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Abstract. Computing hydrological fluxes at the Earth’s surface is crucial for landscape evolution models, topo-
graphic analysis, and geographic information systems. However, existing formalisms, like single or multiple flow
algorithms, often rely on ad hoc rules based on local topographic slope and drainage area, neglecting the physics
of water flow. While more physics-oriented solutions offer accuracy (e.g. shallow-water equations), their com-
putational costs limit their use in terms of spatial and temporal scales. In this contribution, we introduce Graph-
Flood, a novel and efficient iterative method for computing river depth and water discharge in 2D with a digital
elevation model (DEM). Leveraging the directed acyclic graph structure of surface water flow, GraphFlood it-
eratively solves the 2D shallow-water equations. This algorithm aims to find the correct hydraulic surface by
balancing discharge input and output over the topography. At each iteration, we employ fast-graph-theory algo-
rithms to calculate flow accumulation on the hydraulic surface, approximating discharge input. Discharge output
is then computed using the Manning flow resistance equation, similar to the River.lab model (Davy and Lague,
2009). The divergence of discharges iteratively increments flow depth until reaching a stationary state. This algo-
rithm can also solve for flood wave propagation by approximating the input discharge function of the immediate
upstream neighbours. We validate water depths obtained with the stationary solution against analytical solu-
tions for rectangular channels and the River.lab and CAESAR-Lisflood models for natural DEMs. GraphFlood
demonstrates significant computational advantages over previous hydrodynamic models, an with approximately
10-fold speed-up compared to the River.lab model (Davy and Lague, 2009). Additionally, its computational time
scales slightly more than linearly with the number of cells, making it suitable for large DEMs exceeding 106–108

cells. We demonstrate the versatility of GraphFlood by integrating realistic hydrology into various topographic
and morphometric analyses, including channel width measurement, inundation pattern delineation, floodplain
delineation, and the classification of hillslope, colluvial, and fluvial domains. Furthermore, we discuss its inte-
gration potential in landscape evolution models, highlighting its simplicity of implementation and computational
efficiency.

1 Introduction

River dynamics encompass key processes of landscape evo-
lution at different temporal and spatial scales. Rivers transfer
sediments downstream, control the base level of hillslopes,
and set the pace of denudation rates (e.g. Clubb et al., 2019).
Modelling landscape evolution and the development of flu-
vial landforms, in particular, thus requires a sound repre-
sentation of how rivers erode, transport, and deposit mate-

rial. As landscape evolution models are used to simulate the
dynamics of topography over 105–107 years and at conti-
nental scales (Salles et al., 2023), accounting for short-term
processes (e.g. daily variations of discharge, flood) at local
scales remains a methodological and numerical challenge.
Simulating flow in open environments in two or three di-
mensions requires sophisticated numerical methods, which
are computationally demanding and which are thus mostly
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inappropriate for the challenge of simulating landscape evo-
lution over geological timescales (Davy et al., 2017). In-
stead, a common approach to modelling water flow across
landscapes consists of applying single or multiple flow algo-
rithms (e.g. Tarboton, 1997; O’Callaghan and Mark, 1984).
These techniques route water along topographic gradients to-
wards one or multiple neighbouring pixels in a digital eleva-
tion model (DEM) and approximate discharge by drainage
area weighted by precipitation rates (Adams et al., 2020).
The approximation of steady flow using drainage-area-based
discharge has been the cornerstone of integrating hydrody-
namics in long-term erosion laws (e.g. Whipple and Tucker,
1999). This approach has the compelling advantage that it
reduces flow patterns to a network of flow lines and has
been widely used to establish empirical scaling laws relating
drainage area to channel steepness and uplift (Wobus et al.,
2006) or to unravel landscape evolution from the planform
shape of river networks (Schumm et al., 2000; Willett et al.,
2014). Moreover, these methods rely on efficient algorithms,
which leverage graph theory to compute drainage area (e.g.
Braun and Willett, 2013; Anand et al., 2020), flow across
complex terrain (e.g. Barnes et al., 2014; Cordonnier et al.,
2019; Barnes et al., 2021; Schwanghart and Scherler, 2017),
or geomorphological metrics (e.g. Gailleton et al., 2019;
Mudd et al., 2018; Grieve et al., 2018; Schwanghart et al.,
2021). In particular, the single-flow-direction algorithm is
thus the numerical workhorse for simulation software for
landscape evolution (e.g. Hergarten, 2020; Braun and Sam-
bridge, 1997; Willgoose et al., 1994; Campforts et al., 2017;
Braun and Willett, 2013) and numerical frameworks for
quantitative geomorphology (e.g. Barnhart et al., 2020; Gail-
leton et al., 2024; Schwanghart and Scherler, 2014; Mudd
et al., 2019).

However, reducing rivers to lines in landscape evolution
models may overtly simplify the dynamics and feedbacks
of fluvial processes (Armitage, 2019). In fact, the response
of rivers to climate variability, tectonic movements, or base-
level changes is more varied than the simple propagation of
a wave of vertical changes through a 1D network of lines.
For example, changes in boundary conditions cause rivers to
adjust their width (e.g. Dunne and Jerolmack, 2020; Baynes
et al., 2022) and their planform flow pattern (e.g. Schuur-
man et al., 2013), both of which feed back on sediment fluxes
(e.g. Davy and Lague, 2009). In addition, the past decade has
seen the rising availability of high-resolution lidar-derived
DEMs (< 1 m resolution). This means, however, that for a
variety of geomorphological applications (e.g. Steer et al.,
2022; Stammberger et al., 2024) rivers cannot be realistically
represented by one-pixel-wide paths (Fig. 1d). Several recent
studies demonstrate the advantages of integrating 2D hydro-
dynamics to inform the study of landforms, even on long
timescales (Costabile et al., 2019; Costabile and Costanzo,
2021; Bernard et al., 2022). However, these methods are dif-
ficult to upscale for more generalized analysis due to their re-

liance on closed-source software and are not straightforward
for non-specialists to adapt and reuse.

Here we present GraphFlood, a new and efficient method
based on graph theory and finite differences, to fill this
methodological gap and allow the efficient approximation of
2D hydrodynamics on high-resolution topography and/or in
a longer-term landscape evolution model.

1.1 Existing solutions

A range of numerical models incorporating 2D to 3D hy-
drodynamics to study river systems and their morphologi-
cal evolution exists, with widely different methods and lev-
els of complexity, depending on the temporal and spatial
scales of interest. Finite-element models are commonly used
for reach-scale models, such as DELFT3D (Roelvink and
Banning, 1995), HEC-RAS (Brunner, 2016), BASEMENT
(Vanzo et al., 2021), or TELEMAC (Villaret et al., 2013).
These models are designed for simulating the evolution
of fluvial landforms over scales of 1–100 km and over 1–
100 years and therefore fall outside the scope of this study.

Bates et al. (2010) developed a two-dimensional hydrody-
namic model, Lisflood-FP, solving for the 2D shallow-water
equations. Their cellular automata approach has been suc-
cessfully incorporated into the landscape evolution model
CAESAR Coulthard et al. (2013) to simulate reach- to
catchment-scale fluvial hydro-morphodynamics (e.g. Yu and
Coulthard, 2015; Liu and Coulthard, 2015; Coulthard and
Van De Wiel, 2017). Lisflood-FP adopts a finite-difference
scheme on the bidirectional water fluxes between pixels.
While it has been applied to catchment scales over poten-
tially thousands of years (e.g. Liu and Coulthard, 2017),
its potential for longer-term and larger-scale studies remains
hampered by the physics behind, which explicitly and grad-
ually transfer water from one cell to another. Specifically,
any upstream change in runoff input (e.g. precipitation) must
be gradually propagated downstream one pixel per compu-
tational time step. Although modelling non-steady flows is
crucial for simulating transient responses to individual storm
events (e.g. Van De Wiel and Coulthard, 2010), it becomes
a limiting factor when simulating over longer timescales or
larger scales. Bates et al. (2010) and subsequent improve-
ments by de Almeida et al. (2012) have been utilized in other
landscape evolution frameworks (e.g. Barnhart et al., 2020)
following the same principle.

An alternative approach is to focus on the stationary state
of the river network (i.e. in equilibrium with the input field
of runoff). The main challenge in efficiently estimating the
stationary solution lies in spreading the flow to its equilib-
rium field. The latter depends on the final geometry of the
hydraulic surface, which cannot be deduced from the geom-
etry of the terrain alone. To address this point, Davy et al.
(2017) developed an efficient particle-based solution to solve
the shallow-water equations. In this approach, precipitons
(i.e. elementary volumes of water) are released onto the land-
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Figure 1. Comparison between water flows approximated with GraphFlood (a, c), calculating flow depth and discharge vectors, and with a
classic drainage-area-based method (D8 steepest descent route) (b, d). The panels detail a channel junction and highlight how GraphFlood
models flow patterns and how these differ from one-pixel-wide flows derived from the D8 algorithm. The black arrows in panel (c) represent
the flow velocity vectors and are scaled to their magnitude. For panel (d), the red arrows represent the D8 flow direction. h is the flow depth
and A the drainage area.

scape. Each precipiton follows a stochastic path down the hy-
draulic surface, increasing the flow depth by a constant value,
representing the total water influx. This increase is balanced
by a decrease in flow depth, calculated using Manning’s
equations and where each precipiton has its own timestamp.
The frequency at which precipitons pass through a cell de-
termines the final, stationary flow depth field. This method is
computationally efficient in areas where flow converges and
a high frequency of precipitons passes through (e.g. fluvial
valleys). However, the efficiency and accuracy of River.lab
(formerly FLOODOS) depend on the frequency of precipiton
passage. Accurately approximating the shallow-water equa-
tion becomes challenging in regions with lower drainage ar-
eas or any domains where the frequency of precipiton pas-
sage is very low (e.g. flat areas, hilltops, hillslopes, smaller
tributaries). This behaviour is accentuated in large DEMs,
where the probability of precipiton passage is even lower.

Finally, Pelletier (2008) outlined the prototype of a
highly iterative solution that repeatedly runs a multiple-flow-
direction flow-routing DEM (e.g. Tarboton, 1997). This pro-
cess incrementally and arbitrarily increases the flow height
until satisfying an equilibrium between flow depth and input
discharge. However, it requires a significant number of itera-
tions to ensure all the cells have converged to the final result.

1.2 A new solution based on graph theory

In this contribution, we introduce GraphFlood, a novel itera-
tive approach that is both efficient and adaptable for solving
the shallow-water equations across entire landscapes. Nu-
merically, each DEM location is linked to its neighbours
through unique directional connections, either upstream or
downstream. In graph theory, this structure is known as a di-
rected acyclic graph, which allows for the application of effi-
cient algorithms for information propagation through land-
scapes (e.g. Anand et al., 2020; Braun and Willett, 2013;
Gailleton et al., 2024; Hergarten and Neugebauer, 2001).
Similar to Davy et al. (2017), GraphFlood assumes steady

flow to focus on the stationary solution, meaning that flow is
propagated across the landscape instantaneously. However,
unlike Davy et al. (2017), whose accuracy and efficiency vary
depending on the frequency of passage of discrete particles,
GraphFlood leverages the graph structure to process the en-
tire landscape in each iteration. This includes domains with
low drainage areas. Runoff is propagated using drainage area
weighted by precipitation rates, and local discharge is calcu-
lated using Manning’s friction equations. At each iteration,
the balance of input and output discharges is incrementally
adjusted for every cell in the landscape, refining the flow
depth until hydraulic equilibrium is achieved. This global
approach is scalable and allows for targeting larger DEMs
without compromising the efficiency or accuracy of the al-
gorithm.

In the following sections, we first describe the theory be-
hind our method, then explain the algorithm and the asso-
ciated finite-difference scheme. We then test different case
studies to demonstrate the method’s potential for flood mod-
elling, morphometric analysis, and landscape evolution mod-
elling. Finally, we discuss the limitations and potential future
developments of the model.

2 Theoretical background

First, we outline the governing equations behind Graph-
Flood. We use the 2D shallow-water equations to approx-
imate the physics of water flow in open environments.
They integrate the three-dimensional Navier–Stokes equa-
tions over the vertical dimension, assuming that the veloc-
ity field varies primarily in the horizontal direction. Different
variants of the shallow-water equations are commonly used
to model flooding beyond reach scale (e.g. Bates et al., 2010;
de Almeida et al., 2012; Davy et al., 2017; Bates, 2022). The
2D shallow-water equations consist of a mass conservation
equation and a momentum conservation equation. Using the
notation of Davy et al. (2017), the mass conservation equa-
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tion can be written as

∂h

∂t
−∇ · (q)= 0, (1)

where h is the water depth [L], t the time [T], and q the
discharge per unit width [L2 T−1].

Neglecting inertia, Manning et al. (1895) demonstrated
that the momentum equation can be simplified into Man-
ning’s equations where flow velocity u (in L T−1) is ex-
pressed as

u=
hα

n

s

‖s‖
1
2
, (2)

where α is Manning’s exponent, usually assumed to equal
2
3 , n is Manning’s friction coefficient, and s is the steepest
gradient of the hydraulic surface. The hydraulic surface is
Zh = Z+h, the elevation of the flow depth h on the top of
the topographic surface Z.

In order to insert Eq. (2) into Eq. (1), discharge per unit
width and velocity are related via flow depth.

q = u ·h (3)

Unlike similar methods (e.g. Bates et al., 2010) or more so-
phisticated formulations (e.g. Brunner, 2016) incorporating
additional physical elements (e.g. inertia, turbulence), our
method is designed to be optimized when these components
can be neglected (Davy et al., 2017). We use Q to refer to
the volumetric flux [L3 T−1] and the subscript Qin and Qout
to respectively refer to quantities entering or leaving a given
cell.

These equations can simulate the propagation of water
through space and time dynamically, solving a transient flood
wave. ∇ · q is the difference between qin made of qout from
upstream neighbours and qout from the current cell to its
downstream neighbours. For a constant input of qin on a
landscape (e.g. constant precipitation rates, fixed input dis-
charge), the system has an equilibrium state – or stationary
solution – where the water depth and hydraulic slope lead
to a qout balancing qin. The total Qin for the stationary state
for a given location becomes the integration of all the source
terms (e.g. precipitation, resurgence) over the drainage area
upstream of a given location.

In this contribution, we refer to the transient solution when
we seek to solve the transient propagation of Q through
space and time and to the stationary solution when we are
only interested in the equilibrated fields.

3 A graph-based iterative method

We present a numerical framework to solve the governing
equations outlined in Sect. 2. Our scheme applies various
variants of an explicit finite-difference method on a directed
acyclic graph (see Braun and Willett, 2013; Barnhart et al.,

2020; Gailleton et al., 2024, for other geomorphological
models using this family of methods). It aims to provide effi-
cient solutions, suitable for large-scale DEMs and landscape
evolution models. Our iterative scheme is optimized for the
stationary solution but can be used for transient simulation.
In the following, we detail the numerical graph structure re-
quired by our method, describe the finite-difference scheme,
explain the transient and stationary solutions, and validate
them against analytical solutions.

3.1 Numerical structure

We use the following terms adopted from graph theory (see
Heckmann et al., 2015, for a comprehensive review of the
use of graph theory applied to geomorphological applica-
tions): a discrete location is represented by a node, linked
to its neighbour nodes via links. The links are directed edges
linking donors to their downstream receivers. In our refer-
ence donors have a higher hydraulic surface (Z+h) than their
receivers. The algorithm is compatible with any type of grid
(e.g. hexagonal grid or triangular network), as long as the di-
rected acyclic graph structure defines the topology between
the pixels or facets. Each link is characterized by a specific
length ∂l representing the distance between the two neigh-
bour nodes and a link width ∂w representing the local width.
Each node represents a cell area Ac ([L2]). The scheme also
requires common directed acyclic graph algorithms: topolog-
ical ordering, which provides a list of nodes sorted from up-
stream to downstream, and sink filling, a method for filling
local minima disconnected from the rest of the graph (e.g.
lakes, local noise). The directed acyclic graph can utilize
either a single-flow-direction topology (Braun and Willett,
2013), where each node has a single receiver (e.g. steepest
descent or D8), or a multiple-flow-direction directed acyclic
graph where each node is linked to multiple receivers (e.g.
Tarboton, 1997; Anand et al., 2020). This distinction is im-
portant because operations on single-flow-direction directed
acyclic graphs are generally simpler and more efficient than
those on multiple-flow-direction directed acyclic graphs (e.g.
Braun and Willett, 2013; Anand et al., 2020). However, it
is worth noting that the latter captures more details about
flow topology and tends to increase the accuracy of the rep-
resented processes (e.g. Armitage, 2019).

In this contribution, we developed the method for regu-
lar grids. In the stationary case, we use the algorithms of
Barnes et al. (2014) and Cordonnier et al. (2019) to ensure
flow continuity and proceed to an initial filling of the local
minima (e.g. noise, lake). Topological sorting operations use
a modified version of Braun and Willett (2013) for a sin-
gle flow direction and a variant of Anand et al. (2020) for
multiple flow directions. These modifications involve minor
data structure changes that enhance performance and read-
ability without altering overall functioning (see Gailleton
et al., 2024, for detailed implementations). One advantage
of GraphFlood is that it can be implemented using existing
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computational frameworks for DEM analysis and landscape
evolution model (LEM) simulation (e.g. Schwanghart and
Scherler, 2014; Gailleton and Mudd, 2021; Barnhart et al.,
2020): the base of the algorithm only needs to calculate flow
direction and topological order. A notable difference com-
pared to existing frameworks is that we calculate the directed
acyclic graph using the hydraulic surface rather than the to-
pography.

3.2 Iterative explicit finite-difference scheme

We use an explicit finite-difference scheme to solve Eq. (1).
In the transient case, the numerical solution predicts flow
depth change for every node i:

ht+1
i −h

t
i

1t
=

∑
d=donors(i)

Qind −
∑

r=receivers(i)
Qoutr

Ac
, (4)

where Qind represents the discharge from a donor d to the
node i andQoutr the discharge from the node i and a receiver
r . For the latter, in the case of a single flow direction (i.e.
single receiver), Eq. (3) becomes

Qouti =
1W

n
hαi
√
sir , (5)

where i and r are a given node and its single receiver, re-
spectively, and 1W is the flow width ([L]) in the given di-
rection. Because flow can only go through one link, 1W is
easy to determine. For example, for our case of a regular grid,
it is 1x in the y direction, 1y in the x direction, and the
diagonal length for the other cases. As noted by Coulthard
et al. (2013), multiple flow directions can become increas-
ingly more complicated: multiple receivers mean1W “over-
laps” and using the direct width of flow for each link can
break the conservation of mass. Let us imagine a regular grid
considering D8 neighbouring (cardinal and diagonal direc-
tions): a node that would discharge to all these directions
would integrate twice the total flow width. Porting this for-
mulation to multiple flow directions requires a correction fac-
tor. Equation (3) in a multiple-flow-direction directed acyclic
graph therefore becomes

Qouti =
C

n
hαi

∑
j in receivers

si,j1Wi,j

√
si,j,max

, (6)

where si,j,max is the hydraulic slope in the direction of max-
imum descent.

By definition, and for a given flow depth, both single-flow-
direction and multiple-flow-direction discharges should be
equal. Therefore, the correction factor is

C =
si,jmax1Wi,jmax∑

j in receivers
Si,j1Wi,j

, (7)

Eq. (6) is then equivalent to Eq. (5), and the difference be-
tween the two solvers only remains in the partitioning ofQin,
which becomes proportional to si,j1Wi,j .

Both transient and stationary solutions follow that scheme
to calculate the output discharge; the difference is the calcu-
lation Qin for all nodes. The overall process is outlined in
Algorithm 1.

Algorithm 1 Iterative stationary solver.

Initialize directed acyclic graph structure on hydraulic surface
while Convergence criterion (see Sect. 3.3 and 3.4) not met do

Update directed acyclic graph with hydraulic surface
for each node n in downstream topological order do

Calculate s(n) and weight partitioning
Determine Qin(n) from upstream nodes
Calculate Qout(n)
Transfer Q to receivers of n

end for
Increment hw for all nodes

end while

3.3 Transient solution

For the transient solution, Qindi is Qoutdi calculated between
the donor and this node plus an eventual local external Qin
source term (e.g. resurgence, precipitation, grid edge input).
The method becomes similar to Bates et al. (2010) – but their
formulation includes an approximation of inertia and has a
D4 flow topology. Although straightforward and massively
parallelizable (e.g. Apel et al., 2022), this method does not
benefit from the directed acyclic graph data structure as sig-
nals are propagated from one node to their immediate neigh-
bours. If external Qin is kept constant long enough, this so-
lution converges toward a unique equilibrium stationary state
and is not efficient if the intermediate transient steps are not
important.

Like any explicit finite-difference methods, higher time
steps lead to fewer iterations and more efficient spread but
also more instability. Equation (2) expresses the velocity of
a flood wave and therefore its stability can be approximated
using the Courant–Friedrichs–Levy (CFL) conditions:

Cr =1t
umax

1xmax
, (8)

where Cr is the Courant number.
The transient solution converges toward an equilibrium

hydraulic surface and Q field. We estimate convergence
based on median h and 1h

1t
for the whole landscape. We stop

the iterative process once the first plateaus and when the in-
crement in flow depth becomes lower than an acceptable ad
hoc threshold (e.g. 10−9 m).
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3.4 Stationary solution

The stationary solution optimizes convergence towards the
equilibrated solution – i.e. the steady-state flow depth and
discharge fields to an input runoff. Ultimately, the amount of
water flowing through a landscape equates to the runoff rate
propagated into the drainage network. Numerically speaking,
it results in calculating a weighted drainage area, a proce-
dure already in use in GIS applications and LEMs when it
comes to integrating the effect of spatial variations in pre-
cipitation (e.g. Leonard et al., 2023). In the case of effective
precipitation, each node receives a local P (x,y)1x1y. In
reach mode, the model receives Qin in the boundary cells
corresponding to the upstream section of the river. In both
cases, received water is then recursively transferred to all the
downstream nodes following the topological order. It effec-
tively reduces the need to propagate a signal gradually from
upstream to downstream one node at a time. However, the
final hydraulic surface being different than the topographic
surface, the algorithm needs to iterate to gradually build the
hydraulic surface. From the first iteration, discharge is prop-
agated through the full landscape and starts “piling up” h
on the whole flow path. Every iteration recomputes the di-
rected acyclic graphs from the updated hydraulic surface, ef-
fectively spreading Qin towards its final geometry balanced
by Qout. The time step in the stationary mode is a numerical
stability criterion modulating the magnitude of flow depth in-
crement. Similarly to the transient solution, we estimate con-
vergence based on median h and 1h between each iteration
for the whole landscape and consider convergence reached
once median 1h < 1× 10−9 m.

3.5 Validation

We validate the numerical scheme against an analytical solu-
tion (Fig. 3) using a rectangular channel (Bates et al., 2010;
Davy et al., 2017). We combine Eqs. (1) and (3) to obtain an
analytical stationary flow depth denoted h∗.

h∗ =
nQin

dx
√

s

1
α

(9)

Equation (2) predicts that in the case of a rectangular chan-
nel with a constant given slope S0, the slope of the stationary
water surface s should be equal to S0. Assuming a boundary
condition of fixed hydraulic slope, we can calculate a refer-
ence h∗.

We run GraphFlood with the transient and stationary
solvers as well as multiple-flow-direction and single-flow-
direction schemes on a 200m × 40m rectangular channel
with a regular dx = 1m (more details in the Fig. 3 cap-
tion). Figure 3a shows the results for all runs. Each simu-
lation converges towards h∗, validating the numerical meth-
ods. The number of iterations to reach h∗ – directly linked
to the computational efficiency of the algorithms – is signifi-

Figure 2. Graphical representation of a single iteration with Graph-
Flood. Panels (a) and (b) show the flow routing structuring the
graph for a single flow direction and multiple flow directions, re-
spectively, in map view. Note that this figure only displays flow
routing from a single source for clarity. Panel (c) illustrates in cross-
sectional view the increment or decrement of flow depth at the end
of the iteration depending on calculated or propagated discharges.

cantly higher for the transient model as it needs to propagate
the flood wave through the whole channel one node per iter-
ation. This behaviour is likely to worsen with the complexity
of a natural river network where any junction would need
catchment-wise upstream information before being equili-
brated and being able to propagate a signal downstream. Fig-
ure 3b zooms in on the stationary models that reach a sta-
tionary state in about 300–1000 iterations, roughly 400 times
faster than the transient model. Adaptive time stepping based
on the CFL condition slightly reduces the number of itera-
tions required to reach the analytical solution, and the single-
flow-direction model converges in fewer iterations than the
multiple-flow-direction model.

3.6 Test sites

We test GraphFlood on two lidar-derived DEMs and aim to
explore the effect of different geographical contexts on the
algorithm in terms of both relief and climate. Our first test
site is located near Green River (Utah, USA), a low-relief
area in an arid context with smooth hillslopes. The second
test site is the Hanalei River catchment in Hawaii (USA),
with sharp relief made of volcanic rocks, steep hillslopes,
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Figure 3. Validation tests for the multiple-flow-direction and single-flow-direction stationary and transient simulation for a given Qin =
15 m3 s−1. The scenarios with constant dt were set to 1× 10−3 s, and the scenarios with the CFL condition were calculated with Cr =
3× 10−3. Both were chosen empirically as values balancing model performance and stability of the final results. Panel (a) displays the full
results for all the simulations, while panel (b) zooms in on the stationary model results. Panel (c) describes the model setting in map view.
A total of 1000 iterations of GraphFlood on this small rectangular channel take about 0.7 s for a single flow direction and 1.2 s for multiple
flow directions with a CPU Intel i9-11950H.

and entrenched valleys. The original spatial resolution of
both DEMs is 1 m, provided pre-processed from point clouds
and provided by https://www.opentopography.org (OpenTo-
pography, 2020, 2012). We also down-sample the DEM of
the Hanalei River catchment to a resolution of 5 m using a
cubic resampling implemented by GDAL/OGR contributors
(2023) to process a larger watershed and test GraphFlood at
multiple resolutions.

4 Results

4.1 Numerical behaviour for a single simulation

We first explore the behaviour of the model during a single
simulation, where we run the multiple-flow-direction station-
ary algorithm for both test sites for a high-intensity rainfall
rate of 100 mm h−1. We deliberately chose an extreme rain-
fall rate to test the algorithm under high-flow conditions dur-
ing which multiple diverging river channels are activated.

We run the model to convergence (Fig. 4 – see caption for
the full simulation parameters). In terms of channel network
topology, GraphFlood is able to reproduce diverging and
converging flow patterns that follow converging and diverg-
ing channel networks. This behaviour is striking on Green

River, where the broad valleys consist of an interwoven net-
work of channels, but also well-captured on the clearer chan-
nel beds of Hanalei. GraphFlood in that way contrasts with
drainage-area-based flow patterns which by nature converge
toward a single line of flow (e.g. Fig. 1). In both cases the
majority of the DEM pixels display insignificant flow depth
(< 1 cm) as one should expecting from natural landscapes
where rivers only represent small portions of the landscape.

GraphFlood reaches convergence in 4000 and 3000 nu-
merical iterations for the Green River and Hanalei (Fig. 5a
and b), respectively, based on the criterion outlined in
Sect. 3.3 and 3.4. At first glance, this number is high, but
we observe a discrepancy in the spatial and temporal pat-
terns of convergence. The model converges asymptotically
in the fluvial domain only where fewer than 200 iterations
for Green River and fewer than 60 for Hanalei are enough,
as illustrated by the striking spatial variations in Fig. 5c and
d. Low drainage area on the hillslopes induces lower incre-
ments of flow depth, which combined with high slopes ex-
plains the slower convergence on the hillslopes.

We test the sensitivity of the model to its numerical param-
eter 1t and its discretization 1x. 1t controls the magnitude
of the h increment. Maximizing it optimizes the spreading
of Q to its equilibrium field. However, our tests also high-
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Figure 4. Flow depth field calculated with GraphFlood for fluvial valleys in Green River, Wyoming, USA (a), and Hanalei, Hawaii, USA (b).
The maps are zoomed in on major fluvial valleys for clarity. Both histograms show the distribution of water height for the multiple-flow-
direction stationary solutions calculated during a high storm event (precipitation rate 100 mm h−1). Note the logarithmic y scale on the
histogram demonstrating that the majority of points have low flow depth (< 1 cm).

light that while significant overestimation provokes numeri-
cal divergence, slight overestimation converges to an under-
estimated final h. The spatial resolution of a DEM, 1x, can
be dictated by the availability of source data, but it can be
interesting to reduce the resolution of a DEM in order to pro-
cess a larger area (if computing speed or memory are limiting
factors). For this test, we use the Green River DEM resam-
pled from dx = 1 m to dx = 10 m. Flow patterns remain rel-
atively similar from one resolution to another. However, loss
of detail is observed at lower resolution as expected. Lower-
ing the resolution leads to lower hydraulic slopes on average
and subsequently a decrease in Qout and an increase in the
total volume of water stored on the DEM.

We also test the sensitivity to the physical parameters.
Manning’s coefficient is an empirical friction parameter re-
flecting the local surface condition (e.g. vegetation, bed
roughness; see Arcement and Schneider, 1989, for different
measurements). Higher friction values predicts a higher and
more distributed water surface required to reach the same
Qout. Higher input discharges or precipitation rates lead to
higher flow velocity and therefore lower the stability condi-
tion, thus impacting the speed of convergence.

4.2 Comparison with existing models

We compared GraphFlood with previous models sharing
similar applications (relatively large-scale and medium-term
hydrology): CAESAR-Lisflood (Coulthard et al., 2013) and
River.lab (formerly EROS/FLOODOS – Davy et al., 2017).

We ran the three models on Green River with a constant rain-
fall rate of 30 mm h−1 and a classical friction coefficient of
0.033. We ran the three stationary simulations, as detailed in
Sect. 3.4. We compared the fields of flow depth by pairs of
models (Fig. 6). Overall, the differences between the mod-
els are minimal, centred between 3× 10−4 and 5× 10−4 m.
The differences can be linked to the differences in flow rout-
ing. CAESAR-Lisflood can only route flow to cardinal direc-
tions, and therefore the distribution of slopes is not exactly
the same as GraphFlood and River.lab, which include diago-
nals. River.lab relies on a stack of consecutive 1D stochastic
paths on a 2D grid, while GraphFlood offers a continuous so-
lution in space and time, explaining the small differences in
the final solutions.

5 Applications and potential

5.1 Flood extent

The computational efficiency of GraphFlood enables the
rapid simulation of stationary flow depth and extents under
different runoff intensities. We ran the model for effective
precipitation rates ranging from 5 mm h−1 – approximating
low-flow conditions – to 300 mm h−1 – extreme storm con-
ditions. Figure 7 shows the flood extent for each different
scenario on a per node basis. In addition to fast engineer-
ing application or flood risk assessment (e.g. Bates, 2022),
Bernard et al. (2022) noted that flow metrics calculated from
different precipitation rates could be used to determine the
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Figure 5. Rate of convergence for the simulation in Fig. 4 with 1t = 1× 10−2 and 1t = 2× 10−2 s. In panels (a) and (b), we show in
black the median flow depth function of the number of numerical iterations and in red the changes in flow depth between each iteration.
Panels (c) and (d) demonstrate the spatial variability in the rate of convergence. Note that GraphFlood converges significantly faster in the
fluvial domain. The number of iterations before convergence is defined as the first iteration reaching 95 % of its equilibrium value.

Figure 6. Benchmark comparing the difference in the stationary
field of flow depth between CAESAR-Lisflood, River.lab (formerly
EROS/FLOODOS), and GraphFlood. The data express the distribu-
tion of flow depth differences for each pair of models. The distribu-
tions are estimated using a kernel density estimation.

extent of flood plains and of the different channels of a river
system. While more computationally demanding than the ge-
ometrical method (e.g. Clubb et al., 2022), GraphFlood of-
fers a physics-based method for self-emerging the floodplain
geometry. Low-flow conditions in purple in Fig. 7 empha-
size the geometry of channel beds, while higher-flow storm-
related conditions in blue indicate the maximum extent of
the floodplain. We only computed uniform-precipitation-rate
scenarios, but GraphFlood can ingest spatially variable ma-
trices of effective precipitation if coupled with more sophis-
ticated precipitation/infiltration data or models.

5.2 Flood waves

While the model is primarily designed and optimized for
the stationary state, we illustrate its capabilities to model the
transient propagation of a flood wave (e.g. sudden increase in
input discharge in reach mode) in Fig. 8. We isolated a small
section from the Green River site and started from equili-
brated low-flow conditions (time 0 s). We instantly increase
the input discharge by a factor of 3, and the different panels
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Figure 7. Flood extent at stationary solutions for different precipitation rates. The colours represent the minimum precipitation rate at which
the area is flooded by at least 10 cm of water. Note the self-emergence of bedforms and floodplains.

display the spatial propagation of the resulting flood wave
through time.

5.3 Hydromorphometry

One of the main technical challenges in topographic analysis
studies is to determine from topographic data the transitions
between the fluvial network, colluvial channels, and hill-
slopes. Such classification is useful for understanding land-
scape dynamics (e.g. Grieve et al., 2016; Hurst et al., 2019) to
constrain geomorphological laws (e.g. Perron, 2011). Land-
scape evolution models also routinely apply different process
laws based on that transition (e.g. Perron, 2011) or to as-
sess the response of landscape to tectonics or climate changes
(e.g. Willett, 1999). A common approach consists of isolat-
ing breaks in slope–area distributions to determine a critical
drainage area value (e.g. DiBiase et al., 2010; Whipple et al.,
2013). A number of geometrical/empirical methods have also
been developed to isolate individual channel heads in higher-
resolution DEMs (e.g. Pelletier, 2013; Clubb et al., 2014;
Lurin et al., 2023). These methods’ intrinsic limitation is the
use of surface topography: the latter by nature cannot express
the actual geometry of water bodies, making them harder to
detect.

Recent studies (Costabile et al., 2019; Costabile and
Costanzo, 2021; Bernard et al., 2022) have demonstrated
that approaches explicitly approximating hydrodynamics ef-

Figure 8. Propagation of a flood wave through time using Graph-
Flood in transient mode. The initial conditions correspond to a
steady flow for a total input of 3 m3 s−1, which is triple at the start
of the simulation. The times indicated in the different panels are the
simulation times.

Earth Surf. Dynam., 12, 1295–1313, 2024 https://doi.org/10.5194/esurf-12-1295-2024



B. Gailleton et al.: GraphFlood 1.0 1305

fectively overcome that limitation by computing hydrology-
derived geomorphological metrics from hydraulic surface
and discharge. In particular, Bernard (2022) show that the
slope–area relationship can incorporate hydrological infor-
mation by replacing topographic slope by the hydraulic slope
at equilibrium and D8 drainage area by a specific drainage
area as(r)=

q
r

, where r is the runoff precipitation rate and
q the discharge per unit width. s and as(r) are naturally em-
bedded within the directed acyclic graph structure of Graph-
Flood, allowing a more systematic and straightforward bulk
computation.

First, as illustrated in Fig. 7, applying GraphFlood with
high precipitation rates proves to be an efficient method for
determining the extent of the floodplain. Next, we extracted
s and as(r) for both test sites and applied thresholds based
on the breaks in slope of the logas(r)–logs plots to delineate
different domains (Fig. 9a and b). Following the approach of
Bernard (2022), we isolated domains I, II, and III, which cor-
respond to the classic geomorphological features of convex
hillslopes, concave valleys, and fluvial regions, respectively.

The s-as(r) relationships for both catchments (Fig. 9c and
d) generally exhibit patterns similar to those observed in clas-
sic slope–area techniques. In domain I, s increases and then
plateaus before decreasing, with breaks in slope in the log–
log space defining the transitions to domains II and III (e.g.
Montgomery, 2001). Notably, domains I and III define hill-
slopes and fluvial areas, as discussed in Bernard (2022). Do-
main II reveals a variety of patterns, including (i) convergent
hillslopes that gradually concentrate flow into small channels
and (ii) divergent branches of fluvial channels in partially
flooded regions. For each domain, we calculated θ and kw,
which are equivalent to the concavity and steepness indices
in Flint’s law (Flint, 1974). The observed variation in θ val-
ues is greater than that typically seen in Flint’s law (Gailleton
et al., 2021). The significant scatter in the logs–logas(r)
plots is consistent with common slope–area plots. However,
the incorporation of hydraulic information and the reduction
of topographic noise by using the hydraulic surface allow
us to link local outliers to specific morphological features.
For example, low s and low as(r) values reflect a flat surface
disconnected from the active channel (e.g. a fluvial terrace),
a feature that traditional methods might struggle to detect.
The fluvial domains also exhibit an interesting surge in s for
high as(r), a novel feature compared to traditional slope–area
plots, decoupled from the typical monotonic downstream in-
crease in drainage area. We isolated these outliers using the
last break in slope in Fig. 9c and d and visualized some of
them in Appendix Fig. B1. A few of these points represent
numerical artefacts linked to local minima that artificially in-
crease h and, consequently, the discharge and as(r). Most of
them correspond to areas of accelerated flow and concen-
trated discharge where channels narrow and branches con-
verge and potentially where hydraulic slopes increase due to
topographic knickpoints.

This last observation highlights the kind of additional in-
formation the hydrology-aware approach unravels. Bernard
et al. (2022) built on earlier work restricted to a hillslope
(Gallant and Hutchinson, 2011), where s ≡ dz

dx , to develop
this principle further and express a proxy for channel width,
called specific width ws(r). The specific width is calculated
from the ratio between single-flow-direction drainage area
(i.e. most convergent flow lines) and the specific drainage
area (i.e. representing the flow field spread to its natural ex-
tent). As acknowledged by the authors, the challenge lies in
the choice of the single flow path, which will determine A:
if the latter does not coincide with that main discharge field,
the results are highly noisy and difficult to interpret. With
the precipiton method, Bernard et al. (2022) suggest the cal-
culation should be post-processed on the discharge field cal-
culated at low-flow conditions and following its maximum
values.

We leverage GraphFlood integrated directed acyclic graph
data structure to optimize this process and generalize it to
the 2D channel network. Using the directed acyclic graph
calculated from the equilibrated hydraulic surface, we re-
peat a stochastic walk to calculate A, where the steepest re-
ceivers of each node are determined from the multiple flow
receivers using the hydraulic surface and a probability func-
tion of these receivers’ Qout. Repeating this walk about 50
times and keeping track of node-wise max(ws) ensures all
the channel pixels are visited. Figure 10 displays the result-
ing field of flow width where we simply apply a threshold to
filter out unreasonable values where A lies out of the main
channel for a few nodes. This method effectively highlights
fine-grained variations in flow width and allows its system-
atic, efficient extraction by unravelling patterns of “width”
knickpoints.

6 Discussion

6.1 Controls on numerical efficiency and accuracy

Computational efficiency to reach the stationary solution is
one of the main advantages of GraphFlood, and Fig. 12 pro-
vides a number or benchmark function of the number of
nodes of the DEM. However, computational efficiency de-
pends on multiple factors, making the efficiency partly case-
dependent.

First, part of the method relies on subjective choices. As
demonstrated on Fig. 5, there are spatial discrepancies in
GraphFlood convergence speed. A study focusing on fluvial
domains (e.g. flood extent) often only requires < 100 itera-
tions, while obtaining convergence for the entire landscape
(e.g. separate the different process-based domains) can take
up to a few thousand iterations. The time step also influences
the speed and accuracy of the algorithm. Maximizing the
time step reduces the number of iterations to reach conver-
gence. Yet, it also impacts the accuracy, consistency, compu-
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Figure 9. Classification of different domains at the test sites based on the s–as(r) relationship. Panels (a) and (b) show the classification of
an area of interest for the Green River and Hanalei test sites, respectively. Panels (c) and (d) show the corresponding logs–logas(r) plots.
The colour of the points corresponds to their domains. As described in the main text, we determined the separations of the domains using the
breaks in slope in the binned data. Outliers, belonging to nodes showing high as(r) and potentially high s, are displayed in Appendix Fig. B1.

Figure 10. Effective width for a section of the Hanalei River, re-
flecting channel widening and narrowing.

tational time, and stability of the solution (i.e. a higher time
step plateau to a fluctuating hydraulic surface).

Secondly, switching the model from multiple flow direc-
tions to single-flow-direction mode reduces the number of
operations to compute and therefore the computational time.

However, the resulting water surface is impacted by this
choice due to the over-focusing of flow in single flow routing
(Fig. 11). The line concentrating all the flow overestimates
Qin, while all the other channel nodes overestimate Qout, re-
sulting in a global underestimation of h. The error in Green
River is concentrated around 10 %.

Finally, the performances of GraphFlood are tightly linked
to the numerical framework used for its implementation. The
simplicity and versatility of GraphFlood make it straightfor-
ward to re-implement in different frameworks as long as they
offer basic graph data structure and local minima handling.
Computing the directed acyclic graph and the related algo-
rithms for each iteration accounts for a big part of the com-
putational time. Therefore, the implementations of these al-
gorithms strongly impact the overall performances. For ex-
ample, the exact same simulation takes approximately 250
or 800 ms in the Python/C++ implementation or using MAT-
LAB©/TopoToolBox (Schwanghart and Scherler, 2014), re-
spectively. The time-consuming algorithms are the topolog-
ical ordering (e.g. Anand et al., 2020; Braun and Willett,
2013; Carretier et al., 2016), the local minima resolver (e.g.
Cordonnier et al., 2019; Barnes et al., 2014; Gailleton et al.,
2024), and the receiver and donor computations as they need
updates at each iteration.

A detailed time benchmark comparison with other meth-
ods can also quickly be misleading because of the divergence
of scopes: GraphFlood focuses on steady flow, which is con-
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Figure 11. Differences in final results for a single flow solver
and multiple flow solvers. The multiple-flow-direction solution is
cleaner and has fewer artefacts. The magnitude of the differences
is a function of the frequency at which the D8 single-flow-direction
flow passes through a cell (proxied here by multiple flow directions,
as(r)). While single-flow-direction solvers are faster and simpler,
their accuracy will be a function of diverging flow patterns. Smaller
1t can reduce the differences.

Figure 12. Time benchmark comparing the computational effi-
ciency of GraphFlood and its induced graph variant for the Green
River DEM resampled at various resolutions. The global conver-
gence time represents the timing for converging the model for the
fluvial and colluvial domains, while the time per iteration is an im-
portant metric when considering GraphFlood for LEMs.

ceptually too different to compare to transient solvers (e.g.
Bates et al., 2010; Brunner, 2016). River.lab (Davy et al.,
2017, formerly Floodos) also targets the stationary solution.
Bernard (2022) demonstrated that the method could reach the
same orders of magnitude for the time required to get a con-
vergent solution in the main rivers in specific cases where the
influx of precipitons is optimized to enter only the main chan-
nel via discrete inlets from tributary junctions. However, the
efficiency of this method decreases when simulating other

parts of the landscape, such as hillslopes, due to the low fre-
quency of precipitation passage on non-convergent areas.

Nevertheless it is worth noting that the algorithm is scal-
able: the Green River site converges in about 20 s for the
main rivers, with less than 200 ms per iteration. We also
tested GraphFlood on an 83-million-pixel DEM on a lap-
top with 32 GB of memory, and the model converged for the
main rivers in about 20 h with 100 s per iteration.

6.2 Potential optimizations

An obvious optimization consists of developing a parallel
version of GraphFlood. In this paper, we made the choice
to remain on a single-threaded CPU (i) for simplicity, (ii) for
flexibility, and (iii) to favour the possibility of running con-
current models to explore parameter space. The transient
mode can be parallelized, even on a GPU, as each node is
independent of the others at a time t , similar to Apel et al.
(2022). Stationary GraphFlood, on the other hand, has a
strong non-local component in the calculation of Qin and
would require significant modification to be partially paral-
lelized using, for example, Barnes et al. (2021) .

Another optimization consists of improving our manage-
ment of time stepping. CFL conditions only theoretically ap-
ply to our calculation of Qout but not to the propagation of
Qin in stationary mode. An alternative finite-difference for-
mulation like Runge–Kutta or an implicit formulation could
allow for larger time steps. However, these methods would
only increase the efficiency of a single iteration but would
still suffer from the highly iterative nature of the algorithm
to reach an equilibrated hydraulic surface.

Finally, we can significantly reduce the computation time
of studies interested in the fluvial domain only. As suggested
in Bernard (2022) and illustrated in Fig. 4, GraphFlood con-
verges significantly faster in areas with higherQ. The fluvial
domain only represents a minor subset of the total number
of nodes in a landscape, and theoretically, focusing only on
these nodes could significantly speed up the process. Induced
sub-graph methods offer solutions to apply algorithms in a
subset of a directed acyclic graph without the need to pro-
cess its entirety. In the case of rivers, it requires the identifi-
cation of all the nodes of interest, i.e. downstream of a given
discharge or drainage area threshold. Taking full advantage
of this optimization is challenging as it requires the dynamic
identification of the nodes of interest without processing the
whole graph.

We developed an induced sub-graph method to take ad-
vantage of that optimization. The principle remains the same
as in Sect. 3.1, except that graph-related operations are com-
puted on a node-to-node basis (e.g. computing the directed
acyclic graph donors and receivers, handling of local min-
ima, topological ordering). A pre-computing step determines
input points based on drainage area thresholds or arbitrary
input points (Tarboton, 1997). These points are pushed in
a priority queue that sorts active nodes per decreasing el-
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evation (opposite to Barnes et al., 2014), ensuring that the
most upstream node of interest that has not been processed
yet is always next in queue. The nodes are popped and pro-
cessed from the priority queue sequentially. Once Qin and
Qout are computed according to Sect. 3.1, we push in the pri-
ority queue the receivers of the active node. The process is
repeated until the queue is empty. Note that if a node has no
receiver and is not a model edge, we gradually fill the local
depression until an outlet is found, in a way similar to Davy
et al. (2017) or Gailleton et al. (2024).

This version of the algorithm reproduces the results from
the original one, except that there are minor artefacts near
the input points. One iteration takes 250 ms with Graph-
Flood and 15 ms with the induced graph method. For a dis-
charge threshold of 36 000 m2 and a precipitation rate of
50 mm yr−1, the models converge for the main rivers in about
50 s for GraphFlood vs. 3 s for the induced graph method,
demonstrating strong potential for studies focusing on the
fluvial domain. The complexity of the algorithm is tied to
the priority queue and is therefore O(n logn), with n being
the number of nodes in each traversal, meaning computa-
tion time increases nonlinearly as the drainage area threshold
decreases. Figure 12 provides an extensive time benchmark
comparing the efficiency of both methods in a global and per-
iteration perspective.

6.3 Potential for hydromorphometry and landscape
evolution models

Bernard et al. (2022) demonstrated the potential of informing
common scaling laws used in tectonic geomorphology (e.g.
Kirby and Whipple, 2012) with hydrodynamics. GraphFlood
represents a step toward making the inclusion of hydrology
more systematic in geomorphological analysis. For example,
s− as(r) plots, as illustrated by both Bernard et al. (2022)
and Fig. 9, isolate more signals than classic S–A as per orig-
inally designed by Morisawa (1962) and Flint (1974). as(r) is
not strictly a function of the downstream distance like A and
has the potential to express a wider range of landforms. Data
points with high as(r) and/or high s are likely to represent ar-
eas of increased stream power beyond the common geomet-
rical knickpoint (e.g. increased discharge due to local chan-
nel narrowing), as demonstrated in Fig. B1. Alternatively,
low s and low as testify to abnormally flat areas (i.e. flat ar-
eas not visited by rivers), which if calculated from multiple
runoff rates could unravel families of terraces. Commonly
used metrics linked to S–A (e.g. concavity index, steepness
index) are likely to express a wider range of signals when
extracted from s–as(r). Both our test sites and the study of
Bernard (2022) show similar global patterns in s–as(r) plots
while displaying notably different values, regression coeffi-
cient and intercept, and absolute values.

Combined with effective width or the direct calculation
of shear stress from h, hydromorphometrics can help iden-
tify and quantify a new family of responses to perturbations.
Alongside geometrical knickpoints (e.g. Gailleton et al.,
2019), areas of channel narrowing or widening or acceler-
ated flow can be identified, unravelling wider ranges of land-
scape responses to perturbations. Systematic calculations of
all these metrics for multiple ranges of runoff rates could help
redefine and complete global scaling laws comparing dis-
charge, drainage area, channel width, and hydraulic slopes.

GraphFlood’s ability to extract metrics for various precip-
itation rates also opens possibilities for indirect metrics. For
instance, Clubb et al. (2022) and Clubb et al. (2023) high-
lighted the importance of valley width in understanding land-
scape evolution. By using extremely high precipitation rates
with GraphFlood, it becomes possible to flood the valley and
systematically determine its width. Another potential appli-
cation could involve gradually increasing precipitation rates
to progressively flood a fluvial system from its bed to its
floodplain, revealing multiple families of terraces.

GraphFlood allows the fast approximation of hydrody-
namics and therefore shear stress. Coupling GraphFlood with
physics-based morphodynamics (e.g. Davy and Lague, 2009;
Minor et al., 2022) would allow the upscaling of short-term
fluvial dynamics to a longer timescale and larger spatial
scales.

7 Conclusion

This study introduces GraphFlood, an efficient algorithm
for solving 2D hydrodynamics based on 2D shallow-water
equations specifically tailored for large DEMs. By employ-
ing Manning’s equation within a graph theory framework,
GraphFlood iteratively computes a stationary flow depth and
discharge equilibrated to prescribed runoff rates. Leverag-
ing graph theory algorithms ensures numerical efficiency, en-
abling GraphFlood to compute solutions for rivers in just sec-
onds for a million-pixel DEM. Validation against analytical
solutions and established models demonstrates the accuracy
of GraphFlood. The simplicity, efficiency, and versatility of
GraphFlood position it as a promising engine for incorporat-
ing 2D hydrodynamics into large-scale topographic analysis
and landscape evolution models. Future work could utilize
GraphFlood to investigate river inundation patterns, system-
atically extract river width as a function of water discharge,
or focus on classifying landscapes to better relate landscape
shape to geomorphological processes.
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Appendix A: Notations

Table A1. Nomenclature for scientific notations.

Notation Meaning Dimension Unit

Physical quantities

Z Topographic surface [L] m
Zh Hydraulic surface [L] m
s Hydraulic slope [L L−1] m m−1

h Flow depth [L] m
u Flow velocity [L T−1] m s−1

q Water discharge per unit width [L2 T−1] m2 s−1

Q Volumetric water discharge [L3 T−1] m3 s−1

P Precipitation rate [L T−1] m s−1

α Manning’s exponent – –
n Manning’s friction coefficient [T Lα−1] s mα−1

t Time [T] s
as(r) Effective drainage area for a runoff rate [L] m
Wr Effective width [L] m

Discrete quantities

i Generic index of cell – –
donors(i) List of cells directly upstream of i – –
receivers(i) List of cells directly downstream of i – –
h∗ Analytically determined flow depth [L] m
qin Water discharge per unit width entering a cell [L3 T−1] m3 s−1

qout Water discharge per unit width leaving a cell [L3 T−1] m3 s−1

Qin Volumetric water discharge entering a cell [L3 T−1] m3 s−1

Qout Volumetric water discharge leaving a cell [L3 T−1] m3 s−1

Ac Surface area of a single cell [L2] m2

A D8 drainage area [L2] m2

1W Flow width for a given cell [L2] m2

C Correction factor for multiple flow partitioning – –
Cr Courant number – –

Appendix B: Outliers in s–as(r )

Figure B1. Zoom-in on outliers for the Hanalei test site, isolated using data from Fig. 9. From left to right, the maps show the flow depth
with the localization of the outliers, the specific area, and the hydraulic slope. Panel (a) displays outliers concentrating flow on a narrowing
section of the river or on its bends. Panel (b) shows the case of converging branches. In both cases, outliers are accompanied by a slight
increase in s.
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