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Abstract
The Bangui magnetic anomaly (BMA) in Central Africa is one of the largest continental magnetic
anomalies on Earth in terms of amplitude and lateral size. Determining the sources of the BMA can lead
to an increased understanding of the crustal dynamic in the Central African sub-region and the African
continent as a whole. Magnetic and gravity analysis-based derivative, two-dimensional forward modelling
and a Curie isothermal depth, showed that (a) the bottoms of the magnetic sources were between 15 and
35 km; (b) the BMA is a coalescence of several anomalies that trend E-W and roughly NE-SW. These
directions coincide with regional Pan African-aged shear zones along the Central African orogenic belt
and to thrust sheets at the northern edge of the Congo Craton. The depth of magnetization does not
exceed 35 km with the amplitude of magnetization becoming smaller in the Central African Republic. The
potential magnetic susceptibility sources have an average density of 2850 kg/m3 and magnetic
susceptibilities between 0.06 and 0.25 SI. The BMA is interpreted to be a combination of middle and
lower crustal bodies that are not continuous and consist of magnetic mineral rich granulites and banded
iron formations. The gravity and magnetic modelling indicate that the entire crust was involved in the Pan
African collisional event similar to what is seen in the Mozambique belt in East Africa. Combined with
geological and geochemical studies, the models add evidence that one or two subduction zones were
involved in accreting terranes on the northern edge of the Congo Craton. The tectonic accretions caused a
crustal remobilization along major shear zones that has locally contributed to a probable circulation of
�uids enriched in ferromagnesian minerals during late Neoproterozoic magmatism that created the BMA
sources.

Highlights
Magnetic susceptibility sources of the Bangui Magnetic anomaly were imaged using 2D interactive
models and were found to be up to 35 km in depth.

The sources of the BMA are lower and middle crustal banded iron formations and ma�c-rich
granulites that are part of the Central African Orogenic Belt at the northern edge of the Congo Craton.

Integrated with gravity data modelling, the sources of the BMA must be related to tectonic processes

The depth and extent of the magnetic susceptibility sources suggest that the Central African
Orogenic Belt was formed during subduction zone processes between the Saharan Metacraton and
the Congo Craton during the latest stages of the Pan African orogeny

1. Introduction
The BMA, one of the most important terrestrial magnetic anomalies within Africa (Fig. 1), has been
intensively studied (Godivier and Ledonche, 1962; Benkova et al., 1973; Godivier, 1980; Maus et al., 2009;
Vervelidou and Thebault, 2015; Meyer et al., 2017) which has produced numerous and sometimes
controversial discussions about its origin ranging from geological to meteoritic models (Marsh, 1977;
Regan and Marsh, 1982; Girdler et al., 1992; Ravat, 1989; Ravat et al., 2002; Hemant and Maus, 2005;
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Klokocnik et al., 2010; Ouabego et al., 2013; Haggerty, 2014; Ki Kis et al., 2021). These studies have used
a variety of methods ranging from derivative analyses to forward modeling to aid in interpreting the BMA
(Regan and Marsh, 1982; Marsh, 1977; Njiteu et al., 2021a). Despite of all the above studies, there is still a
fundamental question about the sources of the anomaly including its geometry, the lateral and vertical
extensions, and its petrophysical characteristics. The knowledge of the sources requires the consideration
of several structural parameters, including the crustal magnetic susceptibility architecture (Dorbath et al.,
1981; Dorbath et al., 1985; Njiteu et al., 2021b) and the mechanical behaviour of the lithosphere (Njiteu et
al., 2021b). The BMA has been linked to the formation of the Congo Craton (Dorbath et al., 1985; Njiteu et
al., 2021b) but lies within the Central African Orogenic Belt (CAOB) that marks a Neoproterozoic suture
zone between the Congo Craton to the south and the Saharan Metacraton to the north (Figs. 2A; C). This
region has two different complexly formed lithospheres where their deep structures are poorly known due
to the lack of deep geophysical studies. Widely spaced broadband seismic stations have indicated that
the crust is thinner beneath the CAOB and considerably thicker beneath both the Saharan Metacraton and
Congo Craton (Sobh et al., 2020; Njiteu et al., 2021b).

Besides broadband seismic models, the northern edge of the Congo Craton is associated with a large
positive E-W trending gravity anomaly (Boukeke, 1994; Ngalamo et al., 2017) which overlaps with the
BMA (Njiteu et al., 2021a; Njiteu et al., 2021b). Thus, the overlap of large-scale geophysical signatures at
the northern edge of the Congo Craton can aid in explaining the deep structure of the region using the
satellite based EMAG2-v3 model (Fig. 1a) and ground gravity data. Previous gravity modelling in the
region of the BMA (Njiteu et al., 2021a; b) indicated that there is a spatial relationship in Cameroon
between a portion of the BMA and a gravity maximum marking the northern boundary of the Congo
Craton. Gravity and magnetic data will be analysed to determine the nature and extent of the magnetic
susceptibility sources of the BMA from Cameroon to the Central African Republic. The analysis will
include the construction of a series of derivative maps and by constructing nine forward models across
the BMA. Additionally, to aid in constraining the source depths including Curie isothermal depths, a power
spectrum analysis will be performed. The modelling methods will allow us to address: (1) the unknown
nature of the deep sources associated with the BMA and (2) the nature of the sources associated with the
gravity maximum at the northern edge of the Congo Craton. These modelling methods in conjunction
with available geological constraints will aid in determining the depth and geometry of magnetic
susceptibility and density sources within and surrounding the CAOB. These sources will then be
interpreted in order to determine the source of the BMA and its relation to the tectonic evolution of the
region.

2. Tectonic and geological setting of the BMA
The BMA is located at the intersection of the CAOB and the northern edge of the Congo Craton (Fig. 2C).
The CAOB extends for over 4000 km from Cameroon to Sudan and has been associated with the
Pernambuco Fault in Brazil (Nzenti, 1988). The CAOB is considered to have formed during the collision
between the Congo Craton and the Saharan Metacraton during the Pan-African Orogeny (Toteu et al.,
2006). At the northern edge of the Congo Craton, the CAOB is a multiple collisional belt that contains
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lithologies which re�ect regional extension, intense migmatization, high-pressure granulite
metamorphism and contains major shear zones including the Central Cameroon Shear Zone (CCSZ), the
Sanaga Shear Zone (SSZ), the Tchollire-Banyo Shear zone (TBSZ) and its extension to the Chad
(Braitenberg et al., 2011; Toteu et al., 2022; Nzenti, 1988; Toteu et al., 2004; Toteu et al., 2006). The CAOB
is marked in the Mesozoic by the development of Cretaceous basins (Doba-Dosseo-Salamat, Fairhead
and Okereke, 1987; Genik, 1993; Guiraud and Binks, 1992; Eyike and Ebbing, 2015; Braitenberg, 2015;
Maddaloni et al., 2021) due to the reactivation of the shear zones. In Cameroon, the BMA straddles the
Yaounde Group and the Congo Craton (Fig. 2C). The Yaounde Group consists of a thrust sheet which
borders the Congo craton to the south and contains micaschists, chlorite-schists, amphibolites,
paragneiss, orthogneiss, quartzites (Toteu et al., 2022; Owona et al., 2012; Owona et al., 2013), and also
pre-syn-tectonic massifs consisting of ma�c rocks or rocks of intermediate composition, ultrama�c rocks
that contain serpentinites. The southern part of the Yaounde Group lies directly in contact with the Congo
Craton and is represented by the Mbalmayo schists. The petrological and chemical characteristics of this
zone are those of a detrital and argilo-carbonate sedimentary rocks deposited in a platform environment
and metamorphosed under green-schist facies conditions (Feybesse et al., 1998; Owona, 2008; Owona et
al., 2012).

In the Central African Republic, the CAOB (Fig. 2C) consists of an Archean and Paleo-Proterozoic
basement overlain by Neo-Proterozoic meta-sedimentary units. The Archean basement consists of a
2900 Ma high-grade basic metamorphic complex of a variety of lithologies (Lavreau, 1982) including
charnockites and gneisses which are characteristic of a pre-Pan-African collision zone that was
reactivated during the Pan-African orogeny. The greenstone belts lithologies consist of komatiites,
tholeiitic basalts, andesites, itabirites, grauwackes and rhyodacitic tuffs with Archean granitoids
(Poidevin et al., 1981; Dostal et al., 1985; Poidevin, 1991). The central part of the Central African Republic
contains an Archean and Paleo-Proterozoic complex which constitutes a basement on which lie Pan-
African granulites and gneisses (Pin and Poidevin, 1987; Lavreau et al., 1990). The granulites are well
exposed in the western and central areas of the Central African Republic; these granulites have been
correlated with those of the Ntem Complex in southern Cameroon (Pin and Poidevin, 1987). The high
concentration of iron oxides in these granulites indicates that they were derived from a ma�c parental
magma (Clark, 1999). Pin and Poidevin (1987) showed that the lower crust would have a more ma�c
composition than at the base of the surface rocks with the emplacement of ma�c basalts in the lower
crust during Pan-African orogeny being more possible solution. Additionally, these granulites would be
the only ones that are stable at depths of nearly 50 km under conditions of high pressure and
temperature (Boukeke, 1994).

The northern edge of the Congo Craton in Cameroon, marked by the Yaounde thrust sheet and its
extension in Central African Republic (Fig. 2C) and the CAOB, is the location of numerous thermo-tectonic
and seismological interactions (Nedelec et al., 1986; Feybesse et al., 1998; Toteu et al., 2004; Penaye et
al., 2004; Lerouge et al., 2006). Geological studies have estimated that the northern limit of the Congo
Craton to be at the contact zone with the Yaounde Group (Shang et al., 2004; Toteu et al., 2004; Owona,
2008), where the contact has been interpreted to have been caused by the Pan-African orogeny which
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formed thrust sheets between 2°N and 3°N (Figs. 2B-C). The Pan-African orogeny along the northern edge
of the Congo Craton has been interpreted to have involved two subduction zones that accreted at least
two terrains between the Congo Craton and Saharan Metacraton between 750 and 550 Ma (Toteu et al.,
2022). The youngest tectonic events (620 − 550 Ma) involved the creation of suture zones (including the
CAOB) and magmatism along the northern Congo Craton (Toteu et al., 2022). Gravity studies (Poudjom,
1993; Boukeke et al., 1994; Tadjou et al., 2009; Ngalamo et al., 2018; Njiteu et al., 2021b) have shown that
the northern edge of the Congo Craton is de�ned by a large amplitude gradient, oriented E-W at roughly
4°N of latitude. Modelling of a gravity anomaly parallel to 4°N gravity indicated northward extension at
depth of the Congo Craton structures (Boukeke, 1994; Tadjou et al., 2009). Njiteu et al. (2021a; b), while
establishing a spatial relationship between the lower lobe of the Bangui magnetic anomaly and the large
E-W trending gravity anomaly previously de�ned at the northern edge of the Congo craton in Cameroon.
This interpretation raises two issues: (1) the unknown nature of the deep sources associated with the
BMA and consequently (2) the nature of the sources associated with the positive gravity anomaly at the
northern edge of the Congo Craton.

3. Signi�cance of the current study
Knowledge of the sources and origin of the BMA is important both in understanding the internal dynamic
processes within Cameroon and Central African Republic, and for estimating the structural parameters
that de�ne the lithosphere beneath the anomaly. Ki Kis et al. (2021) inverted SWARM satellite magnetic
data to show the di�culty in making only one interpretation for the origin of the BMA. Other gravity and
magnetic investigations (Regan and Marsh, 1982; Ravat, 1989; Girdler et al., 1992; Ravat et al., 2002;
Ouabego et al., 2013; Njiteu et al., 2021a) produced a variety of models on the origin of the BMA and thus,
the controversy around this anomaly. A recent study (Njiteu, 2022) in contrast indicated a geological and
probable crustal origin of the anomaly. So, it would be justi�ed to question the presence and extension of
geological structures whose physical characteristics (magnetic and thermal) would help to de�ne such
an anomaly. Ouabego et al. (2013) interpreted that the observed magnetic anomaly could be caused by
the central African itabirites (metamorphosed banded iron formations), which possess the high magnetic
susceptibilities. Since the itabirites occur within the greenstone belts, this makes them a leading
candidate in de�ning the sources of this anomaly. Boukeke (1994) suggested that granulites (high P – T°
rocks) are likely to be rooted some 50 km below the northern edge of the Congo Craton and Boukeke
(1994), Dorbath et al. (1985) and Njiteu et al. (2021b) showed that there is a spatial relationship between
the BMA, the resultant and the magnetic susceptibility bodies beneath the northern edge of the Congo
Craton (Fig. 2C). Launay et al. (2018) indicated that the BIFs are the source of a similarly sized west
African magnetic anomaly, which occurs at the edges of the West African Craton. The greenstone belts
which are exposed at northern edge of the Congo Craton in Cameroon (Fig. 3B; Akumbom et al., 2022;
Ndime et al., 2019; Tessontsap et al., 2017; Poidevin, 1991) are 1–2 km thick (Alexandrov et al. 1973)
with the southern portion of the BMA (Figs. 1a-b). In the Central African Republic, the greenstones belt
extends over a distance of 150–250 km (Dostal et al., 1985) and consist of ma�c to ultrama�c lithologies
occurring in synclines, itabirites and metarhyolites (Fig. 3A). The BIFs have been dated between 2 and 3.8
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Ga, with most occurring around 2.5 Ga. Younger BIFs have been reported between 0.5 and 1Ga (Klein,
2005) and predominantly composed of quartz, magnetite and hematite. By considering the magnetic
signals speci�c to this anomaly and its geotectonic context, this study attempts, on the basis of simple
direct models, to reconstruct with acceptable margins the probable sources of the anomaly.

4. Gravity and magnetic data
Ground gravity data in the form of simple Bouguer gravity anomalies were obtained from the
International Gravimetric Bureau and were collected during several campaigns in Cameroon, Central
African Republic and bordering countries along tracks and roads by the Institute of Research for
Development (IRD) - formerly known as ORSTOM (O�ce for Scienti�c and Technical Research in the
Overseas Territories). The gravity stations are spaced about 3 to 10 km apart (Godivier et al., 1986;
Poudjom et al., 1995). In Cameroon, the error of the station coordinates varies between 0,1’ and 1’ (200
and 2000 m) and the accuracy of the gravity values is estimated to be approximately 0.2 mGal (Poudjom
et al., 1995). In Central African Republic, the maximum error on the position of the measurements is
estimated to be 200 m, 10 m on the elevation and less than 1 mGal on the gravity measurements
(Boukeke et al., 1995). The database contains 33, 085 stations (Fig. 5) with some local areas having
better coverage than others because of limited access due to the landscape and dense forest. Since the g-
value on the ground is a superposition of several effects, undesirable effects (topography, instrumental
drift) must be reduced. Variations in altitude also cause the g-value to vary, so it is important to bring the
measured values back to the same reference level in order to make comparisons. It is assumed that each
measurement made at an altitude (h) can be brought back to the level of the geoid (Z = 0) or to any
reference point parallel to the geoid and whose altitude is expressed by Z = H (Poudjom 1993; Boukeke,
1994). If we consider g, the value read at a station and h, its altitude with respect to a geodetic reference
frame, then the value g0 at this equipotential surface is expressed by:

g0 = g + 0. 3086h (1)

This correction reduces the gravity value measured at the geoid by 0,3086 mGal/m. The free-air
correction does not take into account the mass that may exist between the measuring station and the
geoid. For the calculation of the anomaly (difference between a measured value and a theoretical value
realised at the same measurement point and for the same geophysical parameter, i.e., density), it is
important to calculate the theoretical value of g. For a homogeneous ellipsoid model de�ned by: the
major axis half-axis of the ellipsoid: a = 6378160 m, the minor axis half-axis of the ellipsoid: b = 
6356774,5 m, the ellipticity: e = (a-b) / a = 1/298,247, the product GM = 398603*109 m2/S2, the theoretical
value of gravity gT will depend only on the latitude φ and will be computed according to the relation (2):

gT = 978,031850 (1 + 0.005278895 sin2φ + 0.000023462 sin4φ) (2)

Consequently, the free-air gravity (Fig. 4) is calculated by subtracting the gT value from the �rst relation:
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∆gl = g + 0.3086h – gT (3)

By comparing the spatial distribution of free-air anomalies and topography, we �nd that the high altitudes
regions (Fig. 1B) are characterized by positive free-air anomalies.

Correlation between the free-air anomalies and the topography (Fig. 8) help to predict the state of
isostatic equilibrium; Poudjom et al. (1992); Njiteu et al. (2021b), showed that relatively low regions
(Fig. 1B; with altitudes less than 750 m or even 1000 m) where the free-air anomaly is almost null (Fig. 4),
are roughly in isostatic equilibrium. However, in higher altitude areas (Fig. 1B; more than 1000 m), the
free-air anomaly depends strongly on the topography (Fig. 8). More the free-air anomalies follow a similar
direction with those de�ned by the large deformation corridors: the Central Cameroon shear zone, the
Tchollire-Banyo shear zone and the Cameroon Volcanic Line respectively ENE and NE (Fig. 4). The
complete Bouguer gravity anomaly (CBA) was calculated using a constant density of 2670 kg/m3 and
mean sea level as a datum. Gravity terrain correction were applied using a digital elevation model (DEM)
from 0°-22N and 5°-50°E and a terrain density of 2670 kg/m3 to compute a complete Bouguer gravity
anomaly. The CBA data were gridded using minimum curvature at 3 km interval to produce a complete
Bouguer gravity anomaly map (Fig. 5). The analysis of the evolutionary trend between the CBA and the
topography along the selected pro�les (Fig. 8) shows two cases: generally, following a N-S orientation, an
inverse correlation towards the South, i.e., in the Precambrian terrains of Cameroon and Central Africa
(Fig. 3A). This trend re�ects the rigidity of the lithosphere with elastic thickness values ranges between
100 and 150 km (Njiteu et al., 2021b; Audet and Bürgmann, 2011; Gussinyé et al., 2009); These values
correspond to a thick continental crust (� 40 km; Tokam et al., 2010; Njiteu et al., 2021a; Gallacher and
Bastow, 2012). Towards the north of the pro�les (Fig. 8), i.e., in the rift zones (Fig. 2C), a positive
correlation between topography and Bouguer is observed, indicating a less rigid lithosphere. Moreover,
according to Njiteu et al (2021b), the elastic thickness values in these areas vary between 20 and 100 km;
the crust being less thick and constantly remobilised due to the seismic and thermo-tectonic events in
connection with the regional shear zones and the Cameroon volcanic line (Fig. 1B).

The magnetic data were derived from the third version of the Global Earth Magnetic Anomaly Grid
(EMAG2-v3) which is a compilation of ground, satellite, marine and aeromagnetic data where
wavelengths of more than 330 km have been replaced with the magnetic anomalies from the lithospheric
MF7 CHAMP satellite model (Meyer et al., 2017). The EMAG2-v3 has resolution of 2-arc-minutes and the
elevations have been downward continued to 4 km above sea level (Meyer et al., 2017). Compared to the
EMAG2-v2 database (Maus et al., 2009) which predicted magnetic anomalies based on the local geology
for the interpretation of anomalies in the areas where there is no available data, the third version is based
only on available datasets (Meyer et al., 2017). The EMAG2-v3 better represents the complexity of the
anomalies and re�ects more precisely the regions where no data have been collected. A total magnetic
intensity (TMI) data were gridded at 10 km spacing grid and shown in Fig. 6.

To remove the dipolar nature of the earth’s magnetic �eld, one normally uses the reduction to the pole
(RTP) operator (Keating and Zerbo, 1996; Luo et al., 2010; MacLeod et al., 2013; Zhang et al., 2018) on the
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data. However, RTP is unstable at low latitudes and one can apply a latitude correction to overcome this
di�culty. The TMI data (Fig. 6) were reduced to the north magnetic pole with an average inclination of 8°,
declination of -3° and an amplitude correction of -82°. The RTP data were gridded at a 10 km interval
using the minimum curvature method to produce a RTP magnetic anomaly map (Fig. 7).
The CBA map (Fig. 5) has anomalies that range between − 10 and − 110 mGal in value. The region north
of the BMA has higher amplitude anomalies that re�ect thicker crust, while within the BMA region, the
anomalies are of lower values with short wavelengths re�ecting the Proterozoic and Archean lithological
changes.

As compared to the RTP map (Fig. 7), the gravity anomalies are re�ecting different lithologies mainly
related to Congo Craton structures. In the Central African Republic, the BMA mainly occurs over
Precambrian lithologies, extending parallel to the cratonic structures in southern Cameroon beneath the E-
W trending transition zone delineating the Congo Craton and the Adamawa uplift (Fig. 2C). The spatial
extent of the magnetic anomaly indicates that these sources are closely related to the greenstone belts
including BIFs in the Congo Craton, which are associated with the granulites (Fig. 3A). Considering nine
pro�les (Fig. 1B), an overview of the different �eld strength variations is given in Fig. 8.

5. Curie isothermal depths beneath the BMA
The estimation of the magnetization limit is one parameter to determine the nature of the potential
magnetic sources of the BMA. This limit represents the depth beyond which rocks lose their
ferromagnetic or ferrimagnetic properties due to temperatures above their Curie point. An estimation of
the Curie isothermal depths is one of the main steps allowing to approximate the thermal state of the
crust (Quintero et al., 2019; Elbarbary et al., 2022). Knowledge of the Curie isothermal depth variations
also provides information on the different geological discontinuities which may be due either to the
regional variations in the mineralogical composition of rocks or the variations in the local or regional
geothermal regime. Njiteu et al. (2021a) used spectral methods (Spector et al., 1970; Shuey et al., 1976;
Tanaka et al., 1999; Tanaka et al., 2017) to determine the Curie isothermal depths of the BMA and the
surrounding region. Their analysis estimated that the maximum depth of magnetization ranged between
11 and 35 km (Njiteu et al., 2021a) and trend approximately in an ENE-WSW direction (Fig. 9). The depths
increase from west to east, with the shallowest depth being under the CVL and the deepest regions being
under and along the edge of the Congo Craton. To help understand the nature of these depths, crustal
thickness values determined from seismic receiver functions from 32 seismic stations in Cameroon
(Tokam et al., 2010; Gallacher and Bastow, 2012) are shown (Fig. 9). The seismic depths also increase
toward the east, with values of nearly 40 km at the northern edge of the Congo Craton. The northern edge
of the Congo Craton is below the BMA, where the Curie depth are between 36 and 42 km. These depths
give us an idea of the size of the magnetization source causing the BMA. The deeper Curie depths are
common in cratonic areas in Africa (Mohamed & Al Deep, 2021).

6. Magnetic map analysis
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The magnetic data were analysed using analytic signals (AS) (Macleod et al., 2013), horizontal gradients
(Blakely and Simpson, 1986; Blakely, 1996); and tilt derivatives (Nabighian et al., 2005; Salem et al.,
2008). The derivative methods are useful in determining the lateral boundaries of magnetic susceptibility
bodies with the vertical derivatives being good at determining the width of the body and the horizontal
derivatives being good at determining the lateral edges (Marson and Klingele, 1993). However, these
derivative methods provide only a �rst-order geological interpretation (Grauch and Cordell, 1987) with the
results often contaminated by nearby sources and non-vertical source edges. While all derivative
techniques will indicate the position of a body, we used the horizontal derivatives which is better suited in
locating or enhancing the edge of a body than vertical derivatives (Cordell, 1979; Blakely and Simpson,
1986). However, horizontal derivatives will produce a large range of lineaments from both shallow and
deep sources, making the interpretation di�cult (Demissie et al., 2018). To overcome this problem, AS
and tilt derivatives can aid in determining the nature of the lineaments. The AS method is calculated from
total derivatives and may generate maximum anomalies over the edges of magnetic susceptibility body
and works well on shallow source bodies (Li, 2006). The AS method should be combined with a
horizontal derivative map to indicate which maxima are related to vertical contacts, as the horizontal
derivatives produce linear anomalies that are commonly continuous, while the AS method produces more
circular anomalies that are less continuous (Phillips, 2000). However, the AS solution is more accurate
and if the HDR and AS solutions overlie each other, then the contact is vertical (Phillips, 2000). If the HDR
contacts are offset from the AS contacts, then the contacts are dipping (Phillips, 2000).

The tilt derivative method which is ratio of vertical to horizontal derivative, and does not have the problem
of producing anomalies from deep and shallow sources (Salem et al., 2008). The tilt derivative results are
called the tilt angle where a positive tilt angle represents tilt variations within a magnetic susceptibility
source, negative values are tilt variations outside a source and zero values represent the edges of a
magnetic susceptibility source (Salem et al., 2008). The AS, horizontal derivative and tilt derivative maps
using the RTP data are shown in Figs. 11–13, respectively.

On the AS map (Fig. 10A), the anomalies over the BMA can be broken into three regions (1–3, Fig. 10A).
In Cameroon (region 3), the anomalies have short wavelengths and trend roughly N-S with some trending
E-W. These anomalies are located at the northern edge of the Congo Craton. In the Central African
Republic, the anomalies trend N-S to NW-SE (region 2, Fig. 10A) and Boukeke (1994) indicated that these
directions correspond to the transition zone between the Congo craton and the mobile zone. Region 1,
located in the Central African Republic, shows a circular anomaly but on a closer inspection, it is
composed of short wavelength anomalies-oriented NW-SE and E-W. The NW and SE directions may be
related to Archean greenstone belts containing granulites and itabirites (Poidevin et al., 1981). The rough
E-W trending anomalies may be related to the shear zones (Figs. 2 and 10A).

The horizontal derivative map (Fig. 10B) more clearly de�nes the linear anomalies than the AS map. The
BMA is associated with mainly E-W directions with the majority of these lineations being basically in the
same locations as most of the AS anomalies suggesting that the magnetic susceptibility bodies causing
the anomalies are vertical. Girdler et al. (1992), Ravat et al. (2002) and Klokocnik et al. (2010) have
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shown that the BMA in the Central African Republic may be linked to a meteorite impact (Fig. 3A) that has
a circular aureole over a radius equal to the size of the anomaly between eastern Central African Republic
and the borders with Cameroon and adjacent countries (Fig. 3A). However, the circular anomaly observed
from the AS map (Fig. 10A) is too localized and is really a combination of smaller wavelength anomalies.
The magnetic sources within region 1 may be a ma�c intrusion or a magnetite – enriched metamorphic
aureole. The fact that the shape of the anomalies constituting the BMA vary from one derivative map to
another undoubtedly suggests that the magnetic susceptibility and even the magnetic remanence should
be considered in quantifying the sources.

The tilt derivative map (Fig. 10C) shows approximately the same lineation orientations as those on the
horizontal derivative map (Fig. 10B), with most lineations oriented E-W and ENE-WSW. The ENE-WSW
trending lineations are related to the regional shear zones affecting the Pan-African basement. This
direction is along to the major axis of the BMA, which implies a setting in favour of a regional tectonic
constraint. The E-W trending lineaments are that of the secondary gradients related to lithological
variations within the Pan African lithologies north of the Congo Craton (Fig. 3A). The tilt-derivative
lineations indicate that at the parallel 4°N in Cameroon, the BMA is parallel with the Congo Craton
northern limit (Boukeke, 1994; Ngatchou et al., 2014; Ghomsi et al., 2020).

7. Forward modelling
In order to aid in constraining the depth, geometry and physical properties of the BMA source, nine two-
dimensional (2-D) forward models (Figs. 11a-i) were constructed using the topography (Fig. 1B) magnetic
and complete Bouguer gravity anomaly data (Figs. 5, 7, 9 and 10). To constrain the depths, shape and
physical properties of the bodies along each pro�le, constraints including geological mapping, broadband
seismic models and average physical property values from previous studies (Telford et al., 1990; Hemant,
2003; Tadjou et al., 2009) were used. There are no known density or magnetic susceptibility
measurements in the region and no seismic refraction studies where densities could be estimated from P-
wave values. Additionally, there are no deep drill holes to estimate the depth to the various Proterozoic
and Archean lithologic units. Thus, the forward models will be only constrained from widely spaced
broadband seismic models to estimate the depth of the crust-mantle and upper-lower crust boundary.
Tokam et al. (2010); Gallacher & Bastow (2012); Njiteu et al. (2021b) determined the crustal thicknesses
(Fig. 11a-i) varied between 37–42 km which are similar to the bottom of the magnetic susceptibility
bodies estimated for Curie depths along each pro�le (Fig. 9). The constraints were varied by 10% during
the modelling process to create �nal geological reasonable gravity/magnetic models.
The three main bodies on each pro�le are the upper, middle and lower crusts with densities of 2670
kg/m3, 2850 kg/m3 and 3000 kg/m3 respectively. At the start of the modelling process, these three bodies
are considered as non-magnetic. The observed anomalies were sampled along each pro�le at a constant
5 km spacing. The spacing between the pro�les is a constant 146 km. Pro�les are taken long enough to
provide good coverage of the magnetic sources and thus minimize border effects. The magnetic
parameters of the bodies included a total magnetic intensity of 33,812 nT, inclination of 90° and a
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declination of 3°. The crustal structure was determined based on gravity (Fig. 5) and topographic data
(Fig. 1B). The shape and extension of the intrusions depended on the densities and magnetic
susceptibilities of each body was necessary to �t the observed data. The bottom of the majority of the
magnetic sources varies accordingly with the ~ 35 km Curie depths estimated along the BMA (Fig. 9).
Models P1 to P4 passes through the E-W trending gravity maximum in southern Cameroon (Fig. 5). All the
bodies in the crust have a density of 2850 kg/m3 which is compatible with granulites (Telford et al., 1990;
Boukeke, 1994; Tadjou et al., 2009; Hemant, 2003). The magnetic susceptibilities values for the crustal
bodies along models P1 and P2 (0.06 SI and 0.1 SI) are characteristic of basic granulites (Telford et al.,
1990). Magnetic susceptibilities values along pro�les P3, P5 and P7 are interpreted to be metamorphic
rocks enriched in magnetite. On models P4, P8, the magnetic maxima are modelled due to BIFs.
Considering their high hematite and magnetite enrichment, BIFs have mineralogical characteristics
compatible with intense magnetism and as such, depending on their abundance in the crust, they are
likely to perturb �eld values. The conditions to be considered are both the position of the outcrops and the
magnetic properties observed in the �eld. The location of the BIFs deposits in the Congo craton (Fig. 3A)
allows a spatial correlation with the BMA. Ouabego et al. (2013) showed that over an area of � 15,000
km2, the itabirites in the Central African Republic have the highest magnetic susceptibility values.
Alexandrov (1973) using the anomalies in the Kursk region of Russia, with amplitudes of � 10,000 nT,
showed that the anomalies are associated with Precambrian BIFs formations; which extend
discontinuously across the surface for about 3000 km. For models P6 and P9, the surface geology does
not indicate what the source may be but that there is a large magnetic susceptibility body within the
crust.

8. Discussion
The magnetic data analysis shows that the BMA is a large amplitude magnetic anomaly on the northern
edge of the Congo Craton along the CAOB (Fig. 2C). The BMA is not one large, continuous anomaly but
consists of several superimposed individual anomalies that compose the large amplitude anomaly
(Figs. 10A-C). The anomalies are associated with Pan African aged NE-trending regional shear zones and
E-trending lineaments. Modelling indicates that the high magnetic susceptibility bodies start to the south
of the BMA, at the northern edge of the Congo Craton and end at the southern edge of the Saharan
Metacraton (Fig. 2C). The derivative analysis (Figs. 10A-C) and 2D forward modelling (Figs. 11A-I)
support that the BMA is of geological origin caused by tectonic processes and the magnetic susceptibility
bodies are located within mainly the middle and lower crust. The gravity anomalies over the same region
contain gravity maxima which have dense sources in some locations but there are numerous regions with
gravity minima (Braitenberg et al., 2015; Fig. 5). This suggests that magnetic minerals that cause the
BMA occur in low density rocks. Thus, the BMA anomaly, which in its spatial extension covers the
northern edge of the Congo Craton and CAOB (Fig. 2), has a bipolar structure whose sources have high
magnetic susceptibilities, relatively dense in places and consist of deeply buried rocks that are stable
under high P-T° conditions.
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Analysis of the magnetic lineaments on the horizontal derivative (Fig. 10B) and tilt derivative (Fig. 10C)
maps indicates that the BMA consists of mostly NE-SW trending anomalies with several E-W trending
secondary anomalies. There is a spatial correlation between the major E-W and NE-SW tectonic directions
along the regional shear zones (Fig. 2) with the magnetic lineaments. These correlations are also
indicative of the tectonic control on the emplacement of the rocks beneath the BMA. The analysis of the
mechanical behaviour of the lithosphere (Njiteu et al., 2021) shows the in�uence of regional tectonics on
the crustal architecture in this region.

If one accepts the link between the geological structures at the northern edge of the Congo Craton and the
BMA, and its subsequent signi�cant vertical extension, then a fundamental hypothesis can be formed
based on the models (Fig. 11a-i). This includes the existence of wide spread BIFs in Central Africa (Dostal
et al., 1985; Ndime et al., 2019) and the presence of granulites at the northern edge of the Congo Craton
(Pin and Poidevin, 1987; Boukeke, 1994; Toteu et al., 2006). The complete Bouguer gravity anomalies
(Fig. 5) show an elongated E-W maximum in Cameroon that have been interpreted to be caused by buried
granulites (Boukeke, 1994; Tadjou et al., 2009). The crust between Cameroon and the Central African
Republic is mainly in�uenced by several middle to lower crustal high magnetic susceptibility bodies
which are also dense and can explain the gravity maxima at the northern edge of the Congo Craton and
the BMA. The location of the nine pro�les (Fig. 1B) depends of the orientation of the magnetic gradient
(Figs. 10A-C). The regional tectonic directions and orientation of the magnetic gradients are criteria that
de�ned the choice of the pro�les. in the intra-continental domain, Cameroon and Central African Republic,
the BMA extends over a distance of roughly 1540 km (Fig. 7), with secondary E-W gradients (Fig. 10A-C).
Along pro�les P1, P2, P3 and P4, the modeled magnetic susceptibility sources are elongated bodies with
a density of 2850 kg/m3 at the northern edge of the Congo Craton. This result is consistent with previous
studies Boukeke, (1994) and Tadjou et al., (2009), supporting the presence of middle to lower crustal
granulites. The magnetic susceptibility values, which range from 0.6 to 0.1 SI, show that these granulites
contain signi�cant magnetic minerals and are located at depths between 14 and 28 km. The modelling
indicated also that the magnetic granulites are not isolated sources, as Poidevin (1987) has shown there
is a large distribution of granulites with iron oxides at the northern edge of the Congo Craton. These
granulites are aligned with the BIFs and metamorphic rocks (Giorgi et al., 1990; Poidevin, 1991;
Tetsontsap et al., 2017; Ndime et al., 2019). However, there is a large mis�t between the observed and
calculated magnetic anomalies on models P7 and P8 (Figs. 11G-H) that may be caused by the
complexity of the BMA where remanent magnetization may be a component of the magnetization.
Magnetic models in the Bangui area indicated that either metamorphic rocks, BIFs or both rock types
could be the sources of the BMA. Recently Lemenkova and Debeir (2023) shows good correspondence
between the spatial distribution of greenstone belts, metamorphosed basalt, granites and the BMA in the
Central part of the Central African Republic.

The results of this study, suggests that there are different lithologies as potential sources of the BMA and
agree with Galdeano (1981) who showed, through a Gondwanian reconstruction, that along the northern
Congo Craton and the CAOB consists of a probable continuity of ma�c and ultrama�c sources based the
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P and T° conditions were part of the lower crust to upper mantle. Recent geochemical and isotopic
analyses (Toteu et al., 2022) have been used to infer that the interaction of northern edge of the Congo
craton with the southern edge of Saharan Metacraton was related to two north dipping subduction zones
during the Pan African orogeny. This interaction caused island arcs that were accreted to the Saharan
Metacraton and the latest collision (620 − 550 Ma) between the two cratons created several shear and
suture zones (including the Raghane shear zone in the west, the CAOB in the south and the Keraf-Kabus-
Sekerr in the east). Magmatism also occurred during the creation of these shear and suture zones,
producing deep crustal migration of �uids that may have been the source of the magnetic minerals within
the granulites (Toteu et al., 2022). Our models, which show that the magnetic susceptibility sources must
be deep (as deep as 35 km) and that these sources cover the middle to lower crust. Additionally, the high
magnetic susceptibility bodies occur only between the boundaries of the Congo Craton and the Saharan
Metacraton suggesting that they were formed during collision between the two cratons during the Pan
African orogeny and that the magnetic minerals may be related to magmatic events during the latest
stages of the Pan African orogeny. Given the above tectonic model, our magnetic and gravity models
indicate provide additional evidence that crust at the northern edge of the Congo Craton including the
CAOB was formed by some type of collision event that involved the entire crust and maybe the upper
mantle. This tectonic scenario is similar to the Mozambique belt in East Africa, where the collision of
terranes with the Saharan Metacraton during the Pan African orogeny involved middle and lower crustal
rocks (Kroner and Stern, 2005).

8.1. Limitation of known models over the BMA area and
speculations
Five major cratonic regions are known on the African continent. They include the Northwest, Northeast,
North Central and South regions. The BMA is among the largest and most intense lithospheric anomalies.
However, studies on potential magnetic sources are still limited. There are a variety of models to explain
this anomaly and specify the parameters of its source(s) (Ravat, 1989; Regan and Marsh, 1982; Girdler et
al., 1992; Ouabego et al., 2013). Large uncertainties remain in the absence of overriding constraints. The
magnetic properties, extend, depth and nature of these sources are still highly debatable. Considering the
lack of direct information on the geodynamic environment of the deep rocks, the uncertainty on the
structure of the lower crust at the level of cratons, various attempts to model magnetic sources are
di�cult due to the lack of reliable constraint in parallel with the magnetic data. In order to know the
optimal magnetic characteristics of the modelled bodies, it is useful to have experimental input in rock
magnetism. According to Gidler et al. (2004) this would help to understand how the variation of physical
parameters with depth could affect the rocks. Several unconstrained models have been developed so far
according to Regan and Marsh (1982); Dorbath et al. (1985); Boukeke (1994); Ouabego et al. (2013). To
explain the BMA, Regan & Marsh (1982) proposed a model of deep intrusions. The Precambrian rocks of
the Central African Republic are distinguished by a granite-gneissic and charnockite base complex on
which epimetamorphic series are superimposed. In the centre of the Central African Republic, these series
constitute the Oubangui basin, interpreted as a synclinorium comprising several sub-basins (Boukeke,
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1994). Thus, the BMA would be superimposed on the Oubangui basin, which is also marked by a large
negative gravity anomaly of about − 80 mGals (Lemenkova and Debeir, 2023). The hypothesis on the
source of the anomaly deduced by Regan and Marsh (1982) was made taking into account the
superposition of the two anomalies on the Oubangui basin. This would indicate the presence of a crustal
intrusion whose (1) magnetic properties would generate the anomaly; (2) overloading of the intrusive
body would cause a crustal root that would explain the negative gravity anomaly. Three components
were thus deduced from the calculated model: the charnockitic crustal enclosure; the intrusive body and
the surface formations of the basin. This work is just an indicator of the average characteristics of the
sources of the anomaly (Boukeke, 1994). Following a NW pro�le in the Central African Republic, Dorbath
et al. (1985) inverted the seismic data: this showed a variation in seismic velocities below the anomaly.
The area of high seismic velocities was correlated with the dense and magnetic body deduced by Regan
and Marsh (1982). Boukeke (1994) through geological comparisons shows that these high velocities
estimated between 40 and 120 km mark internal discontinuities in the Congo Craton. Thus, there would
be no link between these discontinuities and the probable body beneath the BMA. Boukeke (1994)
proposes an interpretative model in relation to the Gondwana interpretations after Galdeano (1981).
According to these authors, the sources of BMA are probably deep, ma�c to ultrama�c rocks, stable at the
P - T° conditions of the lower crust and upper mantle. However, none of the above models take into
account (1) the in�uence of the Central African iron deposits; (2) the impact of remanence is neglected;
(3) most of these models have a limited spatial extension over the whole anomaly - there are no models
to correlate the gravity anomalies of the northern edge of the Congo Craton and the BMA. Ouabego et al.
(2013) around the Bangui region proposed a crustal model that combines the susceptibility and natural
magnetic remanence of rocks, showing BIFs as good candidates with a Koenigsberger ratio greater than
1. However, these models remain highly debatable as the sources are not unique. According to Ouabego
et al. (2013) BIFs would be a likely issue to explain the Anomaly. Recently Launay et al. (2018) showed
the BIFs as a good candidate to explain the West African Magnetic Anomaly. Another limitation is the
lack of constraints on the magnetic composition of the lower crust and upper mantle. The lithosphere -
asthenosphere boundary in the region is not clearly de�ned. The possibility of iron xenoliths in the lower
mantle has been reviewed by Ferre et al. (2020) who showed the thermal stability of some iron oxides as
well as their magnetic remanence at a depth of about 660 km. Thus, analysing the contribution of the
mantle as a source of BMA should be consider. According with the present results (Figs. 11A-I) and the
developments over the West African magnetic Anomaly (Launay et al., 2018) the latest issue (Ferre et al.,
2020) seems to be a good perspective.

9. Conclusions
A magnetic and gravity analysis of the Bangui magnetic anomaly (BMA) and surrounding regions was
conducted to understand the origin of the BMA. The BMA is one of the largest continental magnetic
anomalies in terms of amplitude and lateral size on Earth. The analysis consisting deriving derivative
magnetic anomaly maps and 2-D gravity and magnetic forward models were constrained by geological
and broadband seismic studies. Using a Curie isothermal analysis, the depth of the magnetic
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susceptibility sources ranged from 15–35 km and were used in creating gravity and magnetic forward
models. Previous studies have shown that the BMA may be related to Archean Congo Craton structures
and the above analyses have shown that the BMA anomalies are mainly concentrated at the between the
northern edge of the Congo Craton and the southern edge of the Saharan Metacraton. Nine magnetic and
gravity forward models across the BMA that crossed the E-W trending gravity and magnetic maxima were
selected to model the crustal lithology. The results of the map analysis and forward modelling indicated
that the magnetic susceptibility sources that created the BMA are not one large body but a series of
magnetic susceptibility sources. The derivative analysis and 2D forward models, indicated that these
sources are elongated. They extend from 2 km to ~ 35 km in depth, with an average density of 2850
kg/m3 and magnetic susceptibilities between 0.06–0.25 SI. The modelling bodies occur mainly in the
middle and lower crust beneath the CAOB. Based on surface geological studies these bodies may be
related to magnetic mineral rich granulites and banded iron formations. Such a highly magnetic may be
related to a probable �uid circulation from magmatic events during the latest stages of the Pan African
orogeny. This result could be linked to a deep-seated hydrothermalism phenomenon that occurred during
the various orogenic episodes recorded in Central Africa.
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Figures

Figure 1

Location of the study area. (A) An overview of the BMA in Central Africa (in white circle), derived from the
EMAG2-v3 magnetic data (Meyer et al., 2017); (B) Topography map of Central Africa overlayed by the
main lithospheric structures, showing the spatial extension of the BMA in the continental part (Cameroon
and Central African Republic). TBSZ-Tchollire-Banyo Shear Zone; CCSZ-Central Cameroon Shear Zone;
SSZ-Sanaga Shear Zone; CVL-Cameroon Volcanic Line. P1 – P9 are the location of the two-dimensional
gravity and magnetic models.
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Figure 2

(A) regional setting in Gondwana tectonic plates and the Neoproterozoic belts (after Gray et al., 2007),
WAC- West African Craton, AC-Amazonian Craton, SmC-Saharan Metacraton, CC-Congo Craton, KC-
Kalahari Craton, ANS-Arabian Shield, WAS-West Antarctic Shield, EAS-East Antarctic Shield, SAS-South
Antarctic Shield, M-Mozambique Belt, San Francisco Craton, RP-Rio Plata Craton; - (B) Location of the
study area on a simpli�ed tectonic map of Africa (after Milesi et al., 2010). Also shown are the Archean
cratons, intracratonic basins and the surrounding Precambrian and Paleozoic fold belts, affected by
rifting processes during Mesozoic and Cenozoic times and Cenozoic volcanism. WCAMZ: West and
Central African Mobile Zone, WCARS: West and Central African Rift System, CVL-Cameroon volcanic line,
EAR-East African Rift, WAC-West African Craton; - (C) Simpli�ed geological map showing the Central
African Orogenic Belt in the West and Central African Rift System and the Congo Craton (modi�ed after
Abdelsalam et al., 2002). TBSZ-Tchollire-Banyo Shear Zone; CCSZ-Central Cameroon Shear Zone; C.V.L.-
Cameroon Volcanic Line, SmC-Saharan Metacraton, C.A.R-Central African Republic. Orange lines outline
the location of the BMA.



Page 25/34

Figure 3

(A) Simpli�ed geological map of Cameroon, Central African Republic and adjacent countries, modi�ed
from the International Geological Map of Africa (Thieblemont et al., 2016) overlain by greenstone belts
(green lines) of Banda – Boufoyo and Bogoin (after Ki-Kis et al., 2021; Dostal et al., 1985). The red circles
indicate the position of the impact structure described by Girdler et al. (1992). (B) Geological map of the
southern Cameroon showing the locations of the BIFs and greenstones belts.
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Figure 4

Free air gravity anomaly map in Central Africa showing the spatial correlation with the BMA. Solid blue
lines (P1 – P9) are the pro�les used for the forward modelling. The White thick lines represent the
boundary of the BMA; CVL: Cameroon Volcanic Line; CCSZ: Central Cameroon Shear Zone; SSZ: Sanaga
Shear Zone; TBSZ: Tchollire Banyo Shear Zone. Grey points on the map are the gravity stations.
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Figure 5

Complete Bouguer gravity anomaly map in Central Africa showing the spatial correlation with the BMA.
Solid blue lines (P1 – P9) are the pro�les used for the forward modelling. The White thick lines represent
the boundary of the BMA; CVL: Cameroon Volcanic Line; CCSZ: Central Cameroon Shear Zone; SSZ:
Sanaga Shear Zone; TBSZ: Tchollire Banyo Shear Zone.
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Figure 6

Total magnetic intensity map derived from the EMAG2-v3 model. the grey contour line represents where
of the BMA is associated with shear zones. CVL: Cameroon Volcanic Line; CCSZ: Central Cameroon
Shear Zone; SSZ: Sanaga Shear Zone; TBSZ: Tchollire Banyo Shear Zone.
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Figure 7

Total magnetic intensity map reduced to the pole, showing the location of the selected pro�les (P1 to P9)
used for the gravity and magnetic forward modelling across the BMA. CVL: Cameroon Volcanic Line;
CCSZ: Central Cameroon Shear Zone; SSZ: Sanaga Shear Zone; TBSZ: Tchollire Banyo Shear Zone; C.C.:
Congo Craton



Page 30/34

Figure 8

Plots of the P1 - P9 (Fig. 1) showing the topography, Free-air gravity, complete Bouguer gravity anomalies
and the RTP magnetic anomalies
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Figure 9

Curie isothermal depths beneath the BMA (1) area express by the blue circle in Central Africa (modi�ed
after Njiteu et al. 2021a). CVL: Cameroon Volcanic Line; CCSZ: Central Cameroon Shear Zone; SSZ:
Sanaga Shear Zone; TBSZ: Tchollire Banyo Shear Zone. Grey squares are the depths to the crust-mantle
boundary found from broadband seismic studies (Tokam et al., 2010; Gallacher and Bastow, 2012)
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Figure 10

(A) Analytic signal of the RTP magnetic data. The blue contours traduce a localised sources beneath the
BMA: (1) localised circular anomaly; (2) N-S anomaly with an E-W secondary anomalies; (3) E-W anomaly
along the northern edge of the Congo Craton in Cameroon. (B) Horizontal derivative of the RTP data. The
blue circle expressed the spatial extension of the BMA with the E-W secondary gradient (1). (C) Tilt-
derivative of the RTP magnetic data showing the E-W direction of the secondary gradient zones along the
BMA (1) expressed by the blue circle. CVL: Cameroon Volcanic Line; CCSZ: Central Cameroon Shear Zone;
SSZ: Sanaga Shear Zone; TBSZ: Tchollire Banyo Shear Zone.
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Figure 11

11a. Two-dimensional gravity and magnetic forward model (P1, Figs. 5 and 7) across the BMA. d is
density in kg/m3 and S is magnetic susceptibility in SI units.

11b. Two-dimensional gravity and magnetic forward model (P2, Figs. 5 and 7) across the BMA. d is
density in kg/m3 and S is magnetic susceptibility in SI units
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11c. Two-dimensional gravity and magnetic forward model (P3, Figs. 5 and 7) across the BMA. d is
density in kg/m3 and “S” is magnetic susceptibility in SI units.

11d. Two-dimensional gravity and magnetic forward model (P4, Figs. 5 and 7) across the BMA. d is
density in kg/m3 and “S” is magnetic susceptibility in SI units.

11e. Two-dimensional gravity and magnetic forward model (P5, Figs. 5 and 7) across the BMA. d is
density in kg/m3 and S is magnetic susceptibility in SI units.

11f. Two-dimensional gravity and magnetic forward model (P6, Figs. 5 and 7) across the BMA. d is
density in kg/m3 and S is magnetic susceptibility in SI units

11g. Two-dimensional gravity and magnetic forward model (P7, Figs. 5 and 7) across the BMA. d is
density in kg/m3 and S is magnetic susceptibility in SI units.

11h. Two-dimensional gravity and magnetic forward model (P8, Figs. 5 and 7) across the BMA. d is
density in kg/m3 and S is magnetic susceptibility in SI units.

11i. Two-dimensional gravity and magnetic forward model (P9, Figs. 5 and 7) across the BMA. d is
density in kg/m3 and S is magnetic susceptibility in SI units.


