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S U M M A R Y
The integration of petrophysical data and probabilistic geological modelling in geophysical
joint inversion is a powerful tool to solve exploration challenges. Models obtained from geo-
logically and/or petrophysically constrained inversions are the result of complex interactions
between correspondingly diverse data sets. Therefore, it is important to understand how non-
geophysical input uncertainty impacts inverted models. In this paper, we propose to study the
influence of uncertainty in geological and petrophysical measurements used to derive prior in-
formation and constraints onto geophysical inversion. Starting from geological field data from
the Mansfield area (Victoria, Australia), we simulate low, medium and high uncertainty levels
in geological measurements and petrophysical data, combined into a series of nine realistic
case scenarios. This allows us to investigate the impact and propagation of uncertainty from
non-geophysical measurements into geophysical inversion. We calculate misfit indicators and
reconstruct lithological models a posteriori to analyse inversion results. We complement the
examination of inverted models with topological analysis of lithological models in order to
quantify the geological resemblance between the recovered and reference models. Our work
reveals that the influence of uncertainty in geological measurements over the recovered litho-
logical models is significantly stronger than it is for petrophysical data. Our posterior analysis
indicates that intermediate petrophysical uncertainty provides optimum results.

Key words: Joint inversion; Persistence, memory, correlations, clustering; Statistical meth-
ods.

1 I N T RO D U C T I O N

The premise that modelling a physical system requires the use of all available information about it (Hempel & Oppenheim 1948; Cartwright
& McMullin 1984; Nearing et al. 2016) justifies the integration of various disciplines in geophysical inverse modelling. It is motivated
by the need to improve a model’s geological reliability and to mitigate the inherent limitations of geophysical inversion. With minimum
non-geophysical information, geophysical integration efforts focus on inverting several geophysical data sets jointly by enforcing structural
similarities between inverted models (Haber & Oldenburg 1997; Gallardo & Meju 2003). Over the past years, the ever growing need to improve
subsurface imaging through reduction and analysis of uncertainty increased the interest of the geoscientific community for multidisciplinary
integration (Moorkamp 2017; Jessell et al. 2018). Numerous works have explored integration strategies to improve geophysical imaging for
mineral, hydrocarbon, near surface and multiscale geophysics, as reviewed by Parsekian et al. (2015), Lelièvre & Farquharson (2016), Linde
& Doetsch (2016) and Moorkamp et al. (2016), respectively.

More specifically, recent works highlight the advantages of integrating either petrophysical constraints (Lelièvre et al. 2012a; Carter-
McAuslan et al. 2015; Kamm et al. 2015; Zhang & Revil 2015; Heincke et al. 2017; Sun & Li 2017) or geological information or data during
inversion (Fullagar & Pears 2007; Lelièvre et al. 2012b, 2015; Lelièvre & Farquharson 2013; Revil et al. 2015; Scholl et al. 2016; Bijani
et al. 2017; Lipari et al. 2017; Giraud et al. 2019). Alternatively, Brown et al. (2012), Zhou et al. (2014, 2016), Wiik et al. (2015), Guo et al.
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Sensitivity of constrained inversions to uncertainty 667

(2017) and Giraud et al. (2019) propose the integration of structural information from geophysical or non-geophysical images in geophysical
inversion to guide the inverse modelling process.

Concurrently, several works developed methodologies to characterize geodiversity (Lindsay et al. 2013a,b, 2014), the geological
counterpart of biodiversity applied to geological modelling. Meanwhile, others focus on the study of geological uncertainty (Wellmann &
Regenauer-Lieb 2012; Lark et al. 2013; Park et al. 2013; Kinkeldey et al. 2015; de la Varga & Wellmann 2016; Schneeberger et al. 2017;
Schweizer et al. 2017). In particular, Pakyuz-Charrier et al. (2018a,b) produce probabilistic geological models (PGMs) from statistically
uncertain inputs. These authors calculate PGMs through a technique called Monte-Carlo Uncertainty Estimator (MCUE). Their methodology
relies on the sampling of a probability distribution representing geological measurements and their uncertainty. It is coupled to a geological
modelling engine to produce a series of geologically plausible models. From this suite of geological models, the observation probability (i.e.
the observed relative frequency) of each lithology is calculated in each model cell across the studied area, thus constituting a probabilistic
geological model.

When available, such probabilistic geological models can be utilized to condition petrophysical constraints spatially, which has the
potential to improve inversion results (Giraud et al. 2016a,b, 2017). Consequently, models calculated through constrained geophysical
inversion encapsulate geological and petrophysical information. In such cases, as it is often observed in inverse modelling, integrated
inversion suffers from nonlinearity. There has been little study of the propagation and sensitivity of inversion results to varying uncertainties
in both geological and petrophysical input measurements even though it has been identified as a key factor for model evaluation in exploration
scenarios (Bosch et al. 2010, 2015). The utilization of inaccurate information to derive petrophysical constraints has been investigated by Sun
& Li (2015, 2017) and Carter-McAuslan et al. (2015). Nevertheless, the role of uncertainty in prior information (e.g. how data are scattered
around the true value) is only partially addressed as published works mostly consider biased prior information such as systematic errors.

Previous works have investigated the effect of noise in geophysical data inversion (LaBrecque et al. 1996; Fernández-Martı́nez et al.
2014a,b) and its removal (Yuan et al. 2012; Pilkington & Shamsipour 2014). Understanding the respective influence of petrophysical and
geological data uncertainty on the inversion process is elementary to reduce the risk of misinterpretation of results and to sound decision
making. Integration approaches considering petrophysical and geological constraints simultaneously are a relatively recent development that
present much potential, but that have not been thoroughly studied yet.

In this work, we develop a study that intends to alleviate the scarcity of studies focusing on the propagation of petrophysical and
geological uncertainty in integrated inversion. We use a re-designed version of the 3-D inversion platform TOMOFAST3D (Martin et al.
2013, 2018; Ogarko et al. 2019) that integrates both statistical petrophysical constraints and probabilistic geological models. The primary
objective of this article is to investigate and understand how uncertainty propagates from the geological and petrophysical input measurements
to the recovered lithological model. We perform sensitivity analysis to study how variations in the statistics of petrophysical and geological
measurements affect the inverted models and recovered lithologies a posteriori. We interpret inversion results qualitatively through visual
inspection and quantitatively by calculating indicators quantifying the discrepancies between the true and inverted models in terms of physical
properties (study of misfits) as well as recovered lithological models (topological analysis).

This paper is structured around five sections. In the methodology section (Section 2), we provide a summary of the different steps of the
proposed workflow (Section 2.1). This is followed by the formulation of the inverse problem (Section 2.2), where we give a short introduction
to our inversion platform. We then provide information about the probabilistic geological modelling procedure, the calculation of local
petrophysical constraints and starting models (Section 2.3). Section 3 describes the metrics that assess both inversion quality and recovered
lithological models. Section 4 introduces the geological context to the simulated case scenarios and practical information about the synthetic
geophysical survey. The results section (Section 5) describes qualitative interpretation and examination of inversion results. We subsequently
validate our observations using a series of posterior indicators. The discussion (Section 6) considers the implications of our findings for future
work and its practical applications. Section 7 provides the conclusions. Section 8 provides information allowing reproducibility of the work
presented in this article.

2 I N V E R S E P RO B L E M F O R M U L AT I O N A N D I N T E G R AT I O N O F C O N S T R A I N T S

2.1 Integration procedure summary

The main steps of the modelling procedure are summarized in Fig. 1. The inversion algorithm is similar to Giraud et al. (2017), which
we extend here to large-scale 3-D problems and complement with the posterior recovery of lithological models and topological analysis. A
prerequisite to inversion is to translate petrophysical and geological data into information that can be used in the inverse modelling process.
The first step is to calculate the PGM using MCUE and to derive a mixture model (e.g. a weighted sum of probability density functions)
representative of the petrophysical measurements. The PGM and the mixture model are then combined to derive local petrophysical constraints
and to calculate starting models for inversion (step 2 in Fig. 1). The next step of the workflow is to perform constrained geophysical inversion
(step 3). The posterior analysis in step 4 comprises a lithological reconstruction procedure that allows the recovery of a lithological model
and subsequent topological analysis. The calculation of a series of indicators provides metrics for the assessment of inversion results in terms
of geological plausibility and misfit.
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668 Giraud J. et al.

Figure 1. Modelling workflow summary.

2.2 Cost function and optimization process

2.2.1 Problem formulation

The optimized objective function � is derived from the formulation of a density function that relates to the ‘degree of knowledge that we
have about the values of the parameters of our system’ (Tarantola & Valette 1982). In our case, it can be expressed as a product distribution
of the form

� (d, m) = �d (d, m) �m (m) �c (m) , (1)

where subscript d relates to the geophysical measurements d to be inverted, subscript m relates to the inverted model m and subscript c to
the petrophysical constraints. In this equation, �d(d, m) is the density function corresponding to geophysical data misfit, �m(m) is the prior
density function on model m and �c(m) is the probability density relating to constraints derived from petrophysical information.

Our assumption is that density functions �d(d, m) and �m(m) can be expressed as{
�d (d, m) = A exp

[−(d − g (m))T C−1
d (d − g (m))

]
, A ∈ R

+\ {0}
�m (m) = B exp

[
−(

m − mp

)T
C−1

m

(
m − mp

)]
, B ∈ R

+\ {0} ,
(2)

with

g (m) =
[

gG

(
mG

)
gM

(
mM

)] , m =
[

mG

mM

]T

, d =
[

dG

d M

]
, Cd =

[
C G

d 0
0 C M

d

]
,

C
m

=
[

C G
m 0

0 C M
m

]
, (3)

where superscript T denotes the transpose operator. Superscripts and subscripts G and M refer to the gravity and magnetic problems,
respectively. In this case, �c(m) is expressed using a mixture model where each subpopulation corresponds to a specific rock type. A and B
are the normal distributions’ normalization constants, while Cd and Cm are covariance matrices corresponding to data and model weighting,
respectively, and mp is the prior model.

Substituting eqs (1) and (2), we obtain

� (d, m) = AB exp
[
−(d − g (m))T C−1

d (d − g (m)) − (
m − mp

)T
C−1

m

(
m − mp

)]
�c (m) . (4)
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By considering the logarithm of eq. (4), it is straightforward to show that maximizing �(d, m) is equivalent to minimizing the following
cost function θ :

θ (d, m) = (d − g (m))T C−1
d (d − g (m))︸ ︷︷ ︸

data term φd (m)

+ (
m − mp

)T
C−1

m

(
m − mp

)︸ ︷︷ ︸
model term φm (m)

+ log
(
�c(m)−1)︸ ︷︷ ︸

constraint φc(m)

. (5)

Generally speaking, the constraint term φc(m) can be utilized to incorporate prior information in the inverse problem and to enforce
constraints. It constitutes the link between the two data sets jointly inverted as each element is a function of both the density contrast and
magnetic susceptibility. In this method, φc encapsulates local information derived from probabilistic geological modelling combined with the
statistics of the physical measurements of the lithologies sampled in the studied area. Calculation of this term is detailed in Section 2.3.2.
We assume that Cd and Cm are diagonal covariance matrices for the remainder of this paper. In this work, we weight all the geophysical
data points equally. We set Cd as the identity matrix to simplify the estimation of the parameters weighting the different terms. Note that
in the general case, values of Cd may vary between the data points accordingly with area, acquisition or measurement-specific information
to account for the features of the data set. It remains necessary to estimate Cm, the parameters controlling the weight of the petrophysical
constraints in inversion, and to determine the relative weight between the gravity and magnetic problems. This procedure is discussed in
Section 4.3 as applied to our data set.

2.2.2 Inversion algorithm

The form of θ (m) as per eq. (5) allows us to solve the inverse problem in a least-squares (LSQR) sense using the LSQR algorithm (Paige &
Saunders 1982; Chapman & Pratt 1992; Pratt & Chapman 1992; Gerhard Pratt et al. 1998; Martin et al. 2013).

We extend the parallel code TOMOFAST3D for the purpose of this work (Martin et al. 2013, 2018; Ogarko et al. 2019). This extended
implementation, ‘Tomofast-x’, follows the object-oriented FORTRAN 2008 standard. The design of Tomofast-x utilizes classes derived to
account for the mathematics of the problem. This permits to reduce software complexity, thereby facilitating the addition of new functionalities
(see Hammond et al. 2014, and references therein).

2.3 Geological conditioning of petrophysical constraints

2.3.1 Probabilistic geological modelling

Several studies showed that multiple sources of uncertainty can impact geological modelling, and that quantitative uncertainty estimation
of individual geological models is difficult to obtain (Bond et al. 2007, 2015; Alcalde et al. 2017). To mitigate this, Pakyuz-Charrier et al.
(2018a,b,c) extend previous works (Jessell et al. 2010; Lindsay et al. 2012, 2013b; Wellmann & Regenauer-Lieb 2012) to generate a collection
of geological models reflecting the range of geologically possible models. In this work, we perform probabilistic geological modelling using
outputs from MCUE as detailed in Pakyuz-Charrier et al. (2018b) as part of the prerequisite to inversion (step 1 as per Fig. 1).

MCUE propagates input measurement uncertainty to the modelling geological structures via sampling of probability distributions using
a Monte-Carlo approach. MCUE perturbs a reference model under the assumption that uncertainty on measurement position can be modelled
using a normal distribution and that measured orientation data used to build the model can be modelled using spherical statistics (e.g. foliations
through dip and strike converted into a vector in 3-D). This is achieved using the von Mises–Fisher distribution (Davis 2002). In 3-D, the
distribution is given by Mardia & Jupp (2008):

vM F (x| y, κ) = κ

4π sinh (κ)
eκ yT x, κ ∈ R

+, (6)

where x is the orientation data vector and y is a unit vector representing the mean measurement direction. The term κ is called the concentration
parameter. It characterizes the spread in orientation measurements and is analogous to the inverse of the more familiar standard deviation for
normal distributions. In principle, it is possible to assign an individual uncertainty estimate to each measurement depth- or location-dependent
uncertainty (e.g. for borehole data or for seismic horizons). In the work presented here, we assume independent surface measurements that
present similar levels of uncertainty.

The geological plausibility of model realizations is enforced through application of topological rules and plausibility filters that force
the model to honour age relationships and the stratigraphic column. The resulting set of models—typically several hundreds of models—is
then combined into a PGM representing the observation probability of all modelled lithologies in each cell. This applies to all lithologies with
the exception of the basement, which is assigned in the absence of other units under the hypothesis that it fills space when no other lithology
is present.

The results from MCUE are used to condition petrophysical constraints (�c(m) term in eqs 1–5) and to compute starting models and is
detailed in Section 2.3.2 next.
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670 Giraud J. et al.

2.3.2 Local petrophysical constraints

Petrophysical constraints are applied to inversion through the minimization of the constraint term φc (5) simultaneously to the other terms.
We follow concepts introduced and used by Paasche & Tronicke (2007), Doetsch et al. (2010), Lelièvre et al. (2012a) and Sun & Li (2013) to
maximize the statistical closeness between inverted properties and measured petrophysical data. We condition the petrophysical constraints
geologically to derive local constraints following the procedure introduced in Giraud et al. (2017).

Assuming that the physical properties are normally distributed for each lithology, petrophysical measurements can be represented using
a mixture model. Therefore, we can use such statistical description to define a probability distribution to be used to constrain inversion. Let
the statistics of petrophysical measurements be represented by a mixture distribution of the form (eqs 7 and 8)

p (mi ) =
nl∑

k=1

pk (mi ) , (7)

with

pk (mi ) = ωk N (mi |μk, σ k) , (8)

where nl is the number of lithologies observed in the petrophysical measurements and k denotes the index of the corresponding lithology.
The kernels N (mi |μk, σ k) of the mixture are normal distributions. The normal distribution for the kth lithology is characterized by a mean
value vector for the considered property, μk, and the associated covariance matrix, σ k. The relative weights of the corresponding lithologies,
ωk = 1..nl , are non-negative weights, or mixing coefficients that sum to 1. Note that in our implementation, σ k is a full 2 × 2 matrix, thereby
accounting for the statistical correlation between the petrophysical properties of rocks.

Introducing the weight ρ ∈ R
+, we define

φc (m) = ρ

nm∑
i = 1

(log p (mi ) − log max p (mi ))
2 (9)

for optimization in the LSQR problem to be optimized as per eq. (5). The term inside brackets can be interpreted as the summed log-likelihood
of the distribution representative of the petrophysical measurements multiplied by a positive scalar weighting the petrophysical constraints
term in eq. (5). From eqs (7–9), it becomes clear that such petrophysical constraints constitute soft constraints and favour model changes
towards the most likely configuration as indicated by the expression of p(m).

In real-world scenarios, the parameters of N (m|μk, σ k), σ k and μk can be estimated from petrophysical data using an expectation
maximization algorithm (e.g. McLachlan & Peel 2000). A normal distribution is commonly expected to describe the physical measurements
of rocks. It is clear that the assumption that the statistics of measured petrophysical properties can be represented or approximated using such
distribution is not always valid (e.g. bimodal susceptibility distribution of certain rocks), and that the choice of distribution remains case
dependent.

The conditioning of petrophysical constraints by geological modelling employs calculation of φc(m) using observation probabilities
extracted from the PGM to weight elements of the mixture model defined in eq. (9). We introduce a matrix ψ of dimensions nm × nl containing
the observation probabilities of the different rock units. Substituting ωk as per eq. (8) with the probability of the respective lithology in each
cell of the model provides a local mixture model depending on both geological modelling results and petrophysical measurements. We can
rewrite pk(mi ) as

pk (mi ) = ψk, i N(mi |μk, σ k). (10)

This process, which corresponds to the second stage of the workflow (Fig. 1), is illustrated in Fig. 2.
In addition to the calculation of φc(m), the PGM is useful to calculate starting models. The starting model m0 is set as the average model

from the PGM populated accordingly with petrophysical measurements. It is calculated as

m0 = ψ μ . (11)

The consequences of the formulation of the petrophysical constraints in eq. (9) and of the starting model in eq. (10) for inversion
are the following. Theoretically, inversion will be strongly influenced by the petrophysical constraints in model cells where geology is well
determined (e.g. one observation probability dominates the others) and the locally weighted mixture shows well-separated lithologies. In
contrast, local petrophysical constraints are similar to global petrophysical constraints in model cells where geology remains undetermined
after MCUE. Also note that model updates during inversion are largely driven by geophysical data where the locally weighted mixture model
does not exhibit a sufficiently clear distinction between the different lithologies.

3 Q UA L I T Y I N D I C AT O R S

Posterior analysis of inversion results constitutes the fourth and final step of the workflow (Fig. 1). We base our interpretation of inverted
models on global and local indicators. All the inversions we present achieve a similar geophysical data misfit (i.e. the root-mean-square
error, RMSE), indicating that little insight is gained from comparing models with this particular metric (see Section 5.2.1). We observe that
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Sensitivity of constrained inversions to uncertainty 671

Figure 2. Geological conditioning of petrophysical constraints. Modified from Giraud et al. (2017).

incorporation of prior information with varying degrees of uncertainty has limited impact on final geophysical data misfit values. Our results
are in agreement with Gallardo & Meju (2004, 2007, 2011), Abubakar et al. (2012), Gallardo et al. (2012), Gao et al. (2012), Jardani et al.
(2013), Molodtsov et al. (2013), Moorkamp et al. (2013), Juhojuntti & Kamm (2015), Rittgers et al. (2016), Sun & Li (2016a, 2017), Demirel
& Candansayar (2017) and Giraud et al. (2017), who do not observe dramatic data misfit improvements through data integration, and point
out that improvements mostly occur in model space.

3.1 Global indicators: model misfit and lithological resemblance

Models are assessed using indicators derived from the difference between reference and inverted models and characterize the resemblance
between causative bodies and retrieved models. Invoking Laplace’s first law of errors (Laplace 1774; Wilson 1923; Stigler 1986), the first
indicator we calculate is equivalent to the mean absolute deviation around the reference model, or mean absolute model misfit (MAMM). It
is less sensitive to isolated outliers than the more common root-mean-square indicators. Let us express this indicator as follows:

ϕm (m) = 1

nm

nm∑
i = 1

∣∣mref
i − m inv

i

∣∣ , (12)

where mref
i and m inv

i correspond to the i th cell of the inverted reference and inverted models, respectively.
We also assess inverted models by reconstructing lithologies from inverted physical property models.. Lithologies are recovered, for

each model-cell assigned with mi , from a membership analysis using eq. (8) similar to Doetsch et al. (2010) and Sun & Li (2012), which we
restrict locally to lithologies characterized by ψk, i > 0. This allows us to evaluate the lithological resemblance between recovered lithological
model l inv and the reference lithological model lref by calculating the proportion of recovered cells that are in agreement. We define what we
term the lithological resemblance r as follows:

r
(
l inv, lref ) = 1

nm

nm∑
i = 1

1lref
i

(
l inv
i

)
, (13)

where 1lref
i

symbolizes the indicator function for l ref
i .

3.2 Local indicator using the topology of inverted models

The set of cells assigned with recovered lithologies constitute a lithological model characterized by discrete values representing rock types,
which can be interpreted geologically. Topology records the geological relationships between adjacent objects within a model, and can be
used to represent that model (Perrin & Rainaud 2013). It can also be used as ‘tool for quantifying differences between geological models in
uncertainty analyses’ (Thiele et al. 2016b). Topological analysis allows us to interpret and compare results in a way that also accounts for
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672 Giraud J. et al.

changes in geological relationships regardless of the scale considered. It is, therefore, well suited to detect local differences between models,
and complements indicators reflecting bulk properties (i.e. values averaged from the whole model). This can be useful to identify areas of
the recovered models that are geologically implausible and to highlight poorly constrained lithologies. Such analysis of inverted models
complements works of Doetsch et al. (2010), Sun & Li (2012), Carter-McAuslan et al. (2015), Martinez & Li (2015), Sun & Li (2015, 2017),
Li & Sun (2016) and Melo et al. (2017), who infer lithologies from inverted models but whose study does not extend to the quantitative
geological assessment of recovered models. One of the key advantages of topological analysis over qualitative interpretation is that it presents
a systematic way to analyse results and to detect features that cannot be measured using mean model indicators and that may be challenging
to impossible to detect through visual inspection of 3-D models (Pellerin et al. 2017).

In this case, we perform the topological analysis of recovered lithological models to compare basic geological features of models
recovered from inversion results. Following the nomenclature proposed by Thiele et al. (2016b), we use ‘lithological topology’. It is defined
in the framework introduced by Burns (1988), who addresses the relationship between adjacent rock volumes (in our case, cells assigned with
a given lithology). The different kinds of topological relationships, for instance, ‘contains’, ‘is inside’, ‘meets’, etc., are characterized using
the Egenhofer relations (Egenhofer & Herring 1990), generalized to 3-D by Zlatanova (2000).

In the workflow presented here, we limit our investigations to the adjacency of units (i.e. ‘unit A is in contact with unit B’), which is
the most common Egenhofer relation used in geology (Thiele et al. 2016b). We represent adjacency following the matrix representation of
Godsil & Royle (2001), which can be summarized as follows. For a model consisting of n lithologies, the adjacency matrix can be reduced to
a positive strictly lower triangular nl × nl matrix M, where element Mi > j, j are non-zero if and only if a contact between lithologies i and j
is observed.

We attach to each element Mi > j, j of the matrix the number of occurrences of the respective contacts to make the adjacency matrix more
suitable to the comparison of lithological models. Let the resulting adjacency matrix elements be

Mi > j, j = ni j , Mi ≤ j, j = 0, (14)

where ni j is the number of contacts between lithology i and j , for node Mi > j, j ; ni j = 0 indicates that lithology i and j are disjoint.
The synthetic case study uses adjacency matrices to compare recovered lithological models with the reference model. Real-world studies

can benefit from comparison of geological scenarios or departures from specific geological models (Perrin & Rainaud 2013; Thiele et al.
2016a; Pellerin et al. 2017). Besides reflecting the global features of a lithological model, the adjacency matrix M is also a local indicator
that can change dramatically with small, local alterations in the lithological model, possibly reflecting a change in mathematical properties
and geological meaning.

Deviations from the reference lithological model are calculated from the difference between the adjacency matrices of the recovered and
reference model and normalized by the highest number of contacts observed in the reference model. Let us define the matrix Mrel as follows:

M rel = 1

max M ref

(
M inv − M ref

)
, (15)

where M inv and Mref represent the adjacency matrices calculated from inversion results and the reference model, respectively.
From eq. (15), M rel

i, j > 0 indicates that the recovered lithologies overestimate the contact surface area between lithology i and
lithology j . On the contrary, M rel

i, j < 0 indicates that the recovered lithologies underestimate the contact surface area between lithology i and
lithology j .

4 S I M U L AT E D C A S E S T U DY A N D U N C E RTA I N T Y S C E NA R I O S

4.1 Geological context

The unperturbed (or reference) geological model was constructed from contact data and surface orientation (i.e. contact points and foliations,
respectively) collected in the Mansfield area (Victoria, Australia) in Geomodeller R© (Lajaunie et al. 1997; Calcagno et al. 2008). It presents
a Carboniferous sedimentary syncline oriented N170, abutting a faulted contact with a Silurian–Devonian folded basement. Structural
complexity was artificially increased to define a problem that is more challenging to the inversion algorithm through the addition of a north–
south oriented fault and an ultramafic intrusion to the south. Information used to derive the original model is detailed in the GeoModeller
User Manual, Tutorial case study H (Mansfield). Fig. 3(a) shows the unperturbed geological model. The base structural model was made
available online by Pakyuz-Charrier (2018; see Section 8 for details about availability of data and models shown here). The utility of this
model for testing purposes has been shown by Giraud et al. (2017, 2019) and Pakyuz-Charrier et al. (2018b).

4.2 Simulated physical properties

We populate the reference geological model by assigning low density contrast and limited magnetic susceptibility to basin fill (lithologies 3, 5
and 6). Using values from the literature (Hatfield et al. 2002; Hunt et al. 1995; Airo 2005; Clark & Emerson 2006), we assigned higher density
contrast and magnetic susceptibilities to ultramafic rocks (lithology 1), diorite (lithology 2) and dolerite (lithology 4). Modelled lithologies
and physical properties are provided in Table 1. The reference density and magnetic susceptibility models are shown in Figs 3(b) and (c),
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Figure 3. (a) Reference geological model, reference property model: (b) density contrast (c) magnetic susceptibility, with the corresponding (d) gravity anomaly
and (e) magnetic field anomaly. The dashed line square in (d) and (e) shows the outline of the subset of the model used in the first stage of hyperparameter
estimation.

Table 1. Stratigraphic column showing geological topological relationships and average physical properties. Lithologies are indexed from 1 through 6 by
decreasing age. Lithology 1 is the oldest and 6 is the most recent.

Lithology index Geological relation Geological unit Density contrast (kg m-3) Magnetic susceptibility (SI)

6 Sedimentary Basin fill 3 0 0
5 Sedimentary Basin fill 2 110 0.01
4 Intrusive Dolerite 300 0.025
3 Sedimentary Basin fill 1 110 0.01
2 Intrusive Diorite 170 0.05
1 Basement Ultramafic rocks 240 0.08

respectively. A reference density value of 2670 kg m−3 was used.
In real-world scenarios, different lithologies encountered in basins may share similar characteristics in the petrophysical domain, such as

low density contrasts and magnetic susceptibilities, and in some cases cannot be differentiated in a density contrast—magnetic susceptibility
crossplot. To account for this, we assign the same properties to lithologies 3 and 5, which become undistinguishable.

4.3 Geophysical survey

4.3.1 Synthetic geophysical data and forward modelling

Magnetic and gravity data were computed to simulate and gravity and magnetic ground surveys. We inverted for the total magnetic field
anomaly and the vertical component of the complete Bouguer anomaly. Magnetic data are simulated following the same approach as
Bhattacharyya (1964). Gravity data are simulated following Boulanger & Chouteau (2001). We model a magnetic field strength equal to
57 700 nT, which approximates the International Geomagnetic Reference Field for the locality of Mansfield (Victoria, Australia).
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Table 2. Input uncertainty for geological input data (first block) and physical properties (second block). Cases (a), (b) and (c) correspond to cases scenarios
where 95 per cent of the orientation data are contained within 52, 37 and 30 deg aperture cones, respectively. For petrophysics, cases α, β and γ characterize
different levels of spread of the measurements around the mean values. Chosen standard deviations for case α (most uncertain case) in terms of magnetic
susceptibility are of the same order of magnetic as Sanger & Glen (2003), larger than Törnberg & Sturkell (2005) for density contrast, and conform to
Barlow (2004) for both density contrast and magnetic susceptibility. Chosen concentration parameters are in agreement with metrological studies (Bond 2015;
Allmendinger et al. 2017; Novakova & Pavlis 2017).

Geological input data uncertainty

Uncertainty level
Orientation data uncertainty
(Concentration parameter)

Contact position uncertainty
(Standard deviation, in m)

a—most uncertain case 80 50
b—intermediate case 20 50
c—least uncertain case 25 25
Physical property uncertainty
Uncertainty level Standard deviation of density contrast (kg m-3) Standard deviation of magnetic susceptibility (SI)
α—most uncertain case 60 0.02
β—intermediate case 45 0.015
γ —least uncertain case 33.75 0.0113

We add zero-mean normally distributed random noise with standard deviation equal σ G
d = 0.3 mGal (e.g. 2.25 per cent of the average

amplitude of the data) and to σ M
d = 10 nT (e.g. 2.5 per cent of the average amplitude of the data) to gravity and magnetic measurements,

respectively, to simulate noise contamination of the data. The synthetic geophysical data we invert are shown in Figs 3(d) and (e) for gravity
and magnetic data, respectively. The inverse integrated sensitivities technique of Li & Oldenburg (2000) and Portniaguine & Zhdanov (2002)
are used to balance the decreasing sensitivity of potential field data with depth.

The study area is a volume of 16.64 × 16.64 × 2.88 km3 discretized into 128 × 128 × 32 cells (dimensions 130 × 130 × 90 m3),
making up a total of 524 288 elements. To avoid dispersion effects, we sampled geophysical data on a 128 × 128 grid, for a total of 16 384
measurement points per geophysical data set.

4.3.2 Hyperparameter estimation

The values defining the weights of the different terms in the cost function as per eq. (2) through eq. (5) constitute hyperparameters of the
inverse problem. We estimate them using the L-curve principle (Hansen & O’Leary 1993; Hansen & Johnston 2001; Santos & Bassrei 2007),
seeking geophysical data misfit superior or equal to noise level. We determine Cm and ρ in a two-stage heuristic process that partially avoids
the limitations of L-curve analyses in 3-D constrained joint inversion scenarios due to high computation requirements (see Bijani et al. 2017)
or the difficulty to visualize hypersurfaces. The first stage involves the estimation of optimum weights for single-physics inversion on a
3-D subset of the full model. It is comprised of 48 × 48 × 32 cells with the corresponding 48 × 48 surface data points. The subset we
chose is located in the central part of the model. The reference model is made fairly complex in this location by inclusion of an ultramafic
intrusion and faulted units. We assume that the corresponding data are representative of the full geophysical data set. The subset comprises
approximately 14 per cent of the total volume and data points, thereby dividing the computation time by a factor superior to 10. This allows
us to run hundreds of constrained inversions. The outline of the model is shown in top view in Figs 3(d) and (e).

Manual tuning of Cm and ρ for single-physics inversions provides an initial estimate of the optimal parameter values. We refine our
search by sampling values spaced at regular intervals in logarithmic scale around these initial estimates. This led us to perform series of
400 and 1032 separate gravity and magnetic inversions, from which we generate the corresponding L-surfaces for the identification of the
optimum weights (the corresponding L-surfaces are available in Appendix A1, Fig. A1).

The second stage of hyperparameter estimation pertains to joint inversion. The values obtained for single domain inversion are transferred
to the joint inversion of the subset of the full model. The relative weight between the gravity and magnetic problems is obtained through
L-curve analysis of 50 different weights. A series of 625 inversions sampling values of Cm and ρ from single domain inversion is then
performed to determine optimum values. Finally, fine-tuning of the resulting values using the full model allowed us to obtain the set of
optimum hyperparameters that we used to run the inversions shown in this paper.

4.4 Case scenario evaluation

In real-world scenarios, statistical geological and petrophysical models derived from geological and petrophysical measurements are dependent
upon the quality of data and on the geology of the area. The evaluation of the sensitivity of our inverse modelling procedure to varying
uncertainty levels in geological and petrophysical data is performed through the simulation of a range of possible case scenarios. To this end,
we simulate three base uncertainty levels for both geological and petrophysical data to simulate extreme and average cases representative of
real scenarios. Note that we simulate measurements and uncertainty levels using values reported in the literature (see references provided in the
caption of Table 2). We assume that the statistics of physical properties are derived from a representative population in our idealized experiment.
Likewise, we assume that measurement uncertainty on orientation data or contact positions are based on outcrop and/or borehole condition

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/218/1/666/5420754 by guest on 13 D

ecem
ber 2024



Sensitivity of constrained inversions to uncertainty 675

(a, ) (a, ) (a, )

(b, ) (b, ) (b, )

(c, ) (c, ) (c, )

More certain petrophysics

M
or

e 
ce

rt
ai

n 
ge

ol
og

y

Figure 4. Simulated case scenario classification matrix representing the tested combinations of uncertainty levels on geological and petrophysical input for
inversion as per Table 2. Each row corresponds to a given geological input measurement uncertainty scenario, while each column corresponds to a given
petrophysical uncertainty case.

and measuring instrument specifications. Table 2 next gives the tested uncertainty levels on geological and petrophysical measurements,
assuming that density contrast and magnetic susceptibility are not correlated (e.g. crosscorrelation equal to zero).

Combining the base uncertainty levels as per Table 2, we obtain a total of nine cases representative of the range of simulated case
scenarios (Fig. 4 next). The comparison and analysis of results obtained using these nine cases (Fig. 4) constitute our sensitivity analysis of
integrated inversion to geological and petrophysical uncertainty.

Fig. 5 shows the observation probability of the most probable lithology in each model cell, calculated, in each case, from a suite of 300
plausible geological models. It shows the amount of information brought by geological measurements across the different parts of the model.
In Fig. 5, one can notice that for case (a) interfaces between geological units are not distinguishable in large portions of the model (darker
regions), while case (b) seems less affected and case (c) is the best determined. This clearly illustrates the propagation of input measurement
uncertainty to the PGM.

Fig. 6 next shows the resulting mixture model as per eq. (8), where all lithologies are equally weighted. As can be seen in Fig. 6, although
the geological model comprises six distinct units, lithologies 3 and 5 present exactly the same density contrast and magnetic susceptibility
(Table 1). This simulates cases where geological units cannot be differentiated by the available petrophysical data.

5 S E N S I T I V I T Y A NA LY S I S T O U N C E RTA I N T Y I N P E T RO P H Y S I C A L A N D
G E O L O G I C A L I N P U T DATA

5.1 Inverted models

In this section, we analyse the inverted models qualitatively and examine the differences between reference and inverted models in terms of
density contrast for (a, β), (b, β) and (c, β) (Fig. 7) and magnetic susceptibility for (b, α), (b, β) and (b, γ ) (Fig. 8). Visual inspection of the
recovered lithological models corresponding to the cases shown in Figs 7 and 8 are shown in Figs 9(a) and (b), respectively. The complete
set of results for all cases (Fig. 4) in terms of inverted models, differences with the true model and recovered lithological models is given in
Appendix A2 (Fig. A2 through A6).

From Figs 7(a) and (b), differences between cases are small. However, visual comparison of inversions (b, α), (b, β) and (b, γ ) in
Fig. 7(a) indicates that decreasing uncertainty in petrophysical data increases the contrasts in inverted physical properties. This is because the
different lithologies are increasingly well differentiated in the crossplot from case α to γ (Fig. 6). To a lesser extent, decreasing petrophysical
uncertainty also modifies the geometry of the contacts between structures in the model (small-scale changes in lithological models shown by
arrows in Fig. 9a). In particular, changes are more notable in the central part of the model where Fig. 3 respectively show higher geological
complexity and uncertainty.

Although the same mixture model is used to define petrophysical constraints for cases (a, β), (b, β) and (c, β), results shown in Fig. 8(a)
exhibit only a slight increase in sharpness from (a, β) to (c, β). Visually, it is notable in Fig. 8(a) that decreasing geological input uncertainty
results in increased inverted model complexity associated with lower discrepancies with the true model (Fig. 8b). This is particularly notable in
areas corresponding to the most uncertain parts of the model as per Fig. 5. Inversion becomes increasingly guided by geology in these regions
as large portions of the model undergo a significant decrease in geological uncertainty from case (a) to (c). The result is that geologically
conditioned petrophysical constraints guide the inversion to update the model preferentially in the most geologically uncertain parts of the
model. The consequence of this is an indirect focusing effect of geophysical inversion on uncertain areas.

The comparison of inversion results obtained for scenarios (b, α), (b, β) and (b, γ ) (Fig. 7) and (a, β), (b, β), (c, β) (Fig. 8) shows that
larger structures corresponding to ultramafic rocks (lithology 1), diorite (lithology 2) and basin fills (lithologies 3, 5 and 6) are coherent for
all cases. It also shows that the differences occur at interfaces and in regions where geological uncertainty varies the most. This translates
in pronounced differences between the recovered lithological models in Fig. 9(b), notably in areas marked by an arrow. It also corroborates
previous observations, showing that the most notable changes are related to variations in geological uncertainty, while changes related
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Figure 5. Maximum observation probability model for PGMs corresponding to cases (a), (b) and (c) (i.e. decreasing measurement uncertainty) as per Table 2.
High values (in white) indicate well-determined areas, while low values materialized by darker shades (e.g. lower values) indicate poorly constrained areas
where no lithology dominates.

Figure 6. simulated global mixture models, with decreasing standard deviations (in eq. 8) from case α to γ as per Table 2. The mean value for each lithology
is marked by a cross, of which the colour corresponds to the respective lithology as per Fig. 3(a). Lithologies 5 and 3 completely overlapped because they
present the same density contrast and magnetic susceptibility.
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Sensitivity of constrained inversions to uncertainty 677

Figure 7. (a) Inverted density contrast models (left-hand side rectangle) for cases (b, α), (b, β), (b,γ ), and (b) corresponding absolute difference with reference
model (right-hand side rectangle).

Figure 8. (a) Inverted magnetic susceptibility models (left-hand side rectangle) and (B) difference with reference model (right-hand side rectangle) for cases
(a, β), (b, β), (c,β) from top to bottom.
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Figure 9. (a) Recovered lithological model for cases (b, α), (b, β), (b,γ ) (left-hand side ranctangle) and (b) recovered lithological model for cases (a, β), (b, β),
(c,β) (right-hand side rectangle). Note that lithology 5 does not appear as it is merged with lithology 3. The recovered models are overlaid with the boundary
of the geological units from the reference model.

to uncertainty in petrophysics are limited to small-scale or low magnitude changes. This observation is also reflected in Fig. 9(a) where
the recovered lithological models show largely similar features. The next subsection focuses on quantitative quality indicators and on the
topological analysis of recovered lithological models to complete and confirm our interpretations.

5.2 Quality indicators

5.2.1 Misfits and lithological resemblance

The MAMM ϕm is derived from the absolute model misfit (eq. 13) and reflects the average differences between inverted and reference models
4. As can be seen in Fig. 10(b), the main control on this indicator is uncertainty in geological input for both density contrast and magnetic
susceptibility and it dominates over changes in petrophysical uncertainty. The effect of petrophysics is, therefore, to tune and sharpen the
model, while geology strongly influences the structural features recovered by inversion. This confirms observations made in Section 5.1.

Fig. 10 also indicates that the lowest MAMM values for both density contrast and magnetic susceptibility correspond to the intermediate
petrophysics case (β) in all three geological uncertainty scenarios. From these observations, we can argue that case (c, β) is the optimum
inverted model of this study and that in general, intermediate petrophysical uncertainty similar to case (β) provides optimum results, while
inverted model quality is directly related to geological input uncertainty. This interpretation is also valid for lithological resemblance r
(eq. 12) in Fig. 10(c), for which the main control is geological input uncertainty. A possible explanation to this is that while potential field
data inversion is highly affected by non-uniqueness, local entrapment is more likely to occur when the elements of the mixture model present
the narrowest standard deviations, and reduces possible changes in the model during inversion. Conversely, normal distributions with broad
standard deviations constrain inversion weakly. This interpretation is not contradicted by the inverted data RMSE values (eq. 16 next), which
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Figure 10. Metrics for inversion results analysis: MAMM indicator for density contrast (A) and magnetic susceptibility (B), lithological resemblance r (C),
for the different uncertainty scenarios as per Fig. 4. Each colour corresponds to a separate geological uncertainty scenario (a, b, and c; e.g the lines in Fig. 4).
Petrophysical uncertainty scenarios (α, b, and γ ; e.g. columns in Fig. 4), are differentiated by marker type. The coloured lines connect values attached to the
corresponding geological uncertainty scenario for visualization purposes but do indicate a continuum between the points.

Table 3. Data RMSE for the tested scenarios.

Uncertainty case scenario

(a,α) (a,β) (a,γ ) (b,α) (b,β) (b,γ ) (c,α) (c,β) (c,γ )

Gravity data RMSE 1.026 1.028 1.003 1.043 1.045 1.034 1.033 1.039 1.013
Magnetic data RMSE 1.023 1.01 1.055 1.033 1.014 1.009 1.021 1.032 1.031

reach similar values for all inverted models (see values in Table 3). We calculate the normalized data RMSE as

RMSE
(
mP, dP

) =
[

1

nd

1(
σ P

d

)2
φd

(
mP, dP

)
dP

T dP

]1/2

, (16)

where P denotes the problem considered, that is, gravity (G) or magnetic (M) as per eq. (3). The product dP
T dP provides the sum-of-squares

of the data. Values of σ P
d are given in Section 4.3.1, and φd is the corresponding data misfit obtained as explained in Section 2.3.2. Finally,

examination of model misfit and lithological resemblance (Fig. 10) clearly illustrates the nonlinearity of the process leading to the lithological
model. For instance, MAMM for scenario (c) is significantly lower than for scenario (a) (Figs 10a and b). Meanwhile, r increases from
87 per cent to 93 per cent between scenarios (a) and (c) (Fig. 10c). While geological uncertainty seems to be the main influencing factor,
visible differences between the simulated scenarios occur primarily in the more geologically complex areas. This makes their geological
interpretation challenging and highlights the necessity to study reconstructed lithological models in a geology-related manner.

5.2.2 Topology of lithological models

The topology of lithological models is calculated following the technique detailed in Section 3.2. Fig. 11 shows the relative difference between
the adjacency matrix of the reference model and that of inverted models, encapsulated in Mrel (eq. 15).

Fig. 11 shows that adjacency matrices consistently exhibit higher relative differences for contacts between lithology 4 and (3+5)
(remembering that 3 and 5 are indistinguishable in petrophysical domain, see Fig. 6) than for other lithological relationships. A possible
explanation is that lithology 4 (dolerite) has lesser thickness than other lithologies (see Fig. 3) in the more complex and uncertain regions of
the model (Fig. 5). Therefore, it may not be recovered by inversion in areas where geophysical inversion cannot resolve it given the constraints
applied. In such cases, because lithology (3+5) is intruded by dolerite (lithology 4), the geological meaning and topology of the model are
strongly impacted as one may expect the intrusive lithology to be in contact with all the units it cuts. Negative Mrel values for lithologies 4
and (3+5) indicate an underestimate of the number of contacts, suggesting that the intrusion is poorly recovered for cases (a) and (b) but that
it is better constrained by cases (c).

The interpretation of Fig. 11 confirms results from other metrics. For geological uncertainty scenarios (a), (b) and (c), the best results
are obtained with petrophysics case (β). Comparison of the different adjacency matrices indicates that results obtained with petrophysics case
(β) shows better agreement with the reference model. It also demonstrates that geology is the main constraining factor for inversion, and
that case (c, β) is optimum in terms of model recovery. Topological analysis as shown in Fig. 11 also corroborates the observations made in
Section 5.2.1. in that geological input data uncertainty is the principal factor affecting the recovered models and that petrophysics is tuning
the model. Furthermore, this confirms that knowledge of local changes in retrieved models induced by changes in petrophysical uncertainty
are important for interpretation, and that the ‘sharpest’ petrophysical distributions do not necessarily lead to optimum results.
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Figure 11. Relative difference between the adjacency matrices of the recovered lithological model and of the reference model for the different uncertainty
scenarios.

6 D I S C U S S I O N

Contrary to intuitive assumptions, a reduction in the spread of physical properties around the mean value measured for each of the lithologies
used to derive local constraints does not necessarily improve inverted models. As we have seen in Section 5.2.1 and summary, for each of
the PGMs that we tested, petrophysics case β leads to better results in terms of model misfit ϕm and lithological resemblance r than case γ .
In contrast, we observed that a decrease in geological uncertainty is directly related to improvements in the recovered model. This difference
resides in that, at least in a controlled environment, better informed geology leads to a starting model that is more representative of the
causative model. Importantly, reducing geological uncertainty decreases the effect of non-uniqueness further by reducing the range of models
honouring the local constraints, We expect that the positive relationship between geological uncertainty and non-uniqueness will hold true in
real-world scenarios based on test performance.

The laws governing geological modelling and geological processes are highly nonlinear. Consequently, the PGM is not simply a smooth
version of the reference (or causative, in real-world studies) model as it encapsulates the complexity of all the geologically plausible models
from MCUE. This is why topological analysis of the inverted models might reveal the presence of features different or absent from the
reference model(s) or from the interpreted geology of the area. Lower geological uncertainty levels reduce the variability of possible models
and the associated biases. Consequently, as we have seen, inverted models are strongly impacted by the level of certainty in geological field
measurements.

Although the description of physical measurements using normal distributions cannot be applied to all scenarios, our findings regarding
the influence of the related uncertainty may be extrapolated, to a certain extent, to the general case. Uncertainty in geological and petrophysical
measurements affect inversion largely through their influence on the topography of the constraint term. Consequently, our results can be
generalized to other types of distribution describing physical or petrophysical measurements provided that the related uncertainty impacts
petrophysical constraints in a similar way. Our utilization of Gaussian mixture models relies on a soft clustering technique that shares a
number of characteristics with the fuzzy c-means algorithms (Bordogna & Pasi 2011). We can, therefore, assume that our findings would hold
true for inversions utilizing petrophysical constraints relying on soft clustering techniques such as the fuzzy c-means algorithms of Paasche
& Tronicke (2007), Carter-McAuslan et al. (2015), Sun & Li (2015, 2016b) and Maag & Li (2018).
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The main differences between inversions results shown here are characterized during inverted model analysis since ameliorations brought
by constrained joint inversion occur primarily in model space. This confirms observations of Giraud et al. (2017), and to a lesser extent, De
Stefano et al. (2011), Medina et al. (2012), Heincke et al. (2014, 2017), Linde & Doetsch (2016), Sun & Li (2016a) and Colombo et al. (2017),
who highlight the interest of joint inversion for improved geological interpretation, and Gallardo & Meju (2004, 2011), Abubakar et al. (2012),
Gao et al. (2012), Jardani et al. (2013), Molodtsov et al. (2013) and Juhojuntti & Kamm (2015), who stress the fact that improvements brought
by joint inversion occur predominantly in model space. Complementing these works, we used a series of metrics to assess the reliability of
inverted models for geological interpretation. Our analysis of lithological models complements the work Sun & Li (2016a), who conclude that
‘no additional analysis (of geology differentiation) after inversion is needed’ in a case where geological information is poorly informative or
unavailable. This needs to be amended in cases where geological information or modelling is available. As we have demonstrated, geological
analysis of recovered lithological models is useful to identify implausible parts of the model or to suggest alternate geological hypotheses. In
our case, posterior model examination allows us to highlight poorly constrained areas or lithologies, thus confirming observations of Paasche
(2016).

Future developments of the methodology introduced here include the matching of recovered lithological models with the closest
geological realization from the suite of models that is used to derive the PGM. A possible extension of the presented methodology that
increases the degree of integration between the three disciplines considered here is the incorporation of topological rules from area-specific
geological knowledge directly in inversion. This would provide a theoretical framework unifying the inversion strategy we proposed with the
works of Lelièvre et al. (2015), Miernik et al. (2016), Bijani et al. (2017) and Fullagar & Pears (2007), where the inverse model is formulated
using surface geometry on one hand, and Carter-McAuslan et al. (2015), Sun & Li (2015, 2016a, 2017) who use petrophysical information
on the other hand. Nevertheless, the applicability of such a modelling scheme is currently limited by the high computational requirements
of level sets and wireframe inversion (Lelièvre et al. 2015; Lelièvre & Farquharson 2016; Bijani et al. 2017), or using hypotheses-limiting
in application to specific scenarios (Juhojuntti & Kamm 2015). The same remark applies to the formulation of our joint inversion problem
in a multi-objective global optimization scheme, which, while presenting the advantage of being less affected by non-uniqueness, would be
limited by high computational costs. Nonetheless, we believe that the implementation of such methodology in 3-D is within reach.

Future works include the application of the method presented here to real-world geophysical data. Ongoing development of Tomofast-x
includes the integration of spatial trends, geochemical information in the geological conditioning process and locally varying Cm matrices.
Further work also includes tests involving lithology- and location-dependent petrophysical uncertainty to better account for spatial variability
of rock properties.

Our topological analysis is a first step towards quantitative posterior geological evaluation of inversion results. It is, however, restricted to
the most common and simple geological relationships. Ideally, it should account for as many topological relationships as possible to provide
comprehensive topological analysis. In addition, the study presented here could be extended by increasing the complexity of our geological
model further through the addition of one or more intrusive bodies not sampled by surface geology or not sampled by petrophysics. In
such a case, we expect to observe less sharp contrasts in the physical properties and a topological signature incompatible with the measured
geological data in the vicinity of the intrusion.

7 C O N C LU S I O N S

We have studied how petrophysical and geological uncertainty are inputs to and influence geophysical inversion results using a realistic synthetic
case study. We have presented the capabilities of our integrated inversion platform and shown how it integrates uncertain petrophysical and
geological data in 3-D geophysical inversion.

We explored a relatively new and sparsely documented area of inversion and integrated studies by simulating a series of uncertainty
levels in prior information. Our results clearly indicate that in geoscientific integration studies similar to ours in philosophy, the main control
on the inverse model’s geological features is geological information. Meanwhile, petrophysics exerts a significantly lower influence that
is, as a first-order approximation, restricted to enhancing model resolution. We have also shown that the topological analysis of recovered
lithological models is a useful step in geological interpretation. Topological analysis is also crucial for the utilization of inverted models for
further modelling because it can reveal poorly constrained geological units, thereby allowing the identification of alternative scenarios and
zones to be investigated in more detail.

8 DATA , M O D E L S A N D C O D E AVA I L A B I L I T Y

Reference property models, synthetic geophysical data, inversion model and recovered lithological models shown or discussed in this paper
are made available by Giraud et al. (2018) in an ASCII format usable by Tomofast-x using doi: 10.5281/zenodo.1003105. The source code and
the parameter files will be available on Github, project Tomofast-x (Ogarko et al. 2019). We used the publicly available structural geological
model of the Mansfield area (Victoria, Australia) of Pakyuz-Charrier (2018) as the reference geological structural framework.
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événements, Mem. Acad. R. Sci. Paris, 6, 621–656.

Lark, R.M., Mathers, S.J., Thorpe, S., Arkley, S.L.B., Morgan, D.J. &
Lawrence, D.J.D., 2013. A statistical assessment of the uncertainty in
a 3-D geological framework model, Proc. Geologists’ Assoc., 124, 946–
958.
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A P P E N D I X

A1 L-surfaces for hyperparameter estimation

Figure A1. Points used for the l-surface analysis for gravity (left) and magnetic inversion (right).
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A2 Complete set of inversion results

A2.1 Density contrast

Figure A2. Set of inverted density contrast models arranged as per Fig. 4. The corresponding uncertainty case (Table 2) is given on the figure.

A2.2 Magnetic susceptibility

Figure A3. Set of inverted magnetic susceptibility models arranged as per Fig. 4. The corresponding uncertainty case (Table 2) is given on the figure.
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A2.3 Differences between true and inverted density contrast

Figure A4. Different between true model and inverted density contrast models arranged as per Fig. 4. The corresponding uncertainty case (Table 2) is given
on the figure.

A2.4 Differences between true and inverted magnetic susceptibility

Figure A5. Different between true model and inverted magnetic susceptibility models arranged as per Fig. 4. The corresponding uncertainty case (Table 2) is
given on the figure.
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A2.5 Recovered lithological models

Figure A6. Recovered lithological models arranged as per Fig. 4. The corresponding uncertainty case (Table 2) is given on the figure.
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