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Abstract
Estimating river dischargeQ at global scale from satellite observations is not yet fully satisfactory in
part because of limited space/time resolution. Furthermore, on highly anthropized basins, it is
essential to anchor the analysis to reliableQmeasurements. Gauge networks are however very sparse
and limited in time, and SWOT (SurfaceWaterOcean Topography) river discharge estimates at global
scale are not yet available. Themethod proposed here is able to obtain continuous dailyQ estimates at
1 km/daily resolution, using indirect satellite data and ground-based estimates.We focus here on the
Ebro.Over such an anthropized basin (e.g. change of land use, irrigation), the exploitation of 205
available gauges at their nominal resolution (i.e., daily pointmeasurements) is a necessity. The
hydrological Continuummodel is used to help interpolate spatially and temporally the observations
into our optimal interpolation scheme. The proposedQ-mapping is similar to an assimilation scheme
were Earth observations (precipitation, evapotranspiration and total water storage change) andmodel
simulations are constrained by in situ gaugemeasurements. TheQ estimates are evaluated using a
rigorous leave-one-out experiment, showing a good agreementwith the in situ data: a correlation of
0.72 (median), and a 75th percentile ofNash-Sutcliffe Efficiency up to 0.62.Our spatio-temporal
continuousQ estimates at high spatial/temporal resolution can describe complex continental water
dynamics, including extreme events. SWOT estimates will soon be available, at the global scale but
with irregular space/time sampling: ourmethod should help exploit them to obtain a regular space-
temporal description of thewater cycle at high resolution.

1. Introduction

The Ebro is the longest river (987 km) of Spain, and amajor basin of theMediterranean region. Raising near the
Atlantic coast in theCantabrianMountains in northern Spain, it drains an area of 86,000 km2 between the
Pyrenees and the Iberianmountains. The basin is very heterogeneous, influenced by the AtlanticOcean on the
Northwest and theMediterranean Sea on the Southeast. The annualmean P is unevenly distributed, being
higher in themountainous regions (reaching 1,800 mm/yr), and lower in the central valley (below 500 mm/yr).
The basin is highly affected by anthropisation (i.e. irrigation and damoperation) and global warmingwith an
increase of water stress in summer [1, 2]. Themanagement of its water resources is thus a challenge at national
level and the Ebro basin is a data rich basinwellmonitored through national and international campaigns [3, 4].
Its Automatic SystemofHydrological Information [4] provides awealth of real-time and historical river data,
whichmakes it an interesting test-bed for hydrological studies in the context of climate change.

Themonitoring of the river discharge in a particular basin such as the Ebro is an efficient way to analyze and
evenmanage such a basin.However, twomain difficulties appear: i)Abasin like the Ebro is highly anthropized
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and it is essential to anchor thewater cycle analysis to true in situ data. If not, lack of information on human
watermanagement can bias what can be obtainedwith a land or hydrologicalmodel combined or notwith
satellite data. ii)The true understanding andmaybe themanagement of a basinwith such complexity
necessitates high spatial and temporal resolutions. This is again a true challenge, especially when exploiting
satellite observations often given at coarse resolution.

Let usfirst consider the several ways to estimate river discharge. Obtaining dense regular river dischargeQ
can be obtainedwith a Land SurfaceModel (LSM) that includes a routingmodule. Such approach, relying on
physical equation, struggles in accounting for human activities such as damoperations [5] or any processes for
which there is a lack of information or knowledge. For a highlymanaged basin like the EbroRiver, the use of
in situ observations is a necessity. A traditionalmethod to obtain realistic river discharge estimates that account
for human activities involves developing an assimilation scheme, where themodel output (Q) is constrained/
corrected by in situ gaugemeasurements (q). However, the development of an assimilation system is not
straightforward [6], specially at high resolution (daily and 1 km).

The estimation of river discharge fromEarthObservations (EO) observations is generally obtained at point
site based on radar nadir altimeter [7–9]. A few attempts have relied on other types of satellite observations such
as imaging sensors inNear InfraRed (NIR) [10] or passivemicrowaves based surfacewater extent [11]. The idea
is to build an ‘empirical relationship’ representing the low to highflow states, using either i) river height
information from altimetry, or ii) proxy of thewater surface extent fromNIR reflectance or frompassive
microwave. This is done over a few in situ gauges river discharge observations or simulations through
hydrologicalmodeling approaches [8]. The difficulty with these empirical relationships is that they can provide
river discharge only at point site (e.g. virtual station) and not continuously over the full basin.

Another approach considering watermass conservationwas proposed recently to estimate dense regularQ
[12]. The proposedmethodology uses indirect5 EOs of PrecipitationP, Evaporation E, and total water storage
change dS, together with a few available in situ gaugemeasurements. Themethod relies on a two-steps process.
First, theP,E, and dS products arefirst corrected at basins scale to better close thewater budget, using q6 from
the available gauges. Second, the budget is then spatially balanced between the pixels, by usingflowdirection to
consider horizontal water exchange, leading to an estimationQ at pixel scale. This approach in [12] is based
solely on satellite products, in situmeasurements, and river network derived from topography. Nodynamical
model was used, which can be positive if no goodmodel is available, but it can be detrimental as physical
relationships can help perform a better space/time interpolation of thewater components.

Furthermore, theQmapping in [12] has been obtained at the EOs nominal resolution (monthly, 0.25◦). This
relatively coarse resolution, however, is a strong limitation forwatermanagement applications and for climate-
related researches, in particular for a basin like the Ebro. In the framework of the 4D-MEDproject (https://
www.4dmed-hydrology.org/), new downscaledwater component estimates have been produced over some
basins of theMediterranean region, at daily and 1 km resolutions.P is derived from amerging/ downscaling
process ofmulti-product [13]. Ewas obtained through the application of theGLEAMmodel [14, 15]with high
resolution inputs. dS is estimated through a statistical/physical dynamical downscaling that relies on an a priori
Q estimate derived froma hydrologicalmodel [16]. Such higher spatial resolution products forP,E and dS can
be used to estimate denseQusing available in situ qmeasurements and themethodology presented in [12].

Indeed, despite the existence of these high-resolution datasets, there is still a need for point qmeasurements
either ground-based observations from a relatively dense network of gauges. An alternative will be provided by
the recent SurfaceWater andOceanTopography (SWOT)NASA-CNESmission [17–19]. SWOTuses aKa-
band radar interferometer, to estimatewater surface elevations of rivers globally at 100 m resolution that are
used to obtain river discharges at global scale (butwith a complex spatio-temporal sampling). Such data can be
leveraged to estimate dense regular river discharge estimates, but a convincing approach is required to fully
exploit their information at nominal resolution. National and international space agencies such as ESA
(European Space Agency) aim to develop a comprehensive view of the interaction between natural phenomena
and human activities at global scale and at high spatio-temporal resolution in order to pave the green transition.

This paper aims at demonstrating how to reach high-resolution (daily and 1 km) realistic representation of
river discharge (Q). Themethodological core was previously developed [12] but it was done at a low resolution
(i.e., monthly,∼0.25◦). Integrating high-resolution EOdatasets in order to use in situ gaugemeasurements at
their nominal resolution poses a challenge that needs to be addressed. Specifically, the benefits gained from the
fusion ofmultiple sources of hydrological information (model, EO and in situ data)needs to be documented.

The datasets used in this studywill be presented in section 2. Section 3 presents the closure-based estimate of
Q. Analysis of the obtained results will be performed in section 4. Finally, section 5will provide some
conclusions and perspectives.

5
Indirect because not a directmeasurement of the river discharge.

6
Lower-case letter are used for in situ pointmeasurements through themanuscript to differ from continuousQ estimate.
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2.Original datasets and their optimization

2.1. Precipitation,P
The satelliteP products developedwithin 4DMEDare based on the integration ofmultipleP datasets to generate
a high spatial (1 km) and temporal (daily) resolution over theMediterranean area. TheNOAAClimate
PredictionCenter (CPC) daily 0.5◦ precipitation [20, 21] and the IntegratedMulti-satellitE Retrievals forGlobal
PrecipitationMeasurement (GPM-IMERG, Late-run version) 30 mn and 0.1◦P [22] aremerged and
downscaled. The downscaling procedure leverages theClimatologies of the Earthʼs Land Surface Areas
(CHELSA), a high resolution (30arcsec, 1 km) global andmonthly dataset [23]. It is based on amechanistical
statistical downscaling of global reanalysis data or global circulationmodel output and it includes climate layers
for various time periods and variables. The relative precipitation patterns of CHELSA are exploited to spatialize
the coarse resolution information of precipitation products, being based on themodelling of orographic
predictors of wind fields, valley exposition and boundary layer height. A paper describing the downscaling
procedure is currently under preparation.

Finally, the high spatial (1 km) and temporal (daily) resolution 4DMEDprecipitation product (https://stac.
eurac.edu:8080/collections/rainfall_all_domain)was adopted for this study. This precipitation product is
obtained bymerging the downscaledGPM-Late run andCPCover theMediterranean area. The two products
aremerged leveraging on the results of a triple collocation technique (third product: the reanalysis ERA5 Land
precipitation): the obtained signal to noise ratios are used to derive each product weight. The product is available
in the period 2000–2022. The original 0.1◦GPMmonthly value for January 2019 [22] and the 1 km-downscaled
product for January 15th are shown infigure 1.

2.2. Evapotranspiration, E
TheGlobal Land EvaporationAmsterdamModel (GLEAM) 1-kmE has been obtained by running theGLEAM
model [14, 24] at 1kmusing high resolution inputs. GLEAMuses an empirical energy-based equation [25] to
calculate a potential evaporation. Afterwards, E is estimated per land cover fraction based on an evaporative
stress approach. Thismethod estimates separately transpiration, bare-soil evaporation, interception loss, open-
water evaporation, and sublimation. Radiation and temperature data were obtained fromLSAF (land-saf.
eumetsat.int), vegetation fractions fromMOD44B v6.0 [26], and soil properties fromHiHydroSoil v2.0 [27].
GLEAMwas run at 1 kmusing high-resolution of : i)P introduced in section 2.1; ii)VODand soilmoisture
based on the Land Parameter RetrievalModel [28] and downscaledmicrowave observations; and iii) snowwater
equivalent based on the assimilation of theC-SNOWdataset [29] in the SnowMultidataMapping andModel
[30]. All these data have been produced during the 4DMEDproject (https://stac.eurac.edu:8080/collections/).

Figure 1.Overall integration scheme. First row:Original dataset in January 2019 for in situQ and satellite-based P,E, and dS inmm/
day. Second row:Downscaled version. Third row:OI balanced version for January 15th 2019. The final continuouswater balanceQ is
in the bottom left corner. The dash line highlights the processing done in the 4DMEDproject andmade available for the current study.
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The 0.25◦GLEAMmonthly value for January 2019 [24] and the 1 km-downscaled product for January 15th 2019
are shown in the second rowoffigure 1.

2.3. Total water storage change, dS
The twin satellites of GRACE andGRACE-FollowOnmissions [31] offer a unique opportunity tomonitor the
water stored in land (i.e., soilmoisture, surface water, snow-pack, glaciers, and groundwater). A state-of-the-art
retrieval is performed based on themass concentration solution known asMASCON (MSC). This technique
benefits fromgravity field basis functions to better isolate the hydrological (i.e., water storage variation)
contributions in the signal fromother factors. Typicalmonthly solution is provided globally on a 0.5◦×0.5◦ grid.
A statistical/physical dynamical downscaling has been proposed to obtain 1 kmand daily dS estimates, using
auxiliary information from the combination of other satellites (i.e. P,E and river network direction from
topography) andmodelling data (simulatedQ) [16]. GRACE information is used to constrain low dS space/time
variabilities, while high frequencies come from the P− E−Q information. Using a priori simulatedQ at the
downscaling level of dS allows us to fuse information onQ from the hydrologicalmodel alongwith information
fromGRACE dS,P, andE. This estimate will then be constrained using in situ gauge qmeasurements (see section
2.5). This procedure is close to the assimilation framework, where themodel is updated using newobservations.
The original 0.5◦GRACEmonthly value for January 2019 [32] and the 1 km-downscaled product for January
15th 2019 are shown infigure 1 third row.

2.4. In situ river discharges q
A large dataset of daily river discharge qmeasurements has been obtained for 205 stations over the Ebro basin
(top left offigure 1), collected throughout 2016–2019. This extensive q record is obtained from the
Hydrographic Confederation of the Ebro, through its real-time data portal: AutomaticHydrological
Information System (SistemaAutomático de InformaciónHidrológica, SAIH). SAIHprovides q data from
discharge stations (levels and river flows in the basin) and reservoirs (levels, volumes andwaterfilled
percentage).

2.5. Topography andContinuumhydrologicalmodel
TheDigital ElevationModel (DEM) of the global USGS (USGeological Survey)Hydrologic Derivatives for
Modeling andAnalysis [33], upscaled at 1 km, is used for two purposes. First to delineate the catchments of the
respective 205 stations to define thewater balance in each one of them. Second, theDEMallows to estimate the
direction of the horizontal water transport, for each pixel. This gives us the so-called ‘flow accumulation’ and
associated river network.

A simulation from theContinuumdistributed hydrologicalmodel [34, 35] is used as an a priori source of
information on the river discharge. It is a dense and continuousQ estimate in order to both downscale GRACE
dS data and later evaluate theQ-mapping. Continuum is a trade-off between an empirical and a physically-based
model. Deepflow andwater table evolution aremodeledwith a simple scheme that reproduces themain
physical characteristics of the processes and a distributed interaction betweenwater table and soil surface with a
low level of parametrization [34]. Continuummodel was calibrated for the Ebro River using discharge
measurements at 19 locations [36]. The calibration perturbs six scalar parameters of themodel all related to
hydrological behavior. It is amulti-site calibration procedure that iteratively searches for themodel
parameterization (values of the six scalars) that bestmatches the available discharge observations byminimizing
theKling-Gupta efficiency (KGE) used as a cost function.Detailed information regarding the calibration
procedure can be found in [36]. Once calibrated, themodel does not assimilate any in situwhen simulating the
river discharge.

2.6.Optimal interpolation ofP, E and dS
AsOptimal Interpolation (OI) has been largely presented in previous researches [12, 37, 38], only a short
presentation is proposed here. TheP,E and dS satellite estimates (from the previous sections 2.1–2.3) are
corrected at the sub-basin scale. In situ gauges {qj ; j= 1,L ,J} (from the section 2.4) are used for this purpose.
P,E and dS corrections intend to close thewater budget over each one of the 205 drainage areas. At each time
step t:

· ( ) ( ) ( )G Y t q t , 1SAT = + 

whereYSAT (t) is the state vector (3n× 1) ofP(t),E(t) and dS(t) on the n pixels of the basin for a given day t. Time
variable t is then omitted in the following for simplicity.G is a (J× 3n)matrix inwhichG( j, 3k+ 1: 4k)=
[1,− 1,− 1] if the pixel k belongs to the drainage area of gauge j. In thewater budget framework, thewatermass
conservation ofP,E and dS relies on the hypothesis that horizontal exchanges are represented solely by surface
water (i.e., discharge q).
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Equation (1) can be inverted, based on an a priori error covariancematrixBSAT describing our uncertainly on
YSAT [37, 39]. The definition ofBSAT is shown in the appendix.

[ · ( · · )]
· [ · ] ( )

Y Y B G G B G

q G Y , 2
a SAT SAT o

T
o SAT o

T

o o SAT

= +
-

where a represents the ‘analysis’ of the previous solutionYSAT.Ya closes thewater budget byminimizing errors ò
in equation (1) over the catchments, while being as close as possible toYSAT. OI aims here only at optimizing P,E,
and dS, as q is considered to bemore reliable since it is an in situ observation. The gaugemeasurements represent
a reference onwhich thewholeOI is built. Equation (1) can be read as an update in a assimilation cycle where
a priori YSAT is corrected based on the observation of q to give the analysisYa. TheOI procedure is a closed-form
analytical solution that directly used in situ qmeasurements at each time step based on their availability.

In this optimization problem, the state vectorYSAT has a dimension=380220 representing 126 740 pixels×3
(for P,E, dS). It then involves the inversion of a very largematrix of dimension (380220× 380220).

TheOI-optimized P,E and dS estimates are shown for January 15th in the third rowoffigure 1. TheOI only
slightly corrects thewater components, but it reduces substantially thewater budget imbalance [38, 40]. The
obtainedwater components aremore coherent and in better agreement with themeasured q. This should help
the spatial ‘interpolation’ of the gaugemeasurements in the following step.

3. Closure-based river dischargeQ estimation

TheOI-optimized P,E, and dS are used here to estimate dailyQ at a spatial resolution of 1 km, over thewhole
Ebro domain.

3.1. River discharge estimation using budget closure
The river dischargeQ(i) at a location i is estimated from the optimized satellite observationsYa= [Pa,Ea, dSa]
over its upstream area:

( ) ( ) ( )Q i UP i Y, : . 3a= ´

UP is a n× 3nmatrix inwhichUP(i, 3k+ 1: 4k)= [1− 1− 1] if pixel k belongs to the drainage area of pixel i,
and zeros elsewhere (this is actually the extension ofG to all pixels in the Ebro basin). Equation (3) allows
estimating pixel-wiseQ by closing thewater budget upstreamof each pixel. The upstream area, for any pixel ‘i’ in
UP, is given by the flowdirection derived from topography. This river network constrains the inter-pixel
exchanges to‘interpolate’ the in situ q. The resultingQ can be interpreted as an interpolation of the river gauge
measurements q through the use of the spatial patternsYa of the indirect observations, using the two-step process
of equations (1) and (3). The obtainedQ estimate are represented in the bottom left corner offigure 1.

3.2. Evaluation of the closure-based river discharges
To test the robustness of the estimation, a Leave-One-Out (LOO) cross validation technique is applied: one
gauge is withdrawn from the ensemble that is used for theQmapping. TheQ estimate in this location is then
compared to the gaugemeasurement. This operation is repeated for all the 205 available gauges. This
experiment evaluates the true ability of our approach to estimateQ over an ungauged pixel. Table 1 summarizes
the performance of the estimations over gauges that were not considered in theOI process data for sixmetrics:
the Kling-Gupta Efficiency (KGE), Nash-Sutcliffe Efficiency (NSE), correlation (CORR), the RootMean Square
Error (RMSE),Mean Error (ME), and the STandardDeviation of Error (STDE). For all themetrics, the 75th,
50th (median), and 25th percentiles are shown.

The results of ourmethod in terms of RMSE in table 1 can be analyzed from the perspective of closing the
water budget. Indeed, accurately estimating q on a particular testing gauge using thewater budget equation
(q̂ P E dS= - - ) and obtaining q̂ close to the observed in situ q during testing is bymeansminimizing the
water budget imbalance: ˆimb q q= - .

The proposed approach appears to be of good quality for allmetrics.Median correlation is 0.8, andmedian
KGE= 0.13. The variability inNSEmetrics comes fromhigher errors over small rivers.

Themethod is evaluated alongwith theContinuummodel simulation. Even though themodel is calibrated,
it does not use explicitly in situmeasurements in its simulations. The gauge data are used to ‘calibrate’ themodel
in the sense that the parameters of themodel are optimized so that its RD are as close as possible to the in situ
data. Once themodel is calibrate (once and for all) then its simulations do not the in situ data. In order tomake
themodel simulations closer to the in situ data, an assimilation schemewould be required.However, leveraging
on the in situ gauge data to better constrain EOhas significant advantages, in particular anchoring the analysis on
true data, which is essential in highly anthropized basins such as this one. In contrast, ourOI analysis fuse the
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information of EOs,modeling a priori and in situ data, in a similar way thanwhat assimilation does. Table 1
shows the benefits of exploiting the in situ data to obtain amore accurate estimation of the river discharge.

4. Analysis of the obtained river discharges

4.1. Along-the-Ebro analysis
Figure 2 shows an instantaneous view of themainstream longitudinalQ profile for one day. In situ
measurements are shown in diamond, ContinuummodelQ estimates in blue, and closure-basedQ in yellow. By
definition, the closure-based estimatesmatch verywell the in situ data, while giving a continuous estimate along
the river. Themethod does not only interpolate between two gauges: By exploiting the spatial patterns of the
indirect observations onP,E and dS, it is possible to infer complex behaviours between two gauges such as the
discontinuous rise inQ due to a tributary contribution (e.g. Ega, Aragon, orGallego). In contrast, the
Continuummodel is not able to represent adequately the high flow in the river reach between the 300th and the
400th pixels.

An experiment was conducted (in green), for which the reconstruction is donewithout theAragon
confluence gauge nor the closer gauge onmainstream:Despite the relatively high underestimation ofQ, the
Aragon peak is however well recovered, without a direct constrain on it, demonstrating howEOdata can be
leveraged to substantially improve the representation ofQ patterns along the river.

Figure 2. Longitudinal profile of the Ebro river discharge inDecember 14th 2019 for: the Continuummodel (blue), our estimate
(yellow), and the in situmeasurements (red diamonds). For evaluation purposes, the closure-based estimate calibratedwithout the
Aragon confluence gauge (black square)nor the closer gauge onmainstream is also shown in green.Main Ebro tributaries are
indicated.

Table 1.Evaluation of theQ estimates using the testing in situ data (not used
during the optimisation) for: our estimates (left) and for the Continuum
model (right). See text for definition of themetrics.

Our estimate Continuummodel

Metrics 75th 50th 25th 75th 50th 25th

KGE 0.61 0.13 −0.84 0.34 −0.03 -0.49

CORR 0.88 0.72 0.41 0.69 0.59 0.22

NSE 0.62 0.07 −3.6 0.30 −0.02 -0.83

RMSE 11.6 4.1 2.0 12 4.6 1.5

ME 1.9 0.2 −0.5 1.0 0.2 -2

STDE 10.6 4.0 1.8 11.5 3.9 1.4

6

Environ. Res. Commun. 6 (2024) 091014



4.2. Temporal analysis at the outlet
Figure 3 shows in yellow the time series of theQ estimates close to the Ebro outlet, together with the closest gauge
in red about 50 kmupstream (612th pixel infigure 2). Correlation is equal to 0.98 between them. Again, when
this gauge is not used to constrain the solution, the result (purple) is barely degraded. At the outlet of the basin,
evenwhen the closest stations are removed, our approach yield substantially better results compared to the
hydrologicmodelling exercise.

TheContinuum estimate is shown in blue. A scaling error of Continuum seems to be present in the
simulation. E.g., for particularly dry year, a bias at lowflow can be observed in the simulation (e.g. 2019). This
could be related to the existence of bias in the runoff used as input by theContinuummodel and/or soil water
content issue in themodel. Furthermore, themodelling seems unable to represent high frequency signal
contrary to the closure-basedQ estimate that includes a larger range of variability. In terms of peak, a one-day
shift is observed in the simulation of themainflooding event in 2018, probably related to celerity parameters.
Overall, figure 3 showswell the advantage of observation-basedQ estimates, and a possible opportunity to
improvemodel simulations.

4.3. Spatio-temporal analysis
In the two previous sections, theQ-estimates are analyzed in space and time separately. Figure 4 represents the
space-timeContinuumof the river flow estimation. Time is represented from January 2016 toDecember 2021
(y-axis) and themainstream is represented along its 703 pixels from the upstream (pixel 1) to the outlet
(pixel 715).

The discontinuities along themainstream (x-axis) highlight themain confluent rivers flowing into the
mainstream. The seasonal pattern is clear, with an increase from January toMarch (y-axis) and fromupstream
to downstream (in x-axis). Among the six available yearly patterns, 2017 shows the lowest dynamic with a very
narrowperiod of high-flow (in time). The cumulative P fromOct. 1st 2016 to Sept. 30st is down 12%,making
2017 the third driest year, behind 1981 and 2005. For some years (2019, 2021),Q is higher in the reach from the
400th to 600th pixels than downstream, reflecting some damoperations along themainstream. Indeed, our
method accounts implicitly for damoperations relying on q observationswhich integrate regulation operations
fromdam. 2019 showcases a two-peaks high-flow season (thefirst peak centered around February 2019while
the second is centered inDecember 2019). Finally, the spatio-temporal graph stresses the flood event that took
place inApril 2018 for the second part of themainstream (pixels 350-715). The analysis of extreme events
benefits here from the spatially continuous aspect of theQ estimate. Droughts (e.g. 2017, (A) infigure 4) and
floods (e.g. April 2018, (B) infigure 4) aremonitored throughout the entiremainstream. Floods can be caused by
one particular confluent (the northern ones).

This figure shows that the the implementation of such approach using near real time datasets could open
avenues for a continuousmonitoring of continental water dynamics including the occurrence of extreme events
from space.

Themost important hydrological event of the period in the Ebro is the flooding episode that hit the Zaragoza
region in April 2018. It is represented infigure 5. The 2018winter was one of the rainiest since records are kept.
In late February and inMarch, therewere considerable episodes of rain throughout the Iberian Peninsula
especially in the upper andmiddle sections, while snow-melt occurred in the Pyreneesmountains at the
headwaters of the rivers, which caused a severe flooding event. Theflooding started onApril 12th and affected
upstream areas such as Tudela that could have seen the peak as soon as the next day, before the peak of theflood
was observed to occur in Zaragoza city onApril 15th. Severe damages and at least one casualty were reported.
The closure-based estimate represents well this extreme event with themaximumdischarge estimated for

Figure 3.Q time series close to the Ebro outlet for: our estimate (red); Continuum simulation (blue); nearest in situ gauge (red).
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April 14th aroundZaragoza, but on the 13th before Tudela. The shape of the floods also change in space and
time: narrower upstream towider downstream. It can be seen that a smaller event impacts themainstream
aroundApril 28th for pixels above 530th, stressing the impact from the confluent downstream.

Figure 4. Spatio-temporal graph of the river discharge along the Ebromainstream (x-axis) and over time (2016-2021, y-axis).Main
tributaries rivers along themainstream (x-axis) are given in the x-axis. Twoparticular events are indicated: (A) for the drought of 2017
and (B) for theflood inApril 2018.

Figure 5. Spatio-temporal evolution of the Ebro river discharge along themainstream (x-axis) and over time (2016-2021, y-axis)
centered around theflooding event between Tudela andZaragoza in April 2018.
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5. Conclusion

Themonitoring of thewater cycle in highly anthropized basins such as the Ebro is a true challengewhen using
either satellite data or a surface/hydrologicalmodel. Since exhaustive and precise information on dams
management, canals, and irrigation is not available, only in situ observations can constrain the analysis towards
realistic conditions. For that purpose, thewater cycle analysis needs to be performed at high spatial/temporal
resolutions, to exploit asmuch as possible the native resolution of the in situ data. Our previous analysis of the
water cycle using optimal interpolation fused EarthObservation (EO), in situ gaugemeasurements, and
horizontal exchange direction information from topography constraints, but only at a coarse resolution
(monthly, 0.25◦). Newdevelopments were required to obtain results atmuch higher space/time resolutions.
This has been performed here by integratingmore information in our framework, namely from the dynamical
hydrologicalmodel Continuum.

Our new framework to estimate a continuous river discharge is getting closer to an assimilation scheme, but
at amuch lower computational and development cost. Spatial patterns of the EOs are constrained towards the
set of sparse in situ gaugemeasurements. This is done thanks to the a priori dynamical and spatial information of
theContinuummodel, resulting in awater cyclemonitoring that is hydrologicallymore coherent. The benefits
gained from this fusion have been demonstrated in terms of spatial/temporal resolutions. Thanks to their
proximity to the in situmeasurements, the river discharge estimates aremore realistic because they account for
human activity such as dams operations, canals and irrigation that are implicitly recorded in themeasurements.

Our new integrated databasewill be used to better calibrate and validatemodels such as Continuum.
Applications onwatermanagement could be investigated, such as the impact of channelisation and irrigation. In
this area, water demand for agriculture needs is high [41]. Irrigation impacts thewater balance of the river basin,
with enhanced evaporation and thismust be analyzed too [2]. The possibility tomonitor from space the impact
of human activity on thewater cycle will be investigated. For that purpose,more information needs to be
introduced in our analysis (e.g., irrigation or even aqueduct), in a similar way that gaugemeasurements were
introduced. OI appears to be a very good and practical tool that allows for the exploitation of real in situ data of
diverse nature. Thismight be easier to develop than a full assimilation scheme.

Machine-learning approaches for estimating river discharge from satellite data have received a lot of
attention recently [11, 42, 43] thanks to the development of large river discharge databases [44, 45] at the global
scale. However, there are still difficulties and issues to extrapolate the empirical relationships from the very
sparse gauges network to the global scale. The combination of such empirical approaches with ourOI
framework including physical constraint (e.g. watermass conservation) should be beneficial and needs to be
investigated [46]. Newdedicated and hand-tailored artificial intelligencemodel architecturesmight be necessary
to achieve such tasks.

The SWOTmission [17, 19, 47] launched in 2023 should provide high-resolution river discharges at the
global scale , a true revolution in hydrology. However, SWOTwill give thosewith a complex time/space
sampling [19]. Combining SWOTdatawithmore classical EOdatasets (regularly sampled in time and space and
at different resolutions)will be a challenge, that needs to be overcome for the full exploitation of the SWOTdata.
Our integration scheme is able to combine such disparate data (e.g. GRACEhas an original 200km resolution)
and should therefore benefit the SWOTmission by helping the exploitation of its data. Furthermore, the new
SWOTdata could complement the current gauge network in our analysis, which should help us extend it at the
global scale. In addition, when performing this analysis during the SWOTperiod, it could help us extend our
analysis before SWOT. This could be away to extend the SWOTdata back in time, for theGRACE andGRACE-
FOperiod (2002-2023).
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Apriori covariancematrix in Equation (2)

The a priori error covariancematrixBSAT in Equation (2) is a (3n× 3n) block diagonalmatrix defined as:

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

( )B
B

B
B

0 0
0 0
0 0

A.1SAT

P

E

dS

=

whereBP (resp.BE andBdS) is the covariancematrix ofP (resp.E and dS). Since equation (2) considers all the
pixels at a time, the error correlation of the observations need to be considered, following [12],BSAT contains off-
diagonal terms have been added to the covariance errormatrixB. A simple assumption is taken: error
correlations decay exponentially in space:

( ) [ · ( )] · [ · ( )] · ( )
( )

B i j P i P j e, , A.2P P P
d i j

D
,

=  

where d(i, j) is the distance between pixel i and j;D= 5 is the e-folding distance (in pixel). This expression
extends easily toBE andBdS. The error base estimates is: òP= 10%, òE= 10%and òdS= 20%.No covariance
terms have been considered between two different variables (i.e.P vsE, P vs dS, andE vs dS).
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