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Abstract

Estimating river discharge Q at global scale from satellite observations is not yet fully satisfactory in
part because of limited space/time resolution. Furthermore, on highly anthropized basins, it is
essential to anchor the analysis to reliable Q measurements. Gauge networks are however very sparse
and limited in time, and SWOT (Surface Water Ocean Topography) river discharge estimates at global
scale are not yet available. The method proposed here is able to obtain continuous daily Q estimates at
1 km/daily resolution, using indirect satellite data and ground-based estimates. We focus here on the
Ebro. Over such an anthropized basin (e.g. change of land use, irrigation), the exploitation of 205
available gauges at their nominal resolution (i.e., daily point measurements) is a necessity. The
hydrological Continuum model is used to help interpolate spatially and temporally the observations
into our optimal interpolation scheme. The proposed Q-mapping is similar to an assimilation scheme
were Earth observations (precipitation, evapotranspiration and total water storage change) and model
simulations are constrained by in situ gauge measurements. The Q estimates are evaluated using a
rigorous leave-one-out experiment, showing a good agreement with the in situ data: a correlation of
0.72 (median), and a 75th percentile of Nash-Sutcliffe Efficiency up to 0.62. Our spatio-temporal
continuous Q estimates at high spatial /temporal resolution can describe complex continental water
dynamics, including extreme events. SWOT estimates will soon be available, at the global scale but
with irregular space/time sampling: our method should help exploit them to obtain a regular space-
temporal description of the water cycle at high resolution.

1. Introduction

The Ebro is the longest river (987 km) of Spain, and a major basin of the Mediterranean region. Raising near the
Atlantic coast in the Cantabrian Mountains in northern Spain, it drains an area of 86,000 km? between the
Pyrenees and the Iberian mountains. The basin is very heterogeneous, influenced by the Atlantic Ocean on the
Northwest and the Mediterranean Sea on the Southeast. The annual mean Pis unevenly distributed, being
higher in the mountainous regions (reaching 1,800 mm/yr), and lower in the central valley (below 500 mm/yr).
The basin is highly affected by anthropisation (i.e. irrigation and dam operation) and global warming with an
increase of water stress in summer [1, 2]. The management of its water resources is thus a challenge at national
level and the Ebro basin is a data rich basin well monitored through national and international campaigns [3, 4].
Its Automatic System of Hydrological Information [4] provides a wealth of real-time and historical river data,
which makes it an interesting test-bed for hydrological studies in the context of climate change.

The monitoring of the river discharge in a particular basin such as the Ebro is an efficient way to analyze and
even manage such a basin. However, two main difficulties appear: i) A basin like the Ebro is highly anthropized

© 2024 The Author(s). Published by IOP Publishing Ltd
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and it is essential to anchor the water cycle analysis to true in situ data. If not, lack of information on human
water management can bias what can be obtained with aland or hydrological model combined or not with
satellite data. ii) The true understanding and maybe the management of a basin with such complexity
necessitates high spatial and temporal resolutions. This is again a true challenge, especially when exploiting
satellite observations often given at coarse resolution.

Let us first consider the several ways to estimate river discharge. Obtaining dense regular river discharge Q
can be obtained with a Land Surface Model (LSM) that includes a routing module. Such approach, relying on
physical equation, struggles in accounting for human activities such as dam operations [5] or any processes for
which there is a lack of information or knowledge. For a highly managed basin like the Ebro River, the use of
in situ observations is a necessity. A traditional method to obtain realistic river discharge estimates that account
for human activities involves developing an assimilation scheme, where the model output (Q) is constrained/
corrected by in situ gauge measurements (g). However, the development of an assimilation system is not
straightforward [6], specially at high resolution (daily and 1 km).

The estimation of river discharge from Earth Observations (EO) observations is generally obtained at point
site based on radar nadir altimeter [7-9]. A few attempts have relied on other types of satellite observations such
as imaging sensors in Near InfraRed (NIR) [10] or passive microwaves based surface water extent [11]. The idea
is to build an ‘empirical relationship’ representing the low to high flow states, using either i) river height
information from altimetry, or ii) proxy of the water surface extent from NIR reflectance or from passive
microwave. This is done over a few in situ gauges river discharge observations or simulations through
hydrological modeling approaches [8]. The difficulty with these empirical relationships is that they can provide
river discharge only at point site (e.g. virtual station) and not continuously over the full basin.

Another approach considering water mass conservation was proposed recently to estimate dense regular Q
[12]. The proposed methodology uses indirect” EOs of Precipitation P, Evaporation E, and total water storage
change dS, together with a few available in situ gauge measurements. The method relies on a two-steps process.
First, the P, E, and dS products are first corrected at basins scale to better close the water budget, using g° from
the available gauges. Second, the budget is then spatially balanced between the pixels, by using flow direction to
consider horizontal water exchange, leading to an estimation Q at pixel scale. This approach in [12] is based
solely on satellite products, in situ measurements, and river network derived from topography. No dynamical
model was used, which can be positive if no good model is available, but it can be detrimental as physical
relationships can help perform a better space/time interpolation of the water components.

Furthermore, the Q mapping in [12] has been obtained at the EOs nominal resolution (monthly, 0.25°). This
relatively coarse resolution, however, is a strong limitation for water management applications and for climate-
related researches, in particular for a basin like the Ebro. In the framework of the 4D-MED project (https://
www.4dmed-hydrology.org/), new downscaled water component estimates have been produced over some
basins of the Mediterranean region, at daily and 1 km resolutions. Pis derived from a merging/ downscaling
process of multi-product [13]. E was obtained through the application of the GLEAM model [14, 15] with high
resolution inputs. dS is estimated through a statistical /physical dynamical downscaling that relies on an a priori
Qestimate derived from a hydrological model [16]. Such higher spatial resolution products for P, E and dS can
be used to estimate dense Q using available in situ ¢ measurements and the methodology presented in [12].

Indeed, despite the existence of these high-resolution datasets, there is still a need for point g measurements
either ground-based observations from a relatively dense network of gauges. An alternative will be provided by
the recent Surface Water and Ocean Topography (SWOT) NASA-CNES mission [17-19]. SWOT uses a Ka-
band radar interferometer, to estimate water surface elevations of rivers globally at 100 m resolution that are
used to obtain river discharges at global scale (but with a complex spatio-temporal sampling). Such data can be
leveraged to estimate dense regular river discharge estimates, but a convincing approach is required to fully
exploit their information at nominal resolution. National and international space agencies such as ESA
(European Space Agency) aim to develop a comprehensive view of the interaction between natural phenomena
and human activities at global scale and at high spatio-temporal resolution in order to pave the green transition.

This paper aims at demonstrating how to reach high-resolution (daily and 1 km) realistic representation of
river discharge (Q). The methodological core was previously developed [12] but it was done at a low resolution
(i.e., monthly, ~0.25°). Integrating high-resolution EO datasets in order to use in sifu gauge measurements at
their nominal resolution poses a challenge that needs to be addressed. Specifically, the benefits gained from the
fusion of multiple sources of hydrological information (model, EO and in situ data) needs to be documented.

The datasets used in this study will be presented in section 2. Section 3 presents the closure-based estimate of
Q. Analysis of the obtained results will be performed in section 4. Finally, section 5 will provide some
conclusions and perspectives.

5 . . . .
Indirect because not a direct measurement of the river discharge.

Lower-case letter are used for in situ point measurements through the manuscript to differ from continuous Q estimate.
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Figure 1. Overall integration scheme. First row: Original dataset in January 2019 for in situ Q and satellite-based P, E, and dS in mm/
day. Second row: Downscaled version. Third row: Ol balanced version for January 15th 2019. The final continuous water balance Q is
in the bottom left corner. The dash line highlights the processing done in the 4ADMED project and made available for the current study.

2. Original datasets and their optimization

2.1. Precipitation, P

The satellite P products developed within 4DMED are based on the integration of multiple P datasets to generate
ahigh spatial (1 km) and temporal (daily) resolution over the Mediterranean area. The NOAA Climate
Prediction Center (CPC) daily 0.5° precipitation [20, 21] and the Integrated Multi-satellitE Retrievals for Global
Precipitation Measurement (GPM-IMERG, Late-run version) 30 mn and 0.1° P [22] are merged and
downscaled. The downscaling procedure leverages the Climatologies of the Earth’s Land Surface Areas
(CHELSA), a high resolution (30arcsec, 1 km) global and monthly dataset [23]. It is based on a mechanistical
statistical downscaling of global reanalysis data or global circulation model output and it includes climate layers
for various time periods and variables. The relative precipitation patterns of CHELSA are exploited to spatialize
the coarse resolution information of precipitation products, being based on the modelling of orographic
predictors of wind fields, valley exposition and boundary layer height. A paper describing the downscaling
procedure is currently under preparation.

Finally, the high spatial (1 km) and temporal (daily) resolution 4DMED precipitation product (https://stac.
eurac.edu:8080/collections/rainfall_all domain)was adopted for this study. This precipitation product is
obtained by merging the downscaled GPM-Late run and CPC over the Mediterranean area. The two products
are merged leveraging on the results of a triple collocation technique (third product: the reanalysis ERA5 Land
precipitation): the obtained signal to noise ratios are used to derive each product weight. The product is available
in the period 2000-2022. The original 0.1° GPM monthly value for January 2019 [22] and the 1 km-downscaled
product for January 15th are shown in figure 1.

2.2. Evapotranspiration, E

The Global Land Evaporation Amsterdam Model (GLEAM) 1-km E has been obtained by running the GLEAM
model [14, 24] at 1km using high resolution inputs. GLEAM uses an empirical energy-based equation [25] to
calculate a potential evaporation. Afterwards, E is estimated per land cover fraction based on an evaporative
stress approach. This method estimates separately transpiration, bare-soil evaporation, interception loss, open-
water evaporation, and sublimation. Radiation and temperature data were obtained from LSAF (land-saf.
eumetsat.int), vegetation fractions from MOD44B v6.0 [26], and soil properties from HiHydroSoil v2.0 [27].
GLEAM was run at 1 km using high-resolution of : i) Pintroduced in section 2.1; ii) VOD and soil moisture
based on the Land Parameter Retrieval Model [28] and downscaled microwave observations; and iii) snow water
equivalent based on the assimilation of the C-SNOW dataset [29] in the Snow Multidata Mapping and Model
[30]. All these data have been produced during the 4DMED project (https://stac.eurac.edu:8080/collections/).
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The 0.25° GLEAM monthly value for January 2019 [24] and the 1 km-downscaled product for January 15th 2019
are shown in the second row of figure 1.

2.3. Total water storage change, dS

The twin satellites of GRACE and GRACE-Follow On missions [31] offer a unique opportunity to monitor the
water stored in land (i.e., soil moisture, surface water, snow-pack, glaciers, and groundwater). A state-of-the-art
retrieval is performed based on the mass concentration solution known as MASCON (MSC). This technique
benefits from gravity field basis functions to better isolate the hydrological (i.e., water storage variation)
contributions in the signal from other factors. Typical monthly solution is provided globally on a 0.5°x0.5° grid.
A statistical /physical dynamical downscaling has been proposed to obtain 1 km and daily dS estimates, using
auxiliary information from the combination of other satellites (i.e. P, E and river network direction from
topography) and modelling data (simulated Q) [16]. GRACE information is used to constrain low dS space/time
variabilities, while high frequencies come from the P — E — Q information. Using a priori simulated Q at the
downscaling level of dS allows us to fuse information on Q from the hydrological model along with information
from GRACE dS, P, and E. This estimate will then be constrained using in situ gauge g measurements (see section
2.5). This procedure is close to the assimilation framework, where the model is updated using new observations.
The original 0.5° GRACE monthly value for January 2019 [32] and the 1 km-downscaled product for January
15th 2019 are shown in figure 1 third row.

2.4. In situ river discharges q

Alarge dataset of daily river discharge g measurements has been obtained for 205 stations over the Ebro basin
(top left of figure 1), collected throughout 2016-2019. This extensive g record is obtained from the
Hydrographic Confederation of the Ebro, through its real-time data portal: Automatic Hydrological
Information System (Sistema Automatico de Informacién Hidroldgica, SAIH). SAIH provides g data from
discharge stations (levels and river flows in the basin) and reservoirs (levels, volumes and water filled
percentage).

2.5. Topography and Continuum hydrological model

The Digital Elevation Model (DEM) of the global USGS (US Geological Survey) Hydrologic Derivatives for
Modeling and Analysis [33], upscaled at 1 km, is used for two purposes. First to delineate the catchments of the
respective 205 stations to define the water balance in each one of them. Second, the DEM allows to estimate the
direction of the horizontal water transport, for each pixel. This gives us the so-called ‘flow accumulation’ and
associated river network.

A simulation from the Continuum distributed hydrological model [34, 35] is used as an a priori source of
information on the river discharge. It is a dense and continuous Q estimate in order to both downscale GRACE
dS data and later evaluate the Q-mapping. Continuum is a trade-off between an empirical and a physically-based
model. Deep flow and water table evolution are modeled with a simple scheme that reproduces the main
physical characteristics of the processes and a distributed interaction between water table and soil surface with a
low level of parametrization [34]. Continuum model was calibrated for the Ebro River using discharge
measurements at 19 locations [36]. The calibration perturbs six scalar parameters of the model all related to
hydrological behavior. It is a multi-site calibration procedure that iteratively searches for the model
parameterization (values of the six scalars) that best matches the available discharge observations by minimizing
the Kling-Gupta efficiency (KGE) used as a cost function. Detailed information regarding the calibration
procedure can be found in [36]. Once calibrated, the model does not assimilate any i situ when simulating the
river discharge.

2.6. Optimal interpolation of P, Eand dS

As Optimal Interpolation (OI) has been largely presented in previous researches [12, 37, 38], only a short
presentation is proposed here. The P, E and dS satellite estimates (from the previous sections 2.1-2.3) are
corrected at the sub-basin scale. I situ gauges {gisj=1-.]} (from the section 2.4) are used for this purpose.
P, Eand dS corrections intend to close the water budget over each one of the 205 drainage areas. At each time
step #:

G- Ysar(t) = q(t) + e, (1)

where Y47 (t) is the state vector (3n x 1) of P(¢), E(t) and dS(¢) on the n pixels of the basin for a given day t. Time
variable ¢ is then omitted in the following for simplicity. Gisa (J X 3n) matrix in which G(j, 3k + 1: 4k) =

[1, — 1, — 1]ifthe pixel k belongs to the drainage area of gauge j. In the water budget framework, the water mass
conservation of P, E and dS relies on the hypothesis that horizontal exchanges are represented solely by surface
water (i.e., discharge g).
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Equation (1) can be inverted, based on an a priori error covariance matrix Bss r describing our uncertainly on
Ysar[37, 39]. The definition of Bg4is shown in the appendix.

Y, = Yoar + [Bsar - G, (G, - Bsar - G})]
lq, — G, - Ysarl, @)

where a represents the ‘analysis’ of the previous solution Ys4 7. Y, closes the water budget by minimizing errors e
in equation (1) over the catchments, while being as close as possible to Y, 1. Ol aims here only at optimizing P, E,
and dS, as qis considered to be more reliable since it is an in situ observation. The gauge measurements represent
areference on which the whole Ol is built. Equation (1) can be read as an update in a assimilation cycle where

a priori Yssris corrected based on the observation of g to give the analysis Y,,. The OI procedure is a closed-form
analytical solution that directly used in situ ¢ measurements at each time step based on their availability.

In this optimization problem, the state vector Ys,rhas a dimension=380220 representing 126 740 pixels x3
(for P, E, dS). It then involves the inversion of a very large matrix of dimension (380220 x 380220).

The OI-optimized P, E and dS estimates are shown for January 15th in the third row of figure 1. The OI only
slightly corrects the water components, but it reduces substantially the water budget imbalance [38, 40]. The
obtained water components are more coherent and in better agreement with the measured g. This should help
the spatial ‘interpolation’ of the gauge measurements in the following step.

3. Closure-based river discharge Q estimation

The OI-optimized P, E, and dS are used here to estimate daily Q at a spatial resolution of 1 km, over the whole
Ebro domain.

3.1. River discharge estimation using budget closure
The river discharge Q(i) at alocation i is estimated from the optimized satellite observations Y, = [P,, E,,, dS,]
over its upstream area:

Q) = UPG, 1) X Y, 3

UPisan x 3nmatrix in which UP(i, 3k + 1: 4k) = [1 — 1 — 1] if pixel k belongs to the drainage area of pixel s,
and zeros elsewhere (this is actually the extension of G to all pixels in the Ebro basin). Equation (3) allows
estimating pixel-wise Q by closing the water budget upstream of each pixel. The upstream area, for any pixel ‘i’ in
UP, is given by the flow direction derived from topography. This river network constrains the inter-pixel
exchanges to‘interpolate’ the in situ g. The resulting Q can be interpreted as an interpolation of the river gauge
measurements g through the use of the spatial patterns Y, of the indirect observations, using the two-step process
of equations (1) and (3). The obtained Q estimate are represented in the bottom left corner of figure 1.

3.2. Evaluation of the closure-based river discharges

To test the robustness of the estimation, a Leave-One-Out (LOO) cross validation technique is applied: one
gauge is withdrawn from the ensemble that is used for the Q mapping. The Q estimate in this location is then
compared to the gauge measurement. This operation is repeated for all the 205 available gauges. This
experiment evaluates the true ability of our approach to estimate Q over an ungauged pixel. Table 1 summarizes
the performance of the estimations over gauges that were not considered in the OI process data for six metrics:
the Kling-Gupta Efficiency (KGE), Nash-Sutcliffe Efficiency (NSE), correlation (CORR), the Root Mean Square
Error (RMSE), Mean Error (ME), and the STandard Deviation of Error (STDE). For all the metrics, the 75th,
50th (median), and 25th percentiles are shown.

The results of our method in terms of RMSE in table 1 can be analyzed from the perspective of closing the
water budget. Indeed, accurately estimating g on a particular testing gauge using the water budget equation
(§ = P — E — dS)and obtaining 4 close to the observed in situ g during testing is by means minimizing the
water budget imbalance: imb = § — q.

The proposed approach appears to be of good quality for all metrics. Median correlation is 0.8, and median
KGE = 0.13. The variability in NSE metrics comes from higher errors over small rivers.

The method is evaluated along with the Continuum model simulation. Even though the model is calibrated,
it does not use explicitly in situ measurements in its simulations. The gauge data are used to ‘calibrate’ the model
in the sense that the parameters of the model are optimized so that its RD are as close as possible to the iz situ
data. Once the model is calibrate (once and for all) then its simulations do not the in situ data. In order to make
the model simulations closer to the in situ data, an assimilation scheme would be required. However, leveraging
on the in situ gauge data to better constrain EO has significant advantages, in particular anchoring the analysis on
true data, which is essential in highly anthropized basins such as this one. In contrast, our Ol analysis fuse the
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Figure 2. Longitudinal profile of the Ebro river discharge in December 14th 2019 for: the Continuum model (blue), our estimate
(yellow), and the in situ measurements (red diamonds). For evaluation purposes, the closure-based estimate calibrated without the
Aragon confluence gauge (black square) nor the closer gauge on mainstream is also shown in green. Main Ebro tributaries are
indicated.

Table 1. Evaluation of the Q estimates using the testing in situ data (not used
during the optimisation) for: our estimates (left) and for the Continuum
model (right). See text for definition of the metrics.

Our estimate Continuum model
Metrics 75th 50th 25th 75th 50th 25th
KGE 0.61 0.13 —0.84 0.34 —-0.03 -0.49
CORR 0.88 0.72 0.41 0.69 0.59 0.22
NSE 0.62 0.07 —3.6 0.30 —0.02 -0.83
RMSE 11.6 4.1 2.0 12 4.6 1.5
ME 1.9 0.2 —0.5 1.0 0.2 -2
STDE 10.6 4.0 1.8 11.5 3.9 1.4

information of EOs, modeling a priori and in situ data, in a similar way than what assimilation does. Table 1
shows the benefits of exploiting the in situ data to obtain a more accurate estimation of the river discharge.

4. Analysis of the obtained river discharges

4.1. Along-the-Ebro analysis

Figure 2 shows an instantaneous view of the mainstream longitudinal Q profile for one day. In situ
measurements are shown in diamond, Continuum model Q estimates in blue, and closure-based Q in yellow. By
definition, the closure-based estimates match very well the in situ data, while giving a continuous estimate along
the river. The method does not only interpolate between two gauges: By exploiting the spatial patterns of the
indirect observations on P, E and dS, it is possible to infer complex behaviours between two gauges such as the
discontinuous rise in Q due to a tributary contribution (e.g. Ega, Aragon, or Gallego). In contrast, the
Continuum model is not able to represent adequately the high flow in the river reach between the 300th and the
400th pixels.

An experiment was conducted (in green), for which the reconstruction is done without the Aragon
confluence gauge nor the closer gauge on mainstream: Despite the relatively high underestimation of Q, the
Aragon peak is however well recovered, without a direct constrain on it, demonstrating how EO data can be
leveraged to substantially improve the representation of Q patterns along the river.

6
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Figure 3. Q time series close to the Ebro outlet for: our estimate (red); Continuum simulation (blue); nearest in situ gauge (red).

4.2. Temporal analysis at the outlet

Figure 3 shows in yellow the time series of the Q estimates close to the Ebro outlet, together with the closest gauge
in red about 50 km upstream (612th pixel in figure 2). Correlation is equal to 0.98 between them. Again, when
this gauge is not used to constrain the solution, the result (purple) is barely degraded. At the outlet of the basin,
even when the closest stations are removed, our approach yield substantially better results compared to the
hydrologic modelling exercise.

The Continuum estimate is shown in blue. A scaling error of Continuum seems to be present in the
simulation. E.g., for particularly dry year, a bias at low flow can be observed in the simulation (e.g. 2019). This
could be related to the existence of bias in the runoff used as input by the Continuum model and/or soil water
content issue in the model. Furthermore, the modelling seems unable to represent high frequency signal
contrary to the closure-based Q estimate that includes a larger range of variability. In terms of peak, a one-day
shift is observed in the simulation of the main flooding event in 2018, probably related to celerity parameters.
Opverall, figure 3 shows well the advantage of observation-based Q estimates, and a possible opportunity to
improve model simulations.

4.3. Spatio-temporal analysis

In the two previous sections, the Q-estimates are analyzed in space and time separately. Figure 4 represents the
space-time Continuum of the river flow estimation. Time is represented from January 2016 to December 2021
(y-axis) and the mainstream is represented along its 703 pixels from the upstream (pixel 1) to the outlet

(pixel 715).

The discontinuities along the mainstream (x-axis) highlight the main confluent rivers flowing into the
mainstream. The seasonal pattern is clear, with an increase from January to March (y-axis) and from upstream
to downstream (in x-axis). Among the six available yearly patterns, 2017 shows the lowest dynamic with a very
narrow period of high-flow (in time). The cumulative P from Oct. 1st 2016 to Sept. 30st is down 12%, making
2017 the third driest year, behind 1981 and 2005. For some years (2019, 2021), Qs higher in the reach from the
400th to 600th pixels than downstream, reflecting some dam operations along the mainstream. Indeed, our
method accounts implicitly for dam operations relying on q observations which integrate regulation operations
from dam. 2019 showcases a two-peaks high-flow season (the first peak centered around February 2019 while
the second is centered in December 2019). Finally, the spatio-temporal graph stresses the flood event that took
place in April 2018 for the second part of the mainstream (pixels 350-715). The analysis of extreme events
benefits here from the spatially continuous aspect of the Q estimate. Droughts (e.g. 2017, (A) in figure 4) and
floods (e.g. April 2018, (B) in figure 4) are monitored throughout the entire mainstream. Floods can be caused by
one particular confluent (the northern ones).

This figure shows that the the implementation of such approach using near real time datasets could open
avenues for a continuous monitoring of continental water dynamics including the occurrence of extreme events
from space.

The most important hydrological event of the period in the Ebro is the flooding episode that hit the Zaragoza
region in April 2018. It is represented in figure 5. The 2018 winter was one of the rainiest since records are kept.
In late February and in March, there were considerable episodes of rain throughout the Iberian Peninsula
especially in the upper and middle sections, while snow-melt occurred in the Pyrenees mountains at the
headwaters of the rivers, which caused a severe flooding event. The flooding started on April 12th and affected
upstream areas such as Tudela that could have seen the peak as soon as the next day, before the peak of the flood
was observed to occur in Zaragoza city on April 15th. Severe damages and at least one casualty were reported.
The closure-based estimate represents well this extreme event with the maximum discharge estimated for
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April 14th around Zaragoza, but on the 13th before Tudela. The shape of the floods also change in space and
time: narrower upstream to wider downstream. It can be seen that a smaller event impacts the mainstream
around April 28th for pixels above 530th, stressing the impact from the confluent downstream.
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5. Conclusion

The monitoring of the water cycle in highly anthropized basins such as the Ebro is a true challenge when using
either satellite data or a surface/hydrological model. Since exhaustive and precise information on dams
management, canals, and irrigation is not available, only in situ observations can constrain the analysis towards
realistic conditions. For that purpose, the water cycle analysis needs to be performed at high spatial/temporal
resolutions, to exploit as much as possible the native resolution of the in situ data. Our previous analysis of the
water cycle using optimal interpolation fused Earth Observation (EO), in situ gauge measurements, and
horizontal exchange direction information from topography constraints, but only at a coarse resolution
(monthly, 0.25°). New developments were required to obtain results at much higher space/time resolutions.
This has been performed here by integrating more information in our framework, namely from the dynamical
hydrological model Continuum.

Our new framework to estimate a continuous river discharge is getting closer to an assimilation scheme, but
atamuch lower computational and development cost. Spatial patterns of the EOs are constrained towards the
set of sparse in situ gauge measurements. This is done thanks to the a priori dynamical and spatial information of
the Continuum model, resulting in a water cycle monitoring that is hydrologically more coherent. The benefits
gained from this fusion have been demonstrated in terms of spatial /temporal resolutions. Thanks to their
proximity to the in situ measurements, the river discharge estimates are more realistic because they account for
human activity such as dams operations, canals and irrigation that are implicitly recorded in the measurements.

Our new integrated database will be used to better calibrate and validate models such as Continuum.
Applications on water management could be investigated, such as the impact of channelisation and irrigation. In
this area, water demand for agriculture needs is high [41]. Irrigation impacts the water balance of the river basin,
with enhanced evaporation and this must be analyzed too [2]. The possibility to monitor from space the impact
of human activity on the water cycle will be investigated. For that purpose, more information needs to be
introduced in our analysis (e.g., irrigation or even aqueduct), in a similar way that gauge measurements were
introduced. Ol appears to be a very good and practical tool that allows for the exploitation of real in situ data of
diverse nature. This might be easier to develop than a full assimilation scheme.

Machine-learning approaches for estimating river discharge from satellite data have received a lot of
attention recently [11, 42, 43] thanks to the development of large river discharge databases [44, 45] at the global
scale. However, there are still difficulties and issues to extrapolate the empirical relationships from the very
sparse gauges network to the global scale. The combination of such empirical approaches with our OI
framework including physical constraint (e.g. water mass conservation) should be beneficial and needs to be
investigated [46]. New dedicated and hand-tailored artificial intelligence model architectures might be necessary
to achieve such tasks.

The SWOT mission [17, 19, 47]launched in 2023 should provide high-resolution river discharges at the
global scale, a true revolution in hydrology. However, SWOT will give those with a complex time/space
sampling [19]. Combining SWOT data with more classical EO datasets (regularly sampled in time and space and
at different resolutions) will be a challenge, that needs to be overcome for the full exploitation of the SWOT data.
Our integration scheme is able to combine such disparate data (e.g. GRACE has an original 200km resolution)
and should therefore benefit the SWOT mission by helping the exploitation of its data. Furthermore, the new
SWOT data could complement the current gauge network in our analysis, which should help us extend it at the
global scale. In addition, when performing this analysis during the SWOT period, it could help us extend our
analysis before SWOT. This could be a way to extend the SWOT data back in time, for the GRACE and GRACE-
FO period (2002-2023).
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A priori covariance matrix in Equation (2)

The a priori error covariance matrix Bg,rin Equation (2) isa (31 x 3n) block diagonal matrix defined as:

B 0 0
Bsar=|0 Br 0 (A.1)
0 0 Bu

where Bp (resp. Bgand Bys) is the covariance matrix of P (resp. E and dS). Since equation (2) considers all the
pixels at a time, the error correlation of the observations need to be considered, following [12], Bs4 1 contains off-
diagonal terms have been added to the covariance error matrix B. A simple assumption is taken: error
correlations decay exponentially in space:

.. . . dGi)

Bp(iy j) = [ep - P(i)] - [ep - P(j)] - €0, (A2)
where d(3, j) is the distance between pixel i and j; D = 5 is the e-folding distance (in pixel). This expression
extends easily to Bgand B,s. The error base estimates is: €ep = 10%, €z = 10% and €5 = 20%. No covariance
terms have been considered between two different variables (i.e. Pvs E, Pvs dS, and E vs dS).
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