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ABSTRACT

In a population of multiple protostellar systems with discs, the sub-population of circumbinary discs whose orbital plane is highly
misaligned with respect to the binary’s orbital plane constrains the initial distribution of orbital parameters of the whole population.
We show that by measuring the polar disc fraction and the average orbital eccentricity in the polar discs, one can constrain the
distributions of initial eccentricity and mutual inclination in multiple stellar systems at birth.
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1. Introduction

The tilt of an accretion disc orbiting an eccentric binary has
two alternative equilibrium configurations. If the mutual incli-
nation (initial disc tilt with respect to the stellar orbital plane)
is below a critical angle for polar alignment, (Farago & Laskar
2010; Zanazzi & Lai 2018; Cuello & Giuppone 2019) the disc is
expected to nodally precess, and align to the stellar orbital plane
due to viscous dissipation (Bate et al. 2000; Lubow & Ogilvie
2000). If the initial mutual inclination is higher than the critical
angle for polar alignment, Aly et al. (2015) and Martin & Lubow
(2017) showed that the circumbinary disc angular momentum
vector precesses around the binary orbit eccentricity vector. Due
to viscous dissipation, the disc evolves to a polar configuration
in which the mutual inclination is around 90◦ (depending on disc
parameters, see Martin & Lubow 2019).

Ceppi et al. (2023) showed that, in the general case of a disc
in a multiple stellar system, if the disc is orbiting more than
two stars the polar alignment mechanism is highly suppressed1.
Conversely, if the disc is orbiting a pair of stars with additional
bodies outside the disc, polar alignment is at least as likely as in
the pure circumbinary disc case.

The properties of multiple stellar systems are already used
to gain insights into the physics driving stellar and planet forma-
tion evolution. The available statistics on multiple stellar systems
supports that the vast majority of stars are born in a multiple stel-
lar system and that stellar multiplicity increases with stellar mass
(Larson 1972; Duchêne & Kraus 2013; Offner et al. 2023). These

1 Polar alignment could still occur under the right conditions (e.g.
very small semi-major axis ratios or for very small discs). Ceppi et al.
(2023) derived an analytical criterion to assess the stability of the polar
configuration in triples (see also the criterion obtained by Lepp et al.
2023).

are crucial constraints for numerical experiments on the collapse
of molecular clouds (Bate et al. 2002; Krumholz et al. 2012;
Bate 2018, 2019; Mathew & Federrath 2021; Mathew et al. 2023;
Lebreuilly et al. 2023). Orbital parameter distributions, such as
the semi-major axis distribution (Duquennoy & Mayor 1991;
Raghavan et al. 2010), or the binary mass ratio distribution (Moe
& Di Stefano 2017; El-Badry et al. 2019) also help to constrain
formation mechanisms. The presence of more than two stars
is expected to change the shape of these distributions, encod-
ing additional information about the dependence on multiplicity
(Smith et al. 1997; Ceppi et al. 2022; Offner et al. 2023).

In this work, we show that, from the current distribution
of mutual misalignment and eccentricity – such as the one in
Czekala et al. (2019) – and with increased statistics, we are
able to constrain the distributions of eccentricity and inclina-
tion between orbital planes and discs at birth. Such distributions,
in turn, depend on which physical properties are more signif-
icant in the formation process of these objects. In addition to
dynamical interactions between stars (Bate et al. 2002; Bate
2018; Elsender et al. 2023), the presence and the strength of mag-
netic fields (Price & Bate 2007; Wurster et al. 2019; Zhao et al.
2020; Lebreuilly et al. 2021), different metallicities (Elsender &
Bate 2021) and the level of turbulence in the cloud (Bate et al.
2010; Walch et al. 2012) may play a significant role in setting the
initial properties of disc and star populations.

The paper is organised as follows: in Sect. 2 we present
a model to compute the fraction of polar discs and the mean
eccentricity of stellar orbits hosting polar discs. By applying this
method to a population of hierarchical systems and of pure bina-
ries, we derive the relationship between the initial and evolved
distributions of system properties. Finally, in Sect. 3 we constrain
the initial conditions for both populations. In Sect. 4, we discuss
our results and we give our conclusions in Sect. 5.
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2. Initial conditions and polar disc population

2.1. Polar disc fraction and mean polar systems eccentricity

As soon as the condition for polar alignment is satisfied, an
accretion disc starts oscillating around the polar configuration.
The disc dissipates the oscillation on a fraction of the viscous
timescale (Lubow & Martin 2018; Zanazzi & Lai 2018). Thus, it
is reasonable to assume that all discs able to go polar in the initial
population will do so. Then, if we neglect the impact of subse-
quent external interactions, the fraction of polarly aligned discs
we observe in a given evolved population is directly linked to the
initial conditions (eccentricity and misalignment distributions)
in a forming population.

In this section, we build a toy model to estimate the expected
fraction of polar discs and their eccentricity distribution in an
evolved young stellar population (Class II). Given the observed
and theoretically predicted preference for low mutual inclina-
tions (e.g. Czekala et al. 2019; Elsender et al. 2023), we describe
the initial distribution of mutual inclination with a normalised
exponential distribution:

Pβ(β) =
1

Nβ
exp

(
−
β

σβ

)
, (1)

where β is the mutual inclination,σβ is a parameter that regulates
the shape of the distribution and Nβ normalises the distribution
over the support considered, i.e. from β = 0 to π/2.

The initial distribution of eccentricity is described by a
normalised power law distribution:

Pe(e) =
1

Ne
eα, (2)

where e is the orbital eccentricity, α is a parameter regulat-
ing the distribution shape and Ne normalises the distribution
over e = 0 to 1. This is in line with surveys of eccentricities
(Duquennoy & Mayor 1991; Raghavan et al. 2010; Hwang et al.
2022) and it allows for a thermal distribution (P(e) ∝ e) that
can be produced by repeated N-body interactions (Jeans 1919;
Ambartsumian 1937; Heggie 1975).

Thus, the two-dimensional probability density function for
the initial condition is given by:

P(e, β) = Pe(e)Pβ(β). (3)

For an orbit co-rotating with the central system, the critical
angle for polar alignment is2 (Farago & Laskar 2010; Zanazzi &
Lai 2018; Cuello & Giuppone 2019)

βcrit(e,Ω) = arcsin

√
1 − e2

1 − 5e2 cosΩ2 + 4e2 , (4)

where e is the orbital eccentricity and Ω is the disc longitude of
the ascending node.

Supposing that all discs above βcrit go polar and neglecting
subsequent external interactions, we can integrate over the initial
mutual inclination above βcrit, to obtain the distribution of polar
discs as a function of system eccentricity Ppol(e). At this stage,
we consider Ω = π/2 and we will fix Ppol(e) to take into account

2 for a counterrotating orbit βcrit(eb,Ω) = π − arcsin
√

1−e2
b

1−5e2
b cosΩ2+4e2

b
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Fig. 1. Critical angle for polar alignment as a function of the disc
longitude of the ascending node for a fixed binary eccentricity (e =
0.2, 0.5, 0.8). Given a mutual inclination (e.g. 50◦) and an eccentricity
(e.g. e = 0.5), the dashed (dotted) line is theΩ interval in which the disc
will go perpendicular (coplanar) to the orbital plane.

a distribution of longitude of the ascending node in Sect. 2.2.
Thus,

Ppol(e) =
∫ π/2

βcrit(e, π2 )
P(e, β)dβ. (5)

Integrating Ppol over the eccentricity we obtain the expected
fraction of polar discs (Fp) in an evolved population, that is the
ratio between the number of polar discs and the total number of
discs in the population:

Fp =

∫ 1

0
Ppol(e)de. (6)

Additionally, from Ppol we can compute the mean eccentric-
ity of stellar systems hosting polar discs, i.e.:

⟨e⟩ =
∫ 1

0
ePpol(e)de. (7)

Integrals in Eqs. (6) and (7) are challenging to solve due
to the dependencies of βcrit. In the next section we present two
assumptions to take into account a distribution of longitude of
the ascending nodes in the case of hierarchical systems and pure
binaries.

2.2. Taking into account the longitude of ascending node

Figure 1 shows how the critical angle βcrit in Eq. (4) depends
on the longitude of the ascending node (Ω) for different orbital
eccentricities. Let us take the subpopulation of circumbinary
discs with a given mutual misalignment βsp orbiting pure bina-
ries with a given orbital eccentricity esp. We have a Ωcrit so that
the critical angle for polar alignment βcrit(esp,Ωcrit) = βsp. All
discs with Ω < Ωcrit (dotted line in Fig. 1) will not polar align.
All discs with a Ω > Ωcrit (dashed line) will polar align.

If we suppose a uniformly distributed Ω, the fraction of discs
that will polar align is the ratio between the length of the dashed
curve and the width of theΩ interval (i.e. π/2).Thus, the fraction
f of discs that will polarly align is:

f (esp, βsp) = 1 −
2
π
Ωcrit(esp, βsp). (8)
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Fig. 2. Fraction of polar discs (Fp, leftmost column) and mean orbital eccentricity of systems hosting polar discs (⟨e⟩, central column) for binary
system population (top row) and triple system population (bottom row). As shown by the rightmost column, each point of the α–σβ parameter
space is uniquely characterized by a pair of Fp and ⟨e⟩ (crossing of two contour lines, red contour for polar fraction, black contour for mean
eccentricity).

In the case of a binary population, we have to take into
account the factor f (e, β). To compute the distribution of polar
discs with respect to orbital eccentricity, Eq. (5) becomes:

Ppol(e) =
∫ π/2

βcrit(e)
P(e, β) f (e, β)dβ. (9)

In circumbinary discs in hierarchical systems, the preces-
sion of the eccentricity vector drives the polar alignment process
(Ceppi et al. 2023). The orbit precesses on a shorter timescale
than the timescale for coplanar alignment. Hence, precession
could lower the critical angle for polar alignment to its minimum
value because the system quickly explores the Ω for which the
critical angle is minimum. This is true only if, while the system
is exploring different longitudes of the ascending node, the tilt
of the disc does not decrease significantly. Otherwise, the polar
alignment of the disc would still be favoured compared to binary
systems but the initial longitude of the ascending node would
nevertheless be relevant. If we suppose this hypothesis to hold,
for discs orbiting the inner binary of a triple what really matters
is the minimum critical angle no matter the longitude of ascend-
ing node. Independent of Ω, if the disc inclination is higher than
the minimum critical angle (the one for Ω = 90◦) the disc will
polar-align. Therefore, for triples βcrit(e,Ω) = βcrit(e,Ω = 90◦).
Thus, Eq. (5) can be written as

Ppol(e) =
∫ π/2

βcrit(e)
P(e, β)dβ

= −Pe(e)
σβ

Nβ

[
exp

(
−
π/2
σβ

)
− exp

(
−
βcrit(e)
σβ

)]
.

(10)

With the previous assumptions, we are left only with the
eccentricity dependence both for binaries and hierarchical sys-
tems.

2.3. Polar fraction and mean eccentricity for multiple systems

Given a pair of values α and σβ – the parameters of the distribu-
tions of eccentricity and mutual angle, respectively – we are now
able to compute the expected polar disc fraction of an evolved
population and the mean eccentricity of systems hosting a polar
disc with Eqs. (6) and (7), respectively. For pure binaries and
hierarchical systems, the polar disc distributions are given by
Eqs. (9) and (10), respectively.

We semi-analytically computed these integrals over the
α–σβ parameter space for the initial distributions. The parameter
α ranges between −1 and 2, while σβ ranges between 0.01 and
+∞. The left panels in Fig. 2 show how the fraction of expected
polar discs in an evolved population Fp depends on α and σβ for
binary and hierarchical systems. In general, the binary popula-
tion is less prone to host polar discs compared to systems with
more than two stars. This is due to the different βcrit we used to
describe the two populations. The higher the probability of hav-
ing high eccentricity or mutual inclination, the more likely it is
to find configurations with a high mutual inclination and orbital
eccentricity which go polar more easily. Thus, Fp increases for
higher α or σβ.

The central panels in Fig. 2 show the mean eccentricity of
orbits hosting polar discs (⟨e⟩) over the α–σβ parameter space
for binaries and hierarchical systems. The binary polar popula-
tion tends to have higher ⟨e⟩, again due to the f factor (Eq. (8)).
Indeed, theΩ interval allowing polar alignment is larger for more
eccentric systems. Thus, we have more polar discs around highly
eccentric systems. Lowering σβ raises ⟨e⟩. Indeed, higher eccen-
tricity values are required in regions where systems are mildly
misaligned. Conversely, lowering αmeans lowering ⟨e⟩. The less
likely is to have very eccentric systems in the initial population,
the less eccentric the polar population will be.

Each pair of α–σβ uniquely connects to a pair of Fp–⟨e⟩. This
can be seen with contour lines in the right panel of Fig. 2. A
given pair of polar fraction Fp and mean eccentricity ⟨e⟩ contour
lines cross only at one point of the α–σβ parameter space. Thus,
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Fig. 3. α (left) and σβ (right) as a function of ⟨e⟩ and Fp for binary (top) and triple (bottom) populations. White regions are Fp–⟨e⟩ pairs that cannot
be generated by any α–σβ pair. Purple curves are the parameter space region in which α = 2, 1, 0 for solid, dotted and dashed, respectively. Green
curves are the parameter space region in which σβ = ∞. Black star is the solution for randomly distributed mutual inclination and eccentricity.
White box point with error bars is the Fobs

p and ⟨e⟩obs observation values derived in Sect. 2.4. Red circle points are Fp–⟨e⟩ pairs measured in the
four Bate (2019) molecular cloud collapse simulations with different metallicities.

we are able to numerically invert the α–σβ and Fp–⟨e⟩ coordinate
systems to obtain plots in Fig. 3. This plot showcases how α and
σβ depend on Fp and ⟨e⟩. Doing so, once we have constrained
Fp and ⟨e⟩ from observations in a population we can constrain α
and σβ in the initial condition.

2.4. Measurement of polar fraction and mean eccentricity

Statistics on mutual inclinations between discs and stellar orbital
planes are fairly scarce at the moment. Even if it is relatively easy
to measure the disc inclination with respect to the sky plane,
constraining the stellar orbital inclination is challenging. Thus,
in the most recent literature surveys (Czekala et al. 2019; Zurlo
et al. 2023) the sample size is around 15 discs. Among these
discs, only one accretion disc is confirmed in a polar configura-
tion: HD 98800B (Kennedy et al. 2019; Zúñiga-Fernández et al.
2021). Additionally, two discs are likely polar3 (HD 142527,
Balmer et al. 2022, and SR 24 N, Fernández-López et al. 2017).

3 There is a degeneracy of 180◦ in the orbital longitude of the ascending
node (Czekala et al. 2019).

Another notable example is 99 Her, which is a polar debris disc
that likely evolved from a polar accretion disc (Smallwood et al.
2020). HD 98800B and SR 24N have additional companions
outside the circumbinary disc. The semimajor axis ratios for the
two systems are about 0.02 and 0.01 for HD 98800 and SR 24,
respectively. The presence of additional bodies could possibly
affect the process of polar alignment, for example, exciting
Kozai-Lidov oscillations in the disc. However, the outer orbits
of these triples are too wide to drastically impact the inner disc
(Martin et al. 2014).

In the following, we show that the two different prescrip-
tions for Ω in binaries and hierarchical systems with more than
two stars result in similar values for the mean eccentricity, and
in minor differences in terms of polar fraction distributions com-
pared to the current uncertainties we have in surveys. Thus, here
we do not distinguish between binaries and hierarchical systems
in the sample.

We estimate the mean eccentricity of systems hosting polar
discs averaging over confirmed polar systems (HD 98800B), sys-
tems that are likely polar (SR24 N and HD 142527) and the
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polar debris disc 99 Her. We obtain an average eccentricity of
⟨e⟩obs = 0.67 ± 0.11.

To evaluate the polar disc fraction, if we take into account
the single confirmed polar system (HD 98800B) we end up with
a polar fraction of 0.08. If, however, we include also the addi-
tional two likely polar systems (SR24 N and HD 142527) the
fraction raises up to 0.25. We take the average of these two val-
ues as a very rough estimate for the polar fraction, with their
standard deviation as an error. The result is Fobs

p = 0.17 ± 0.08.
This fraction should be considered as an upper limit. In a sam-
ple of well-measured discs and orbital planes inclinations, there
is a bias towards systems in which those quantities of interest
are measured properly (for example because they are promising
polar discs).

In the following, we use Fobs
p and ⟨e⟩obs as references for

exploring the parameter space of the initial conditions.

3. Mapping observations onto the parameter space

For a binary (triple) population, Figs. 3a and b (c and d) show α
and σβ, respectively, as a function of ⟨e⟩ and Fp.

White regions are regions where no α and σβ pair results in
the given pair of ⟨e⟩ and Fp. In the following, we check which ini-
tial distribution is more likely to form the observed polar-aligned
disc population in binaries and triples.

3.1. Randomly distributed initial condition

The first assumption we test is flat distributions in both orbital
eccentricity and mutual inclination. This corresponds to taking
the limit for σβ approaching infinity and α = 0 in Eqs. (1) and
(2) respectively. The assumptions are: i) star formation at the
molecular cloud level gives no preferential orbital eccentricity;
ii) there is no preferred mutual inclination at the onset of stellar
and disc formation.

Under these assumptions, we can compute analytically both
the polar fraction and the mean eccentricity of the triple polar
population, solving Eqs. (6) and (7) respectively with Pe = 1
and Pβ = 2/π. The results are F tri

p = 0.54 and ⟨e⟩tri = 0.63.
For the binary population, we numerically integrate Eq. (9)

since the f factor makes the integral not analytically solvable.
Results for binaries are Fbin

p = 0.40 and ⟨e⟩bin = 0.65. We find
these points in Fig. 3 at the crossing of the green and the
dashed purple curves, marked with a star. Indeed, green and
dashed purple curves are the limit for σβ approaching infin-
ity and α = 0, respectively. In surveys, we find a polar fraction
Fobs

p = 0.17 ± 0.08 and a mean eccentricity ⟨e⟩obs = 0.67 ± 0.11
(see Sect. 2.4). Even if the mean eccentricity in this configu-
ration is compatible with the observed one, the observed polar
fraction is not compatible with the expected polar fraction for a
binary/triple population.

These circumbinary discs form around young stars due to
accretion of surrounding gas and circularisation. Assuming that
there is no correlation between the forming system’s and the
disc’ angular momenta, then rather than assuming a flat distri-
bution of mutual inclination, we expect Pβ = sin β. In this case,
we can take advantage of Eq. (16) in Aly et al. (2015) which
gives the fraction of configurations undergoing polar precession
for a randomly distributed Ω, thus applicable to the binary pop-
ulation. Integrating over the eccentricity we obtain an expected
Fbin

p = 1 − tanh (2/
√

5)/π ≈ 0.54 > 0.4. This estimate is higher
than the one previously computed given that, in this case, higher
inclinations are favoured compared to coplanar configurations.

Likewise, for the triple population, we analytically solve Eq. (6)
with Pβ = sin β, obtaining F tri

p = (5 −
√

5)/4 ≈ 0.69 > 0.54.
This result implies that non-uniform distributions – either

in mutual inclination and/or orbital eccentricity – are needed to
explain the observed polar population (or that many polar discs
have been missed, which seems unlikely).

3.2. Correlated orbit–disc mutual inclinations

The first hypothesis we relax is the random initial distribution
of mutual misalignment. We are still bound to move along the
dashed purple curve in Figs. 3b and d (where α = 0). Over
this restricted parameter space region, ⟨e⟩ has a lower limit
given by the σβ = ∞ case (i.e. 0.65 and 0.63 for binaries and
triples, respectively), while Fp can span values from 0 to the
σβ = ∞ case (i.e. 0.40 and 0.54 for binaries and triples, respec-
tively). The restricted parameter space region is compatible with
⟨e⟩obs and Fobs

p . In particular, observations constrain σβ to range
between 0.25 and 0.78 for binaries and between 0.17 and 0.43 for
triples which implies a narrow β distribution around β = 0, i.e.
close to aligned orbit-disc systems should be more common at
birth. Such correlation between the angular momenta of the disc
and of the binary/triple orbit is needed to describe the observed
polar population, under the assumption of randomly distributed
initial orbital eccentricities.

3.3. Non-flat initial conditions

We now allow α and σβ to explore the whole parameter space
to fully exploit the information contained in the measurement of
⟨e⟩ and Fp. The observed mean eccentricity and polar fraction
select a region of possible values of α and σβ highlighted by the
error bars in Fig. 3. For binaries, we obtain α ≤ 0.6 and 0.26 ≤
σβ ≤ 1.8. As for the triples, α ≤ 0.46 and 0.23 ≤ σβ ≤ 1.87.

Again, the small statistics suggest the presence of a corre-
lation between the angular momenta of the discs and stellar
systems. As for the eccentricity, even if it is still marginally
compatible with a random distribution, present data suggest
a decreasing function (α < 0). Indeed, with a flat or slightly
increasing eccentricity distribution, we would expect an higher
mean eccentricity or an higher polar fraction.

4. Discussion

4.1. Constraining initial conditions in multiple stellar systems

Our analysis suggests that, to be compatible with present data
about polar discs, initial distributions both for mutual inclina-
tions and eccentricities have to be non-uniform. While we expect
the angular momenta of forming discs and multiple systems
to be correlated, the distribution of eccentricities we find does
not completely match with observational results from surveys of
evolved multiple stellar systems.

The observed evolved eccentricity distribution ranges from a
uniform distribution (α = 0) for orbits with semi-major axis of
the order of 100 AU (Raghavan et al. 2010), up to an (increas-
ing) thermal distribution (α = 1) for 500 AU and becomes even
steeper for larger systems (Duquennoy & Mayor 1991; Tokovinin
2020; Hwang et al. 2022). Conversely, we find an α between −1
and 0.6, pointing towards a slightly decreasing distribution, only
marginally compatible with a uniform one.

First, we have to consider that we do not observe systems
hosting circum-multiple discs with semi-major axis larger than
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about 100 AU (e.g. Czekala et al. 2019) nor numerical simula-
tions form them (e.g. Elsender et al. 2023), thus we are interested
in comparing our results with this range of semi-major axis in
which α is closer to our findings (systems of ∼200 AU have
α ∼ 0.6). In addition, gravitational interactions tend to raise the
average eccentricity of the population. However, the thermali-
sation of the distribution could be only partially explained with
gravitational interaction during cluster evolution which should
act for much longer in order to push α from 0 to 1 (Heggie
1975; Weinberg et al. 1987). Thus, depending on the thermali-
sation timescale, we could reconcile our findings with observed
distributions.

In addition, the orbital eccentricity can evolve through inter-
actions between the binary and the circumbinary disc. For
example, D’Orazio & Duffell (2021) numerically show that the
hydrodynamical interaction with a coplanar disc could lead to
preferred values of binary eccentricity. Even if it is not clear if
this result is compatible with eccentricity surveys, the fact that
our model does not take into account that the eccentricity of
observed systems could be systematically different from the ini-
tial condition is also something to investigate in the future. To the
best of our knowledge, there are no studies regarding this effect
on misaligned circumbinary discs.

4.2. Comparison with cluster formation simulations

Nowadays, it is possible to perform detailed numerical simula-
tions of the collapse of molecular clouds. In such simulations,
the initial conditions of the cloud are set (e.g. amount of turbu-
lence, strength of magnetic fields, metallicity), and regulate the
distribution of the parameters of the population of the forming
protosystems. By tuning the properties of the cloud, one could
aim at reproducing the measured distribution of inclination and
eccentricity. This would result in an indirect measurement of the
molecular cloud properties.

In this work, we applied this analysis to the molecular cloud
collapse simulations by Bate (2019). We measured α and σβ
in the newly born protostellar systems population by fitting the
synthetic Ppol (Eq. (5)) resulting from the simulation. We com-
puted the expected Fp and ⟨e⟩ with Eqs. (6) and (7), respectively.
Finally, we compared the values of Fp and ⟨e⟩ obtained from
the simulations with the ones measured in observations (see
Sect. 2.4).

The simulation set consists of four molecular clouds collaps-
ing with four different metallicities (see details in Elsender &
Bate 2021). We note that the higher the metallicity, the steeper
the eccentricity distribution becomes. The steep decrease in
eccentricity does not fit well with the same functional form as the
observed distributions, on which we based our parameterisation.
Thus, we are able to satisfactorily fit the three lower metallicities
only.

The three red dots in Fig. 3 represent the computed Fp and
⟨e⟩ for three different realisations of the same cloud but with
different metallicities. The metallicity has an impact both on the
eccentricity and mutual inclination distribution, hence the scatter
in Fig. 3. However, it appears to have too little impact on the
properties of the population.

Regardless of the metallicity, the resulting polar disc frac-
tions all are generally too low compared to observations. Given
that the distribution of misalignment angles from the calcu-
lations of Bate (2019) and the observed systems are in good
agreement (Elsender et al. 2023), this mismatch must be due
to the lack of eccentric orbits in the simulations (possibly due
to the simulations being too dissipative). We note however that,

as discussed in Sect. 2.4, the proposed observational value has to
be considered as an upper limit. In other words, we cannot cur-
rently completely rule out such small polar disc fractions from
observations.

Finally, this analysis would benefit from numerical simula-
tions producing distributions of mutual inclination and eccen-
tricity, but for different sets of initial conditions (e.g. different
amount of turbulence or magnetic field strength) – such as Bate
(2019) with metallicity. This would lead to more robust pre-
dictions and better constraints for the polar disc population.
Provided accurate measurements of Fp and ⟨e⟩, the method
illustrated here constitutes a powerful way to infer the initial
conditions in molecular clouds from disc populations.

5. Conclusions

We showed how to measure the correlation between the incli-
nation of accretion discs and of forming stellar multiple systems
(i.e. the distribution of mutual inclination) and the distribution of
orbital eccentricity of such stellar systems at the onset of star and
disc formation. Using our model, we were able to compute the
two fundamental parameters describing the initial distributions
of disc-orbit mutual inclination (σβ) and orbital eccentricity (α).
The only required measurements are the fraction of polar discs
in a disc population (Fp) and the mean eccentricity of systems
hosting polar discs (⟨e⟩). Despite the low statistics available, we
find that:
1. The observed disc population is not compatible with a ran-

domly distributed initial distribution of mutual misalignment
– there must be a preference for aligned systems;

2. The orbital eccentricity is marginally compatible with a ran-
dom distribution as observed in field stellar systems with
semi-major axis below 100 AU. The observed increasing
eccentricity for wider orbits is still compatible with present
data up to ∼200 AU. However, our model suggests a slight
initial preference for circular orbits. We will investigate
in future works if this discrepancy is compatible with the
eccentricity evolution of young multiple stellar systems.
The limitation of this proof-of-concept toy model lies in the

simplified distributions taken to describe the initial conditions.
This simplification allowed us to describe the distributions with
only two parameters, facilitating the computation of the relations
between α–σβ and Fp–⟨e⟩ pairs, the parameter space discussion,
and the comparison with data. This gives no degeneracy in the
model and a strictly two dimensional parameter space. A better
observational constraint on the polar disc fraction would improve
the robustness of this method. Also, the impact of the interaction
with a polar disc on the eccentricity of the binary system has to
be investigated further.

In conclusion, by measuring the polar disc fraction and the
distribution of mutual inclinations, we showed that it is possible
to infer the initial eccentricity and mutual inclination distri-
butions of binaries and triples at birth. This will shed light
on formation processes within molecular clouds that affect the
population of binary and triple stars.
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