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Abstract: The recent and continuous development of unmanned aerial vehicles (UAV) and small
cameras with di�erent spectral resolutions and imaging systems promotes new remote sensing
platforms that can supply ultra-high spatial and temporal resolution, �lling the gap between
ground-based surveys and orbital sensors. This work aimed to monitor siltation in two large rural
and urban reservoirs by recording water color variations within a savanna biome in the central region
of Brazil using a low cost and very light unmanned platform. Airborne surveys were conducted using
a Parrot Sequoia camera (~0.15 kg) onboard a DJI Phantom 4 UAV (~1.4 kg) during dry and rainy
seasons over inlet areas of both reservoirs. Field measurements of total suspended solids (TSS) and
water clarity were made jointly with the airborne survey campaigns. Field hyperspectral radiometry
data were also collected during two �eld surveys. Bio-optical models for TSS were tested for all
spectral bands of the Sequoia camera. The near-infrared single band was found to perform the best
(R2: 0.94; RMSE: 7.8 mg L�1) for a 0�180 mg L�1 TSS range and was used to produce time series of
TSS concentration maps of the study areas. This �exible platform enabled monitoring of the increase
of TSS concentration at a ~13 cm spatial resolution in urban and rural drainages in the rainy season.
Aerial surveys allowed us to map TSS load �uctuations in a 1 week period during which no satellite
images were available due to continuous cloud coverage in the rainy season. This work demonstrates
that a low-cost con�guration allows dense TSS monitoring at the inlet areas of reservoirs and thus
enables mapping of the sources of sediment inputs, supporting the de�nition of mitigation plans to
limit the siltation process.

Keywords: water quality; inland water; total suspended solids; remote sensing; UAV; remotely
piloted aircraft; drone; Parrot Sequoia; urban drainage, reservoir

1. Introduction

Conventional monitoring of water quality in lakes and reservoirs relies on frequently conducted
pointwise limnologic surveys but usually fails to capture the spatial variability of the underlying
processes [1]. Remote sensing is increasingly used to �ll gaps in conventional monitoring thanks to
its capacity to acquire spatialized data and to the ability to generate long time series by combining
information from di�erent sensors [2,3]. Remote sensing techniques over inland waters are based on
the analysis of water optical properties, such as the apparent and inherent optical properties, and of the
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optically active components (OAC)�total suspended solids (TSS), chlorophyll-a (Chl-a), and colored
dissolved organic matter (CDOM)�by applications of either empirical, semi-empirical, semi-analytical,
quasi-analytical, or analytical bio-optical models [4].

Despite advances in the use of remote sensing, there are a series of limitations in the application
of orbital images for inland water quality monitoring:

(1) No spaceborne platforms are delivering low-cost high spatial, temporal, and spectral resolutions
at the same time [5].

(2) Atmospheric corrections of orbital images are often less accurate over inland waters than oceanic
waters [6].

(3) Visible passive spaceborne sensors are vulnerable to cloud coverage, especially during the rainy
season when the water and sediment discharge to lakes and reservoirs is maximum.

Airborne imagery platforms can overcome some of the limitations of orbital platforms.
Manned aerial missions have been applied for inland water quality monitoring, seeking more detailed
mapping of the OAC with high precision [7]. However, this resource has high operational costs and,
when surveys are realized at a high flight altitude, atmospheric corrections cannot be overlooked [8,9].

Recent advances and developments in robotics and sensor technology have generated a new
and low-cost airborne remote sensing platform type with the integration of unmanned aerial vehicles
(UAV), small spectral cameras (with di�erent spectral resolutions and imagery systems), associated
software based in computer vision, and photogrammetry that can provide products with ultra-high
temporal and spatial resolutions [10]. With the development of new methods and applications of
UAVs for water quality analysis and monitoring, the user of this data can obtain results with much less
e�ort than conventional �eldwork [11]. A review of the recent literature about water quality and UAV
in the Web of Science� Core Collection database provides an interesting perspective, although is it not
the main area of application among UAV-based studies [12].

Some work has already applied this technology for inland water quality monitoring in small
reservoirs and rivers (<70 ha) with distinct methodologies. Ref. [13] used an infrared camera for water
quality monitoring using a fuzzy logic model in a small reservoir in Japan. Ref. [14,15] applied a
Canon Powershot S110 NIR camera for water quality monitoring in small lakes in Taiwan using a
matching pixel-by-pixel model. Ref. [16] mapped TSS concentrations in a small lake and river using a
Headwall push-broom hyperspectral camera applying a particle swarm optimization algorithm in a
Chinese reservoir.

Although light UAV and small cameras comprise a new and promising remote sensing platform,
there are limitations in their applications for water quality monitoring in large reservoirs, such as
insu�cient �ight autonomy to cover large areas. However, the inlet areas of the reservoirs can be easily
covered by UAV surveys and are of fundamental interest because these are areas where water and
sediment �ow velocity decrease from a riverine �ow to a lake �ow. These areas are relevant for water
quality monitoring due to the intense deposition of suspended matter, including inorganic material,
nutrients, or heavy metals. Medium- to high-resolution spaceborne sensors, such as Sentinel-2 or
Landsat-8, can hardly monitor such critical areas, especially during the rainy season when cloud
coverage is almost permanent.

The objective of this work was to develop a low-cost UAV-based mapping method, easily reproducible,
relying on a lightweight and flexible unmanned multispectral airborne platform for TSS monitoring
with a very high spatial resolution suitable for both urban and rural reservoirs. We used water quality
samples and field radiometry to fully assess the accuracy of the method, analyzing how the selection of a
radiometric model affects the final mapping accuracy.

2. Materials and Methods

The methodology developed in this work was carried out in the following stages:
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(1) Planning and execution of unmanned airborne surveys with the Sequoia camera over the
study areas;

(2) Image processing to generate at-sensor re�ectance orthomosaics;
(3) In situ data acquisition concurrently with �ights;
(4) Development, statistical analysis, and selection of bio-optical models based on the in situ TSS

data and the at-sensor re�ectance pixels of orthomosaics;
(5) Application of the most robust model (with the best statistical performance) for the TSS mapping;
(6) TSS mapping accuracy assessment.

Geoprocessing tools were used to extract the at-sensor re�ectance and TSS estimated pixel values.
These tools were also used to apply the most robust bio-optical model for TSS mapping over the study
areas. Figure 1 shows the �owchart of the methodological procedures.
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accuracy analysis of the unmanned multispectral platform.

Regression analysis was used to create and to evaluate the performance of the bio-optical models.
Root mean square error (RMSE, Equation (1)) was employed to quantify the accuracy of the estimated
TSS values relative to the in situ TSS data.

RMSE =

vt nX

i=1

(X0 �X)2

n
(1)

where X0 is the estimated value, X is the measured value, and n is the number of samples.

2.1. Study Area

Two reservoirs localized in the central region of Brazil within a savanna biome were studied:
the Parano¡ and the Corumb¡ IV reservoirs (Figure 2).

The Parano¡ reservoir (Figure 2C) is a medium urban reservoir with an area of 38 km2 [17] that
was created by the damming of the Bananal (Figure 2C1), Torto (Figure 2C2), Riacho Fundo (Figure 2C3),
and Gama (Figure 2C4) rivers during the construction of Bras‰lia (Brazil·s capital) in the 1950s and
1960s. It is an important resource for leisure, electric energy, dilution of treated sewage, urban drainage
reception, and water supply. The Corumb¡ IV reservoir is a large rural reservoir with an area of
178 km2 [18] that was created by the damming of the Alagado (Figure 2D1), Descoberto (Figure 2D2),
Areias (Figure 2D3), Corumb¡ (Figure 2D4), and Antas (Figure 2D5) rivers in the 2000s. The Corumb¡ IV
reservoir is used for hydropower, water supply, �sh farming, irrigation, and recreation. The rainy
season extends from October to March and the dry season extends from April to September.

The experimental area in the Parano¡ reservoir was the inlet of the Bananal River, which delivers a
high sediment discharge, mainly during the rainy season, originating from urban drainage system
outfall (Figure 3). The experimental area in Corumb¡ IV was the inlet of the Areias River (Figure 4),
which also delivers sediment discharge during the rainy season. Both reservoirs are known to su�er
from siltation, eutrophication processes, and other environmental issues. They are used to supply
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drinking water to the city of Bras‰lia and monitoring of water quality is considered to be of critical
interest for public health.
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Figure 2. Location map of the urban (Parano¡-C) and rural (Corumb¡ IV-D) reservoirs highlighting its
tributaries rivers (1: Bananal, 2: Torto, 3: Riacho Fundo, and 4: Gama in Parano¡/1: Alagado, 2: Descoberto,
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Figure 3. Location map of the inlet area between the Bananal River and the Parano¡ reservoir highlighting
the in situ data sample points.
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2.2. Unmanned Multispectral Platform: Camera, UAV, Flight Planning, and Data Processing

2.2.1. Multispectral Platform

Parrot Sequoia is a small and lightweight camera that can be deployed from several UAV models.
Although this camera was developed for agricultural applications, in this study it was tested for inland
water quality monitoring. The camera has four spectral bands in the visible/near-infrared (NIR) spectrum:
green, red, red-edge, and NIR. The camera has a 1.2-megapixel resolution for each of the multispectral
bands and an RGB sensor that captures simultaneous true-color images with 16 megapixel resolution
(Table 1). Sequoia has an accessory piece (Figure 5a) that contains a GPS/IMU/magnetometer system
and a cosine sensor that has four filters to measure the downwelling irradiance for the same spectral
ranges as the Sequoia camera multispectral bands registering upwelling radiance. These ancillary data
facilitate orthomosaic generation from the spectral images with at-sensor reflectance pixel values [19,20].

Figure 4. Location map of the inlet area between the Areias River and the Corumb¡ IV reservoir
highlighting the in situ data sample points.

Table 1. Sequoia camera and speci�cations of the multispectral bands and RGB lens.

Lens Bandwidth * Central
Wavelength * Resolution Acquisition

System

GREEN 40 nm 550 nm 1.2 Mpx Global Shutter
RED 40 nm 660 nm 1.2 Mpx Global Shutter

RED-EDGE 10 nm 735 nm 1.2 Mpx Global Shutter
NIR 40 nm 790 nm 1.2 Mpx Global Shutter
RGB 16 Mpx Rolling Shutter

*: The spectral characteristics are equivalent between the camera and the cosine sensor.
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2.2.2. Flight Planning

A routine consisting of six steps was adopted for the airborne surveys: area selection, safety
analysis, �ight planning, equipment preparation, equipment checking in the �eld, and data collection.
The choice of the area was made considering the limitations that are inherent to the use of UAV
such as operational �ight altitude and �ight time. For security reasons, all �ights were monitored
by a telemetry system, which sends information about the �ight such as energy consumption and
battery conditions in real-time. Moreover, the �ights were regulated and authorized with the Brazilian
National Civil Aviation Agency.

Autonomous aerial �ights (Figure 6) were performed using the Drone Deploy mission planning
software from 120 m AGL (above ground level) altitude with 80% frontal and 65% lateral overlap to
ensure a good alignment of the images and to generate orthomosaics with a ground sample distance
(GSD) of 13 cm/pixel. Nine �ight campaigns were carried during dry and rainy seasons (Table 2),
sometimes just after rainfall events, from March to December 2018. All the �ights were performed
with high solar zenith angle conditions to avoid sun glint e�ects [21].Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 22 

��

 

Figure 6. Simplified orthomosaic building process highlighting the position of each image generated 

through autonomous flights (left) and the step s of image alignment and 3D point cloud in 
Pix4Dmapper (center) in the Paranoá (a) and Corumbá IV (b) reservoirs. 

Considering overlapping images, Pix4Dmapper calculated the reflectance values for each pixel 
of the orthomosaics using a weighted average of the pixels in all of the original images that 
correspond to this particular pixel but assigning more weight to images where the pixel is more 
central. The image pixel value depends on a series of factors that include sensor settings, sensor 
properties, and scene conditions. Radiometric corrections are applied to improve the quality of the 
data using the camera, irradiance, and sun angle parameters for clear skies and camera and irradiance 
for overcast skies. These parameters are obtained from the Exif metadata for each image. The camera 
parameters are exposure time, shutter speed, vignetting, dark current, and ISO value. The irradiance 
sensor provides a record of the light conditions du ring the flight in the sa me spectral bands as the 
ones captured by the multispectral sensor. The sun angle parameter takes into account the direction 
of the incoming sun ray, and its projection onto the scene and onto the sun sensor. Thus, 
Pix4Dmapper can normalize the images captured during the flight and thus allows comparing 
images taken in different illumination conditions [23]. 

2.3. In Situ Measurements 

Figures 3 and 4 shows the sampling points where we collected field data during unmanned 
airborne surveys. Spectroradiometric data were collected during two surveys over the Corumbá IV 
reservoir (March 29th, 2018 and May 18th, 2018). Water quality parameters, namely TSS 
concentration and water transparency (ZSD), were measured during all flight campaigns (Table 2). 

Spectroradiometric data were recorded using TriOS RAMSES hyperspectral spectroradiometer 
following the protocol proposed by Mobley [2 4] for above water measurements. Downwelling 
irradiance (Ed) was measured using a cosine sensor. Upwelling radiance (Lu) was measured with a 
40° off-nadir viewing angle and a 135° azimuth angle from the sun during the drone surveys 
according to [25]. For direct comparison with dr one-derived at-sensor reflectance, we computed 
reflectance (R) as R = Lu / Ed.  

Water surface samples (~20 cm deep) were collected at the sampled points and processed at the 
Geochemistry Laboratory of the University of Bras ília to determine TSS concentrations according to 

Figure 6. Simpli�ed orthomosaic building process highlighting the position of each image generated
through autonomous �ights (left) and the steps of image alignment and 3D point cloud in Pix4Dmapper
(center) in the Parano¡ (a) and Corumb¡ IV (b) reservoirs.



Remote Sens. 2020, 12, 1855 7 of 21

Table 2. Summary of the �eld sampling trips realized for this study.

Date in 2018 Local � Samples
TSS (mg L�1) ZSD (cm)

Min Max Average Min Max Average

03/02 Corumb¡ 46� 5 23 36.2 31.2 30 37 36.2
03/29 Corumb¡ 51� 5 5 15.6 12.6 41 71 47.6
05/18 Corumb¡ 67� 5 1 2.2 1.7 215 270 243
09/12 Parano¡ 55� 7 8.8 15.6 12 40 100 75.5
10/31 Parano¡ 49� 4 4.4 186.8 50.8 5 79 57
11/02 Parano¡ 47� 12 2.7 43.2 12.6 13 127 63.4
11/09 Parano¡ 56� 1 73.2 18
11/13 Parano¡ 72� 1 78.8 14
12/05 Parano¡ 70� 1 68.2 21

� : Solar Zenith Angle at the time of unmanned aerial surveys.

The Sequoia camera provides a communication system via a Wi-Fi network and thus can be
con�gured and programmed to acquire images on any device with an internet browser through an
Internet Protocol code. Using this system, the Sequoia was programmed to acquire images every 5 m
through its GPS/IMU system during the �ight plan. An average of 1388 and 864 images were generated
in Parano¡ and Corumb¡ IV surveys, respectively.

2.2.3. Multispectral Images Processing

All multispectral images were processed using Pix4Dmapper software. Orthomosaics containing
at-sensor re�ectance pixel values were generated using Structure from Motion (SfM) photogrammetric
technology. SfM involves automatic identi�cation of similar features in a set of overlap images through
a bundle adjustment procedure [22]. This is the mechanism for building orthomosaics in Pix4Dmapper,
including the steps of images alignment and creation of a 3D point cloud, triangle mesh, and digital
surface model (DSM) (Figure 6).

Considering overlapping images, Pix4Dmapper calculated the re�ectance values for each pixel of
the orthomosaics using a weighted average of the pixels in all of the original images that correspond to
this particular pixel but assigning more weight to images where the pixel is more central. The image
pixel value depends on a series of factors that include sensor settings, sensor properties, and scene
conditions. Radiometric corrections are applied to improve the quality of the data using the camera,
irradiance, and sun angle parameters for clear skies and camera and irradiance for overcast skies.
These parameters are obtained from the Exif metadata for each image. The camera parameters are
exposure time, shutter speed, vignetting, dark current, and ISO value. The irradiance sensor provides
a record of the light conditions during the �ight in the same spectral bands as the ones captured by the
multispectral sensor. The sun angle parameter takes into account the direction of the incoming sun
ray, and its projection onto the scene and onto the sun sensor. Thus, Pix4Dmapper can normalize the
images captured during the �ight and thus allows comparing images taken in di�erent illumination
conditions [23].

2.3. In Situ Measurements

Figures 3 and 4 shows the sampling points where we collected �eld data during unmanned
airborne surveys. Spectroradiometric data were collected during two surveys over the Corumb¡ IV
reservoir (March 29th, 2018 and May 18th, 2018). Water quality parameters, namely TSS concentration
and water transparency (ZSD), were measured during all �ight campaigns (Table 2).

Spectroradiometric data were recorded using TriOS RAMSES hyperspectral spectroradiometer
following the protocol proposed by Mobley [24] for above water measurements. Downwelling
irradiance (Ed) was measured using a cosine sensor. Upwelling radiance (Lu) was measured with a 40�

o�-nadir viewing angle and a 135� azimuth angle from the sun during the drone surveys according
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to [25]. For direct comparison with drone-derived at-sensor re�ectance, we computed re�ectance (R)
as R = Lu/Ed.

Water surface samples (~20 cm deep) were collected at the sampled points and processed at the
Geochemistry Laboratory of the University of Bras‰lia to determine TSS concentrations according to
the methodology described in [26]. The water samples were �ltered under a low vacuum Millipore
membrane �lter (0.45 � m porosity). Jointly, Secchi disk depth ZSD estimates were made as a measure
of water transparency.

2.4. TSS Bio-Optical Models

The optical properties of water are the basis for the development of bio-optical models for
estimating OAC, such as the suspended inorganic matter and photosynthetic pigments. Bio-optical
models are classi�ed in di�erent categories: empirical, semi-empirical, semi-analytical, quasi-analytical,
and analytical [4,27].

The semi and quasi-analytical models are applied to estimate the optical properties in the water
column. They are based on inversion of radiative transfer theory to establish relationships among the
apparent and inherent optical properties, which are computed through several analytical and empirical
steps [27,28]. In summary, the main di�erence between these models is in the process of estimating
absorption and backscattering [4,27].

Empirical and semi-empirical models are based on statistical relationships between the water
components measured in situ and the radiometric data measured by a sensor. The di�erence is that the
empirical models do not rely on the physical theory relating optical properties to water components
and, therefore, these algorithms are developed using statistical tests seeking the best arrangement
of bands with the concentrations of the water component of interest. Semi-empirical models are
developed through physical bases based on the spectral behavior of the water optical properties,
mainly light absorption and scattering, concerning the concentrations of the water optically active
components [4,27].

There are a wide variety of TSS bio-optical models applied in continental waters with a large range
of concentration levels and with multiple radiometric data sources: spaceborne, airborne, and in situ
sensors [3,28,29]. Some of these models, developed for the main spaceborne sensors used for inland
waters (Landsat, Spot, Meris, and Modis), were applied to the Sequoia camera bands with adjustment
in the parameters of the statistical models according to the data set obtained in this work. Single band
models and simple band ratios were tested based on the Sequoia bands and adjusted to the TSS data
collected for this work. All models tested are detailed in Section 3.2 (Table 3).

3. Results

3.1. In situ and Airborne Surveys Data

Six airborne surveys and simultaneous �eld sampling campaigns were carried over the Parano¡
reservoir and three over the Corumb¡ IV reservoir. Table 2 presents the �eld sampling data. TSS and
ZSD varied signi�cantly from the rainy to the dry seasons in both reservoirs.

Figure 7 presents the orthomosaics, processed with Pix4Dmapper, of Sequoia camera spectral
bands over Parano¡ and Corumb¡ IV reservoirs acquired on October 31st, 2018 and March 2nd,
2018, respectively.

Figure 8 presents the color composite (NIR/Red/Green) for all surveyed dates, highlighting the
presence of sediment in the rainy periods at the inlet. The �ights made with mean and high solar
zenith angle conditions resulted in sun glint absence in practically all orthomosaics, except for the
2018/03/02, 10/31, and 11/02 surveys which had visible glints at the border of the orthomosaics.
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3.2. Bio-Optical Models Assessment and TSS Mapping

Figure 9 displays the behavior of at-sensor re�ectance as a function of TSS concentration for the
four Sequoia spectral bands. We observed that dispersion decreased from the green to the NIR band.
At shorter wavelengths, we observed a rapid saturation of the at-sensor re�ectance between 40 and
80 mg L�1. At-sensor re�ectance�TSS relationship becomes nearly linear in the red-edge band and
fully linear in the NIR band over the range of concentrations observed in the study (i.e., 0�180 mg L�1).
We did not observe any site or time dependency in the NIR and red-edge bands. The NIR single band
algorithm presented the best performance (Table 3 and Figure 9) for a large TSS range (1 to ~180 mg L�1).
At NIR wavelengths, the re�ectance is mostly a function of suspended particle backscattering, and
pure water dominates absorption because the interference of the other optical active constituents is
absent [30].
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The bio-optical models for TSS calculation were reproduced from literature or derived from
regression analysis between the at-sensor re�ectance values of the Parrot Sequoia bands and the TSS in
situ data collected simultaneously. Table 3 presents all the tested algorithms and statistical results.

Table 3 shows that strong correlations (R2 > 0.9) were obtained for models using the multispectral
bands of the Sequoia camera. Single band NIR and red-edge based models performed better (RMSE
varying from 7.8 to 10.3 mg L�1, respectively) than models based on red and green bands (RMSE of
19 to 28 mg L�1), even for the models adapted from the literature. Other models were used from the
literature, obtaining lower performance with an RMSE varying from 22 to 306 mg L�1. One model
was used without adjusting its statistical parameters according to the local data series. This model
was originally successfully applied to turbid Amazon waters on MODIS images (Table 3-# 13) but it
showed the lowest performance on our test sites, evidencing the need to adjust for the camera spectral
bands and test site.
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Table 3. TSS bio-optical models and statistical results.

Model No. Reference Algorithm R2 RMSE (mg L�1)

1 This study TSS: 926.7 * N -28.2 0.94 7.8
2 This study TSS: 810.3 * RE-26.1 0.90 10.3
3 [31] *b TSS:126.3 * (N/G)-44.3 0.80 14.6
4 This study TSS: 484.3 * R-27.2 0.66 19.0
5 This study TSS: 80.7 * (R/G)-55.2 0.65 19.2
6 [32] *c TSS: 280.3 * (RE/(G+R)-57.7 0.51 22.6
7 [33] TSS: (327.8 * R/1-(R/17.1))+1.9 0.66 24.7
8 [34] *a TSS:-46.8 * (G/R)+76.6 0.34 26.2
9 This study TSS: 675.3 * G-46.2 0.25 28.1

10 [33] TSS: (120.8 * G/1-(G/11.2))+3.1 0.25 31.7

11 [33] TSS: (1491.5 *
RE/1-(RE/19.6))+1.1 0.89 72.8

12 [33] TSS: (1701.5 *
N/1-(N/20.7))+1.5 0.94 76.5

13 [35] *d TSS: 759.1 * (N/R)1.92 0.17 306.1

* Bio-optical models adapted from orbital images = a: Landsat; b: Spot; c: Meris; d: Modis. G: green; R: red;
RE: red-edge; N: NIR.

We analyzed the spatial pattern of the drone-derived TSS concentration along a transect beginning
at a storm drainage network outlet into the Parano¡ reservoir. TSS maps were produced using the
models listed in Table 3 and for all the survey dates and compared with �eld sampling data whenever
available. Figure 10 shows the variability of the water color along the transect in the Parano¡ reservoir
for the 2018/09/12, 2018/10/31, 2018/11/02, and 2018/11/09 surveys, respectively, representing low TSS
concentration (i.e., 8 to 10 mg L�1), intermediate TSS concentration (i.e., ~6 to ~44 mg L�1), high TSS
concentration (74 mg L�1), and very high TSS concentration (187 mg L�1).
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Figure 11 shows the drone-retrieved TSS concentration calculated with the more consistent models
(RMSE < 32 mg L�1) (Model #1-Table 3) as a function of distance along the transect for the October
31st, 2018 survey (Figure 10). It can be seen that the selection of the model is an important step, as the
results present a wide range of TSS concentrations.

Figure 11 shows three groups of models concerning the TSS concentration pro�le extracted from
the transect. The �rst group stands for the most robust models (#1, #2, and #3), for which the retrieved
TSS values near the river inlet (pixel 0) is close to the concentration measured that day (187 mg L�1,
Figure 10). Those models detected the dramatic TSS concentration decrease from the urban drainage
inlet into the reservoir, indicating a strong siltation process that day. The second group of models (#4,
#7, #5, and #6) represents the models that delivered TSS concentration estimates at the drainage inlet of
about 100 mg L�1, signi�cantly lower than the e�ective concentration measured that day, and showed
medium TSS concentrations far into the reservoir. The third group of models (#9 and #8) provided TSS
concentrations of about 50 mg L�1 at the drainage inlet and showed very distinct behavior in relation
to the others, with no clear TSS concentration decrease until far into the lake, failing to properly detect
the extension of the suspended sediment plume, with TSS concentration remaining almost constant for
almost the entire transect.
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Figure 11. Estimated TSS values using di�erent retrieval models along an arbitrary transect on
2018/10/31 in the Parano¡ reservoir. Model are identi�ed by their number (see Table 3).

We selected the best retrieval model (lower RMSE) selected from Table 3, which is based solely on
the NIR band (model #1), to map the variability of the TSS at the reservoir·s surface for all the surveys.
Figure 12 shows the temporal TSS mapping in the inlet areas of the Parano¡ and Corumb¡ IV reservoirs.

We analyzed the TSS maps along the same transect in the Parano¡ reservoir used for Figure 10
and compare the TSS mapping accuracy concerning the �eld samples acquired during each survey
(Figure 13). For the surveys realized during rainy days (October 31st, November 2nd and 9th,
and December 5th), the drone-retrieved TSS concentrations were close to the �eld measurements: only
3 points had a di�erence of greater than 15 mg L�1: one on October 31st and two on November 9th.
Despite these �uctuations, the estimated TSS data had an RMSE of 7.8 mg L�1 (Table 3) and were
thus coherent with the seasonality of the rain distribution. The concentrations during the 2018/09/12
survey are the lowest recorded during the study, as it occurred during the dry season with almost no
in�ow into the reservoir. During the rainy period, there is a high TSS load �owing from the urban
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drainage inlet, especially in 2018/10/31. For that data, the drone-retrieved TSS concentration described
consistently the gradual decrease of the sediment load, especially during the rainy period due to the
variations of the rainfall regime.
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Figure 13. Measured and estimated TSS concentrations, using the Sequoia camera NIR band (model #1),
extracted along the transect exhibited in Figure 10 for all survey dates in the Parano¡ reservoir.

4. Discussion

Spaceborne mapping of inland water quality is very di�cult during the rainy season, especially
in the tropics, due to the persistent cloud coverage that dramatically limits the number of cloud-free
acquisitions. This problem becomes even more complicated when very small areas are considered.
Figure 14 shows true color RGB composite Sentinel 2 MSI orbital images totally or partially covered by
clouds acquired simultaneously to some drone surveys: 2018/03/02 over Corumb¡ IV reservoir and
2018/10/31 and 11/02 over Parano¡ reservoir. This comparison illustrates the advantage of a drone in
relation to spaceborne sensors for water quality monitoring of the reservoir. The use of drones makes it
possible to increase the acquisition frequency, representing a major bene�t when dealing with siltation
processes that usually occur during strong rainfall events associated with persistent cloud coverage
preventing the use of satellite images.Remote Sens. 2020, 12, x FOR PEER REVIEW 16 of 22 
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covered by clouds in dates of airborne surveys.

4.1. Radiometric Accuracy

Our results showed that TSS retrieval accuracy was better when using the NIR channel than
when using shorter wavelengths. The NIR single band model proved to be the channel best correlated
with �eld samples of TSS concentration. The single NIR channel was applied for consistent TSS
mapping over the whole period in experimental inlet areas of the Parano¡ and Corumb¡ IV reservoirs.
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It is well-known that re�ectance saturates for higher TSS concentration levels at NIR wavelength
than in visible wavelengths. As an example, [36] measured in situ remote sensing re�ectance at
279 stations in the Amazon basin for a large TSS range (5�620 mg L�1). Those authors found that
NIR wavelengths were suitable for monitoring a large range of TSS concentration and that for the
highest concentrations (i.e., greater than 100 mg L�1) a band ratio between NIR and red channel
performed better. Several other studies obtained good relationships between NIR spectral data and
TSS with di�erent remote sensing platforms. [37] observed that in situ spectrum wavelengths between
700 and 800 nm were the best correlated with TSS concentrations from 30 to 320 mg L�1 on six northern
Mississippi reservoirs. [38] reported an R2 of 0.7 between the in situ re�ectance at 810 nm and TSS
concentration for a 0�64 mg L�1 range in boreal water lakes in Europe. Manned hyperspectral airborne
surveys also obtained best relationships by applying NIR wavelengths (705�715 nm) for TSS modeling
in clear waters (<36 mg L�1) in the Mississippi River and its tributaries [7] and Finland lakes [39].
It appears that the use of visible spectral bands may be more appropriate to map water bodies with
low TSS concentration (i.e., 0�30 mg L�1), as the re�ectance would not be subject to saturation and
that radiometric accuracy would be better. For water bodies presenting high TSS concentration levels,
it is recommended to consider the use of NIR channel and/or band ratios based on empirical or
semi-empirical bio-optical models for TSS estimation [2,3,28,29,40]. Although the NIR channel usually
shows a strong correlation with TSS concentration when working with �eld or airborne surveys,
NIR band accuracy from spaceborne sensors might be subject to artifacts due to the low re�ectance
of water bodies that makes the NIR channel highly susceptible to adjacency e�ects and atmospheric
correction residuals [41]. Recent studies evaluated di�erent atmospheric correction methods for
Sentinel 2 images and showed that the NIR band obtained poor performance in turbid and dark water
in the Amazon [42] and over the Parano¡ reservoir [43].

We assessed the Sequoia camera radiometric accuracy using �eld spectroradiometric data collected
during two �ights over the Corumb¡ IV reservoir. The spectroradiometric data were acquired using
TriOS Hyperspectral RAMSES radiometers and were convolved with the spectral response function of
each channel of the Sequoia camera. Over 12 sampling points, the Sequoia at-sensor re�ectance matched
the �eld measurements well, with accuracy decreasing as a function of wavelength. The coe�cient
of determination varied from 0.98, 0.94, down to 0.42, and 0.43 for green, red, red-edge, and NIR
channels, respectively. Relative RMSE between ground re�ectance and at-sensor re�ectance was 21.9%,
17.3%, 53.2%, and 53.7% for green, red, red-edge, and NIR channels, respectively. The decrease in
the radiometric accuracy towards longer wavelengths can be interpreted as a function of decreasing
radiance level over water targets that exhibit much lower radiance in the NIR spectrum than in the
visible spectrum, resulting in lower sensor e�ciency beyond 700 nm. Consequently, a trade-o� exists
between radiometric accuracy and the spectral band ability to retrieve TSS concentration. Consequently,
the user may need to de�ne which channel to use as a function of water optical properties.

Although the single NIR band model obtained consistent validation overall, making it possible to
detect the in�ow of high TSS concentrations into the reservoirs during the rainy season, this model
has limitations for mapping low concentrations. This can be seen in Figures 12 and 13. For the
2018/09/12 survey, the estimated TSS concentrations were all lower than 5 mg L�1, while the observed
values had an average concentration of 12 mg L�1 (Table 2). We further analyzed the low TSS
concentration conditions.

TSS bio-optical models with RMSE < 32 mg L�1 in Table 3 were tested exclusively for 2018/09/12
(Table 4). Such results demonstrate that the NIR single band model obtained higher RMSE value.
Other models obtained better performance (RMSE < 10 mg L�1), mainly using green and red bands.
Thus, models using red and green bands (Table 3) were tested to estimate low TSS conditions (Table 4).
Figure 15 presents a comparison of three models for the 2018/09/12 survey. It can be seen that the tested
models were able to deliver TSS concentrations that were not underestimated, in contrast to the NIR
single band (Figure 12).
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Table 4. TSS bio-optical models and statistical results for the 2018/09/12 survey.

Model No. Reference Algorithm R2 RMSE (mg L�1)

1 This study TSS: 926.7 * N -28.2 0.10 14.3
2 This study TSS: 810.3 * RE-26.1 0.48 11.7
3 [31] *b TSS:126.3 * (N/G)-44.3 0.82 8.1
4 This study TSS: 484.3 * R-27.2 0.10 11.7
5 This study TSS: 80.7 * (R/G)-55.2 0.22 4.1
6 [32] *c TSS: 280.3 * (RE/(G+R)-57.7 0.80 9.5
7 [33] TSS: (327.8 * R/1-(R/17.1))+1.9 0.10 11.1
8 [34] *a TSS:-46.8 * (G/R)+76.6 0.25 9.5
9 This study TSS: 675.3 * G-46.2 0.10 13.1

10 [33] TSS: (120.8 * G/1-(G/11.2))+3.1 0.10 2.8
* Bio-optical models adapted from orbital images= a: Landsat; b: Spot; c: Meris; d: Modis.
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Figure 15. 2018/09/12 TSS maps in the Parano¡ from models using green and red bands (models are
labeled following Table 4).

Figure 16 presents the TSS concentrations along the transect (Figure 10) for the same models as
presented in Figure 15 (models #4, #10, and #7), and the NIR model. This analysis con�rms that model
#4 and model #10 (i.e., based on red and green bands, respectively) were more successful in estimating
robustly low TSS concentrations. Model #10 displayed a rather constant TSS concentration estimate
with no trend along the transect. Model #4 showed greater oscillations in the distribution of TSS along
the transect and seemed to better reproduce the TSS spatial pattern. Model #1 and #7 were less suitable,
as the NIR model strongly underestimated the measured TSS concentration while model #7 produced
systematically overestimated TSS concentration values.
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Figure 16. Field and estimated total suspended solids (TSS) concentrations for the 2018/09/12 survey
in the Parano¡ reservoir, for di�erent models using the near-infrared (NIR), green and red bands of
the Sequoia camera, extracted along the transect exhibited in Figure 10 (models are labeled following
Table 4).

4.2. Reservoir Siltation Mapping

Siltation in the Parano¡ reservoir is a major concern, as nearly 6% of its surface has disappeared since
1960, representing a mean annual loss of 0.05 km3. The sedimentation rates are highly variable, changing
from 0.2 cm/year�1 in the central part of the reservoir to 7 cm/year at some inlets. Another important
point is that the reduction in storage capacity prevents the reservoir from providing the services for
which it was designed, because the water level operation range of Lake Parano¡ is very narrow, only
1 m. For this reason, it is very important to know the sediment in�ow, the sediment plume location,
and the sedimentation rate that can a�ect the storage capacity of the reservoir. However, it is extremely
di�cult to calculate the silting of this region using conventional bathymetry surveys as most of the
siltation areas occur in very shallow depths (less than 2 m) [44�46].

In addition, as the Parano¡ is an urban reservoir, the storm drainage network presents numerous
inlets into the reservoir, which are sources of sediment that are not monitored by conventional
monitoring. These inlets discharge a large amount of sediment that depends on the local rainfall
regime and the stage of urbanization of the area covered by the drainage system. In this context, with a
shallow region of complex shape and with a lot of small drainage inlets, the use of drones makes it
possible to identify the sources of sediment in�ow and the extent and propagation of the sediment
plume, even during heavy rain events associated with persistent cloud cover that prevents the use of
satellite images.

The TSS distribution maps in the inlet areas show the advantages of drone-borne remote sensing
imagery: operational �exibility and �ne spatial and temporal resolution. The Sequoia camera was able
to identify TSS gradients from 0 to ~50 mg L�1 in Corumb¡ IV and from 0 to > 100 mg L�1 in Parano¡,
highlighting the high concentrations from the urban drainage �ow near sampling point 1 (Figure 2) at
a level of detail that is restricted to very high spatial resolution images. The beginning of the rainy
season in Bras‰lia (city near the Parano¡ reservoir) is marked by heavy rains, which promote runo�
that transports sediment from urban areas to Parano¡, as observed on 2018/10/31 when there was the
highest TSS load in the area. Such results demonstrate the viability of this platform to densify TSS
monitoring at the inlet areas of reservoirs. It is a tool that allows identi�cation and quanti�cation of the
sources of sediment inputs, helping to understand and to mitigate the siltation process in reservoirs.
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5. Conclusions

The low cost and the operational �exibility of unmanned airborne remote sensing platforms allow
water quality monitoring at high spatial and temporal resolutions and is especially well suited for
small areas where it is di�cult to rely on manned airborne and orbital platforms due to technical or
�nancial reasons.

Our study showed that multispectral cameras onboard UAVs, combined with the application of
bio-optical models, are robust and practical tools to monitor the spatial distribution of TSS concentration
in water bodies. We presented the di�erent steps involved in the mapping from �ight planning, at-sensor
re�ectance orthomosaic generation, TSS retrieval model selection, and �nal mapping. We showed that
the selection of an appropriate radiometric model is essential, as it can result in very di�erent outputs
in terms of the TSS concentration level and spatial distribution. A NIR single band model was found to
be the most e�cient for TSS monitoring during medium to high TSS concentration levels. Bio-optical
models using bands at shorter wavelengths (red and green) appeared to be the most appropriate to
detect low TSS concentrations during the dry season. It is expected that the methods presented here
may be reproduced easily over di�erent regions in the world. The TSS mapping performance was very
encouraging, reaching an RMSE of 7.8 mg L�1 for the whole concentration range, and an RMSE of 2.8
mg L�1 for the clearest water conditions, yielding an accuracy close to conventional water sampling
methods but with improved coverage and lower costs.

Robust temporal TSS mapping is a suitable indicator of the siltation process in reservoirs.
Although the low-cost unmanned airborne platforms can not monitor large reservoirs entirely, their
ultra-high temporal and spatial resolution capacity make them a well-suited platform to identify the
sources of sediment production at the inlet areas of reservoirs, as in the case of urban drainage, as well
as suspended sediment dispersion within the water body.
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