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ABSTRACT

Context. Some post-common-envelope binaries (PCEBs) are binary stars with short periods that exhibit significant period variations
over long observational time spans. These eclipse timing variations (ETVs) are most likely to be accounted for by the presence of an
unseen massive companion, potentially of planetary or substellar nature, and the light-travel time (LTT) effect. The existence of such
companions challenges our current understanding of planetary formation and stellar evolution.
Aims. In this study, our main objective is to describe the diversity of compatible nontransit companions around PCEBs and explore
the robustness of the solutions by employing tools for uncertainty estimation. We select the controversial data of the QS Vir binary
star, which previous studies have suggested hosts a planet.
Methods. We employ a minimizing strategy, using genetic algorithms to explore the global parameter space followed by refinement
of the solution using the simplex method. We evaluate errors through the classical Markov chain Monte Carlo (MCMC) approach and
discuss the error range for parameters, considering the 1σ values obtained from the minimization.
Results. Our results highlight the strong dependence of ETV models for close binaries on the dataset used, which leads to relatively
loose constraints on the parameters of the unseen companion. We find that the shape of the O − C curve is influenced by the dataset
employed. We propose an alternative method to evaluate errors on the orbital fits based on a grid search surrounding the best-fit values,
obtaining a wider range of plausible solutions that are compatible with goodness-of-fit statistics. We also analyze how the parameter
solutions are affected by the choice of the dataset, and find that this system continuously changes the compatible solutions as new data
are obtained from eclipses.
Conclusions. The best-fit parameters for QS Vir correspond to a low-mass stellar companion (57.71 Mjup ranging from ∼40 to
∼64 Mjup) on an eccentric orbit (e = 0.91+0.07

−0.17) with a variety of potential periods (P = 16.69+0.47
−0.42 yr.). Most solutions within 1σ

exhibit regular orbits, despite their high eccentricity. Additional observations are required to accurately determine the period and other
parameters of the unseen companion. In this context, we propose that a fourth body should not be modeled to fit the data, unless new
observations considerably modify the computed orbital parameters. This methodology can be applied to other evolved binary stars
suspected of hosting companions.

Key words. methods: numerical – planets and satellites: fundamental parameters – binaries: close

1. Introduction

The formation and evolution of main sequence (MS) binary star
systems imply substantial changes in the shape and size of the
orbit, and in the physical properties of the stellar components.
However, the formation of stellar multiples is complex (van den
Berk et al. 2007). Following a recent review by Tokovinin (2021),
three main ingredients are necessary for the formation of stel-
lar systems: fragmentation, accretion, and dynamical processes.
This involves the initial collapse of a molecular cloud of gas,
and dust. The frequent gravitational interactions and the sub-
sequent dynamical capture of nearby stars naturally leads to a
high fraction of stellar multiplicity (Larson 1972; van den Berk
et al. 2007; Bate 2018). Surprisingly, the formation of isolated
binary systems is the exception and the majority of stars are
found in hierarchical multiple stellar systems. In this context,

post-common-envelope binaries (PCEBs) constitute a particular
class of binaries with periods of the order of hours. Remarkably,
some of them are believed to harbor one or more massive com-
panion. The literature lists several systems where authors have
claimed the discovery of one or two high-mass circumbinary
companions of planetary nature with a semi-major axis of greater
than 1 au (see e.g., Marsh 2018, and references therein).

To date, over 5000 confirmed planets have been discov-
ered1, with the majority found in orbit around a single host star.
Approximately 5% of these planets are known to orbit binary
star systems2 (Schwarz et al. 2016; Bonavita & Desidera 2020).
In the case of PCEBs, the presence of low-mass stellar objects

1 https://exoplanetarchive.ipac.caltech.edu/
2 https://www.openexoplanetcatalogue.com/systems/
?filters=multistar
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is indirectly detected through the effect of eclipse timing varia-
tion (Woltjer 1922, ETV) caused by the light-travel time (Irwin
1952, LTT) effect, also known as the Rømer effect. Several
other mechanisms that cause ETVs are known and we refer to
Southworth et al. (2019) for a review. According to Zorotovic &
Schreiber (2013), nearly 90% of PCEBs exhibit an ETV signal
amplitude compatible with a substellar high-mass interpretation,
although alternative period variation mechanisms have been sug-
gested. One such mechanism that may account for the observed
timing variation is the Applegate mechanism (Applegate 1992;
Völschow et al. 2018).

Additional physical mechanisms, such as mass transfer, apsi-
dal precession, chromospheric spots, solar-like cycles in one of
the stars, or angular momentum-loss due to magnetic breaking,
may cause period variations (see e.g., Lanza 2020; Pulley et al.
2022; Lee et al. 2009). In terms of magnitude, the largest contri-
bution to period variation is from a bound massive companion.
The effect of smaller period-variation contributions are usually
accounted for by considering a quadratic term that describes
secular changes in the binary eclipse period (Southworth et al.
2019).

In the present work, we revisit the QS Vir system (Stobie
et al. 1997) and present a time-series analysis for the deter-
mination of orbital fits based on the LTT model. The QS Vir
binary system (V ≃ 11.8, O’Donoghue et al. 2003; Zacharias
et al. 2013) is composed of a white dwarf (WD) and a low-
mass M-dwarf that nearly fills its Roche lobe (see Fig. 1) with
an orbital period of around 3.5 h (O’Donoghue et al. 2003).
This binary system is classified according to its evolutionary
phase as a PCEB, although it can also be associated with the
precataclysmic variable (CV) classification (Parsons et al. 2011,
2016). This latter association is based on the fact that it is on its
way to becoming a semi-detached cataclysmic variable through
a greater loss of angular momentum and a reduction of the orbit
due to gravitational waves or magnetic braking (Paczyński 1967;
O’Donoghue et al. 2003).

A schematic representation of QS Vir is shown in Fig. 1,
where we collect some of the main physical parameters of the
stars that compose the binary. Among them are the mass and
radius determined by O’Donoghue et al. (2003) with values of
0.78 ± 0.04 M⊙ and 0.01± 0.01 R⊙ for the WD star, and values
0.43 ± 0.04 M⊙ and 0.42 ± 0.02 R⊙ for the M-class MS dwarf
star. On the other hand, we calculated the luminosity of both stars
using the temperature provided by O’Donoghue et al. (2003)
and their respective radii, finding approximately 0.004 L⊙ and
0.01 L⊙ for the two stars, respectively.

Parsons et al. (2016) find certain prominences in their spectra
that are maintained over time. These arise from the M-dwarf and
appear to be locked in stable configurations within the binary
system; their manifestations are found to last for more than a
year. Besides the WD eclipse, the binary’s light curve shows
a small reflection effect at blue wavelengths, and ellipsoidal
modulation at redder wavelengths (Parsons et al. 2010).

Several attempts have been made to elucidate the underlying
cause of the substantial and erratic period variations observed
in the binary eclipses of QS Vir. The energy available in the
secondary star was calculated by Qian et al. (2010), who deter-
mined that it was insufficient to account for the observed large-
amplitude O − C variations3 through Applegate’s mechanism.
Instead, these authors proposed a combination of a significant

3 Residuals between the calculated (C) and observed (O) mid-eclipse
times.

Fig. 1. Schematic representation of QS Vir with its physical parame-
ters. Top: physical parameters, Lagrangian point L1, and equipotential
surface in QS Vir. The parameter values of the binary system were
obtained by O’Donoghue et al. (2003) and we calculated the luminosity
using temperature and radius. Bottom: schematic configuration in the
case where a third body modifies the binary barycentric position with
respect to the observer. The movement of the binary can be modeled to
infer the mass and the orbital parameters of the third body.

continuous reduction in the binary’s orbital period and the pres-
ence of a circumbinary planet with a mass of approximately
7 MJup. However, Parsons et al. (2010) obtained new eclipse data
that suggest a broader and more eccentric orbit for the solitary
companion, as documented in Table 1. Almeida & Jablonski
(2011) subsequently presented an alternative data fit, which
incorporated two circumbinary objects: a giant planet (approxi-
mately 0.009 M⊙) and a brown dwarf (approximately 0.056 M⊙)
in orbit around QS Vir. Nevertheless, the significant deviation
occurring near cycle number 30 000 requires at least one unseen
massive companion being in a highly eccentric orbit, resulting in
an orbital-crossing architecture.

Horner et al. (2013) showed that the two circumbinary com-
panions proposed to orbit QS Vir are dynamically unstable on
timescales of less than 1000 yr. This applies across the entire
range of orbital elements that provide a plausible fit to the obser-
vational data of Almeida & Jablonski (2011). Therefore, the
proposed planetary system with two planets orbiting QS Vir is
unlikely to exist.

interpretation of the observed ETVs in QS Vir remains
remarkably challenging. According to Bours et al. (2016), there
are 86 published mid-eclipse times, and they added an additional
24 previously unpublished measurements as part of the eclipse
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Table 1. Parameters for the planets proposed for QS Vir.

Parameter (a) (b) (c) (d) (e)

P [yr] 7.8 14 14.40/16.99 4.78/18.96 16.69
e 0.37 0.9 0.62/0.92 0.10/0.96 0.91
ω[°] 38 – 180/219 337/206 215.95
t0 [BMJD] 48 687.5 – – – 53 849.16
Z [s] – – – – −99.7

M sin i [MJ] 6.4 54 8.04, 52.3 6.3, 57.71 57.71

References. (a)Qian et al. (2010), (b)Parsons et al. (2010), (c)Almeida &
Jablonski (2011), (d)Pereira & Almeida (2018), (e)this work.

timing programme presented in their work. In addition, from the
latest eclipse times, the authors report another local or absolute
maximum in the O −C residuals, similar to the O −C variations
observed around cycle numbers 5000 and 20000.

In the present work, we revisit the orbital fits for QS Vir
using an existing dataset from previous research. We examine
a total of 105 mid-eclipse times for QS Vir, comprising 86 that
have been publicly reported, and 19 additional ones that have
not been analyzed before (Bours 2015, see their Table A.41).
This dataset provides the cycle number, mid-time transits in
Barycentric Julian Date (BJD) with the corresponding errors,
and the corresponding reference for the data. In total, the dataset
considered here contains 105 observations covering 22.9 yr of
observations. The effect and contribution to the O−C amplitude
due to various other effects are hard to estimate, and in the fol-
lowing we assume that the observed O − C variations are due to
a single companion.

This paper is structured as follows. In Sect. 2, we describe
the procedure to obtain the named O − C curves from mid-
transit times, and the procedure applied to obtain orbital fits. In
Sect. 3, we analyze the errors considering different approaches,
paying attention to the robustness of the solutions over the years
and discuss the sensitivity of the fits as a function of the num-
ber of timing measurements. Finally, in Sect. 4, we present our
conclusions.

2. Methods

In this section, we present the method used to construct the
named O −C signal, which consists in calculating the difference
between the observed mid-eclipsing time with either linear or
quadratic time dependence.

2.1. Linear ephemeris versus quadratic ephemeris

An isolated binary star without considering additional effects
(such as tides, pericentric movement, and angular momentum
exchange) has a constant orbital period. The presence of an addi-
tional perturbing body introduces period changes in the binary
orbit.

The models that predict the mid-transit times of the observed
eclipses Tobs are the linear, sinusoidal LTT, and quadratic
ephemeris (although, more sophisticated models can be consid-
ered according to Hilditch 2001). We consider a combination of
these three effects to build the O − C signal, which is the differ-
ence between the observed times (Tobs) and the calculated times

Fig. 2. Best orbital fits and residuals. Upper panel: O − C diagram of
QS Vir. The crosses and plus symbols represent the O − C values built
with the linear and quadratic ephemeris, respectively (O − C = Tcalc–
Eq. (2)). The solid line and the dashed line represent the models fitted
using the two models as described in the text. Lower panel: residuals
using the same symbol and color coding as the top panel.

(Tcalc)4:

(O −C) = Tobs − Tcalc, with

Tcalc =

{
T0 + Pbinl linear ephemeris
T0 + Pbinl + βl2 quadratic ephemeris,

(1)

where T0, Pbin, and l are the initial epoch (or mid-eclipse at cycle
l = 0), the orbital period of the binary, and the cycle number
(l = 0, 1, 2,..). The factor β in the quadratic ephemeris models a
secular change in the binary orbital period and can be thought
of as a factor that describes the damping (change) of the binary
period due to mass transfer, magnetic braking, and gravitational
radiation (Goździewski et al. 2012). We used 105 mid-eclipsing
times of QS Vir published by Bours (2015), because this latter
is the most updated publicly available dataset that can constrain
the signal. For mid-eclipsing times, we used Barycentric mod-
ified Julian Dates, with Barycentric Dynamical Time, BMJD
(TDB), which according to Bours et al. (2016) are corrected
for the motion of the Sun around the Barycentre of the Solar
System5. The results of the fits with both models Tcalc are

Tlinear = 48 689.14152(11) + 0.1507574746(30)l (2)
Tquadratic = 48 689.14177(14) + 0.1507574360(13)l

+7.37(2.47)10−13 l2. (3)

Depending on which ephemeris is considered, the shape of the
O−C curve drastically changes (see different symbols in the top
panel of Fig. 2).

Qian et al. (2010) were the initial proponents of mod-
eling an unseen companion to QS Vir. These authors used
a limited dataset consisting of 36 timing measurements col-
lected over a period of 17 yr to describe the orbital behavior

4 A word of caution: in the case of poor sampling of mid-eclipse times,
the analysis can result in erroneous results. We here assume that we are
working on a sufficiently sampled signal.
5 Equivalent to (BJD-2 450 000.0), but for sake of simplicity we use
BMJD.
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Fig. 3. Dependence of the shape of the O − C and the period of the
binary on the dataset considered. Top panel: O − C signal produced
using four different datasets that mimic available observational data.
Data point colors correspond to different datasets and horizontal lines
at the top help to identify the corresponding observational baseline
(∆T ). Bottom panel: determination of the binary period from the lin-
ear ephemeris as a function of the dataset. The horizontal solid and
dashed lines represent the values of Pbin given by Bours (2015) and
O’Donoghue et al. (2003), respectively. Pbin changes depending on the
dataset selected.

of QS Vir. The addition by Parsons et al. (2010) of 16 new
mid-time eclipse observations led to significant changes in the
O−C binary period, and in O−C shapes. Consequently, best-fit
orbital parameters and masses changed between authors (see our
Table 1). More importantly, we note that for each dataset con-
sidered, the binary period needs to be redetermined, therefore
producing slightly different O−C signals. This could explain the
discrepancies observed in the O − C signals published in previ-
ous works. To illustrate this, Fig. 3 presents four O − C signals
constructed using the first 45, 65, 85, and 105 mid-time eclipses
in chronological order. Each signal is depicted in a distinct color,
revealing variations in the shape, maximum, and minimum of
the O − C. These changes indicate different orbital parameters
for each corresponding fit.

To test the robustness of the underlying model, one could
successively remove the last measured timing and measure the
resulting best-fit parameter from linear ephemerids. Further-
more, successive fitting of linear ephemeris shows that the period
of the binary changes constantly as a function of data points,
as can be seen in the bottom panel of Fig. 3. Interestingly,
the two values for the binary period widely used for QS Vir

are Pbin = 0.150757475 (O’Donoghue et al. 2003) and Pbin =
0.150757467717 (Bours 2015), which are consistent with the
dataset presented in this work.

2.2. Best orbital fits

The presence of a third body produces a signal that can be mod-
eled in the O−C diagram, minimizing the residuals. The signal τ
is obtained from the subtraction of mid-time transits with either
the linear or quadratic fit, which can be modeled with a Keplerian
orbit. The signal τ depends on K, P, e, ω, t0, and Z, which
represent the semi-amplitude, period, eccentricity, argument of
periapsis, time of passage at periapsis, and the origin value for
the movement of the baricenter, respectively (we refer to the
original formulation of Woltjer 1922, for an explanation of the
meaning of Z). Thus, as derived in Goździewski et al. (2012), τ
can be written as

τ = K
(
sinω (cos E(t) − e) + cosω

√
1 − e2 sin E(t)

)
+ Z, (4)

with

K =
(

1
c

)
mP

mP + mbin
a sin i, (5)

where mP is the companion mass, a the companion semi-major
axis, i the companion inclination, E(t) the eccentric anomaly,
and mbin is the mass of the binary. For a best-fit parameter of K,
there exists a set of values of {mP, a sin i, mbin} that produces the
same amplitude of the signal.

To calculate the best-fit parameters, we minimize a certain
function of the residuals, which is defined as a statistical measure
of the goodness of the fit. Assuming a Gaussian distribution for
the errors, the goodness-of-fit statistics usually used is (χ2

ν)
1/2.

This quantity is defined as follows:

(χ2
ν)

1/2 =
1

(N − M)

N∑
i=1

(O −C − τ)2
ti

σ2
ti

, (6)

which depends on (O-C − τ)ti , σti , N = 105, and M = 6, which
are the difference between the observer O−C signal with respect
to the modeled τ; the uncertainties for the time of eclipsing ti; the
number of observations; and the parameters to be determined,
respectively. The quantities σti are usually referred to as weights
of the observations.

The strategy of fitting the O −C signal using a global explo-
ration of the parameter space with a genetic algorithm followed
by a local search for the minimum has already been shown to
be successful in modeling the ETV in many works (see e.g.,
Beuermann et al. 2012; Almeida et al. 2013, 2020; Brown-Sevilla
et al. 2021; Er et al. 2021). Here, we employ the same strat-
egy, with particular attention to the robustness of the fit. We
used two different and sequential subroutines to calculate the
best Keplerian fit. First, we used a genetic algorithm with a pop-
ulation of 150 members (with random initial conditions in the
parameter space), which evolved over approximately 1000 gen-
erations. We explored the hyper-parameter options and found
optimal values for a mutation rate dithering based on the genera-
tion number of (0.025, 0.5), a relative tolerance for convergence
of (0.001), and a strategy to evolve the population, retaining the
best solution among new generations. We ran the algorithm and
found the global minimum, although for other systems and/or
datasets, these numbers could change depending on the cover-
age periods of the dataset (see e.g, Beaugé et al. 2008; Giuppone
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Table 2. Best Keplerian orbital fits for a circumbinary companion around QS Vir.

K e ω t0 P Z χ2
ν

1/2 a mP
[s] [◦] [BMJD] [yr] [s] [au] [MJ]

Linear 148.66 0.91 215.95 53 849.16 16.69 −99.73 14.91 7.06 57.71
MCMC •+26.72

−2.42 •+0.04
−0.01 •+0.53

−5.52 •+1.63
−4.55 •+0.05

−0.03 •+1.46
−9.53

Grid •+145.44
−38.52 •+0.07

−0.17 •+9.08
−24.09 •+32.26

−21.91 •+0.47
−0.42 •+39.94

−34.74

Quadratic 272.20 0.97 186.18 53 519.54 17.39 −16.87 32.84 7.15 105.29

Notes. Orbital elements are osculating, considering a central star with the total mass of the system, i.e., mbin[M⊙] = M0 +M1 = 0.78+ 0.43 = 1.21
(O’Donoghue et al. 2003); the Semi-major axis, a, and companion mass, mP, were calculated assuming the same orbital inclination as the binary,
i = 75.5◦ (O’Donoghue et al. 2003). The errors for the quadratic fit are not calculated because the residuals doubled the corresponding ones from
linear ephemeris.

et al. 2011, for radial velocity applications). As genetic algo-
rithms are only exploratory tools, they only guarantee a certain
proximity to the global minimum of the fitness function, and not
a precise value. Finally, we used a simplex subroutine to improve
the result (Nelder-Mead algorithm, Press et al. 1992) with a
tolerance of 10−5 to assure the convergence of the goodness-
of-fit evaluation. We find a global minimum with parameters,
ABF . Our code relies on the algorithms scipy differential
evolution6 and scipy optimize.minimize7 from the
SciPy Python packages (Virtanen et al. 2020).

Our best-fit values are shown in Table 2. With these parame-
ter values, we reconstruct the τ signal using lines in the top panel
of Fig. 2. The lower panel in the same figure shows the distri-
bution of the residuals. The points obtained with the quadratic
ephemeris fit (in red) produce a signal O − C that covers
more than one period, although the maximum values (∼100 s)
observed at T ∼ 53 000 are not similar to those observed at
T ∼ 57 000 (∼50 s). This asymmetry prevents us from find-
ing a good solution with a single frequency. Consequently, the
values of the goodness-of-fit statistic are downgraded (χ2

ν)
1/2 ∼

32.84 (see the values in Table 2). The residuals for the lin-
ear ephemeris show a sinusoidal behavior with a lower value
of (χ2

ν)
1/2(∼14.91). This solution corresponds to a mass of the

unseen additional body of equal to mP = 57.71 Mjup. We con-
ducted a Lomb-Scargle (Lomb 1976; Scargle 1982) periodogram
analysis to assess the significance of periodic signals. The Lomb-
Scargle algorithm is suitable for unevenly spaced data and has
been applied in a similar context in the literature (Cortés-Zuleta
et al. 2020; Burt 2016). Initially, the Lomb-Scargle analysis was
applied to the O − C values derived from the linear ephemeris,
revealing a single periodic signal at approximately 16.43 yr with
a signal-to-noise ratio (S/N) of around 3.5 – a result consis-
tent with our best-fit period of 16.69 yr. Subsequently, following
our best-fit analysis, the Lomb-Scargle periodogram applied
to the new O − C data identified two periods with peaks at
approximately 4.98 and 7.34 yr, each associated with a lower
S/N of approximately 1.5. We obtain our results by running
the Lomb-Scargle implementation within the ASTROPY V6.0
package (Astropy Collaboration 2022).

For the remainder of this work, we only consider the
described O − C signal model for a linear ephemeris. We also
explore the solutions given by the quadratic ephemerids but do

6 https://docs.scipy.org/doc/scipy/reference/
generated/scipy.optimize.differential_evolution.html
7 https://docs.scipy.org/doc/scipy/reference/
generated/scipy.optimize.minimize.html

not show them here as they provide less accurate fits to the
observed data.

2.3. Orbital stability of solutions

In order to analyze the stability of the best-fit solutions described
in the following sections, we performed long-term N-body
integrations of each solution. The simulations were performed
with a Bulirsch-Stoer integrator with adaptive step size, which
was modified to independently monitor the error in each vari-
able; this imposes a relative precision of better than 10−12. The
computations are stopped when the distance from the planet to
any star is less than two times the sum of their radii, or when the
planet is ejected from the system after scattering between bodies
(>10 au). We use Jacobi elements for our initial conditions. For
each simulation, we calculate the averaged MEGNO (⟨Y⟩) chaos
indicator (see Cincotta & Simó 2000, for details). As the value
of this indicator may be sensitive to the integration time span
(Cincotta et al. 2003; Hinse et al. 2010), we verified its value for
103 and 104 yr. We study only coplanar orbits, and initial angu-
lar orbital elements for the binary were set equal to zero. We
have previously examined stability and chaos for planets around
binaries (Gianuzzi et al. 2023). However, it is worth noting that
the present work is considered an extreme case due to the high
eccentricity of the third body (e > 0.8).

3. Strategy to determine errors in orbital fits

In the following, we briefly outline and follow two methods for
the computation of parameter uncertainties. This approach pro-
vides a critical evaluation of the robustness of the uncertainties.
If the same confidence interval is reproduced from two different
methods, we lend trust to the derived uncertainties. Otherwise,
we consider that there is little or no consensus at all between
the two methods, and the more conservative confidence inter-
val is then adopted. Namely, we use the Markov chain Monte
Carlo (MCMC) algorithm and other proven alternative strategies
that help to understand the errors in this kind of minimization
(Beaugé et al. 2008).

3.1. Parameter uncertainties from MCMC

MCMC methods are designed to sample the errors from the
posterior probability density function (PDF) by utilizing the
likelihood function, even in parameter spaces with high dimen-
sionality (see Foreman-Mackey et al. 2013, for in-deep discus-
sion). In simpler terms, this method estimates errors by sampling
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Fig. 4. Results of MCMC chains selecting pairs of parameters. We estimate the uncertainties using the posterior distribution of MCMC chains.
Mean values, i.e., best-fit solutions, are plotted with black crosses. Level curves indicate 1σ (dark red) and 2σ (light blue) levels of posterior
distributions. We note that for 2D histograms, these values correspond to roughly 39 and 86% confidence levels of the mean. In the top panels, we
show the posterior distributions with their quantile levels at 0.14, 0.5, and 0.84. Here, t0 is given as a BMJD.

regions near the best-fit solution using the posterior distribu-
tion. To determine uncertainties, we obtain the 1σ interval of
the 1D projections of the sampling onto the parameter sub-
space (A = K, e, ω,Z, t0, P). We used the emcee implementation
described in Foreman-Mackey et al. (2013), configuring the
number of MCMC steps as NMCMC, the number of chains (or
walkers) as W, and the initial distribution of walkers, βMCMC.
The best-fit parameters obtained from the linear fit model (see
Table 2) served as priors in the MCMC.

Following the recommendations of Foreman-Mackey et al.
(2013), we employed an ensemble of 64 walkers (W = 32−64)
and ran the chain for NMCMC = 100 000 steps. The initial dis-
tribution of walkers was set as βMCMC = 0.01 (except for t0,
where β = 0.0001). We discarded the first 7000 steps as part of
the burn-in stage and estimated uncertainties using the posterior
distribution. The dispersion point panels shown in Fig. 4 depict
parameter correlations, while the histograms represent posterior
probability density functions for the selected parameters. The
uncertainties are calculated as the range of values encompass-
ing 66% of the mean (indicated on each histogram). This figure
offers valuable insights into parameter space exploration, facili-
tating a comprehensive understanding of uncertainties and cor-
relations among model parameters. Notably, strong correlations
are observed between (ω,K), (e,K), (e, ω), (Z,K), (Z, e), and
(Z, ω). Visualizing these pairwise relationships helps in iden-
tifying optimal parameter combinations, thereby enhancing the

robustness of our analysis. Despite the absence of multimodal
posteriors, the O − C signal models exhibit significant parame-
ter correlations, making the application of the MCMC method
to explore the entire parameter space particularly challenging
(Foreman-Mackey et al. 2013; Marsh et al. 2014).

We conducted a thorough evaluation of the MCMC anal-
ysis to ensure convergence and reliability of the results.
This involved carefully examining convergence diagnostics,
increasing the number of iterations, and adjusting the burn-in
period to ensure it was of sufficient length. Despite these efforts,
the obtained results remained unchanged. It is important to note
that the accuracy of uncertainty estimates from MCMC chains
relies on the assumption that the model being fitted to the data
accurately captures the underlying complexities of the observed
phenomena.

We note that MCMC is the most commonly method adopted
by observers when reporting orbital fits for regularly sampled
data. Therefore, as these errors appear to be underestimated
according to the orbital fits reported by different authors, in the
following we present a complementary approach that allows us
to better estimate these errors.

3.2. Stability of MCMC solutions

To analyze the stability of the results of MCMC chains, we first
calculated the Mahalanobis distance r of each solution. This
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Fig. 5. Averaged MEGNO as a function of Mahalanobis distance. The
horizontal line denotes ⟨Y⟩ = 2.

quantity represents the distance between each point x and the
mean µ, and is defined as

r(x) :=
√

xTΣ−1x, (7)

where Σ is the symmetric covariance matrix. In the 1D case, this
quantity reduces to the absolute value of the standard score (σ),
and the distribution reduces to a univariate normal distribution.

We generated a random sample of 1000 solutions out of the
r-closest 67 200 solutions (30% of the total), and integrated them
for 5000 yr. Figure 5 shows the averaged MEGNO value (⟨Y⟩) of
each integrated solution as a function of the Mahalanobis dis-
tance. All solutions have |⟨Y⟩ − 2.0| < 0.005, which means that
all the orbits are regular. We do not find a correlation between
⟨Y⟩ and r.

3.3. Parameter uncertainties from a grid search around the
best fit

Starting from the best-fit solutionABF , we selected each param-
eter individually and evaluated the change in (χ2

ν)
1/2, calculating

a new (χ2
ν)

1/2 , where we only fixed the new value of a selected
parameter, leaving the others the possibility to change. For exam-
ple, in top left panel of Fig. 6, we show subsequent fits from the
best-fit solution (red cross) in the amplitude K. Every new Ki is
calculated in a grid of values of Ki = K + δ,K + 2δ, ..,K + nδ,
where δ is a small parameter. We repeated the procedure for pos-
itive and negative values of δ, and plot the values of (χ2

ν)
1/2 with

respect to Ki. We note that the remaining parameters fromA are
fitted and this is a projection in the plane K − (χ2

ν)
1/2. We observe

a depth minimum starting at (χ2
ν)

1/2 = 14.91 and increasing as
we depart from the best fit. We repeated the procedure for the
remaining five parameters ofA and plot the results in the panels
of Fig. 6.

To estimate the uncertainties, we employed a method based
on the χ2

ν statistic and calculated the 1σ confidence levels. Due to
the nonlinearity of the fitness function, conventional confidence
ellipsoids cannot be directly applied in this case. Following the
approach described in Beaugé et al. (2008), we set ν = N − M,
where N is the number of data points and M is the number of
model parameters. By determining the mean (ν) and variance
(2ν) of χ2

ν , we can approximate the 1σ confidence level value
using the formula:

(χ2
ν)

1/2
1σ ≃ (χ2

ν)
1/2
BF

1 + √
1
2ν

 . (8)

We reiterate that our (χ2
ν)

1/2
BF
= 14.91 (see Table 2). To obtain

the 1σ value for each parameter Ai, we perform a numerical
analysis to identify the intersection of (χ2

ν)
1/2 with the (χ2

ν)
1/2
1σ

(∼15.98) at each panel of the Ai best fits. The resulting estima-
tion of the uncertainties inAi is given in Table 2. This approach
allows a quantitative assessment of the range of Ai values con-
sistent with the dataset and provides insight into the reliability
and confidence associated with the parameter estimation.

Additionally, we show the results obtained from the dynam-
ical study of our solutions in Fig. 6. We identify regular and
chaotic orbits with different symbols. However, chaotic and reg-
ular orbits are stable in long-term integrations for 1 × 106 yr
(i.e., ∼6× 105 periods of the unseen companion). The orbits nei-
ther escape from the system nor have a close encounter between
involved bodies. Remarkably, we observe that the systems with
the highest values of K or eccentricity (or lowest w or Z values)
have chaotic orbits.

Combining the period of the unseen companion and K, we
obtain the mass of the companion (see Eq. (5)). At this stage, it
is relevant to evaluate the stability of these solutions. Figure 7
shows ⟨Y⟩ as a function of the companion mass for each best fit
obtained by varying K in Fig. 6 (top-left panel). Despite a drop
at mP ∼ 80 MJ , we generally see that larger mP values result in
larger ⟨Y⟩ values. We define ⟨Y⟩c = 2.1 as the averaged MEGNO
cutoff value to differentiate chaotic from regular orbits during
our integration of 50 000 yr. Given this value, most of the solu-
tions with ⟨Y⟩ > ⟨Y⟩c (orange crosses in Figs. 6 and 7) have
mP > 90 MJ .

In Fig. 8, we show the long-term evolution of two exam-
ple orbits with MEGNO values of ⟨Y⟩ ∼ 2.00 and ⟨Y⟩ ∼
17.31 at 50 000 yr. The initial conditions of both orbits are
a = (7.0758786, 7.0008565) au, e = (0.93139948, 0.99), and
mp = (63.8105, 273.2768) MJ for the regular and chaotic orbits,
respectively. We choose to show the evolution of the semi-major
axis of the best-fit solution and MEGNO in the panels. The
orange orbit, although flagged as stable, shows recurrent and
irregular variations in semi-major axis (also in eccentricity, but
not shown here). In the presence of an additional body, this orbit
could lead to a dynamically unstable system.

3.4. Dependence of the best fit on the choice
of observational dataset

In this section, we lower the number of observations in the
dataset and analyze the resulting variations in the orbital fits.
We progressively consider different orbital fits obtained from a
reduced dataset where the last point has been removed. In other
words, we first perform the linear fit to obtain the O −C and the
best fit on the full dataset with 105 data points. We then carry
out different linear fits to get the O − C with only 104 points
(removing the last one, chronologically speaking) and we repeat
this procedure until we are left with around 50 points.

We can plot the variation of the parameters A of each orbit
fit as a function of the observation time interval (or the number
of data points). If the current solution is robust, we should expect
only small and smooth changes in the parameters as a function
of the dataset considered. If the solutions do not change, we can
expect that the future addition of observations will not signif-
icantly change our knowledge of the system. Again, we refer
to Beaugé et al. (2008) for a discussion of this method and its
application to the radial velocity technique. The results for Kep-
lerian fits are shown in Fig. 9, where the central eclipse values are
ordered chronologically. We recall that for every new dataset, we
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Fig. 6. Goodness-of-fit (χ2
ν)

1/2 as a function of a fixed parameter Ai, while letting the remaining parameters vary freely. The red circle marks the
best-fit value (ABF as determined from the genetic-simplex method). The dashed line marks the value of (χ2

ν)
1/2
1σ defined in Eq. (8). The intersection

of (χ2
ν)

1/2
1σ with the blue points defines the 1σ confidence interval for the parameter Ai (see the results in Table 2). Orange circles correspond to

chaotic orbits, with ⟨Y⟩ ≳ 2.1 (see the text).

Fig. 7. Averaged MEGNO as a function of the planet mass in logarith-
mic scale for integrations over 5 × 104 yr. The horizontal line denotes
the critical value ⟨Y⟩c = 2.1, and orange crosses represent integrations
with ⟨Y⟩ > ⟨Y⟩c.

need to recalculate the new linear ephemeris (a new Pbin value is
determined), mimicking the dataset for a given epoch. The best
orbital fit was calculated using the simplex algorithm with the
starting point using the previous fit in order to speed up the min-
imization algorithm without considering a global exploration of
space parameter.

We note an abrupt change in some parameters when fewer
data points are eliminated. For instance, the semi-amplitude of
the signal K suddenly increases from 140 to 150 s at around
∼96 observations. This jump is also observed in the panels of
Fig. 9 showing e, Z, and ω. The argument of periapsis ω changes
by only about 10%, while eccentricity is higher as we consider
less mid-time transits. This could explain the higher e values
reported in the solutions by former authors. We reiterate that
each dataset has its own binary period determined, and that the
shape of the O−C curve to be adjusted also changes (see Fig. 3).

Fig. 8. Semi-major axis (top) and averaged MEGNO (bottom) as a func-
tion of time for a chaotic (orange) and a nonchaotic (blue) system.

Figure 10 shows the companion’s mass and semi-major axis
derived from the fitted parameters as a function of dataset size.
We observe a decrease in mass, from ∼90 MJup to ∼50 MJup,
with increasing dataset size. In addition, there is an almost lin-
ear increase in the companion’s semi-major axis from ∼6.4 to
∼7.05 au. The binary semi-major axis remains approximately
constant at a ∼ 5.907279 × 10−3 au, with small increments of
the order of 10−10 au.

Successive fitting gives different values of (χ2
ν)

1/2, as shown
in Fig. 11. When the dataset size is around 88 observations, there
is a sudden increase in (χ2

ν)
1/2. For smaller datasets, there is a

smooth change that leads to a decrease in the goodness-of-fit
as we consider additional points, starting from (χ2

ν)
1/2 ∼ 9 for

50 points until reaching (χ2
ν)

1/2 ∼ 6 for 88 points (see the denom-
inator in Eq. (6) to understand the behavior of (χ2

ν)
1/2 as we

increase N). For datasets with more than 88 points, the (χ2
ν)

1/2

increases drastically and presents values around 14. Therefore,
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Fig. 9. Evolution of the parameters fitted as a function of the number of data points used. In the different panels, the value of the best-fit parameter
for the third body is shown.

Fig. 10. Mass (top) and semi-major axis (bottom) of the planet as func-
tions dataset size.

we conclude for the most recent mid-time observations that
solutions are scarcely distributed and are unable to restrict the
possible orbits to a unique solution. In order to comprehend the
discrepancy observed in (χ2

ν)
1/2 for a dataset size of approxi-

mately 88, Fig. 12 illustrates the uncertainties associated with
each observation. Notably, we observe that the uncertainties in
mid-time eclipse times, denoted σi, are potentially underesti-
mated for mid-time transits, particularly when N > 88. This
discrepancy leads to greater weight being assigned to the new
data and has the potential to alter the absolute minimum of
orbital fits.

In conclusion, using the data from Parsons et al. (2010)
(58 data points, covering approximately 17.85 yr of observa-
tions), we note that the orbital fit for determining the hidden
companion of QS-Virginis yields completely different results

Fig. 11. Dependence of (χ2
ν)

1/2 on the choice of dataset. (χ2
ν)

1/2 calcu-
lated using the different datasets, with solutions given in Fig. 9.

compared to those obtained using 105 data points (spanning
nearly 22.9 yr). Our findings support the idea that poorly sam-
pled eclipse times, insufficient sampling over long time periods,
and/or incomplete coverage of the unseen companion’s orbital
period can lead to incorrect characterization of the third body. In
the specific case of QS-Virginis, acquiring additional data would
be desirable in order to establish orbital parameters with greater
confidence.

We integrated the solutions shown in Fig. 9 performing
N-body simulations. All the solutions considered are stable over
104 yr and exhibit log|⟨Y⟩ − 2.0| < −1.8, implying regular orbits.
Furthermore, our findings are validated by extensive long-term
simulations, where each initial condition was tracked over a span
of 106 yr (∼2 × 109 Pbin ∼ 6 × 104 Ppl).

Figure 13 shows the total amplitude of the evolution of
orbital elements during the integration, named the ∆a = (amax −

amin) and ∆e = (emax − emin) indicators, for the binary orbit and
the planet orbit, respectively. The low values obtained indicate
stability for these orbits. We generally observe that ∆a and ∆e
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Fig. 12. Representation of error weights for each mid-time transit as
collected by Bours (2015).

Fig. 13. ∆a (top) and ∆e (bottom) stability indicators of the binary (left)
and the modeled companion (right panels) integrated orbits, as a func-
tion of dataset size.

values are the lowest for the largest dataset. In particular, the
results obtained for the fits using all the data points (105) appear
to have converged to a steady value. Furthermore, we note that
simulations with a dataset of larger than 73 (discontinuity point)
exhibit milder variations in orbital elements, suggesting more
regular orbits (compared to simulations with smaller datasets).

For each integration, a rough estimation of the lowest peri-
center distance (qpl) of the planet orbit in a Jacobi reference
frame can be computed as:

qpl = amin(1 − emax). (9)

Given that δa and δe of the binary are almost constant, we can
estimate the companion’s pericentric distance for each simula-
tion when both ∆a and ∆e are maximum as

qpl = (a − ∆a)
(
1 − (e + ∆e)

)
. (10)

In Fig. 14, we observe that for dataset sizes ∈ [45−73], we obtain
a nearly constant value of qpl ∼ 49 R⊙. This is also the lowest
value for all the simulations. For dataset sizes of ∈ [74−92], we

Fig. 14. Estimated minimum planet pericenter distance as a function of
dataset size.

reach another nearly constant value of qpl ∼ 73 R⊙. For dataset
sizes ≥92, qpl is always greater than 80 R⊙, which avoids close
encounters with the binary.

4. Discussion and conclusions

We explored different strategies to model the O − C signal
present in some of the evolved binary stars. To do so, we
designed an algorithm that produces the O − C signals starting
from the linear or quadratic ephemeris. We also built an algo-
rithm that models the O − C diagram and obtains the best-fit
Keplerian parameters of a third body orbiting the binary.

We tested our methods on QS Vir because of the intrigu-
ing dispersion of best-fit values found in the literature, as well
as the availability of an extended baseline of observations span-
ning approximately 22.9 yr. In the case of QS Vir, we reach the
following conclusions:

– The residuals from a linear ephemeris provide a more suit-
able model for capturing the O −C signal, while a quadratic
ephemeris results in a modulated signal that cannot be ade-
quately modeled with an isolated body around the binary
system.

– The binary period is found to be modified as a function of
the observational data. These modified values roughly agree
with those reported by previous authors (see Fig. 3, bottom
panel).

– The best-fit values for the unseen companion indicate the
presence of a low-mass stellar companion (57.71 Mjup) on an
eccentric orbit (e = 0.91+0.07

−0.17), with a range of compatible
periods (P = 16.69+0.47

−0.42 yr).
– Parameters such as the companion’s period and its argument

of periapsis (ω) exhibit significant variations depending on
the size of the observational dataset used.

It is important to note that the best-fit values obtained are not
statistically robust without a proper error analysis. We success-
fully tested different strategies for determining the uncertainties
of best-fit parameters, and evaluated their variations as a func-
tion of the observational data (this allowed us to mimic the
observational dataset according to the publication epoch). In our
analysis, we took great care to ensure the suitability of the model
and the fidelity of the MCMC methodology in capturing the rel-
evant data features. We thoroughly evaluated the performance
of the model and scrutinized the MCMC convergence to ensure
both robustness and reliability. The parameter space in these
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optimization problems is usually a forest of many local minima,
and once a solution is found the uncertainties with MCMC are
calculated within that particular narrow pit. This is not a failure
of the algorithm, but is connected to the intrinsic nature of this
problem.

To further strengthen our error analysis, we introduced an
alternative approach known as grid search. This method allows
us to systematically search for errors in each parameter Ai
that exhibits statistical significance. Specifically, we identified
parameters for which their best fits gave (χ2

ν)
1/2 values lower than

the 1σ value of (χ2
ν)

1/2. By identifying the interval of possible
values of Ai, we provide additional insights into the reliabil-
ity of the parameter estimates. Our dynamical study of best-fit
solutions does not show unstable orbits. However, we find some
regions of chaotic solutions, which could shrink the possible
solutions of an additional body in the system. However, our
study indicates that the current available observations are insuf-
ficient to confidently confirm or rule out the presence of such an
additional body.

At face value, and based on the available data, we cannot
exclude the presence of a hypothetical fourth body in the outer
regions of the QS Vir system. It is worth highlighting that the
methodology proposed here is robust enough to tackle the analy-
sis of challenging ETV signals in a more general context. For the
enigmatic case of QS Vir, future high-precision measurements
will be crucial to reveal its elusive orbital architecture.
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