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Abstract: Snowpack exhibits properties that make it a unique natural archive of airborne pollution.
The data on insoluble particles in the Ob River catchment (Western Siberia) snowpack are limited.
Insoluble particles in the snowpack of Western Siberia were studied at 36 sites on a 2800 km
submeridional profile from the city of Barnaul to Salekhard in February 2020. Snow samples were
collected over the full depth of the snow core, from the surface of the snow cover to the boundary with
soil, except for the lower 1–2 cm. After the filtration of melted snow through a 0.45-µm membrane, the
particle composition was studied using a scanning electron microscope with an energy microprobe.
In the background areas, the concentration of insoluble particles in the snow was below 2 mg/L.
Significantly higher particle concentrations were encountered near cities and hydrocarbon production
areas. Particulate matter in snow mainly consists of biogenic and lithogenic particles mixed with
anthropogenic particles (ash and black carbon aggregates). The proportion of anthropogenic particles
increases near cities and areas of active hydrocarbon production.

Keywords: insoluble particles; snowpack; West Siberia; scanning microscopy; lithogenic particles;
biogenic particles; anthropogenic particles; long-range transport; pollution; gas flaring

1. Introduction

Atmospheric transport of suspended particles is a quick route to the release of many substances
(including pollutants) into the environment [1–5]. Snowpack is a unique natural archive of particles
deposited from the atmosphere [6–15]. The snow washes out insoluble aerosol particles (lithogenic,
biogenic, and anthropogenic) from the atmosphere as well as soluble compounds, including various
pollutants [16–30].

The snow remains at the soil surface and thus records all atmospheric input during the glacial
period of the year. In boreal and subarctic regions, both dissolved and particulate fractions of snow
water reflect the chemistry of the winter atmosphere, when the land is covered by snow and the water
surfaces are covered by ice. During winter, the input of mineral compounds from adjacent regions is
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minimal, and the main factor controlling the chemical composition of snow is long-range, atmospheric
transfer and transportation of anthropogenic particles over hundreds and thousands of kilometers
from regional towns [19,21–35].

In the large and geographically homogeneous territories of Western Siberia, which present
relatively similar levels of snow deposition during the winter seasons (i.e., from 100 mm of water in the
south to 140–150 mm of water in the north), particulate matter has been actively studied in industrially
developed areas (for example, in Novosibirsk, Tomsk, Kemerovo, and Nizhnevartovsk) [23,36–43].
Several studies on insoluble particles in the snowpack of relatively background areas of Western Siberia
have been also conducted [16,44–49]. However, until now, large meridional or latitudinal transects of
snow particulate composition have been rather limited (e.g., [46,47]). The latter studies demonstrated
a systematic variation in the snow particle concentration and chemical composition across a sizable
N–S transect and allowed the influence of aerosol generation from provinces to be traced and the local
signals of anthropogenic pollution to be deciphered. These studies, however, were limited to the upper
0–5 cm snow layer, so they cannot be used for global mass balance calculations of dust transport and
deposition in Siberia during the winter. To fill this gap, here, we collected the snow over the full depth
of the snowpack, from the surface to the upper 1–2 cm above the ground. The aim of the work was to
determine the concentrations of insoluble particles in the snow cover of the Ob catchment basin on the
submeridional profile from the south of Western Siberia to the Ob mouth and to estimate the ratio of
lithogenic, biogenic, and anthropogenic particles.

2. Materials and Methods

Insoluble particles in the snowpack of Western Siberia were studied at 36 sites on a 2800 km
submeridional profile from the city of Barnaul to the city of Salekhard from 8 to 19 February 2020
(Table S1, Figure 1).

When interpreting the data obtained, we took into account the locations of associated gas flares,
whose density is quite high in the region. The locations of the flares were determined from satellite
data using the NASA Fire Information for Resource Management System [50]. This system provides
information on high-temperature points, which are determined using radiometers (Visible Infrared
Imaging Radiometer Suit (VIIRS)) installed on satellites. Access to the archive of coordinates of
high-temperature points was obtained through [51] for specific boundaries of the region (52–70◦ N and
60–95◦ E) and the period of the year (February 2020). The positions of gas flares on the studied transect
are also marked in Figure 1.

Due to the large latitudinal extent of the study area, the establishment of permanent snow cover
was different among regions. According to the National Centers for Environmental Information of
USA [52], in the south of the study area the snow cover was established on 27 October 2019. As we
moved northward in the area of sampling sites 6–15, the formation of snow cover occurred on October
18–19. In the sampling area of the northernmost sites, namely 16–32, the snow cover was established
in the period from October 16 to 17, 2019. Therefore, the period of accumulation of aerosol particles
from the moment of snow cover formation to the moment of sampling is at least 3 months for the
entire study area. Since we sampled the snow over full depth of the column, we collected all snow
accumulated from the beginning till the data of sampling, i.e., over approximately 4 months. It is also
worth noting that melting of the snow cover did not occur during the cold period, even in the south of
the territory.

Sampling sites were situated at a distance of more than 500 m from the roads and more than 20 m
from the nearest trees. For example, the selected location at point 31 is shown in Figure 2. The majority
of roads are so-called winter roads (‘zimnik’), which are only used for several months per year and
exhibit quite a low traffic density. Snow samples were taken from snow pits made by a pre-cleaned
plastic shovel from the surface of the snow cover to the boundary with soil, except for the lower
1–2 cm (Figure 3), in double Milli-Q water pre-clean polyethylene bags, and they were transported
in the frozen state to a laboratory in Tomsk. During sampling, a careful procedure was followed to
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avoid contamination from surrounding equipment and operators. Single-use vinyl gloves and clean
laboratory overcoats were used during sampling and handling. The sampling was always performed
by two people: one operating the shovel and loading the snowpack into plastic bags and the other
holding the bags and immediately closing them with double plastic clamps. The density of snow was
measured via sampling by standard 10 cm diameter plastic tube over the full depth of the snow core.

In the laboratory, the snow was melted at room temperature and immediately filtered through
pre-weighed lavsan nuclear filters with a diameter of 47 mm and a pore diameter of 0.45 µm using
pre-cleaned Nalgene 250 mL filter units and a manual PVC-made vacuum pump. The filter membranes
were immediately frozen and freeze-dried prior to analysis.

The particle composition was studied using a VEGA 3 SEM scanning electron microscope (Tescan,
Brno, Czech Republic); the elemental composition of the particles was determined using an EDX X-Max
energy-dispersive X-ray microanalyzer (Oxford Instruments, Great Britain). The SEM-EDS spectra
were recorded at an accelerating voltage of 20 kV. The spectrum accumulation time for the element
maps was 480 s. Calibration and quantitative optimization of the X-ray spectra were performed using
the Si Ka line at 1.73982 kV.
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3. Results

The highest concentration of insoluble particles in snow water was encountered at site 1, near the
city of Barnaul. This site is situated on a cultivated agricultural field (cropland), part of which was
not covered with snow. Therefore, a local transfer of microparticles blown out of the soil by the wind
was probable. At the remaining 35 sites, the concentration of insoluble particles varied from 0.48 to
3.42 mg/L (Table S1), with an average of 1.47 mg/L and a standard deviation of 0.86 mg/L. At site 2, on
the cultivated agricultural field, the concentration of suspended matter was 1.32 mg/L, and at point 3, in
the floodplain of the small river Chaus, it was 0.66 mg/L. At sites 4–10, located in relatively populated
areas, the concentration of insoluble particles ranged from 2 to 3.42 mg/L. Further along the route, with
the exception of site 24, the concentration of particles was less than 2 mg/L, and from site 28 to site 36,
it was even less than 1 mg/L. Site 24 was located in the taiga near the city of Khanty-Mansiysk.

Particulate matter in snow mainly consists of biogenic (mostly plant fibers) and lithogenic (mostly
clay minerals, feldspars, and quartz) particles mixed with anthropogenic particles (ash and black
carbon aggregates). Clay minerals are mainly represented by montmorillonite, chlorite, and illite;
feldspars are mainly represented by plagioclase and orthoclase. The proportion of anthropogenic
particles rises near cities and areas of active hydrocarbon production. The most typical types of
insoluble particles are shown in Figure 4. Additionally, SEM images and energy-dispersive spectra of
selected particles are presented in Figure S1.
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Figure 4. Typical insoluble particles in the Western Siberia snowpack: a—relatively large grains of
plagioclase and smaller particles of clay minerals and ash; b—plagioclase particle with signs of intensive
secondary replacement; c—black carbon particle aggregate; d—corundum microcrystal; e—porous
carbonaceous ash particle; f—splice of metal slag (top) and aluminosilicate fly ash.

Samples of insoluble particles at sites 1–5 are saturated with mineral particles up to 30–50 µm in
size, among which feldspars and clay particles of 4–6 µm prevail. The proportion of quartz particles in
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this interval is insignificant. The samples contain a significant amount of ash and a small amount of
biogenic material. In the interval of the route from site 6 to site 15, the samples contain a large number
of biogenic particles (mostly plants fibers larger than 20 µm), some ash and smaller proportion of
mineral particles. Among mineral fraction, clay particles up to 10 µm in size prevail over feldspars.
In the interval of sites 14–18, a synchronous increase in the amount of black carbon aggregates and ash
is noted. From site 16 to site 27, the proportion of biogenic particles in the samples decreases, while the
proportion of mineral matter remains almost constant. Clay particles up to 5 µm in size make up the
bulk of the mineral matter in the samples. In this interval, the proportion of quartz particles increases;
well-formed corundum crystals appear in many samples. Besides, all samples from this route interval
exhibit a variety of anthropogenic particles. Northward of site 28, the number of biogenic particles
in the samples continues to decrease, but it increases at the two end points of the transect. The total
amount of all particles in the samples also decreases towards the extreme north, but the ratio of mineral
and biogenic particles changes insignificantly. Among the mineral particles in samples from sites
28–36, there is a high proportion of quartz and clay particles about 10 µm in size. The amount of ash
particles in this part of the transect continues to decrease in comparison with more southern regions.

4. Discussion

The concentration of insoluble particles in the snow cover of the Ob River basin in February
2020 was relatively low at most sites (from 0.48 to 3.42 mg/L), which corresponds to the level of many
background regions of the Arctic and Subarctic [17,26,44]. At only one site (No. 1, near the city of
Barnaul), the concentration achieved a level of 10.8 mg/L, which was presumably linked to local-range
wind transport of dust from the agriculture field (cropland) that was not covered by snow and taiga.
It is also possible that insoluble particles were delivered to this site by long-range atmospheric transport
from the snow-free semi-desert and desert regions of Central Asia [53,54].

In the winter of 2005–2008, the concentration of insoluble particles in the snow cover of the
Khanty-Mansiysk region varied from 0.2 to 397 mg/L; for 340 samples, the average value was 11.7 mg/L
and the median value was 4 mg/L [44]. According to these authors, the highest concentration of
particles in the snow cover occurred near the cities of Nizhnevartovsk and Surgut. Outside the cities,
the concentration of insoluble particles ranged from 2 to 16 mg/L, increasing near to the associated gas
flares and roads. At the four background points (Figure 1) in the southeast of Western Siberia (each at
a distance of more than 100 km from major cities) at the end of winter in 2012–2018, the concentration
of insoluble particles varied from 2.1 to 5.8 mg/L (on average, 4.1 mg/L with a standard deviation
of 0.3 mg/L, 12 samples) [49]. In February 2014, the insoluble particles were studied in the upper
5 cm of snow cover in the Western Siberian Lowland across a 1700 km latitudinal gradient [46,47].
The concentration of particles in snow water ranged from 0.4 to 67 mg/L. The highest values were
encountered in the vicinity of Tomsk, Surgut, and Noyabrsk; the lowest ones were located at 65◦ N.

The comparatively low concentrations of insoluble particles at the studied sites in the snowpack
of the Ob River basin in February 2020 are apparently related to the fact that, in this expedition, the
sampling sites were farther from roads and settlements than in the 2014 expedition [46]. Furthermore,
the depth-integrated concentration of particles assessed in the present study may be lower than the
upper 0–5 cm used in previous work [46]. Short-term deposition events linked to long-range transport
of dust aerosols at the end of winter 2014 were probably not pronounced over the winter 2020.

The composition of the insoluble particles strongly depends on the processes of short- and
long-range aeolian transport of the mineral grains. Differences in the mineralogical and granulometric
composition of soils and parent rocks in the southern and northern parts of the study area may be
linked to variable enrichment of atmospheric aerosols by mineral particles from different lithological
provinces. Parent rocks in the southern part of the transect are mainly represented by loams [55,56].
In this area, the soils have a high content of feldspars (25–48%); whereas the content of quartz is slightly
lower (19–47%) [57]. Soils in the north of the investigated transect are represented by sands and sandy
loams [58–60]. Quartz is the predominant component of the mineralogical composition of soils in
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the north of Western Siberia (80–98%). The content of feldspars and plagioclases in the soils of this
territory reaches no more than 18% [58].

In the taiga and tundra zones of western Siberia, podzols are widely distributed. They are
characterized by the accumulation of weather-resistant minerals in the upper eluvial part of the
profile [58]. One of these minerals is corundum, which is often found in samples located north of site 16.
With the activation of deflation processes, the upper soil horizons are destroyed and the atmospheric
suspension is enriched with erosion products. When certain areas are not covered with snow in winter,
dust blown out of the soil can get into the nearby snow cover.

The main sources of ash particles and black carbon are gas flares, motor vehicles, and heating
systems [44]. The content of black carbon and spherical ash particles (combustion spheres) increases
in the regions of sites 14–18, where many gas flares are located (Figure 1). Chemical pollution of the
atmosphere from the flaring of associated petroleum gas causes a well-known negative environmental
impact from the oil production complex in Western Siberia and a number of other regions [61,62].
This negative impact is especially pronounced in the arctic and subarctic regions with their vulnerable
ecosystems, where climatic changes occur most quickly [61,63–65].

At the end of the winter season in 2014–2016, studies of black (elemental) carbon (EC) in the snow
cover of the Arctic territories of Russia (using the White Sea and Western Siberia watershed as an
example) were carried out [66]. In February–March 2014, in Western Siberia, the highest concentrations
of EC were observed near the large industrial center of Tomsk and in areas of active gas flaring
in the Yamalo-Nenets Autonomous District. Overall, high values of anthropogenic black carbon
emissions into the atmosphere are characteristic of the sparsely populated areas of the Tomsk Region
and Yamalo-Nenets and Khanty-Mansi Autonomous Districts, whose industry is based on oil and gas
production and where gas flaring is widely developed [67–70].

5. Conclusions

The concentration of insoluble particles in the snowpack of the Ob River basin in February 2020
was found to be at a relatively low level at most sites investigated (from 0.48 to 3.42 mg/L). This level
corresponds to the background values in many regions of the Arctic and Subarctic. The comparatively
low concentrations of insoluble particles at the studied sites in the snowpack of the Ob River basin in
February 2020 are apparently related to the fact that, in this expedition, the sampling sites were farther
from roads and settlements than in the 2014 expedition [46,47], and in 2020, there was no long-range
aeolian transport of dust from areas open due to snow.

Particulate matter in snow consists mainly of biogenic (mostly fragments of plants) and lithogenic
particles mixed with anthropogenic particles (ash and black carbon aggregates). Differences in the
mineralogical and granulometric compositions of soils and parent rocks in the southern and northern
parts of the study area contribute to the enrichment of atmospheric suspension with mineral suspension
with sharp differences in the mineralogical composition. Feldspars and quartz dominate in the southern
part and northern part of the transect, respectively. The content of plant debris was not found to vary
significantly over the studied transect. The proportion of anthropogenic particles was found to rise near
cities and areas of active hydrocarbon production and gas flaring without any clear latitudinal pattern.

In general, there was no strong pollution of the snowpack along the 2800 km submeridional
profile in the Ob River basin in February 2020.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/11/11/1184/s1.
Table S1. Positions of Snow Sampling Sites, Snow Depth, and Concentration of Insoluble Particles in the SnowPack
(C, mg/L) in February 2020; Figure S1. Scanning electron microscope photography (SEM images) of selected
insoluble particles and their energy-dispersive X-ray spectra (the probe zone is shown by a white rectangle:
a,b—fragments of plants; c–f—ash; g–m—minerals (g—silica; h—quartz; I—biotite; j—saponite; k—augite; l,
m—corundum); n—ash.
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