2023JD039876

MAREY ET AL. 19 of 21

 21698996, 2024, 22, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JD

039876 by C
ochrane France, W

iley O
nline L

ibrary on [25/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://asdc.larc.nasa.gov/data/CALIPSO/LID_L1-Standard-V4-11/2020/09/
https://asdc.larc.nasa.gov/data/CALIPSO/LID_L1-Standard-V4-11/2020/09/
https://doi.org/10.1029/2021gl092520
https://doi.org/10.1016/j.atmosenv.2022.119436
https://doi.org/10.1029/2000gb001382
https://sentinel.esa.int/documents/247904/2474726/Sentinel-5P-Level-2-Product-User-Manual-Carbon-Monoxide.pdf
https://sentinel.esa.int/documents/247904/2474726/Sentinel-5P-Level-2-Product-User-Manual-Carbon-Monoxide.pdf
https://acsaf.org/docs/pum/Product_User_Manual_IASI-C_CO_Nov_2021.pdf
https://doi.org/10.3390/atmos12020219
https://doi.org/10.5194/acp-11-9533-2011
https://doi.org/10.5194/acp-11-9533-2011
https://doi.org/10.1029/95jd02737
https://doi.org/10.5194/amt-7-523-2014
https://doi.org/10.5194/amt-7-523-2014
https://doi.org/10.5194/amt-11-5507-2018
https://doi.org/10.5194/amt-10-1769-2017
https://doi.org/10.5194/amt-10-1769-2017
https://doi.org/10.5194/amt-9-4327-2016
https://doi.org/10.1038/s41467-022-29623-8
https://doi.org/10.20937/atm.52808
https://doi.org/10.20937/atm.52808
https://doi.org/10.5194/acp-9-6041-2009
https://doi.org/10.5194/amt-15-2325-2022
https://doi.org/10.5194/amt-12-4561-2019
https://doi.org/10.5194/amt-12-4561-2019
https://doi.org/10.5194/amt-10-2533-2017
https://doi.org/10.5194/amt-10-2533-2017
https://doi.org/10.1029/2007jd008929
https://doi.org/10.1029/2009jd013005
https://doi.org/10.1029/2002jd003186
https://doi.org/10.1016/j.rse.2021.112516
https://doi.org/10.1016/j.rse.2021.112516
https://doi.org/10.1002/jgrd.50272
https://doi.org/10.5194/amt-7-3623-2014
https://doi.org/10.1029/2012jd017553
https://doi.org/10.1029/2011jd015703


DellaSala, D. A., Bond, M. L., Hanson, C. T., Hutto, R. L., & Odion, D. C. (2014). Complex early seral forests of the Sierra Nevada:What are they
and how can they be managed for ecological integrity? Natural Areas Journal, 34(3), 310–324. https://doi.org/10.3375/043.034.0317

Dillon, G. K., Holden, Z. A., Morgan, P., Crimmins, M. A., Heyerdahl, E. K., & Luce, C. H. (2011). Both topography and climate affected forest
and woodland burn severity in two regions of the western US, 1984 to 2006. Ecosphere, 2(12), 1–33. https://doi.org/10.1890/es11‐00271.1

Drummond, J. R., Zanjani, Z. V., Nichitiu, F., & Zou, J. (2022). A 20‐year review of the performance and operation of the MOPITT instrument.
Advances in Space Research, 70(10), 3078–3091. https://doi.org/10.1016/j.asr.2022.09.010

Emmons, L., Deeter, M., Edwards, D., Gille, J., Ziskin, D., Attié, J. L., et al. (2002). Validation of MOPITT retrievals of carbon monoxide. In
IEEE international geoscience and remote sensing symposium (Vol. 6, pp. 3174–3176). IEEE. https://doi.org/10.1109/igarss.2002.1027121

Emmons, L. K., Deeter, M. N., Gille, J. C., Edwards, D. P., Attié, J. L., Warner, J., et al. (2004). Validation of Measurements of Pollution in the
Troposphere (MOPITT) CO retrievals with aircraft in situ profiles. Journal of Geophysical Research, 109(D3). https://doi.org/10.1029/
2003jd004101

Evers, C., Holz, A., Busby, S., & Nielsen‐Pincus, M. (2022). Extreme winds alter influence of fuels and topography on megafire burn severity in
seasonal temperate rainforests under record fuel aridity. Fire, 5(2), 41. https://doi.org/10.3390/fire5020041

Finlay, S. E., Moffat, A., Gazzard, R., Baker, D., & Murray, V. (2012). Health impacts of wildfires. PLoS currents, 4. https://doi.org/10.1371/
4f959951cce2c

George, M., Clerbaux, C., Bouarar, I., Coheur, P. F., Deeter, M. N., Edwards, D. P., et al. (2015). An examination of the long‐term CO records
from MOPITT and IASI: Comparison of retrieval methodology. Atmospheric Measurement Techniques, 8(10), 4313–4328. https://doi.org/10.
5194/amt‐8‐4313‐2015

George, M., Clerbaux, C., Hurtmans, D., Turquety, S., Coheur, P. F., Pommier, M., et al. (2009). Carbon monoxide distributions from the IASI/
METOP mission: Evaluation with other space‐borne remote sensors. Atmospheric Chemistry and Physics, 9(21), 8317–8330. https://doi.org/
10.5194/acp‐9‐8317‐2009

Higuera, P. E., & Abatzoglou, J. T. (2021). Record‐setting climate enabled the extraordinary 2020 fire season in the western United States.Global
Change Biology, 27(1), 1–2. https://doi.org/10.1111/gcb.15388

Juliano, T. W., Jiménez, P. A., Kosović, B., Eidhammer, T., Thompson, G., Berg, L. K., et al. (2022). Smoke from 2020 United States wildfires
responsible for substantial solar energy forecast errors. Environmental Research Letters, 17(3), 034010. https://doi.org/10.1088/1748‐9326/
ac5143

Kerzenmacher, T., Dils, B., Kumps, N., Blumenstock, T., Clerbaux, C., Coheur, P. F., et al. (2012). Validation of IASI FORLI carbon monoxide
retrievals using FTIR data from NDACC. Atmospheric Measurement Techniques, 5(11), 2751–2761. https://doi.org/10.5194/amt‐5‐2751‐2012

Kim, M. H., Omar, A. H., Tackett, J. L., Vaughan, M. A., Winker, D. M., Trepte, C. R., et al. (2018). The CALIPSO version 4 automated aerosol
classification and Lidar ratio selection algorithm. Atmospheric Measurement Techniques, 11(11), 6107–6135. https://doi.org/10.5194/amt‐11‐
6107‐2018

Kittaka, C., Winker, D. M., Vaughan, M. A., Omar, A., & Remer, L. A. (2011). Intercomparison of column aerosol optical depths from CALIPSO
and MODIS‐Aqua. Atmospheric Measurement Techniques, 4(2), 131–141. https://doi.org/10.5194/amt‐4‐131‐2011

Klonecki, A., Pommier, M., Clerbaux, C., Ancellet, G., Cammas, J. P., Coheur, P. F., et al. (2012). Assimilation of IASI satellite CO fields into a
global chemistry transport model for validation against aircraft measurements. Atmospheric Chemistry and Physics, 12(10), 4493–4512. https://
doi.org/10.5194/acp‐12‐4493‐2012

Krol, M. S. B. M. A. P. W. F. P., Houweling, S., Bregman, B., Van den Broek, M., Segers, A., Van Velthoven, P., et al. (2005). The two‐way
nested global chemistry‐transport zoom model TM5: Algorithm and applications. Atmospheric Chemistry and Physics, 5(2), 417–432.
https://doi.org/10.5194/acp‐5‐417‐2005

Lamarque, J. F., Edwards, D. P., Emmons, L. K., Gille, J. C., Wilhelmi, O., Gerbig, C., et al. (2003). Identification of CO plumes from MOPITT
data: Application to the August 2000 Idaho‐Montana forest fires. Geophysic.

Landgraf, J., Scheepmaker, R., Borsdorff, T., Hu, H., Houweling, S., Butz, A., et al. (2016). Carbon monoxide total column retrievals from
TROPOMI shortwave infrared measurements. Atmospheric Measurement Techniques, 9(10), 4955–4975. https://doi.org/10.5194/amt‐9‐4955‐
2016

Lapina, K., Honrath, R. E., Owen, R. C., Val Martin, M., & Pfister, G. (2006). Evidence of significant large‐scale impacts of boreal fires on ozone
levels in the midlatitude Northern Hemisphere free troposphere. Geophysical Research Letters, 33(10). https://doi.org/10.1029/2006gl025878

Liu, J., Bowman, K. W., Schimel, D. S., Parazoo, N. C., Jiang, Z., Lee, M., et al. (2017). Contrasting carbon cycle responses of the tropical
continents to the 2015–2016 El Niño. Science, 358(6360), eaam5690. https://doi.org/10.1126/science.aam5690

Lutsch, E., Wunch, D., Jones, D. B., Clerbaux, C., Hannigan, J. W., He, T. L., & Worden, H. M. (2022). Can the data assimilation of CO from
MOPITT or IASI constrain high‐latitude wildfire emissions? A case study of the 2017 Canadian wildfires. Authorea Preprints.

Marey, H. S., Drummond, J. R., Jones, D., Worden, H., Deeter, M. N., Gille, J., & Mao, D. (2022). Analysis of improvements in MOPITT
observational coverage over Canada. Atmospheric Measurement Techniques, 15(3), 701–719. https://doi.org/10.5194/amt‐15‐701‐2022

Mass, C. F., Ovens, D., Conrick, R., & Saltenberger, J. (2021). The September 2020 wildfires over the Pacific Northwest. Weather and Fore-
casting, 36(5), 1843–1865. https://doi.org/10.1175/waf‐d‐21‐0028.1

McClure, C. D., & Jaffe, D. A. (2018). US particulate matter air quality improves except in wildfire‐prone areas. Proceedings of the National
Academy of Sciences (Vol. 115(31), 7901–7906). https://doi.org/10.1073/pnas.1804353115

Nakata, M., Sano, I., Mukai, S., & Kokhanovsky, A. (2022). Characterization of wildfire smoke over complex terrain using satellite observations,
ground‐based observations, and meteorological models. Remote Sensing, 14(10), 2344. https://doi.org/10.3390/rs14102344

Pandey, P. C. (2022). Highlighting the role of earth observation Sentinel5P TROPOMI in monitoring volcanic eruptions: A report on hunga
Tonga, a submarine volcano. Remote Sensing Letters, 13(9), 912–923. https://doi.org/10.1080/2150704x.2022.2106799

Parrish, D. D., Singh, H. B., Molina, L., & Madronich, S. (2011). Air quality progress in North American megacities: A review. Atmospheric
Environment, 45(39), 7015–7025. https://doi.org/10.1016/j.atmosenv.2011.09.039

Patra, P. K., Behera, S. K., Herman, J. R., Maksyutov, S., Akimoto, H., & Yamagata, Y. (2005). The Indian summer monsoon rainfall: Interplay of
coupled dynamics, radiation and cloud microphysics. Atmospheric Chemistry and Physics, 5(8), 2181–2188. https://doi.org/10.5194/acp‐5‐
2181‐2005

Phuleria, H., Ducret‐Stich, R., Ineichen, A., Tsai, M., & Liu, L. J. (2011). Trace metal composition of ambient PM2. 5 and PM10 and their
spatiotemporal variation near a major highway in an alpine valley in Switzerland. Epidemiology, 22(1), S288–S289. https://doi.org/10.1097/01.
ede.0000392586.47768.d4

Pommier, M., Law, K. S., Clerbaux, C., Turquety, S., Hurtmans, D., Hadji‐Lazaro, J., et al. (2010). IASI carbon monoxide validation over the
Arctic during POLARCAT spring and summer campaigns. Atmospheric Chemistry and Physics, 10(21), 10655–10678. https://doi.org/10.5194/
acp‐10‐10655‐2010

Journal of Geophysical Research: Atmospheres 10.1029/2023JD039876

MAREY ET AL. 20 of 21

 21698996, 2024, 22, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JD

039876 by C
ochrane France, W

iley O
nline L

ibrary on [25/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.3375/043.034.0317
https://doi.org/10.1890/es11-00271.1
https://doi.org/10.1016/j.asr.2022.09.010
https://doi.org/10.1109/igarss.2002.1027121
https://doi.org/10.1029/2003jd004101
https://doi.org/10.1029/2003jd004101
https://doi.org/10.3390/fire5020041
https://doi.org/10.1371/4f959951cce2c
https://doi.org/10.1371/4f959951cce2c
https://doi.org/10.5194/amt-8-4313-2015
https://doi.org/10.5194/amt-8-4313-2015
https://doi.org/10.5194/acp-9-8317-2009
https://doi.org/10.5194/acp-9-8317-2009
https://doi.org/10.1111/gcb.15388
https://doi.org/10.1088/1748-9326/ac5143
https://doi.org/10.1088/1748-9326/ac5143
https://doi.org/10.5194/amt-5-2751-2012
https://doi.org/10.5194/amt-11-6107-2018
https://doi.org/10.5194/amt-11-6107-2018
https://doi.org/10.5194/amt-4-131-2011
https://doi.org/10.5194/acp-12-4493-2012
https://doi.org/10.5194/acp-12-4493-2012
https://doi.org/10.5194/acp-5-417-2005
https://doi.org/10.5194/amt-9-4955-2016
https://doi.org/10.5194/amt-9-4955-2016
https://doi.org/10.1029/2006gl025878
https://doi.org/10.1126/science.aam5690
https://doi.org/10.5194/amt-15-701-2022
https://doi.org/10.1175/waf-d-21-0028.1
https://doi.org/10.1073/pnas.1804353115
https://doi.org/10.3390/rs14102344
https://doi.org/10.1080/2150704x.2022.2106799
https://doi.org/10.1016/j.atmosenv.2011.09.039
https://doi.org/10.5194/acp-5-2181-2005
https://doi.org/10.5194/acp-5-2181-2005
https://doi.org/10.1097/01.ede.0000392586.47768.d4
https://doi.org/10.1097/01.ede.0000392586.47768.d4
https://doi.org/10.5194/acp-10-10655-2010
https://doi.org/10.5194/acp-10-10655-2010


Pugh, B. E., Colley, M., Dugdale, S. J., Edwards, P., Flitcroft, R., Holz, A., et al. (2022). A possible role for river restoration enhancing
biodiversity through interaction with wildfire. Global Ecology and Biogeography, 31(10), 1990–2004. https://doi.org/10.1111/geb.13555

Reilly, M. J., Zuspan, A., Halofsky, J. S., Raymond, C., McEvoy, A., Dye, A.W., et al. (2022). Cascadia Burning: The historic, but not historically
unprecedented, 2020 wildfires in the Pacific Northwest, USA. Ecosphere, 13(6), e4070. https://doi.org/10.1002/ecs2.4070

Robbins, D., Poulsen, C., Siems, S., & Proud, S. (2022). Improving discrimination between clouds and optically thick aerosol plumes in geo-
stationary satellite data. Atmospheric Measurement Techniques, 15(9), 3031–3051. https://doi.org/10.5194/amt‐15‐3031‐2022

Rodgers, C. D. (2000). Inverse methods for atmospheric sounding: Theory and practice, Series on Atmospheric, Oceanic Planetary Physics (Vol.
2). World Scientific.

Rowe, J. P., Zarzana, K. J., Kille, N., Borsdorff, T., Goudar, M., Lee, C. F., et al. (2022). Carbon monoxide in optically thick wildfire smoke:
Evaluating TROPOMI using CU airborne SOF column observations. ACS Earth and Space Chemistry, 6(7), 1799–1812. https://doi.org/10.
1021/acsearthspacechem.2c00048

Russell, E. N., Loikith, P. C., Ajibade, I., Done, J. M., & Lower, C. (2024). The meteorology and impacts of the September 2020 Western United
States extreme weather event. Weather and Climate Extremes, 43, 100647. https://doi.org/10.1016/j.wace.2024.100647

Schneising, O., Buchwitz, M., Reuter, M., Bovensmann, H., & Burrows, J. P. (2020). Severe Californian wildfires in November 2018 observed
from space: The carbon monoxide perspective. Atmospheric Chemistry and Physics, 20(6), 3317–3332. https://doi.org/10.5194/acp‐20‐3317‐
2020

Scholze, M., Knorr, W., Arnell, N. W., & Prentice, I. C. (2006). A climate‐change risk analysis for world ecosystems. Proceedings of the National
Academy of Sciences (Vol. 103(35), 13116–13120). https://doi.org/10.1073/pnas.0601816103

Torres, O., Ahn, C., & Chen, Z. (2013). Improvements to the OMI near UV aerosol algorithm using A‐train CALIOP and AIRS observations.
Atmospheric Measurement Techniques Discussions, 6(3), 5621–5652. https://doi.org/10.5194/amt‐6‐3257‐2013

Torres, O., Jethva, H., Ahn, C., Jaross, G., & Loyola, D. G. (2020). TROPOMI aerosol products: Evaluation and observations of synoptic‐scale
carbonaceous aerosol plumes during 2018–2020. Atmospheric Measurement Techniques, 13(12), 6789–6806. https://doi.org/10.5194/amt‐13‐
6789‐2020

Turquety, S., Hurtmans, D., Hadji‐Lazaro, J., Coheur, P. F., Clerbaux, C., Josset, D., & Tsamalis, C. (2009). Tracking the emission and transport of
pollution from wildfres using the IASI CO retrievals: Analysis of the summer 2007 Greek Fres. Atmospheric Chemistry and Physics, 9(14),
4897–4913. https://doi.org/10.5194/acp‐9‐4897‐2009

Varga, K., Jones, C., Trugman, A., Carvalho, L. M., McLoughlin, N., Seto, D., & Daum, K. (2022). Megafires in a warming world: What wildfire
risk factors led to California’s largest recorded wildfire. Fire, 5(1), 16. https://doi.org/10.3390/fire5010016

Vaughan, M. A., Young, S. A., Winker, D. M., Powell, K. A., Omar, A. H., Liu, Z., & Hostetler, C. A. (2004). Fully automated analysis of space‐
based lidar data: An overview of the CALIPSO retrieval algorithms and data products. Laser radar techniques for atmospheric sensing, 5575,
16–30.

Veefkind, J. P., Aben, I., McMullan, K., Förster, H., De Vries, J., Otter, G., et al. (2012). TROPOMI on the ESA sentinel‐5 precursor: A GMES
mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sensing of
Environment, 120, 70–83. https://doi.org/10.1016/j.rse.2011.09.027

Voulgarakis, A., Marlier, M. E., Faluvegi, G., Shindell, D. T., Tsigaridis, K., & Mangeon, S. (2015). Interannual variability of tropospheric trace
gases and aerosols: The role of biomass burning emissions. Journal of Geophysical Research: Atmospheres, 120(14), 7157–7173. https://doi.
org/10.1002/2014jd022926

Westerling, A. L. (2016). Increasing western US forest wildfire activity: Sensitivity to changes in the timing of spring. Philosophical Transactions
of the Royal Society B: Biological Sciences, 371(1696), 20150178. https://doi.org/10.1098/rstb.2015.0178

Wilmot, T. Y., Mallia, D. V., Hallar, A. G., & Lin, J. C. (2022). Wildfire plumes in theWestern US are reaching greater heights and injecting more
aerosols aloft as Winker activity intensifies. Scientific Reports, 12(1), 12400. https://doi.org/10.1038/s41598‐022‐16607‐3

Winker, D. M., Hunt, W. H., & McGill, M. J. (2007). Initial performance assessment of CALIOP. Geophysical Research Letters, 34(19). https://
doi.org/10.1029/2007gl030135

Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A., Liu, Z., & Young, S. A. (2009). Overview of the CALIPSO mission and
CALIOP data processing algorithms. Journal of Atmospheric and Oceanic Technology, 26(11), 2310–2323. https://doi.org/10.1175/
2009jtecha1281.1

Worden, H. M., Deeter, M. N., Edwards, D. P., Gille, J. C., Drummond, J. R., & Nédélec, P. (2010). Observations of near‐surface carbon
monoxide from space using MOPITT multispectral retrievals. Journal of Geophysical Research, 115(D18). https://doi.org/10.1029/
2010jd014242

Worden, J., Jiang, Z., Jones, D. B., Alvarado, M., Bowman, K., Frankenberg, C., et al. (2013). El Niño, the 2006 Indonesian peat fires, and the
distribution of atmospheric methane. Geophysical Research Letters, 40(18), 4938–4943. https://doi.org/10.1002/grl.50937

Xie, Y., Lin, M., Decharme, B., Delire, C., Horowitz, L. W., Lawrence, D. M., et al. (2022). Tripling of western US particulate pollution from
wildfires in a warming climate. Proceedings of the National Academy of Sciences (Vol. 119(14), e2111372119). https://doi.org/10.1073/pnas.
2111372119

Yin, Y., Ciais, P., Chevallier, F., Van der Werf, G. R., Fanin, T., Broquet, G., et al. (2016). Variability of fire carbon emissions in equatorial Asia
and its nonlinear sensitivity to El Niño. Geophysical Research Letters, 43(19), 10–472. https://doi.org/10.1002/2016gl070971

Youssouf, H., Liousse, C., Roblou, L., Assamoi, E. M., Salonen, R. O., Maesano, C., & Annesi‐Maesano, I. (2014). Quantifying wildfires
exposure for investigating health‐related effects. Atmospheric Environment, 97, 239–251. https://doi.org/10.1016/j.atmosenv.2014.07.041

Journal of Geophysical Research: Atmospheres 10.1029/2023JD039876

MAREY ET AL. 21 of 21

 21698996, 2024, 22, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JD

039876 by C
ochrane France, W

iley O
nline L

ibrary on [25/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1111/geb.13555
https://doi.org/10.1002/ecs2.4070
https://doi.org/10.5194/amt-15-3031-2022
https://doi.org/10.1021/acsearthspacechem.2c00048
https://doi.org/10.1021/acsearthspacechem.2c00048
https://doi.org/10.1016/j.wace.2024.100647
https://doi.org/10.5194/acp-20-3317-2020
https://doi.org/10.5194/acp-20-3317-2020
https://doi.org/10.1073/pnas.0601816103
https://doi.org/10.5194/amt-6-3257-2013
https://doi.org/10.5194/amt-13-6789-2020
https://doi.org/10.5194/amt-13-6789-2020
https://doi.org/10.5194/acp-9-4897-2009
https://doi.org/10.3390/fire5010016
https://doi.org/10.1016/j.rse.2011.09.027
https://doi.org/10.1002/2014jd022926
https://doi.org/10.1002/2014jd022926
https://doi.org/10.1098/rstb.2015.0178
https://doi.org/10.1038/s41598-022-16607-3
https://doi.org/10.1029/2007gl030135
https://doi.org/10.1029/2007gl030135
https://doi.org/10.1175/2009jtecha1281.1
https://doi.org/10.1175/2009jtecha1281.1
https://doi.org/10.1029/2010jd014242
https://doi.org/10.1029/2010jd014242
https://doi.org/10.1002/grl.50937
https://doi.org/10.1073/pnas.2111372119
https://doi.org/10.1073/pnas.2111372119
https://doi.org/10.1002/2016gl070971
https://doi.org/10.1016/j.atmosenv.2014.07.041

	description
	A Comparative Analysis of Satellite‐Derived CO Retrievals During the 2020 Wildfires in North America
	1. Introduction
	2. Data
	2.1. MOPITT
	2.2. IASI
	2.3. TROPOMI
	2.4. CALIOP
	2.5. Gridding and Collocation Methods

	3. Results and Discussion
	3.1. Spatiotemporal Distribution of Atmospheric CO Observations
	3.2. Analysis of MOPITT and IASI Daily CO Profiles
	3.3. Case Study
	3.4. The Impact of Aerosols

	4. Summary and Conclusions
	Data Availability Statement



