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Abstract

Visual inspections of the first optical rest-frame images from JWST have indicated a surprisingly high fraction of
disk galaxies at high redshifts. Here, we alternatively apply self-supervised machine learning to explore the
morphological diversity at z� 3. Our proposed data-driven representation scheme of galaxy morphologies,
calibrated on mock images from the TNG50 simulation, is shown to be robust to noise and to correlate well with
the physical properties of the simulated galaxies, including their 3D structure. We apply the method simultaneously
to F200W and F356W galaxy images of a mass-complete sample (M*/Me> 109) at 3� z� 6 from the first
JWST/NIRCam CEERS data release. We find that the simulated and observed galaxies do not exactly populate the
same manifold in the representation space from contrastive learning. We also find that half the galaxies classified as
disks—either convolutional neural network-based or visually—populate a similar region of the representation
space as TNG50 galaxies with low stellar specific angular momentum and nonoblate structure. Although our data-
driven study does not allow us to firmly conclude on the true nature of these galaxies, it suggests that the disk
fraction at z� 3 remains uncertain and possibly overestimated by traditional supervised classifications. Deeper
imaging and spectroscopic follow-ups as well as comparisons with other simulations will help to unambiguously
determine the true nature of these galaxies, and establish more robust constraints on the emergence of disks at very
high redshift.

Unified Astronomy Thesaurus concepts: Galaxy formation (595); Galaxy evolution (594); High-redshift galaxies
(734); Neural networks (1933)

1. Introduction

Understanding how galaxy diversity emerges across cosmic
time is one of the main goals of galaxy formation. How and
when do stellar disks form? What are the main drivers of bulge
growth? How and when did galaxy morphology and star
formation get connected? Despite significant progress in the
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past years, thanks in particular to deep surveys undertaken with
the Hubble Space Telescope (HST; e.g., Scoville et al. 2007;
Grogin et al. 2011; Koekemoer et al. 2011), these questions
remain largely unanswered. The general picture is that massive
star-forming galaxies in the past were more irregular in their
stellar structure (e.g., Abraham et al. 1996; Conselice 2003)
than today’s disks even if observed in the optical rest frame
(Buitrago et al. 2013; Huertas-Company et al. 2015). Galaxies
above z∼ 1 also show the presence of giant star-forming
clumps (e.g., Guo et al. 2015, 2018; Huertas-Company et al.
2020; Ginzburg et al. 2021), which might indicate a turbulent
and unstable interstellar medium (e.g., Ceverino et al. 2010;
Bournaud et al. 2014). Although the gas shows signatures of
rotation at z∼ 2 (e.g.,Wisnioski et al. 2015), the settling of
disks seems to be a process happening at least from z∼ 2 (e.g.,
Kassin et al. 2012; Buitrago et al. 2014; Simons et al. 2017;
Costantin et al. 2022) coincident with the decrease of gas
fractions in massive galaxies (e.g., Genzel et al. 2010;
Freundlich et al. 2019). Another important result of the past
years is that the presence of bulges in galaxies is strongly
anticorrelated with the star formation activity at all redshifts
probed (e.g., van der Wel et al. 2014b; Barro et al. 2017;
Costantin et al. 2020, 2021; Dimauro et al. 2022). This
suggests that bulge formation and quenching are tightly
connected physical processes (e.g., Chen et al. 2020b).

With its unprecedented sensitivity, spatial resolution, and
infrared coverage, the James Webb Space Telescope (JWST) is
offering a new window to the stellar structure of galaxies in the
first epochs of cosmic history (Gardner et al. 2006). For the first
time, we are able to explore the stellar morphologies of the first
galaxies formed in the universe, which should enable new
constraints on the physical processes governing galaxy
assembly at early times and hopefully a better understanding
of the physical processes leading to the formation of the first
stellar disks and bulges. Some very recent works have already
started this exploration by performing visual classifications
(Ferreira et al. 2022, 2023; Kartaltepe et al. 2023), by applying
supervised machine learning trained on HST images (Robert-
son et al. 2023) of galaxies observed in the first JWST deep
fields or by using convolutional neural networks (CNNs)
trained on HST/WFC3 labeled images and domain-adapted to
JWST/NIRCam (Huertas-Company et al. 2023a). One of the
main results of these early works is that JWST seems to be
detecting star-forming disks even at z> 3, which would push
the time of disk formation to very early epochs. Two questions
naturally arise from these first works:

1. Are the galaxies seen by JWST true disks, i.e., flat,
rotating systems? The aforementioned results are based
primarily on qualitative morphological classifications,
with quantitative tracers of morphology (e.g., Sèrsic fits)
incorporated to further inform differences between the
visually defined classes. However, galaxies might look
morphologically disky but have significantly different
stellar kinematics than local disk galaxies. Distinguishing
edge-on flat disks from more prolate systems is also a
very challenging task that could bias the results (e.g., van
der Wel et al. 2014a; Zhang et al. 2019).

2. Do modern cosmological simulations reproduce the
observed galaxy diversity at z> 3? Although some
preliminary comparisons exist, a fair comparison in the
observational plane is required to fully address this

question (e.g., Huertas-Company et al. 2019; Rodriguez-
Gomez et al. 2019; Zanisi et al. 2021).

In this work, we attempt to provide new insights into these
two main questions. To that purpose, we apply a novel data-
driven approach based on contrastive learning (Hayat et al.
2021; Sarmiento et al. 2021) to a mass-complete sample of
JWST galaxies at z� 3 observed within the Cosmic Evolution
Early Release Science (CEERS; Finkelstein et al. 2017, 2022,
2023) survey. By calibrating the method with mock galaxies
(Costantin et al. 2023) from the TNG50 cosmological
simulation (Nelson et al. 2019a, 2019b; Pillepich et al. 2019)
and by choosing the proper augmentations (i.e., transforma-
tions applied to the images such as rotations, flux normal-
izations, noise, etc.), we are able to build a morphological
description, which is more robust to noise and galaxy
orientation than more traditional approaches. Our morphologi-
cal representation can then be correlated with the physical
properties of galaxies from the simulation to provide new
insights about the physical nature of disk-like galaxies, and to
explore the agreements and disagreements between observa-
tions and simulations.
The paper proceeds as follows: in Section 2, we describe the

galaxy data sets used in this work; Section 3 describes the
contrastive learning setting used to derive unsupervised
representations of galaxy morphologies; Section 4 explores
the properties of the obtained representations on observed
JWST/CEERS galaxies; a comparison of the self-supervised
representations for simulated and observed galaxies is
presented in Section 5; the results and implications are
discussed in Section 6; finally, a summary and the final
conclusions are presented in Section 7.

2. Data

2.1. CEERS

We use JWST imaging data from NIRCam obtained within
CEERS (Finkelstein et al. 2017, 2022, 2023). This consists of
short- and long-wavelength images in both NIRCam A and B
modules, taken over ten pointings. Each pointing was observed
with seven filters: F115W, F150W, and F200W on the short-
wavelength side, and F277W, F356W, F410M, and F444W on
the long-wavelength side. Here, we only use the F200W and
F356W filters. A full description of this public data release26

and the data reduction can be found in Bagley et al. (2023),
Finkelstein et al. (2022).
In addition to the galaxy images, we use two different

catalogs with physical properties of galaxies:

1. CEERS catalog (CEERS) is a photometric catalog
(Finkelstein et al. 2022; Bagley et al. 2023) with derived
stellar masses and photometric redshifts (zphot) obtained
through spectral energy distribution (SED) fitting of the
latest data reduction photometry (Pablo G. Pérez-
González private communication). For a fair comparison
with the simulated TNG50 data set (see Section 2.2), we
select 1,664 galaxies with 3� z� 6, stellar masses
M*� 109Me and F200W [AB]< 27 mag. The magnitude
cut ensures a large enough signal-to-noise ratio (S/N) to
enable reliable morphological classification (see Kartal-
tepe et al. 2023). Obvious stars are removed using the

26 https://ceers.github.io/
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same procedure as in Huertas-Company et al. (2023a).
Also in Huertas-Company et al. (2023a), the complete-
ness limit is estimated at roughly M*∼ 108.5Me over the
0< z< 6 redshift range. The cut in mass imposed of
M*� 109Me is well above this completeness limit, and
therefore, the main conclusions presented hereafter in this
study should not be affected by incompleteness. For the
galaxies in this data set, we also use the CNN-based
morphological classifications that split them into four
classes: spheroids (Sph), bulge + disk, disk, and
disturbed (Irr). See Huertas-Company et al. (2023a), for
more details.

2. Visual classification catalog (VISUAL) is a redshift-
selected z� 3 morphological catalog presented in
Kartaltepe et al. (2023) containing 850 galaxies in
common between CANDELS (Grogin et al. 2011;
Koekemoer et al. 2011) and CEERS observations. This
is intended to directly compare our morphological
description to the visual classification of Kartaltepe
et al. (2023). Redshifts and stellar masses are extracted
from CANDELS v2 for the HST F160W-selected
galaxies in the Extended Groth Strip field (see Kodra
et al. 2023, for full details on the photometric redshift
measurements and resulting catalogs). The visual classi-
fications presented in Kartaltepe et al. (2023) of each
galaxy are performed by three people. A given classifica-
tion is assigned if two out of three people select that
option. Galaxies classified in this way are broken down
into the following morphological groups: disk only, disk
+Sph, disk+irregular, disk+Sph+irregular, Sph only,
Sph+irregular, and irregular only. See Kartaltepe et al.
(2023) for more details on the different classification
tasks and morphological groups. After selecting those
galaxies with M*� 109Me, 3< z< 6, and reliable visual
classifications, we end up with a data set of 545 galaxies.

Both catalogs also include morphological measurements of
Sèrsic index (ne), semimajor axis (a), and axis-ratio (b/a)
derived with galfit (Peng et al. 2010). More information
about the fits can also be found in Kartaltepe et al. (2023).

The distributions of stellar masses of the galaxies in the
CEERS and the VISUAL data sets are shown in Figure 1. The
number of galaxies at the different redshifts analyzed is shown
in Table 1.

2.2. Mock JWST Images of TNG50 Galaxies

We use the TNG50-127 suite of simulation (hereafter
TNG50; Nelson et al. 2019a, 2019b; Pillepich et al. 2019)
and their mock NIRCam observations at z> 3 galaxies
following the observational strategy of CEERS. The mock
images28 were produced by modeling the gas cells and star
particles in the simulation as presented in Costantin et al.
(2023). We consider four snapshots of the TNG50 simulation
corresponding to z= (3, 4, 5, 6) and galaxies with stellar
masses M*� 109Me. In total, the original data set consists of
1,326 galaxies (see Table 1). Each selected galaxy is then
observed along 20 different line-of-sight orientations to
increase the statistics, which produces a data set of 26,520
galaxy images that we consider as independent objects for the

purpose of this work. As described in Costantin et al. (2023),
parametric and nonparametric morphological parameters for
this data set are derived using the standard configuration of
statmorph29(Rodriguez-Gomez et al. 2019).
For this study, we use the noiseless images in the F200W

and F356W bands from the Costantin et al. (2023) data set with
a pixel scale of 0 031 and 0 063 pix−1, respectively. We
decided to use these two filters simultaneously since they probe
the UV, optical, and near-IR rest frame at z> 3 (see Figure 2 in
Ferreira et al. 2022), allowing to probe simultaneously the
distribution of young and old stars and offering a complete
view of galaxy morphology for our data-driven approach.
Another reason for including the F200W is its spatial
resolution. The F200W filter is the filter with the longest
wavelength at the 0 031 pix−1 resolution of the NIRCam
short-wavelength channels (F115W and F150W). Although
resampled into the 0 031 pix−1 resolution after drizzling, the
NIRCam long-wavelength channels (F277W, F356W, F410W,
and F444W) have a worse spatial resolution (originally 0 063
pix−1 resolution) than the NIRCam short-wavelength channels.
The original field of view of each image is twice the total

half-mass–radius (i.e., dark matter, gas, and star particles
included) of the corresponding galaxy. This roughly corre-
sponds to a field of view 10 times larger than the stellar half-
mass–radius (i.e., only star particles included). However, our
image classification scheme requires a fixed image size.
Therefore, we select galaxy images with a field of view larger
than 64× 64 and 32× 32 pixels in the F200W and F356W
bands, respectively, and generate cutouts of those sizes. Then,
to match both observations of the same galaxy, the images in
the F356W band are resampled to the same pixel scale as the
F200W images (see Section 3.2, for more details). Given the
original field of view of each galaxy image, after cutting them
to the input fixed size of our network (64× 64 pixels), the
cutouts will certainly include all the luminous matter in the
stamps.
According to these criteria, 7% of the galaxies (most of

them at z= 3) are dropped out from our initial sample. The
total number of galaxies considered is finally 1,238 distributed
within z= 3–6 (see Table 1), which translates into 24,760
projections. Although the number of objects we remove is
small, we check in Figure 2 if a specific population is
systematically excluded. The figure shows the size–mass
relation of the selected TNG50 data set along with the
excluded galaxies based on the size of the field of view. The
excluded galaxies are not necessarily the most compact and/or
less massive galaxies in the data set. However, a fraction of
them with lower-than-average stellar extent is indeed removed
based on our selection and would reach otherwise sizes of a
few hundred parsecs.
For comparison, we show in Figure 1 the distribution of the

stellar masses in the simulated TNG50 data set, and the
observed CEERS and VISUAL data sets. Note the good
agreement between the TNG50 and the CEERS samples, even
if we are comparing here the stellar masses directly extracted
from the TNG50 simulations and those obtained through SED
fitting of the latest JWST data. Also remarkable is the
agreement, despite the selection effects, between the CEERS,
VISUAL, and TNG50 data sets.

27 https://www.tng-project.org/
28 Data publicly released at https://www.tng-project.org/costantin22. 29 statmorph is available at https://statmorph.readthedocs.io.
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3. Self-supervised Learning Representation of Mock JWST
Images of Simulated TNG50 Galaxies

In this section, we describe the main methodology we
developed to obtain a data-driven morphological description of
galaxies that is robust to noise and other nuisance parameters.

3.1. Contrastive Learning Framework

Our approach is based on an adaptation of the Simple
framework for Contrastive Learning of visual Representations
(SimCLR; Chen et al. 2020a). Very briefly, the idea behind the
SimCLR framework is to obtain robust representations of
images without labels by applying random augmentations as
explained below. See Huertas-Company et al. (2023b), for a
recent review of this technique applied to astrophysics.

Given an image, random transformations are applied to it to
generate a pair of two augmented images, (xi, xj). Each image in
the pair is passed through a CNN to compress the images into a
set of vectors, (hi, hj). Then, a nonlinear fully connected layer
(i.e., projection head) is placed to get the representations (zi, zj).
The representations are learned iteratively by maximizing
agreement between the augmented views of the same image
example (zi, zj) and minimizing agreement between all other
pairs considered as negatives. This is achieved via a so-called

contrastive loss in the latent space:

= -
á ñ

S á ñ= ¹

z z

z z
l

h

h
log

exp ,

exp ,
, 1i j

i j

k k i
N

i k
,

1,
2

( )
( )

( )

where 〈u, v〉 denotes the dot product between L2-normalized u
and v, and h denotes the temperature parameter that regulates
the distribution of the output representations (see Hinton et al.
2015; Wu et al. 2018, for more details). The final loss is
computed in batches of size N across all positive pairs, both
(i, j) and ( j, i), while the rest of the augmented examples are
treated as negative examples, which are denoted by k.
For this study, we follow the implementation from

Sarmiento et al. (2021), which was successfully applied to

Figure 1. Probability density function of the logarithm of the stellar mass of the
simulated galaxies in the TNG50 data set (blue histogram), and the observed
galaxies in the CEERS and VISUAL data sets (green and orange dashed
histograms, respectively). Different panels correspond to the redshifts analyzed,
z = (3, 4, 5, 6).

Table 1
Summary of the Sample of TNG50 Simulated Galaxies and CEERS Observed

Galaxies with M* � 109Me

z TNG50 TNG50 CEERS VISUAL
(All) (Selected)

3–6 1326 1238 1664 545
3 829 760 741 216
4 343 326 463 201
5 115 113 398 119
6 39 39 62 9

Note. The first column indicates the redshift (z); the second column shows the
total number of galaxies in the simulated TNG50 data set; the third column
refers to the number of selected galaxies according to image size limitations
(i.e., 64 × 64 and 32 × 32 pixels in the F200W and F356W bands,
respectively); the fourth column shows the number of galaxies in the CEERS
data set; the fifth column indicates the number of galaxies in the VISUAL data
set. Note that for the CEERS and VISUAL data sets galaxies are split into the
following redshift bins: z = 3 for 3.0 � z < 3.5, z = 4 for 3.5 � z < 4.5, z = 5
for 4.5 � z = 5.5, and z = 6 for 5.5 � z < 6.0.

Figure 2. Logarithm of the physical size (stellar half-mass–radius, r*, in
kiloparsecs) vs. the stellar mass (M*, inMe) of the TNG50 galaxies. Blue-filled
contours show the 25%, 50%, and 75% probabilities of the TNG50 selected
galaxies. Red data points correspond to the excluded galaxies in terms of the
size of the field of view. See Table 1.
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astronomical data. The CNN encoder consists of four
convolutional layers with kernel sizes 5, 3, 3, 3, and 128,
256, 512, and 1024 filters per layer, respectively. Max-pooling
layers and exponential linear unit activation functions are
placed after each convolutional layer. Therefore, the represen-
tations before the projection head—(hi, hj)—for each galaxy
image are encoded into 1024 features. Subsequently, the
projection head (composed of three fully connected layers of
512, 128, and 64 neurons per layer) transforms the galaxy
representations to a latent space—(zi, zj)—where the contras-
tive loss is computed.

3.2. Data Augmentation and Network Training

The choice of data augmentations is a key element in
contrastive learning training (Chen et al. 2020a) as it allows us
to turn the representations independent of some nuisance
effects. In the context of this study, our goal is to obtain a
morphological representation that is robust to S/N, rotation,
and size, and does not depend on color. To reach this objective,
we calibrate our algorithm on the mock TNG50 data set
(Section 2.2) since it allows us to access noiseless versions of
the images and, therefore, marginalize the noise.

For each simulated TNG50 galaxy image, we produce two
augmented images (xi, xj) from the noiseless version. One of
the images from the pair—the one used to produce the noise-
added image—is then convolved by the corresponding point-
spread function (PSF) in each filter (extracted from the
observations from Finkelstein et al. 2022 in each band), while
the other image—the one used to produce the noiseless image
—is not convolved by the PSF to keep as much as spatial
information as possible. Both images are rescaled in flux (as
described below) independently. Then, we add the source
Poisson noise only to the image used for the noise-added
version. To match the same pixel scale in the two filters, we
then rebin the images in the F356W filter to the same pixel
scale as the images in the F200W filter. Finally, for the noise-
added image, we include realistic noise by adding random
patches of the sky extracted from the 10 CEERS pointings.
Below, we described more precisely the augmentations applied
to the images:

1. Rotation. We first apply a random flipping (horizontal or
vertical, but not both) and a random rotation with 100%
chance independently to the TNG50 noiseless image and
the patch of the sky extracted from the CEERS pointings.
Also, the noiseless and the noise-added version are
rotated and flipped differently. This augmentation is
intended to ensure the model is invariant to the galaxy
orientation.

2. Flux. We randomly apply flux scaling to the noise-added
version of the images after the PSF convolution, but
before noise is added. The flux factor applied to the
noise-added images in the two filters is randomly
sampled from the flux distribution of the TNG50 data
set in the F356W band. The same flux factor is applied to
both the F200W and F356W filters. This augmentation is
intended to stress the robustness to S/N. It may also help
—as we will show in the following—to make the
representations independent of galaxy size since the
regions above the noise level will vary with the flux
variations.

3. Noise. As described in Section 2, for each galaxy image
in the F200W and F356W bands, we have a noiseless
version that does not include any instrumental effects or
noise. Using the available CEERS data, we construct
mock CEERS galaxy images as a combination of the
TNG50 noiseless images and random patches of the ten
observed CEERS pointings. For the noise-added version,
we first add the source Poisson noise, and then, we add
real-time realistic noise (that may also include other
sources and/or interlopers) to each of the 64× 64
noiseless galaxy images by summing up one randomly
chosen patch (different in each augmentation) from the
CEERS pointing of the same size. From the contrastive
learning point of view, these images with a real
background are considered as an augmented copy of
their noiseless analogs during the training process. These
augmentations should enforce the representations to be
robust to S/N as well as to background and foreground
companions.

4. Color. Finally, in order to prevent the network from
learning color information and/or the intrinsic brightness
of the galaxies directly from the images, we apply two
additional augmentations to both the noiseless and the
noise-added images. First, each band is normalized
individually after the augmentations are applied. Second,
the noiseless and noise-added images are normalized
independently and individually for each galaxy. Conse-
quently, the maximum pixel value in every galaxy image
(both noiseless and noise-added) is equal to one for
each band.

We note that we decided not to apply direct size
augmentation, (i.e., such as zoom-in or zoom-out), as that
would force us to up-sample or down-sample the images with
less or more than 64× 64 pixels size, respectively, which
creates some artifacts that the network is able to learn. The
choice of the cutouts’ size when producing the galaxy images is
always complicated. One might prefer to make the stamps
proportional to the size of the galaxy (see Vega-Ferrero et al.
2021, for an example). However, that requires reliable
measurements of the galaxy sizes and also the resampling of
the cutouts to the same size in pixels. Contrarily, it is possible
to produce all the cutouts with the same size in pixels,
independently of the galaxy size. By doing so, it is not needed
to resample the cutouts since they already have the same
dimensions. We decide to use a fixed size for the cutout to
avoid the following: first, artifacts and noise correlations
originating from the resampling phase that could mislead the
contrastive learning representations; and second, losing spatial
resolution of galaxies with large sizes after the resampling
phase.
In Figure 3, we show several projections of a galaxy at z= 3,

with M*≈ 6× 109Me extracted from the TNG50 simulation.
In some of the augmented versions (along with PSF
convolution, realistic noise, random rotations, flux variation,
etc.), it is possible to distinguish several companions within the
stamps. This is the result of adding randomly chosen patches of
the CEERS pointings to the TNG50 noiseless images. These
examples come from an extended bright galaxy that appears
significantly dimmer in some of the augmented images due to
the flux variations applied in the augmentations. In summary,
the contrastive model should be able to extract a meaningful
representation (hi, hj) that minimizes the distance between the
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representations (zi, zj) of the two images (original and/or
noiseless and noise-added) of the same galaxy, even if they
appear as different as shown in some panels in Figure 3.

Our contrastive SimCLR model is trained and tested with the
mock JWST images for 24,760 different projections of 1,238
galaxies within 3� z� 6 and with stellar masses M*� 109Me
in the two observed bands (F200W and F356W) with a
temperature parameter h= 0.5 (that controls the strength of
penalties on hard negative pairs). We randomly split our data
set into a training and a test sample consisting of 1,100, and
138 galaxies, respectively. This translates into a training and a
test data set of 22,000 and 2760 galaxy images, respectively.
None of the projections of the galaxies in the test set has ever
passed through the network during training. Additionally, we
ensure that only one projection of the same galaxy enters each
batch during training and that all the galaxy images are passed
through the network at every epoch. We do so to avoid the
algorithm learning the orientation of the same galaxy as seen
from different line-of-sight projections since some of the
projections are just a simple rotation of the galaxy in the sky.

The input tensors in our contrastive model have, therefore, a
dimension of (N, 64, 64, 2), with N being the batch size, 64 and
64 being the dimensions of the input images, and 2 being the
number of channels or filters (i.e., the F200W and the F356W
images). We train our algorithm with a batch size of N= 550
(i.e., half the number of galaxies in the training set) for 1,500
epochs in a GPU NVIDIA T4 Tensor Core with 16 GB of
RAM. Random data augmentation is applied every 50 epochs,
and therefore, we produce 30 (1500/50) different augmenta-
tions of the whole data set to increase the variability during the
training process. To reduce the dynamic range and to be
sensitive to both the center and outskirts of the galaxy, before
training, we apply a asinh (inverse hyperbolic sin) transforma-
tion and a minimum–maximum normalization to each galaxy
pair in each band.

In order to reduce the impact of possible discrepancies
between the galaxies in the simulated TNG50 and observed
CEERS data sets, when applying our model to data, we fine-
tuned the model trained previously with a mixed data set of
simulated TNG50 and observed CEERS galaxies. By doing so,
we expect the model to learn important features from the
observed CEERS galaxy images that were not present in the
training set consisting only of simulated TNG50 galaxy images
and, therefore, mitigate possible domain drift-related effects.
We fine-tune the model with a training set consisting of 1,500
images randomly extracted from the previous training set (of
noiseless and noise-added images) and 1500 images randomly
selected from the CEERS data set of 1,664 galaxy images. Note

that for the observed data set we do not have noiseless images,
so we fed the model with pairs of CEERS galaxy images to
which different augmentations (only flip and rotation) are
applied. We fine-tune the model up to 600 epochs (enough to
converge) with a batch size of N= 500 galaxy images. In each
epoch, random augmentations are applied to the observed
CEERS pairs of images to increase the variability. For the
simulated TNG50 images, the set of 1,500 also varies from
epoch to epoch by selecting different galaxies and augmenta-
tions for each galaxy in the training TNG50 data set, but not
from the reserved test set, which is always kept apart from the
training.

3.3. Visualization of the Representation Space

We can hence analyze the properties of the representation
space learned by the SimCLR framework presented in the
previous section.
We start by visualizing how the TNG50 galaxy images, both

with and without noise, are distributed in the representation
space. It should be noted that, hereafter, the difference between
the noiseless and the noise-added version of the TNG50 galaxy
images is only the added patch of the CEERS paintings. Apart
from the realistic noise added, no other augmentations are
applied in this phase (only in the training phase described in the
previous section). Since the representation space for each
galaxy image is encoded into 1024 features, we perform a
dimensionality reduction from the 1024 features to a 2D space
to facilitate the visualization and interpretation of this
representation. For that purpose, we use the uniform manifold
approximation and projection (UMAP; McInnes et al. 2018)
method with standard initial parameters (metric=euclidean,
n_neighbors =15, and min_dist = 0.1). The UMAP algorithm
seeks to learn the manifold structure of the input data and find a
low-dimensional embedding that preserves the essential
topological structure of that manifold. It is therefore a way to
visualize in 2D the representations learned by the self-
supervised network. Before applying the UMAP technique,
we assume the same distance metric in the representation space
as the one used to calculate the contrastive loss in the head
projection space, and therefore, we normalize the representa-
tions with an L2-norm such that the Euclidean and cosine
distances between representations are equivalent. The two
coordinate axes in the UMAP representation do not have any
precise physical meaning and are a combination of the 1024
dimensions extracted by the contrastive learning setting.
It is important to emphasize that the contrastive approach is

not intended for dimensionality reduction but for obtaining a
robust representation of galaxy morphologies in a different

Figure 3. Images and augmentations of a TNG50 galaxy at z = 3 with M* ≈ 6 × 109Me in the F200W (left-hand panel) and F356W (right-hand panel) filters. The
different rows (from top to bottom) correspond to: the original and/or noiseless image; the original image after rotation and flipping (vertical or horizontal); the image
after PSF convolution; the background CEERS patch of the sky; the noise-added image, i.e., the sum of the PSF convolved image (flux variation and source Poisson
noise applied) and the background patch of the sky. All the panels have a 64 × 64 pixels size, except the first three rows for the F356W filter that have the original size
of 32 × 32 pixels before rebinning to 64 × 64 pixels. The pixel values have been asinh transformed with a 0.5% clipping.
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space than images, which explains the high dimensionality of
the representation space. Several works have shown indeed that
the performance of contrastive learning increases with
representations of higher dimension (e.g.,Chen et al. 2020a).

In Figure 4, we show random examples of galaxies in the
F200W filter (both with and without noise) in the UMAP 2D
space. Note that some stamps on the right-hand panel (along
with the addition of observed noise) show one (or more)
foreground and/or background source(s) in the field of view.
The figure clearly shows that galaxies are not randomly
organized in the plane, indicating that the network has learned
some relevant morphological features. The distributions are
also similar for galaxies with and without noise. Galaxies with
extended light distributions and with clear signs of a disk
component—or interactions—tend indeed to appear on the
right and upper right parts of the UMAP space, while more
compact galaxies with smoother and concentrated light
distributions tend to be placed on the left section of the plane.
We can also see that galaxies showing more elongated shapes
are found toward the bottom right section of the representation
space. Also interesting to notice is how several galaxies with
bright companions (off-center sources) tend to be placed on the
upper left of the right-half panel (see Section 3.4 below for a
more detailed discussion on this point).

3.4. A Morphological Description of Galaxies Robust to Noise
and Background and/or Foreground Contaminants

We now examine in more detail the differences between the
representations of noise-added and noiseless TNG50 galaxy
images, and how the different augmentations of the same
galaxy are represented by our contrastive model. As described
in Section 3.1, one of the reasons for using the SimCLR
framework is to obtain a data-driven representation that is
robust to noise and other observational effects such as
foreground and background companions.

On one hand, we quantify the effect of noise by computing
the distance in the UMAP representation between the noiseless
and the noise-added images of each galaxy, denoted as δ. On
the other hand, we check how our contrastive model behaves

when more than one source (i.e., companions) is present in the
stamp. To do so, we measure the total flux in the noise-added
galaxy images (TNG50 + random CEERS patch) and in the
noiseless TNG50 stamps (therefore, the intrinsic flux of the
central galaxy after the flux scaling is applied) for the F356W
filter. Then, we compute the ratio of the two, denoted as
δF356W, as a proxy for the presence (or not) of companions and,
if present, how bright they are with respect to the central
galaxy.
In Figure 5, we show the UMAP plane for TNG50 galaxy

images in our data set color-coded by δ and δF356W. For
a reference of the UMAP axis ranges, the horizontal axis
(UMAP 1) spans within (0.9, 12.1), and the vertical axis
(UMAP 2) spans within (−1.7, 5.5). The total area covered by
the data points in the UMAP plane is approximately 60 (in the
arbitrary UMAP units). It is interesting to note how the main
yellow clump in the upper left section of the UMAP plane
where the stamps with bright companions (more than 3 times
the flux than the flux of the central galaxy, i.e., δF356W 4)
tend to concentrate, and also their correlation with large values
δ 2.5. Some of these cases can be seen in the right-hand panel
in Figure 4. For instance, there are several examples within
these regions of δF356W 4 that correspond to TNG50 images
for which the companion is so bright (such as a star) that the
central galaxy cannot be even identified in the stamp. In these
cases with bright companions around the central galaxy, the
model detects the brightest component (thus, the companion)
instead of the central galaxy and tends to represent it in a
particular region of the UMAP plane. Additionally, in the right-
hand panel, it is also clear a yellow clump with large values of
δF356W and moderate values of δ. These cases correspond to
nose-added images with a bright companion that, contrarily, are
still close to their noiseless counterpart (i.e., δ 2). We inspect
in detail several of these cases and find that their noiseless
counterparts tend to be located on the bottom right section of
the UMAP plane. In any case, a galaxy image represented close
to these regions of δ 2 might be not well-represented and
should be (at least) treated carefully or excluded from the
subsequent analysis. It is also interesting to note the clump with
large values of δ in the left edge of the representation space

Figure 4. Randomly chosen images of the simulated TNG50 galaxies in the UMAP visualization. The UMAP space is binned, and one galaxy image per bin is shown.
The left-hand panel shows the noiseless versions of the training galaxies, while the reduced versions (TNG50 + random CEERS patch) are shown in the right-hand
panel. Extended and/or disky galaxies lie in the upper right, compact and/or rounder galaxies are located in the bottom left, and bright companions (only in the right-
hand panel) concentrate toward the upper left section of the UMAP plane. Note that there is not a one-to-one correspondence between the galaxies shown in the two
panels. Both panels correspond to galaxy images in the F200W filter.
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(i.e., 0.0<UMAP 1< 1.5 and 2.0<UMAP 2< 3.5) with no
clear correlation with large values of δF356W. Although this
clump does not include a large number of galaxies, we find that
those objects have their noiseless counterparts displaced up in
the UMAP plane. These are very compact galaxies that look
even more compact in their noiseless versions.

By excluding objects falling within the yellow clump shown
in Figure 5, it is possible to clean our data set (or a JWST/
CEERS sample of observed galaxies) of bright companions
and/or contaminants that could bias our contrastive learning
representations. As an alternative, we build up a data set of
simulated TGN50 galaxy images that include all the possible
augmentations described before but keeping a value of
δF356W< 2.5. By doing so, we ensure our data set does not
include companions 1.5 brighter (in flux) than the central
galaxy. Nevertheless, these extremely bright contaminants are
much rare in real CEERS observations than in our augmented
set of galaxy images because, if the contaminant is so bright
that it outshines the central galaxy, the galaxy would not be
detected.

In Figure 6, we show the cumulative distribution function of
δ for the galaxy images in the training and the test sets, both
including and excluding galaxy images with δF356W> 2.5. We
find that 75% and 90% of the projections in the training data set
show values of δ 1.5 and δ 3.0 in the UMAP space,
respectively. For the test set, 75% and 90% of the projections
show values of δ 1.4 and δ 2.7 in the UMAP space,
respectively. If we now exclude galaxy images with
δF356W> 2.5, for the training data set, 75% and 90% of the
projections show values of δ 1.2 and δ 2.4 in the UMAP
space, respectively; while, for the test data set, 75% and 90% of
the projections show values of δ 1.3 and δ 2.3 in the
UMAP space, respectively. A displacement of δ is analogous to
saying that the noise and noiseless representations of the same
galaxy pair are located within a circle of radius δ. Converted
into an area, this means ≈8% displacement in the UMAP plane
for 75% of the galaxy images (i.e., δ 1.2) in the training set
despite the level of noise, contamination, and augmentations
applied to the input galaxy images, as can be seen in Figures 3
and 4. It should be noted that excluding cases with

δF356W> 2.5 does not remove all the cases with companions
since there are still cases of companions with fluxes up to
1.5 times the flux of the central galaxy. Even when these cases
are included, the model performs satisfactorily well for a large
fraction of the galaxy images presented in this study. Besides,
the distributions of δ for the training and test samples are very
similar. Therefore, we emphasize the model is not suffering
from overfitting since none of the galaxy images in the test set
has been shown previously to the network.
To further illustrate the effect of companions and noise on

the representation space, we show some examples of the most
extreme cases (δ> 5 and δF356W> 10) in Figure 7. The
majority of images with the largest values of δ are mainly due
to the presence of bright companions in the galaxy images (or
artifacts). It is possible to identify compact bright companions
(such as a star in case 3 and a compact galaxy in case 1), and
more extended companions (galaxies in cases 2, 4, and 5).
Therefore, training our contrastive model with a combination

of noiseless and noise-added TNG50 images leads to a robust
representation of TNG50 images even in the case of the
presence of companions in the image (at least, for those cases
in which the companion is not extremely bright compared to
the central galaxy). For the cases in which the companion is
much brighter than the central galaxy, their locations in the
UMAP may certainly help to find them in observed images and
to treat them carefully in subsequent analysis.
Hereafter, we show results for the representation of this

clean data set (i.e., only galaxies with δF356W< 2.5 are
considered) for which the representations obtained are not
affected by extremely bright contaminants in the galaxy
images.

3.5. Dependence on Physical and Photometric Parameters

An advantage of calibrating the neural network model with
simulations is that we have access to a large number of physical
properties of the galaxies. An additional test for our classification
scheme is, therefore, to examine how the representation space is
correlated with physical quantities as well as with other (more
standard) morphological measurements.

Figure 5. Left-hand panel: UMAP visualization for all the TNG50 galaxy images in our data set color-coded by the mean value of the distance in the UMAP
representation between the noiseless and the reduced images of each galaxy (denoted as δ). Right-hand panel: UMAP visualization for all the TNG50 galaxy images in
our data set color-coded by the mean value of the ratio of the flux measured in the TNG50 stamps and the flux derived from the noiseless TNG50 stamps for the
F356W filter (denoted as δF356W). Large values of δF356W indicate the presence of a secondary (or even more) source. The larger δF356W is, the brighter the companions
are with respect to the central galaxy.

8

The Astrophysical Journal, 961:51 (23pp), 2024 January 20 Vega-Ferrero et al.



3.5.1. Correlation with Physical Properties

In this section, we discuss how some physical properties
extracted from the TNG50 simulation correlate with the
representation in the UMAP plane. In Figure 8, we show the
dependence in the UMAP plane with the total stellar mass
(M*[Me]), the specific angular momentum of stars
( j*[kpc km s−1]), the mass fraction in nonrotating stars ( fnr),
and the flatness (1− f ) of the galaxy. The mass fraction in stars
that have no net angular momentum around the z-axis is
defined using the circularity parameter ò= Jz/J(E), as in
Marinacci et al. (2014), for every star particle. It measures the
maximum specific angular momentum possible at the specific
binding energy E of the star. The mass fraction in nonrotating
stars mass (denoted as fnr) is then defined as the fractional mass
of stars with ò< 0 multiplied by 2. The flatness of the galaxy is
computed as follows: =f c ba , where c< b< a denote the

principal axes obtained as the eigenvalues of the mass tensor of
the stellar mass inside 2r*. The larger 1− f is, the flatter the
system is in 3D. Here, and throughout the paper, we refer to the
definitions and measurements of Pillepich et al. (2019). See
also Section 6 for a more detailed discussion of the 3D shapes
of the TNG50 galaxies.
Figure 8 shows remarkable correlations between the position

of galaxies in the UMAP and their average physical properties.
Overall, galaxies with larger specific angular momentum and a
flatter stellar distribution tend to populate the upper right region
of the UMAP. These galaxies are also the most massive ones
although the correlation is less clear. Moreover, the galaxies
with larger masses not only occupy the upper right section of
the UMAP plane but also extend along the upper edge toward
the left corner of the UMAP plane. On the contrary, low-mass
galaxies populate predominantly the bottom left section of the
UMAP representation. The left section of the UMAP plane is
populated by rounder objects with lower specific angular
momentum. It is also interesting to see that the transition
between the variation of the physical properties is smooth,
translating a continuum of galaxy morphology and/or
structure.
Figure 8 only shows the median values of the physical

properties in different regions of the UMAP. In order to
quantify how constraining are these correlations, it is also
important to measure the scatter of the different properties. This
is shown in the Appendix A (Figure A1). In most cases, the
scatter represents less than ∼20% of the dynamical range,
indicating that the distributions are overall relatively narrow,
and therefore, the correlations with physical properties are
informative.
We conclude that the representation space for images—in

addition to being robust to observational and instrumental
effects—carries information about the kinematics and intrinsic
shapes of galaxies.

3.5.2. Connection to Standard Morphological Measurements

In Figure 9, we show the dependence on several photometric
parameters estimated by Costantin et al. (2023) in the F200W
filter: the effective radius (re), the Sèrsic index (ne), the
ellipticity from the Sèrsic fit (1− b/a), the concentration
parameter (C), the asymmetry (|A|), and the smoothness (S).
There is a remarkable correlation between the position in the
UMAP plane and ne, C, A, and S. Gradually, ne, C, and S grow
from right to left in the UMAP space, while the A does it from
left to right. Therefore, galaxy images with smoother,
symmetric, and concentrated light distributions are found
toward the left section of the UMAP plane. Also important is
the correlation with the ellipticity (1− b/a), with more
elongated galaxies lying on the right (bottom right) section of
the UMAP plane. To illustrate again the spread of these
representations, we show in the Appendix A (Figure A2) the
scatter of the parameters shown in Figure 9.
It is important to notice the existing correlation with the

physical effective radius, re, with the largest galaxies populat-
ing the right section of the UMAP plane. This correlation with
the physical size reflects the known correlation between
morphological appearance and physical size (e.g.,van der Wel
et al. 2014b).
Based on the previous maps calibrated with the TNG50

simulation, asymmetric, more extended, flatter, and rotationally
supported galaxies tend to populate the right and upper right

Figure 6. Cumulative distribution function of the distance in the UMAP plane
between pairs of the same galaxy images, denoted as δ. Blue histograms
correspond to the distribution of δ for the training (solid) and the test (dashed)
data sets. Green histograms correspond to the distribution of δ for the training
(solid) and the test (dashed) data sets when only galaxy images with
δF356W < 2.5 are considered.

Figure 7. Randomly chosen examples of galaxy images with δ > 5 and
δF356W > 10 (see Figure 5). For each of the examples, we show noiseless and
noise-added images in the F200W (top rows) and F356W (bottom rows) filters.

9

The Astrophysical Journal, 961:51 (23pp), 2024 January 20 Vega-Ferrero et al.



sections of the UMAP representation. In more detail, the more
to the right in the UMAP plane a galaxy is, the more elongated
it appears. Smoother, more compact,rounder, and nonrotating
galaxies are located toward the left section of the UMAP
representation. Also, less massive galaxies can be found
predominantly toward the bottom and bottom left sections of
the UMAP plane. Although not shown, the results presented
here are consistent (despite small variations) for the same
morphological parameters measured in the F365W filter.

4. Self-supervised Learning Representation of JWST
Galaxy Images

In this section, we apply the methodology described before
to the two data sets of observed galaxies with JWST described
in Section 2.1.

4.1. Representations of CEERS Galaxy Images

We feed the 1,664 observed CEERS galaxies to our
contrastive model to retrieve their corresponding representa-
tions in the 1024 dimensions space. Then, we normalize the
derived features and transform them into a 2D vector using the
same UMAP embedding obtained for the features of the
TNG50 galaxy images.

In the top row of Figure 10, we show the UMAP
representation space for the observed CEERS data set.
Interestingly, the observed galaxies tend to populate the
complete UMAP plane, which indicates that both samples
share similar morphological diversity. The UMAP visualization
is however a projection of a higher-dimension space, which is
not appropriate for outlier detection. Even if observed galaxies
would not reside in the same manifold as simulated objects, the
UMAP representation would tend to show them toward the
edges of the plane but not outside. This is the behavior seen for
observed CEERS galaxies, which tend to be concentrated in the
edges of the UMAP cloud (toward the bottom and bottom left
sections) independently of the source redshift. Given that the
mass and flux distributions of both data sets are consistent—
even though we have not performed a careful one-to-one match
between simulations and observations—the differences in the
distributions of points of both data sets are likely to originate in
intrinsic differences in the morphological properties. Combin-
ing the distributions of points in Figure 10 with the information
provided by Figures 8 and 9, we conclude that observed
CEERS galaxies occupy more frequently than the simulated
TNG50 galaxies the regions in the representation space where
galaxies are more compact and with less specific angular

Figure 8. UMAP visualization for all the TNG50 galaxy images in our data set color-coded by the distribution of several physical properties extracted from the
TNG50 simulation. Color code corresponds to the median values in each hexagonal bin in the UMAP plane. From left to right and top to bottom, the different panels
show: the logarithm of the total stellar mass ( M Mlog *[ ]), the logarithm of the specific angular momentum of the stars ( -jlog kpc km s 1

*
[ ]), the mass fraction in

nonrotating stars ( fnr), and the galaxy flatness (1 − f ). The scatter maps of these parameters are presented in Appendix A.
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momentum. We investigate these differences in more detail in
Section 5.

Also interesting is the presence of galaxy images with signs
of interactions, multiple clumps, and gas accretion processes in
the upper right section of the UMAP in Figure 10 (more clear
in the F200W filter because of its better spatial resolution
compared to the F356W filter). Moreover, the galaxy images
with double nuclei (or even multiple clumps) closer in
projection tend to appear in the bottom right section of the
UMAP plane. These systems are apparently more
elongated and, therefore, lay into the region of the UMAP
plane where the projected ellipticities are on average larger (as
shown in Figure 9), but less flat than the systems located on the
upper right section of the UMAP plane (as shown in Figure 8).

Following Section 3.4, hereafter, we only include galaxies
located within the black contours shown in Figure 10, for
which it is unlikely to find bright companions or artifacts that
could bias their representations. We find that ∼90% (1 481) of
the galaxies fulfill this criterion, while the remaining ∼10% are
excluded from the subsequent analysis. In this data set and
according to the morphologies based on the F356W filter, 121
galaxies (∼8%) are classified as Sph, 297 galaxies (∼20%) are
classified as disk, 96 galaxies (∼6%) are classified as bulge +
disk, and 967 galaxies (∼65%) are classified as Irr. If we focus
on the morphologies obtained from the F200W filter, the
fraction of Irr galaxies raises up to ∼82%, and the fraction of
disk galaxies decreases down to ∼6%.

4.2. Representations of VISUAL Galaxy Images

We also present a comparison of the representation obtained
after applying our contrastive model to the VISUAL data set

for which visual morphological classifications are provided
(Kartaltepe et al. 2023). After selecting those galaxies with
M*� 109Me, 3< z< 6, and reliable visual classifications, we
end up with a data set of 545 galaxies. To avoid including in
the analysis galaxy images with contaminants or artifacts,
hereafter, we only consider those galaxies located within the
black contours shown in Figure 10. In this case, we are
confident about the representations obtained for ∼90% (483)
of the galaxy images, for which we find the following:
118 (∼24%) disk galaxies, 102 (∼21%) disk+Irr galaxies,
24 (∼5%) disk+Sph+Irr galaxies, 56 (∼11%) disk
+Sph galaxies, 71 (∼14%) Sph galaxies, 22 (∼4%) Sph+Irr
galaxies, 81 (∼16%) Irr galaxies, and only 2 and 7 as point
sources and unclassifiable galaxies, respectively.
In the bottom row of Figure 10, we show the representation

of the galaxy in the VISUAL data set in the UMAP plane for
the various morphological groups based on the provided visual
classifications. Although the mass and redshift selection of the
galaxies is based on different estimators (JWST photometry for
the CEERS data set and CANDELS photometry for the
VISUAL data set), the distribution of the representations in the
UMAP plane for the VISUAL galaxies is similar to the CEERS
representations (i.e., a significant fraction of galaxies occupy
the bottom and bottom left section of the UMAP plane). The
figure reveals some expected correlations with the traditional
visual morphology. It is reassuring that disk+Sph and
Sph groups from the VISUAL catalog populate the left corner
of the UMAP plane, where compact, nonrotating galaxies with
low angular momentum (according to TNG50 properties) are
expected to be. However, we notice that galaxies classified as
disk, Irr and/or disk+Irr in VISUAL are distributed throughout

Figure 9. UMAP visualization for all the TNG50 galaxy images in our data set color-coded by the distribution of several morphological and photometric parameters.
Color code corresponds to the median values in each hexagonal bin in the UMAP plane. From left to right and top to bottom, the different panels show: the logarithm
of the effective radius (re[kpc]), in kiloparsecs), the Sèrsic index (ne), the ellipticity based on Sèrsic fit (1 − b/a), the concentration (C), the asymmetry (A), and the
smoothness (C). The scatter maps of these parameters are presented in Appendix A.
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the plane even toward the left section of the UMAP, very close
to where Sphs lie. As shown in Figures 8 and 9, the left region
of the UMAP where, according to VISUAL, disk-like
morphologies are located corresponds to galaxies in TNG50
with physical and photometric properties typically shared by
spheroidal systems, such as low specific angular momentum,
large mass fractions in a nonrotating component, low flatness,
and larger Sèrsic indexes. This raises interesting questions
about the true nature of these disks that we discuss in Section 6.

5. A Comparison between Simulated and Observed Self-
supervised Morphologies

In this section, we examine in more detail the differences
found in previous sections between the simulated TNG50 and
the observed JWST galaxy images.

5.1. Distribution of Self-supervised Representations

The representations of the simulated TNG50 and the
observed CEERS galaxy images inferred by our contrastive
model seem to be distributed differently (Sections 4.1 and 4.2).
Observed CEERS galaxies tend to concentrate in the left and
bottom left sections of the UMAP plane, while simulated
TNG50 galaxies expand over the whole UMAP range with
similar number densities. As previously mentioned, the UMAP
representation is not well suited for the detection of outliers.
Therefore, even if observed galaxies seem to (overall) lie in the
same region as simulated ones, they can still live in different
manifolds in the higher-dimensionality representation space.

To further quantify this distribution shift, we first derive the
distance—in the 1024 dimensionality space—to the 10th
closest TNG50 neighbor for each galaxy in the VISUAL and
CEERS data sets (denoted as δ10). In order to have a fair
reference distribution, second, for each observed galaxy, we
find the closest simulated TNG50 neighbor in the representa-
tion space and compute the distance to its 10th closest TNG50
neighbor (also denoted as δ10). In other words, the former
corresponds to the distance between the observed galaxy and
its 10th closest TNG50 neighbor, while the latter corresponds
to the distance to the 10th closest TNG50 neighbor of the
closest TNG50 galaxy to each observed galaxy. If both data
sets—observed and simulated—are distributed likewise in the
same manifold, the distribution of distances should be similar.
If, on the contrary, observed galaxies occupy differently the
parameter space, their representations should be disconnected,
and therefore, we should measure larger values of δ10. The
distributions of δ10 are shown in Figure 11. It can be clearly
seen that the distributions for observed galaxies are shifted
toward larger values compared to the reference distribution.
This indicates that a significant fraction of observed galaxies
are located in regions of the UMAP representation space with
lower number densities (i.e., along the edges, not in the central
regions) than the average of the TNG50 data set. This
separation could be interpreted as an additional indication that
the representations obtained for the TNG50 and the JWST
observations do not exactly live in the same manifold.
Nevertheless, we find a small fraction of simulated TNG50
galaxies with values of δ10 0.9, meaning that the separation

Figure 10. Comparison of distributions of observed and simulated galaxies in the representation space. The top row shows the CEERS mass-complete sample, and the
bottom row shows the VISUAL sample. Top left-hand panel: UMAP visualization for the observed CEERS galaxy images selected in mass and redshift (color-coded
by the CNN-based morphological classes derived in Huertas-Company et al. 2023a for the F356W filter) overlapped with the representation of noise-added TNG50
galaxy images. Black contour indicates the region that is not affected by extremely bright companions. Top middle panel: randomly chosen observed CEERS galaxy
images in the UMAP visualization in the F200W filter. Top right-hand panel: randomly chosen observed CEERS galaxy images in the UMAP visualization in the
F356W filter. Bottom left-hand panel: UMAP visualization for the observed VISUAL galaxy images selected in mass and redshift. Points are colored according to the
visual classifications into several classes. Black contour indicates the region that is not affected by extremely bright companions. Bottom middle panel: randomly
chosen observed VISUAL galaxy images in the UMAP visualization in the F200W filter. Bottom right-hand panel: randomly chosen observed VISUAL galaxy
images in the UMAP visualization in the F356W filter.
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for the most extreme cases is also present for some galaxies in
the TNG50 simulation.

To better understand these measured discrepancies, we
quantify the differences between observed and simulated
galaxies in terms of more standard morphological properties in
Figure 12. We show the distributions of observed and
simulated galaxies in the -M rlog log e* , -M nlog log e* ,
and -M b alog * planes in four redshift bins. To divide in
redshift, for the simulated data set, we take all galaxies in a
given snapshot, while, for the observations, we include all
galaxies that are associated with the closest snapshot based on
their photometric redshifts. It should be kept in mind that this
figure (as the previous ones) does not include all TNG50
galaxies, but those for which the JWST mocks are available for
a field of view larger than 64× 64 pixels (see Section 2.2 and
Figure 2 for more details). Given the small number of galaxies
removed, we do not expect the distributions to change
significantly, though.

It is manifest, first, that the TNG50 simulated galaxies
overlap with CEERS observed ones in the parameter space of
Figure 12. This is per se, again, a nonnegligible confirmation of
the zeroth-order good functioning of the underlying TNG50
model. However, it is also apparent, differently than what could
be deduced from the representation space distributions, that the
TNG50 galaxies studied here actually exhibit less galaxy-to-
galaxy variation in sizes, Sèrsic indices, and shapes than
CEERS observed galaxies, at fixed stellar mass and redshift.
Furthermore, the TNG50 simulation predicts galaxies with
larger sizes (at z= 3–4, but not z= 5–6), with smaller values of
ne (at all z= 3–6) and that are rounder in projection (more so
the higher the redshift) than what is measured in the observed
CEERS galaxies. These differences at least partly explain the
different distributions in the representation space of contrastive
learning and also go in the expected direction of observed
galaxies mainly populating the left and bottom left corner of
the UMAP.

These reported differences could originate from a resolution-
induced effect (see, e.g., Zanisi et al. 2021) or could be an

indication of more fundamental physical differences. Resolu-
tion is certainly an important concern since galaxies at these
redshifts are generally small. We recall that, although the
TNG50 has a softening length for stellar particles of ∼300 pc, it
does not mean that galaxies’ stellar disks cannot be thinner than
that softening length. The interplay of the various numerical
resolution choices (such as gravitational softening of the
different matter components, hydrodynamical smoothing
length of the gas out of which stars form, mass resolution,
etc.) manifests itself in very complex manners in the final
structures of the simulated galaxies (see, e.g., Section 2.3 of
Pillepich et al. 2019; or Section 2.4 of Pillepich et al. 2023). As
shown in Pillepich et al. (2019; Figures 4 and B2), the half-
light or half-mass heights of TNG50 galaxies can be smaller
than ∼300 pc depending on mass and redshift. Similarly, the
stellar minor-to-major axis ratios of the stellar mass distribu-
tions of TNG50 galaxies can be smaller than b/a∼ 0.3, as
shown in, e.g., Figure 8 (top panels) of Pillepich et al. (2019),
again depending on mass and redshift. In fact, in Figure 12,
it can be clearly seen how the axis ratios extend down to
b/a∼ 0.2 (mainly at z= 3–4). Moreover, as shown in
Appendix B2 of Pillepich et al. (2019), TNG50 disk heights
can be considered converged to better than 20%–40% across all
studied masses and redshifts, when compared to the same
galaxies simulated at worse numerical resolution.
We note as well that the stellar masses reported for the

TNG50 simulation correspond to the 3D stellar mass, while
those obtained for the CEERS data set are based on the SED
fitting to the JWST photometry. Also, the Sèrsic parameters for
the TNG50 and the CEERS galaxies are derived using different
methodologies: for the TNG50, the morphological parameters
are obtained with statmorph (as described in Costantin et al.
2023); while, for the CEERS data set, they are derived with
galfit.
More in-depth comparisons of simulated and observed data

—likely beyond images—are required to reach a final
conclusion.

5.2. Self-supervised Clustering in TNG50 and CEERS

As an additional way to quantify the differences between
TNG50 galaxies and observed CEERS galaxies, we compare
the abundances of TNG50 and CEERS galaxies retrieved from
the separation into different classes using a clustering
technique.
In particular, we apply the k−means algorithm to cluster

data in the representation space by trying to separate samples in
k groups of equal variance, minimizing a criterion known as the
inertia or within-cluster sum-of-squares (WCSS). We find k= 5
as the optimal number of clusters based on the elbow curve.
The elbow method is a graphical representation of finding the
optimal k in a k−means clustering. It works by finding WCSS,
i.e., the sum of the square distance between points in a cluster
and the cluster centroid. This result is also confirmed using an
alternative method based on the silhouette score. We imple-
ment the elbow and silhouette methods using the Yellowbrick
package in PYTHON (see Bengfort et al. 2018, for more details).
We label the different clusters according to the properties

(photometric and morphological) of the galaxies belonging to
each of them. In Figure 13, we show the properties (and
correlations between them) of the different classes. Therefore,
we define the following classes: Extremely Compact (EC),
Compact (Cm), Intermediate (In), Elongated (El), and

Figure 11. Probability density functions of the distances to the 10th closest
neighbor in the 1024 dimensions of the representation space, denoted as δ10.
Solid histograms correspond to the distance to the 10th closest neighbor in
TNG50 of the closest TNG50 neighbor of each galaxy in the VISUAL (in blue)
and the CEERS (in green) data sets. Dashed histograms correspond to the
distance to the 10th closest neighbor in TNG50 of each galaxy in the VISUAL
(in blue) and the CEERS (in green) data sets.
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Extended (EX). It is clear how EC and Cm galaxies show low-
mass, low angular momentum, large fractions of nonrotating
stars, and low flatness. They are also smaller in size with larger
Sèrsic index values, rounder in projection, and more compact
than the rest of the classes. As going from the In class to the El
and EX classes, the masses and sizes of the galaxies
progressively increase along with the angular momentum of
the stars and the flatness. These classes also exhibit smaller
Sèrsic indexes and are less concentrated and more asymmetric
than the Cm classes. Also interesting is the separation in the
projected ellipticity of the El class, showing extremely large
values of the 1− b/a compared to the rest of the classes.

For the simulated TNG50 galaxies, we find the following:
∼12% of EC galaxies, ∼26% of Cm galaxies, ∼19% of In
galaxies, ∼22% of El galaxies, and ∼20% of EX galaxies.
While for the observed CEERS data set, we find ∼55% of EC
galaxies, ∼17% of Cm galaxies, ∼2% of In galaxies, ∼25% of
El galaxies, and ∼2% of EX galaxies. Therefore, and also clear
from Figure 14, there is a systematic lack of observed CEERS
galaxies in the rest of the classes beyond the EC class, with the
exception of the El class, for which the fractions of observed
galaxies are slightly larger than for the simulated ones. In

particular, the fractions of observed CEERS galaxies in the In
and EX classes are significantly smaller than those for the
simulated TNG50 ones.
In Figure 14, we show the UMAP visualization color-coded

by the five classes for the simulated TNG50 and the observed
CEERS data sets. Note that galaxies with artifacts or bright
companions are not included in the derivation of the different
class fractions. Given the division and the correlations shown
in Figures 8 and 9, we denote the galaxies located in the left
section of the UMAP that belong to the cluster in red as
EC galaxies, while the remaining galaxies (i.e., those not
assigned to the red EC cluster) are considered as noncompact
(NC) galaxies. We find that on average ∼12% of the TNG50
galaxies belong to the EC class. For the CEERS data set, we
find that ∼55% of the CEERS galaxies belong to the EC class.
In order to mitigate the possible effects of resolution in the
simulation, we additionally impose a minimum size threshold
for CEERS galaxies and only include CEERS galaxies with
re> 1kpc, measured in the F200W filter. This excludes the
low-radius tail of 5% of the TGN50 galaxies and ∼50% of the
CEERS data set (mainly Sphs since they are typically smaller
in size). We find that the fraction of galaxies in the EC class for

Figure 12. Distribution of the logarithm of the effective radius ( rlog e in kiloparsecs, top row), the Sèrsic index (ne, middle row), and the axis ratio (b/a, bottom row)
as a function of the logarithm of the stellar mass ( Mlog *) for the TNG50 (in blue) and the CEERS (in green) data sets. From left to right, the panels show the
distributions at z = 3, 4, 5, 6 for the TNG50 data set. For the CEERS data set, galaxies are included in the closest redshift value. Contour levels enclose 25%, 50%, and
75% of the data. Blue points correspond to galaxies outside the 75% contour for the TNG50 data set. Blue dashed and green solid histograms in the horizontal and
vertical axes show the PDF of the TNG50 and CEERS data sets, respectively. The photometric parameters shown are measured in the F200W filter.
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the CEERS data set is reduced to ∼37%, but the discrepancy
between observations and simulations is still significant.

Our results tend to confirm that the TNG50 model system-
atically underpredicts the abundance of EX galaxies from a
purely data-driven perspective, similar to the findings of, e.g.,
Flores-Freitas et al. (2022). The effect does not seem a pure
consequence of resolution.

6. A Comparison between Self-supervised and Supervised
Morphologies

We now compare in more detail the CNN-based and visual
classifications for the CEERS and VISUAL data sets with the
self-supervised classifications—which have been shown to
correlate with physical properties—and speculate about the
abundance of disks at z> 3. As shown in Section 4.1, visually
classified disks are spread all over the representation space,
which suggests that, according to the self-supervised

representations, they represent a heterogeneous group of
galaxies with different physical properties.

6.1. Self-supervised Clustering versus Morphological
Classifications

In Figures 15 and 16, we show a comparison between the
CNN-based and visual classifications with the two broad
contrastive learning clusters containing EC and NC galaxies,
respectively.
The figures show that, for both the CNN and visual

classifications, almost all galaxies classified as Sphs or with a
bulge component belong to the EC cluster. This is expected as
the EC cluster lies in a region of the representation space
dominated by round and compact galaxies. However, the trend
for disks and irregular galaxies is not so clear. The figures show
that both the EC and NC clusters contain a large fraction of
disks and irregular galaxies, which reflect the fact that disks
and irregulars are distributed over all the representation space.

Figure 13. Triangle plot with the photometric (left-hand panel) and morphological (right-hand panel) properties of the morphological clusters shown in the left-hand
panel in Figure 14. For clarity, only the 68% contour levels are shown.

Figure 14. Left-hand panel: UMAP visualization of noise-added TNG50 galaxy images color-coded by classes according to the k-means method for five clusters.
Morphological classes are labeled as: extremely compact (EC, in red), compact (Cm, in orange), intermediate (In, in green), elongated (El, in cyan), and extended (EX,
in blue). Middle panel: same as the left-hand panel but for the CEERS galaxy images. Right-hand panel: fractions extremely compact (EC) galaxies (i.e., those
belonging to the EC cluster in red) in TNG50 (solid lines), CEERS (dashed lines), and CEERS with >rlog kpc 0e[ ] (dotted lines) in 5 logarithmic mass bins of width
0.5 dex in the range < = < =M9 log M 11.5( ) . The shaded regions correspond to the fraction errors considering Poisson errors in the number of selected galaxies
and the total number of galaxies in each mass bin. Note that for clarity we do not show the shaded region for the CEERS data set without applying any cut in size.
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In fact, we measure that each cluster contains roughly ∼50% of
the disk and Irr galaxies for both the CEERS and the VISUAL
data sets. This discrepancy between the self-supervised and the
traditional classes is somehow surprising and suggests that the
population of visually classified disks and irregulars present a
large spread of morphological properties that the contrastive
learning representation is capturing. We quantify this further in
the following. We emphasize that this discrepancy between
supervised and self-supervised classifications is independent of
the degree of agreement between simulations and observations
discussed in Section 5.

6.2. Two Populations of Visually Classified Disks?

Based on the positions of the visual disks in the contrastive
learning representation space, we identify two different
populations of visually classified disks, which we call EC
disks and NC disks, for EC and NC disks, respectively.

In order to get more insights about why the self-supervised
learning algorithm tends to locate them in different clusters, we
then examine the properties of the EC disks and NC disks using
parametric morphologies obtained via Sèrsic fitting in the

F356W filter (see Section 2 for more details). In Figure 17, we
show the distributions of axis-ratios (b/a), semimajor axes (a),
and Sèrsic indices (ne) for the two disk classes, and for the
CEERS and VISUAL data sets. We also show, for reference,
the same distributions for galaxies visually classified as Sphs.
The figure clearly shows different distributions. As expected,

EC disks have smaller effective radii. The NC disks exhibit a
distribution of alog that peaks at ~alog 0.25, while for the
EC disks it peaks at smaller values of ~ -alog 0.10. The
distribution of ne is also different and reflects that EC disk are
more concentrated. For NC disks, it peaks at ne 1.2,
characteristic of an exponential profile. However, for EC disks,
the distribution is skewed toward larger values of the Sèrsic
index, although smaller than for Sphs. Regarding the b/a
distribution, the NC disks tend to be more El, and, as expected,
Sphs are rounder on average. The EC disk candidates are in
between, with a peak at b/a∼ 0.5.
In view of these differences and the correlations between

structural properties and the positions in the representation
space highlighted in previous sections, it is expected that the
NC and EC disks fall in different regions of the parameter

Figure 15. Comparison of the classification into extremely compact (EC, left-hand panel) and noncompact (NC, right-hand panel) galaxies in the CEERS data set and
the CNN-based classifications derived by Huertas-Company et al. (2023a). Histograms are color-coded according to the CNN-based morphological classes into:
Sph in red, disk in blue, bulge + disk (B+D) in orange, and disturbed (Irr) in purple.

Figure 16. Comparison of the classification into extremely compact (EC, left-hand panel) and noncompact (NC, right-hand panel) galaxies in the VISUAL data set
and the visual classifications derived by Kartaltepe et al. (2023). Histograms are color-coded according to the visual morphologies as in Figure 10.
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space, even if they share the same visual classification. It also
makes sense that these EC disks are generally classified as
disks by expert classifiers given the proposed classification
scheme, in the sense that they do not show strong signs of
irregularities and are more elongated and less concentrated than
pure Sphs. Therefore, by default, they end up in the disk class.
In Appendix B, we show examples of several NC disks and EC
disks candidates (including some cases with b/a< 0.3) along
with various EC Sph candidates for comparison.

The difference between the completely supervised and self-
supervised classifications illustrates how a purely data-driven
approach can offer an alternative description of the information
content of the data. It is also important to highlight that the
difference between the two types of classifications is not only
driven by differences in size. The distributions of alog plotted
in Figure 17 overlap significantly. In addition, if we only
include in the analysis galaxies with re> 1kpc, there is still a
significant fraction (∼40%) of visually classified disks in the
EC cluster.

An interesting question, therefore, is whether NC and EC
disks are all true disks—if by disk, we understand a flat system
predominantly supported by the rotation of the gas and stars—
as this has important implications on the frequency of disk
formation at these very early cosmic epochs. It is certainly
impossible to unambiguously answer this question with the
data at hand. However, we can speculate based on the
information inferred from the TNG50 simulation. As shown
in the previous subsections, there is a strong correlation
between the contrastive learning representations and the stellar
specific angular momentum. Interestingly, the location of EC
disks is predominately populated by low angular momentum

galaxies, which would suggest that these systems are
preferentially velocity dispersion supported.
As an additional attempt to shed some light on the physical

properties of EC and NC disks, we explore in more detail how
the contrastive learning representation space distributes
galaxies with different 3D stellar structures. We characterize
the shape of galaxies in the TNG50 sample as done and studied
in Pillepich et al. (2019), i.e., with an ellipsoid with three
semiaxes c< b< a and use the axial ratios q= b/a (inter-
mediate-to-major), and s= c/a (minor-to-major) to define three
main 3D shape classes: oblate, Sph, and prolate following the
definitions of van der Wel et al. (2014a), Zhang et al. (2019).
The axial ratios are derived after diagonalizing the stellar mass
tensor in an iterative way while keeping the major axis length
fixed to 2r*. We consider oblate or disk galaxies those with
a∼ b> c, El, or prolate objects those with a> b∼ c, and
spheroidal systems those with similar values for the three
semiaxes. Note that, by definition, the 20 projections of the
TNG50 galaxies have the same 3D shape. At these redshifts,
we find that ∼67% of the galaxies in the simulation have a
spheroidal shape according to this definition. Only 18% and
15% of the galaxies have oblate and prolate shapes,
respectively. The fact that, at high redshift and low stellar
masses, galaxies tend to present a more prolate structure has
been found both in observations (van der Wel et al. 2014a;
Zhang et al. 2019) and simulations (Tomassetti et al. 2016;
Pillepich et al. 2019).
We show in Figure 18 the distribution of the mock images of

oblate galaxies in the UMAP projection of the representation
space obtained with contrastive learning. For clarity, we do not
show the distributions of prolate and spheroidal galaxies.
Interestingly, the bottom right corner, where the EC disks lie,

Figure 17. Morphological and photometric properties of the two populations of disk-like galaxies in the CEERS (top panels) and the VISUAL (bottom panels) data
sets. From left to right, the different panels show the probability distribution function of the size of the galaxy ( alog kpc[ ]), the projected ellipticity (b/a), and the
Sèrsic index (ne), respectively. The different histograms correspond to EC disk candidates (red shaded histograms), NC disk candidates (blue shaded histograms), and
EC Sph candidates (red dashed histograms). For the CEERS data set, we consider as disk candidates those classified as disk and bulge+disk, while, for the VISUAL
data set, we consider as disk candidates the four classes of visually classified disks (disk, disk + Sph, disk + Irr, and disk + Sph + Irr). All quantities are derived from
the Sèrsic fits in the F356W filter.
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does not contain almost any oblate system. The result would
suggest that EC disks are very unlikely to be true disks (i.e., flat
rotating systems) even if they appear as El in the images.
Despite the small number of TNG50 galaxies with b/a 0.4,
we find that EC TNG50 galaxies with b/a 0.4 are more
likely to be prolate than Sph in shape, as shown in Figure 19.

However, a big caveat is that the previous statements rely of
course on the calibration with the TNG50 simulation, which, as
shown in the previous sections, does not properly reproduce the
observed morphological diversity. Therefore, no firm conclu-
sion can be established without more observations and
comparisons with other state-of-the-art simulations. As a
matter of fact, an alternative explanation for the different
representations of EC disks and NC disks could be that the
simulation cannot generate compact disks because of resolution
issues, as already acknowledged. This would imply that the
location of the EC disks in the representation space cannot be
interpreted in terms of physical properties, as these systems
simply do not exist in the simulation. We expect the fine-tuning
of the model presented in Section 3.1 should mitigate this
effect, but cannot be guaranteed.

Nevertheless, our data-driven analysis suggests that robustly
establishing the fraction of disk galaxies at z> 3 remains an
open issue.

7. Summary and Conclusions

This work presents a novel data-driven method based on
contrastive learning to infer the morphological properties of
galaxies observed with JWST. The method is calibrated on
mock JWST galaxy images extracted from the TNG50
cosmological simulation that, thanks to its large number of
qualitatively realistic galaxies, allows us to produce a
morphological description—without any assumption on galaxy
classes—robust to background noise, S/N, color, and orienta-
tion. In addition, we show that the obtained representations of
galaxies based on their images correlate well with some other
physical properties inferred from the simulation (such as the
specific angular momentum of stars, j*, and the intrinsic 3D
shape) along with some measured photometric and structural
properties (such as Sèrsic index and the projected ellipticity).

We have applied the method to JWST images from the
CEERS survey in the F200W and F356W bands of the
following: (1) a mass-complete sample (M*� 109Me) of
galaxies at 3< z< 6 in the CEERS survey for which CNN-
based classifications are available; and (2) a mass- and a
redshift-selected sample of CEERS galaxies at 3< z< 6 with
M*� 109Me for which visual morphological classifications are
available.
Our main results are as follows:

1. Simulated galaxies from the TNG50 cosmological
simulation seem to cover well the observed morphologi-
cal diversity at z> 3. However, the morphological
distributions of CEERS and simulated galaxies are
measured to be different. When compared at the pixel
level, simulated and observed galaxies seem to populate
in different proportions in the different regions of the
TNG50-trained manifolds. We show that these differ-
ences can be at least partly explained because observed

Figure 18. Location in the UMAP plane of TNG50 galaxies according to the 3D shape inferred from the stellar particles: spheroid (left-hand panel), oblate (middle
panel), and prolate (right-hand panel). Points are color-coded according to the morphological classes described in Section 5.2. The contour levels indicate the 25%,
50%, and 95% probabilities. Unfilled black dashed and filled solid histograms in the horizontal and vertical axes show the PDF of the whole data set and the shape-
selected galaxies of the TNG50 data set, respectively. Morphologically disk (i.e., oblate) galaxies tend to populate the right and upper right regions of the UMAP
plane, while it is unlikely to find them in the left section of the UMAP plane.

Figure 19. Distributions of projected ellipticity (b/a) for EC disk candidates in
CEERS (red shaded histogram), and EC prolate and spheroid TNG50
candidates (orange and red empty histograms, respectively). Elongated galaxies
in projection (i.e., b/a  0.4) are compatible with being prolate in shape
according to the TNG50 EC prolate candidates.
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galaxies can be more compact and more elongated than
simulated ones. In fact, the galaxy-to-galaxy variation in
sizes, Sèrsic indices, and shapes at fixed stellar mass and
redshift are larger in the observed CEERS population
than in TNG50 simulated ones. These differences might
be partly explained by the limited resolution of the TNG
simulation, but not completely since the discrepancies are
not erased when only large galaxies are considered.

2. Our morphological description also suggests that CNN-
based and visually classified disks comprise two different
populations: one made of EC disks and another of NC
disks. Half of the galaxies that are classified as disks are
indeed located in the representation space very close to
EC Sphs and, therefore, are more consistent with not
being pure disk-like galaxies (i.e., having a prolate or
spheroidal stellar structure). Although some of these
conclusions might be affected by the calibration with the
TNG50 model, our study suggests that some EC disk
candidates can be misclassified as disks, as they appear
(on average) more elongated in the images than EC
Sph candidates. The coexistence of prolate and oblate
systems at high redshift is in qualitative agreement with
the predictions of other models (e.g., zoom-in simula-
tions), which also found that low-mass galaxies at high-z
tend to present a prolate shape (Ceverino et al. 2015;
Tomassetti et al. 2016). More in-depth follow-up of these
two populations of galaxies, possibly with spectroscopy
and additional comparisons with other simulations, is
required to further constrain their true nature.
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Appendix A
Scatter of Physical and Photometric Parameters in the

UMAP Visualization

In Figures A1 and A2, we show the variability in the
physical and photometric parameters, respectively, in the
UMAP visualization shown in Figure 9 in Section 3.5. The
scatter is quantified as a normalized median absolute deviation,
denoted here as NMAD. The median absolute deviation
(MAD), defined as MAD (y)=median(|y−median(y)|), is a
robust measure of the variability of a univariate sample of
quantitative data. The MAD is less affected by outliers and
nongaussianity than the typical variance and standard devia-
tion. To facilitate the comparison between different variables,
we normalized the MAD by the dynamical range of the data,
defined as the percentile range containing 98% of the data. The
resulting normalized MAD, denoted as NMAD, is an indicator
of the variability of the data that, in this case, shows how
informative the correlation with the different parameters shown
in Figures 8 and 9 are. The values of NMAD 0.2 are
indicative of a low variability of the data.
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Figure A1. UMAP visualization for all the TNG50 galaxy images in our data set color-coded by the distribution of several physical properties extracted from the
TNG50 simulation. From left to right and top to bottom, the different panels show the UMAP plane color-coded by the NMAD of: the logarithm of the total stellar
mass ( Mlog M*[ ]), the logarithm of the specific angular momentum of the stars ( -jlog kpc km s 1

*
[ ]), the mass fraction in nonrotating stars ( fnr), and the galaxy

flatness (1 − f ).
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Appendix B
Examples of Observed JWST Galaxy Images

In Figure B1, we show examples of galaxies in the CEERS
data set that are classified into EC and NC, according to the
criterion described in Section 6.1. For comparison, we show
examples of disk and Sph galaxies following the CNN-based
morphological classification presented in Huertas-Company
et al. (2023a). It is clear the differences between the NC disks
and the EC disks, with more EX and El (in projection) light
distributions for the NC disks candidates than for the EC disks
candidates. We also include examples of NC disks and EC

disks candidates that contribute to the low end of the b/a
distribution in Figure 17. In fact, all these examples have values
of b/a< 0.3. For the NC disks candidates with b/a< 0.3, they
show in almost all the examples signs of multiple clumps and/
or in interaction with the central galaxy. For several cases of
the EC disks candidates with b/a< 0.3, there are also signs of
multiple clumps that could lead to an underestimation of the
true b/a values.
Moreover, it is difficult to distinguish between some EC

disks and EC Sph candidates, as they exhibit Cm and round
light distributions, although the EC disk galaxies appear
slightly more El (on average) than the EC Sph ones.

Figure A2. UMAP visualization for all the TNG50 galaxy images in our data set color-coded by the distribution of several morphological and photometric parameters.
From left to right and top to bottom, the different panels show the UMAP plane color-coded by the NMAD of: the logarithm of the effective radius (re[kpc]), the Sèrsic
index (ne), the ellipticity based on Sèrsic fit (1 − b/a), the concentration (C), the asymmetry (A), and the smoothness (S).
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