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ABSTRACT

The emission and escape of Lyman-α photons from star-forming galaxies is determined through complex interactions between the
emitted photons and a galaxy’s interstellar and circumgalactic gas. This causes Lyman-α emitters (LAEs) to commonly appear not as
point sources but in spatially extended halos with complex spectral profiles. We developed a 3D spatial-spectral model of Lyman-α
halos (LAHs) to replicate LAH observations in integral field spectroscopic studies, such as those made with VLT/MUSE. The profile
of this model is a function of six key halo properties: the halo- and compact-source exponential scale lengths (rsH and rsC), the halo
flux fraction ( fH), the compact component ellipticity (q), the spectral line width (σ), and the spectral line skewness parameter (γ).
Placing a series of model LAHs into datacubes that reflect observing conditions in the MUSE UDF-Mosaic survey, we tested their
detection recoverability and determine that σ, rsH, and fH are expected to have the most significant effect on the detectability of the
overall LAH at a given central wavelength and intrinsic line luminosity. We developed a general selection function model that spans
a grid of these halo parameters. Using it with a sample of 145 LAHs with measured halo properties observed in the UDF-Mosaic
survey, we derived completeness-corrected, intrinsic distributions of the values of σ, rsH, and fH for 3 < z < 5 LAHs. We present the
best-fit functional forms of the distributions as well as a σ distribution corrected for instrumental line-spread function broadening,
and thereby show the physical line-spread distribution of the intrinsic population. Finally, we discuss possible implications for these
distributions for the nature of Lyα emission through the circumgalactic medium, finding that observations may undercount LAHs with
extended halo scale lengths compared to the intrinsic population.
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1. Introduction

The Lyman alpha (Lyα) emission line of hydrogen is one of
the most effective and commonly used observational tools in
the study of galaxy evolution. High-energy photons from young,
massive stars ionize neutral hydrogen in a galaxy’s interstellar
gas, and when the ionized hydrogen and electron recombine,
a Lyα photon is very likely to be emitted (Partridge & Peebles
1967). The emitted Lyα photon can be absorbed or scattered by
any neutral hydrogen it encounters, and therefore the Lyα pho-
ton’s travel from its origin in the galaxy’s interstellar medium
(ISM) through the surrounding circumgalactic medium (CGM)
and intergalactic medium will be influenced by the properties
of the gas it encounters. The path the photon traverses through
these media to the point of observation is determined by com-
plicated radiative transfer pathways that depend on the den-
sity, temperature, composition, and kinematic properties of the
several phases of intervening gas (Ouchi et al. 2020). Conse-
quently, Lyα emission is a possible tracer of a galaxy’s star for-
mation rate (Sobral & Matthee 2019), characteristics of the bary-
onic matter in the CGM (Muzahid et al. 2021; Banerjee et al.
2023; Galbiati et al. 2023; Lofthouse et al. 2023), and the ion-
? Corresponding author; jpharo@aip.de

ization of the intergalactic medium (Malhotra & Rhoads 2006;
Stark et al. 2010; Matthee et al. 2022; Goovaerts et al. 2023),
making the detection of Lyα-emitting galaxies, or Lyman-α
emitters (LAEs), a powerful probe of several critical phases of
galaxy evolution.

At high redshifts, LAEs and their contributions to reion-
ization are analyzed via population studies, such as with the
construction of luminosity functions (LFs; Malhotra & Rhoads
2004; Ouchi et al. 2008; Finkelstein et al. 2012; Drake et al.
2017; Sobral et al. 2018; Herenz et al. 2019; Wold et al. 2022;
Thai et al. 2023, which characterize the numerical distribution of
LAEs as a function of the Lyα line luminosity in a given redshift
epoch (e.g., Johnston 2011) and in a representative volume of the
universe: dN = Φ(L)dLdV . Through observation of a population
of LAEs at given redshifts, this differential LF can then be eval-
uated to determine the number density distribution of LAEs as
a function of luminosity (or another LAE property) for a given
redshift epoch. The form this LF takes is commonly parameter-
ized with the Press-Schechter function (Press & Schechter 1974;
Schechter 1976), but it can also be estimated non-parametrically.

Analyses that require knowledge of the intrinsic LAE
population – for example, LFs, LAE clustering properties
(Herrero Alonso et al. 2023a), and cosmic star formation rate
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densities (Sobral & Matthee 2019) – require not just measure-
ment of the observed LAEs but also careful consideration of the
completeness of the flux-limited observations (see, for example,
Drake et al. 2017). The faint LAE population is difficult to con-
sistently detect at high redshifts, especially with spectroscopy,
and so luminosity-dependent formalizations of the LF will suf-
fer from a detection bias toward intrinsically brighter sources.
Many nonparametric methods for estimating the LF have been
developed to address this problem. In this work, we focus on the
1/Vmax estimator (Schmidt 1968; Felten 1976), given generically
as

Φ =

N∑
i

1
Vmax,i

, (1)

where Vmax,i is the maximum possible volume that the ith
observed galaxy can subtend in a survey that detects N galax-
ies and still be detected by the given observations. To determine
a LF, this estimator can then be evaluated for bins of luminosity,
but since the generic form is nonparametric, it can be evaluated
as a function of other galaxy characteristics as well.

The fractional completeness of galaxy detections is known
as the completeness function, or selection function. Differing
methods for calculating the selection function can dramatically
impact the resulting corrected LAE distribution. We focused on
the 1/Vmax method because its nonparametric form for the LF
is easily adaptable to include a selection function dependent
on the intrinsic luminosity and redshift. However, Herenz et al.
(2019) show that in addition to the intrinsic line luminosity of
the LAE, the shape of the Lyα halo (LAH) profile can impact
the detectability and therefore the measurement completeness of
an LAE subpopulation.

Given its complicated escape pathways, Lyα emission is
typically not observed tracing the relatively compact stellar
population of its host galaxy (Malhotra et al. 2012), but is
instead found in a spatially extended LAHs (Matsuda et al. 2012;
Momose et al. 2014; Wisotzki et al. 2016; Leclercq et al. 2017;
Kusakabe et al. 2022; Guo et al. 2024b; Herrero Alonso et al.
2023b). The Lyα photon’s radiative transfer properties
also often create broad, complicated spectroscopic profiles
(Verhamme et al. 2006; Erb et al. 2018, 2023; Claeyssens et al.
2019; Blaizot et al. 2023), which can even feature two separate
“blue” and “red” peaks, where the observed emission is shifted
to lower and higher wavelengths than the Lyα line center pre-
dicted by the galaxy’s systemic redshift. Integral field unit (IFU)
spectroscopy has proven very successful as a method for probing
this 3D spatial and spectral profile, especially with observations
from the Multi-Unit Spectroscopic Explorer (MUSE) instrument
on the Very Large Telescope (VLT; Bacon et al. 2010, 2017,
2023; Inami et al. 2017; Vitte et al. 2024; Claeyssens et al., in
prep.).

At a given redshift and intrinsic line luminosity, the exact
spectral shape and spatial distribution of the LAH can signifi-
cantly affect the rate of LAE detection by effectively spreading
the same level of Lyα emission across a broader area, reducing
the surface brightness and detected signal-to-noise ratio (S/N).
Furthermore, since Lyα escape is determined at least in part by
the physical properties of the CGM (e.g., Gronke et al. 2015;
Li et al. 2022; Li & Gronke 2022; Blaizot et al. 2023), the dis-
tribution of LAH properties can hold valuable information on
the typical CGM conditions in different eras of cosmic galaxy
evolution. Therefore, the advantage gained by studying the prop-
erties and distributions of LAHs is twofold: first, by improving
standard techniques for correcting incompleteness in LAE obser-

vations, the analysis of LAE populations at high-z can be made
more accurate; and second, by uncovering the intrinsic distri-
butions of the physical parameters of LAHs at a given redshift
range, we can gain insights into the nature of the CGM, Lyα
escape, and other key questions of galaxy evolution.

We have developed a 3D spatial-spectral LAH model that can
be used to replicate the observation of an LAH with given halo
properties under specific survey conditions. With this model, we
can test the relative importance of different halo characteristics
to LAH detectability, and thereby produce a grid of models that
represent the range of LAH selection functions in a given sur-
vey. We applied this to a sample of 3 < z < 5 LAEs studied
by Leclercq et al. (2017, hereafter L17) from the Hubble Ultra
Deep Field (UDF) Mosaic survey (hereafter “UDF-Mosaic”),
conducted with the VLT/MUSE instrument. We used our selec-
tion functions and the 1/Vmax completeness estimator to recover
intrinsic distributions of the most important LAH parameters,
and we discuss their implications for further LAH observations
and studies.

The paper is organized as follows. In Sect. 2 we describe our
methods for constructing the LAH model and deriving a model’s
expected detectability. In Sect. 3 we derive a generalized model
for LAH selection functions and apply it to the observed sample
from L17. In Sect. 4 we recover the intrinsic parameter distribu-
tions for 3 < z < 5 LAHs and discuss their physical implications
and future lines of study. We summarize our results in Sect. 5.

In this work, we use CGS flux units, physical distances, and
assume a Λ cold dark matter cosmology with Ωm = 0.3, ΩΛ =
0.7, and H0 = 70 km s−1 Mpc−1.

2. Modeling the Lyman-α halo selection function

2.1. The Lyman-α profile

Determining the selection function for LAHs in a given redshift
range and for a given observational setup requires the reproduc-
tion of a variety of plausible LAH observations under those con-
ditions. For implementation of this procedure in a MUSE IFU
cube, we therefore needed to model the LAH emission in three
dimensions, as a miniature datacube consisting of a 2D spatial
component and a spectral component covering the extent of the
Lyα emission line.

2.1.1. Spatial profile

The LAH spatial profile is commonly modeled as a two-
component exponential disk (Wisotzki et al. 2016), with one
component representing a compact, continuum-like central
source, and the second representing a diffuse, extended halo.
Previous MUSE observations of LAEs have found this to be
an effective model (e.g., Leclercq et al. 2017), and more recent,
high-spatial-resolution studies of lower redshift LAEs have
confirmed that more simplified spatial models are insufficient
(Runnholm et al. 2023). We therefore described the combined
profile as

F(r) = ΣC(r) + ΣH(r) = ΣC0e−r/rsC + ΣH0e−r/rsH , (2)

where ΣC(r) (ΣH(r)) describes the radial flux profile of the com-
pact (halo) component, with a total integrated flux of FC (FH),
and which we modeled as an exponential disk. The central flux
surface brightnesses of the compact and halo components are
given by ΣC0 and ΣH0, and rsC and rsH are their exponential scale
lengths. We defined the halo flux fraction fH = FH/(FH + FC) in
order to describe the relative contribution of each component to
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Fig. 1. Two example model LAH profiles set in UDF-Mosaic. The left column shows a spatial profile of the model LAH flux, effectively a
narrowband image of the Lyα emission, for a model that is spatially relatively compact (panel a) and for a model that is more extended (panel
b). The fluxes in each spaxel are log-normalized here to emphasize the distinct shapes. The values of the spatial parameters used for the model
are given in the overlaid text. The middle column shows the normalized Lyα spectral profile for a narrow, skewed line (panel c) and for a broader
line with no skew (panel d). The right column (panel e) shows the predicted completeness fraction for the compact and extended model LAHs
when inserted into UDF-Mosaic observing conditions at different intrinsic fluxes and at a fixed line center of λ0 = 6000 Å. For the range of
fluxes Log(FLyα) = −15 to −19, each model was inserted into a UDF-Mosaic datacube and its S/N measured. For a chosen detection threshold
S/Ndet = 5, we then estimated the completeness fraction for each insertion. This is given by the red (compact) and purple (extended) circles and
the trend tracked by the solid lines. Dashed lines show error function models of the detectability function, described in Sect. 2.2. Unsurprisingly,
the completeness fraction drops rapidly when the intrinsic flux gets low enough to bring the measured S/N below the detection threshold. This
behavior can be accurately modeled by an error function, as shown by the dashed lines. This panel also demonstrates the clear effect of the LAH
parameters on the expected detectability of the LAE: the spatially compact, narrow-line model is detectable at fluxes almost an order of magnitude
fainter than the extended, broad-line model.

the total Lyα flux. Two example spatial profiles with variations
on these parameters are shown in panels a and b of Fig. 1.

The spatial distribution of the total flux in each component
will also depend on its ellipticity, which we measured through
the axis ratio, q. We allowed q to vary for the compact com-
ponent1. The ellipticity of the halo component (qH) was fixed
to 1. This is a simplifying assumption that has generally been
used for large populations of LAHs observed at high redshift
(Wisotzki et al. 2016; Leclercq et al. 2017), where low signals
make a proper fitting of the halo ellipticity very difficult, but
it will not always be the case for individual LAHs, particularly
those exhibiting mergers or substantial gas outflows (Pessa et al.
2024), such as those driven by quasars (Borisova et al. 2016;
Arrigoni Battaia et al. 2019). We comment on the potential
effects of variable qH and the assumption of qH = 1 in
Sect. 3.1.

1 The axis ratio, q, is related to the other parameters as FC ∝ r2
sCΣC0q;

see Peng et al. (2010).

2.1.2. Spectral profile

The scattering nature of Lyα emission often creates irregu-
lar, sometimes double-peaked spectral line shapes, which can-
not be adequately replicated with simple Gaussian profiles
(Shibuya et al. 2014). Since we were primarily concerned with
detectability of the line, we focused on modeling the stronger
(and usually redder) peak of Lyα emission (Laursen et al. 2011).
Claeyssens et al. (in prep.) find that even when blue peaks are
expected to be present, they are unlikely to be detected with
MUSE spectral resolution at high redshift. They demonstrate
that for a low-z population with blue peak detection rate of 60%
in spectra from the Hubble Space Telescope (HST) Cosmic Ori-
gins Spectrograph, the rate would drop below 20% with MUSE
observations at z > 3, so the blue peak is unlikely to be a strong
contributor to the expected observed profiles. Previous MUSE
observations and related simulations of Lyα emission suggest
the blue-peak-dominated fraction of any sample should be small
(Hayes et al. 2021; Kerutt et al. 2022).

Some recent MUSE observations and simulations of LAEs
do find significant if small fractions with either blue-peak dom-
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Fig. 2. Top: Example model Lyα profiles at the arbitrary and fixed line
center λ0 = 6000 Å, with a normalized total line flux and a constant
line width σ = 250 km/s. Each color shows a profile with a different
skewness factor, γ. The models are resampled to the spectral resolution
of VLT/MUSE. Bottom: Three normalized Lyα line profiles determined
using the best-fit values of σ and γ for real observed galaxies from B23,
demonstrating some of the variety of shapes of observed Lyα spectral
profiles.

inated or double-peaked spectral profiles (Blaizot et al. 2023;
Mukherjee et al. 2023; Vitte et al. 2024). From a detectability
standpoint, LAEs with a single dominating blue peak will behave
functionally very similarly to those with a single red peak, since
our spectral model depends on the observed central wavelength
of the dominant peak, and not the systemic redshift, for defin-
ing the line’s position in the wavelength grid. Lyα spectra with
blue and red peaks of comparable flux present a potentially
more interesting case, but the inclusion of a second spectral
peak would significantly increase the model parameter space to
account for a likely small fraction of LAEs. We thus focused
on the single-peak case, leaving double peaks to be explored in
subsequent work.

The potentially asymmetric profile of a single peak has been
modeled as an asymmetric Gaussian (Shibuya et al. 2014), a
form used in previous MUSE surveys such as MUSE-WIDE
(e.g., Herenz et al. 2017). However, more recent MUSE obser-
vations have fit Lyα profiles with a skewed Gaussian function
(e.g., Bacon et al. 2023, hereafter B23), which we adopted as
well for consistency with the observed halo parameters we used.

The functional form of the profile is

F(λ) =
A

σ
√

2π
e−(λ−λ0)2/(2σ2) ×

(
1 + erf

(
γ(λ − λ0)

σ
√

2

))
. (3)

Here the critical profile shape parameters are the line width σ,
typically measured in km/s, and the skew factor, γ, a dimension-
less parameter representing the asymmetry of the line profile. A
profile with γ = 0 reduces to a symmetric Gaussian, and as the
value of γ increases, the skewness term becomes more dominant,
producing a more asymmetric profile. The central wavelength of
the profile is given by λ0. Panels c and d of Fig. 1 show the
spectral profiles for two specific LAH models, one narrow and
heavily skewed, and the other broad and symmetric. More exam-
ples of the range of variations in model spectra shapes based on
the spectral parameters are shown in Fig. 2.

2.1.3. Modeling the profile

The spatial and spectral components of the profile combined to
contribute six total variable parameters to the LAH model: fH,
rsC, rsH, q, σ, and γ. We also varied two line parameters, the
intrinsic total LAE flux (log10 FLyα) and the central line wave-
length (λ0).

For a given set of values of these parameters, we inde-
pendently modeled the spatial and spectral components of the
LAH. First, we used Galfit (Peng et al. 2002, 2010) to convolve
the two-component disk profile with a Moffat function (Moffat
1969) representing the point-spread function (PSF) of the obser-
vations, using the model spatial parameters and intrinsic line
flux. Bacon et al. (2017) measured Moffat profile PSF parame-
ters for UDF-Mosaic, which we have adopted here. We modeled
the spatial distribution with the 0.2′′ pixel−1 spatial resolution of
MUSE, which for the typical halo length scales at 3 < z < 5 fit
well in a 51×51-pixel spatial array. For each model, we produced
such an array, which effectively contained a model narrowband
image of the LAH.

We modeled the spectral profile in the observed frame
according to the skewed Gaussian form described in Eq. (3),
and convolved this profile with the expected broadening of
the instrumental line-spread function (LSF). Bacon et al. (2017)
determined the LSF through a single-Gaussian model for UDF-
Mosaic, according to which the full width at half maximum
(FWHM) in Å is

FWHM(λ) =
(
5.835 × 10−8

)
λ2 −

(
9.080 × 10−4

)
λ + 5.983. (4)

The FWHM evaluated at a given wavelength can then be con-
verted to a Gaussian width and added in quadrature with the

“physical” line width, σ0, via σ =

√
σ2

0 + σ2
LSF, where σ is the

observed line width described in Eq. (3).
We then multiplied each pixel in the 2D spatial profile by

the normalized skewed Gaussian spectral profile with given λ0,
σ, and γ, distributing the line flux fully in a 3D minicube
model of the LAH across the full wavelength MUSE coverage.
Here we assumed a constant spectral profile shape across the
entirety of the spatial profile, which is not necessarily the case
for observed LAHs (Claeyssens et al. 2019; Guo et al. 2024a;
Mukherjee et al. 2023). However, these observed spectral vari-
ations occur on scales small enough to require substantial stack-
ing or gravitational lensing to confidently observe at high red-
shift, and can thus be expected to have a small contribution rela-
tive to the predominant halo characteristics. As such, the spectral
component of our model can be treated as primarily representing
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Fig. 3. Selection functions for the compact (left) and extended (right) model emitters shown in Fig. 1. The color of each flux-wavelength point
on the grid indicates its fC, the detection completeness fraction estimated by the model for UDF-Mosaic. The black and white curves show lines
of fC = 0.85 and fC = 0.15. The model in the left column represents a relatively compact LAH, with a halo flux fraction fH = 0.5, a halo scale
length rsH = 1.6 kpc, a spectral line width 126 km/s, and a skew parameter γ = 3. The model in the right column is more extended, with a halo
flux fraction fH = 0.9, a halo scale length rsH = 5.0 kpc, a spectral line width 316 km/s, and a skew parameter γ = 0. Vertical red lines near the
top of the panels indicate the wavelengths where models were inserted into LSDCat. The selection functions predict that these changes will have
a substantial effect on the detectability, with the more compact model achieving fC = 1 down to much fainter line fluxes.

the brighter, inner regions of the halo that will dominate the
detectability, and the model uses the same values for σ and γ
for all spaxels. We then combined this minicube with the vari-
ance spectrum and exposure map from the related observations
to fully simulate the observing conditions of the model LAH.

2.2. Signal-to-noise estimation and measuring the
completeness fraction

To evaluate the detectability of a given LAH emission profile, we
used the Line Source Detection and Cataloguing Tool (LSDCat;
Herenz & Wisotzki 2017; Herenz 2023), a 3D matched-filtering
package for emission line detection developed for IFU observa-
tions. LSDCat operates by cross-correlating a 3D emission line
template with a continuum-subtracted IFU datacube. For the line
template, we used a 3D Gaussian with a spatial width adjusted to
the wavelength-dependent PSF and a spectral width of 250 km/s.
These template choices have been optimized for Lyα searches
with LSDCat and have demonstrated success in previous MUSE
surveys (e.g., in MUSE-WIDE; Herenz et al. 2019; Urrutia et al.
2019). After cross-correlation with the cube and its associated
variance spectrum, LSDCat returns a S/N cube.

We initially tested the source recovery of the models by
inserting LAH models into 51 × 51-pixel UDF-Mosaic-like
minicubes at varying levels of intrinsic flux. We ran LSDCat on
each minicube and recorded the measured S/N for that model
and intrinsic line flux. Setting a threshold level of S/N for detec-
tion at S/Ndet = 5, a common observational cutoff for significant
detections, we then evaluated the expected completeness fraction
fC for each inserted model. This can be seen in panel e of Fig. 1,
which shows the expected completeness fraction for the example
extended and compact halo models as a function of the intrinsic
line flux at a fixed line center of λ0 = 6000 Å. Unsurprisingly, for
very bright fluxes, the measured S/N is substantially higher than
the threshold, and the expected detectability fraction is essen-
tially 1. At very faint fluxes, the S/N is well below the threshold,

and the recovery is essentially 0. In this simple scenario, where
we inserted and measured just a single LAH at each flux, the
detectability function transitions rapidly from one stage to the
other as the intrinsic flux of the models dims and S/N → S/Ndet,
with a narrow regime of 0 < fC < 1.

This functional behavior of the completeness fraction has
been observed in tests from Herenz et al. (2019) as well, wherein
models representing real observed LAHs were inserted and
recovered in MUSE-WIDE observing conditions. They also per-
formed multiple insertion tests for each flux level, and so were
able to account for variation in the S/N measurement from noise
fluctuations across the observed field of view. Since this form is
reproduced in both observation-based and analytical models, it
is safe to then model the completeness fraction as a function of
flux. In the simplest test case we performed above, the transition
from fC = 1 to fC = 0 is very narrow, but this assumes a per-
fect measurement of the S/N, whereas repeated insertion tests of
the same models produce a larger spread in the measured recov-
ery function. If the error in measuring the S/N compared to the
S/Ndet is assumed to be Gaussian, then the behavior of the result-
ing detectability function that accounts for the normal distribu-
tion of error in the S/N can be described by an error function2.
The dashed lines in panel e in Fig. 1 show that this representation
closely matches the full-insertion tests.

2.3. Systematic LSDCat insertion and line recovery

Given that the full-model-insertion method described in Sect. 2.2
is well described by an error function, it became possible to
replace the time-intensive insertion of the model at every level
of intrinsic flux with a more efficient approach: insert the model
at a single intrinsic flux, measure the S/N at that level, and then
model the S/N, and therefore completeness fraction, for a whole

2 The error function is defined such that erf(z) = 2
√
π

∫ z

0
exp−t2 dt.
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range of possible observable fluxes. This approach is much more
practical for attempting to model completeness for a whole LAH
population, which may consist of LAHs with a wide range of
combinations of halo parameters.

Similarly, it was not necessary to test each model at every
possible central wavelength observable by MUSE. With the
exception of changing effects of the LSF, the signal measured
for a model with a fixed line flux should not change with wave-
length, and the LSF effect is generally small relative to the physi-
cal line widths, and changes slowly with wavelength. Therefore,
the main changes to the S/N measure with wavelength should
be expected to depend on the noise properties of the MUSE
observations, which has two main drivers: the MUSE sensitivity
curve, and the presence of atmospheric skylines. The S/N needed
to be measured at a set of wavelengths that accurately accounted
for these two factors.

We selected nine separate wavelengths for model LAH inser-
tions: 4930, 5800, 6800, 7116, 7674, 8260, 8563, 9125, and
9193 Å. These wavelengths were chosen to provide a sufficient
sampling of the underlying MUSE sensitivity curve (and thus
variance spectrum) in relatively skyline-free spectral regions.
After sampling the S/N at each of these wavelengths with LSD-
Cat, we interpolated a full S/N curve as a function of wavelength
at fixed line flux by using the known variance spectrum for the
MUSE UDF-Mosaic survey. This incorporated both the shape
of the underlying MUSE sensitivity and the impact of skylines.
Then at each wavelength, we modeled fC for a range of intrinsic
line fluxes.

This process yielded a selection function for a specific LAH
spatial-spectral profile as a function of the intrinsic line flux and
the central line wavelength. Examples of this 2D selection func-
tion are shown in Fig. 3 for the compact and extended model
LAHs depicted in Fig. 1. The selection functions are grids of
intrinsic line flux and wavelength, with the value at each grid
coordinate the fC expected for that model at the specific flux and
wavelength (shown by the color in Fig. 3). Each column in the
selection function is the same function as is depicted in panel e
of Fig. 1. This immediately demonstrates the impact that varia-
tion in the LAH parameters has on Lyα detectability: the com-
pact LAH with a narrow spectral profile is expected to be com-
plete down to almost an order of magnitude fainter intrinsic flux
compared to the extended, broad-line halo. To gain a complete
understanding of the distribution of LAH properties, it therefore
becomes necessary to model this selection function across the
range of possible LAH parameters.

3. A general LAH selection function

3.1. Parameter tests

Determining completeness calculations for the range of possible
observed LAHs necessitates a multidimensional grid of selec-
tion functions, accounting for variation in each of the six model
parameters as well as intrinsic line flux and central wavelength
(redshift). Such a grid is potentially very computationally expen-
sive to both generate and analyze. It was thus helpful to consider
the relative impact each parameter can have on changes in LAH
detectability in order to coarsen or refine the grid resolution in
that parameter space accordingly.

We measured this by fixing five of the six LAH parame-
ters to an average value from observed LAHs in MUSE surveys
(described in detail in Sect. 3.2), then running the LSDCat recov-
ery test on the observed range of values for the sixth parameter.
We tested this in the CANDELS-CDFS-03 field from MUSE-

WIDE (Urrutia et al. 2019), a relatively shallow field with well-
measured noise properties. The test results are shown in Figs. 4
and 5. We plot the flux at which the modeled completeness frac-
tion fC = 50% as a function of wavelength, yielding a sepa-
rate “50% curve” for each value of the parameter being tested,
shown by different colors. Because the selection function closely
resembles an error function, which rapidly changes from 1 to 0,
changes in the fC = 0.5 point (F50) will be particularly sensitive
to the detectability effects of the changing parameter, making it
a useful diagnostic for this test.

We find the most influential parameters to be the line width,
σ, and the halo scale length, rsH (both in Fig. 5). Changes in
σ moved the F50 flux by up to 0.5 dex in intrinsic line flux at
a given wavelength, and variation in rsH can move F50 by over
0.2 dex. The halo fraction fH and the compact-component scale
length rsC had more moderate effects (∼0.12−0.13 dex), and the
compact ellipticity, q, and the skewness factor, γ, produced rela-
tively small changes in isolation (≤0.1 dex). Here we also tested
the possible effects of our assumption of circular halo shape. Fix-
ing average values for the six listed parameters, we checked the
F50 curve for qH = 1 and qH = 0.1. This maximal variation pro-
duced an average shift of ∼0.07 dex, which is comparable to the
effects of γ and q. Given this and the fact that L17, the primary
source of our observational constraints, assumed circular halo
shapes, we maintained a fixed qH = 1, though we note that more
elliptical halos will have slightly improved detectability.

We note as well that this test does not account for possi-
ble inherent correlation in the LAH parameters, instead treat-
ing them as independent. Consequently, the completeness frac-
tions here as a function of flux should not be considered in
absolute terms, but only in the magnitude of the relative change
in completeness with the variable parameter. However, even if
some correlations between parameters are later discovered, there
is initially nothing to indicate that any such connection would
cause the detectability properties to change from the smooth,
monotonic changes observed in these tests. Potential correlations
between halo parameters will be explored further in Sect. 4.4.

3.2. Observational sample: The UDF-Mosaic survey

The main analysis in this work is based on data from UDF-
Mosaic (Bacon et al. 2023). The data were obtained between
September 2014 and February 2016 with the MUSE/VLT instru-
ment as part of the MUSE consortium guaranteed time observa-
tions. The mosaic consists of a grid of nine 10 h observations of
1′×1′ MUSE pointings in the Hubble Deep Field South (HDFS).
Overlapping the mosaic is a single 20-h pointing, denoted UDF-
10, for a cumulative 30-h of deeper exposure. We note here that
though UDF-10 observations contribute to the observed distri-
bution of LAH parameters, the model results in this work will
only address the conditions of the mosaic. The UDF data reduc-
tion is described in detail in Bacon et al. (2017), and produced a
mosaic datacube with a wavelength range of 3750 < λ < 9350,
and average resolution of R ∼ 3000, and a spatial resolution of
0.2′′ × 0.2′′ per pixel. The PSF and LSF characteristics of the
observations are well studied, as described in Sect. 2.1.3.

This dataset is convenient for our purposes because the
observation depth should be able to probe a range for each
LAH parameter, necessary for a comprehensive analysis of the
detectability. L17 performed Lyα halo measurements for 145
continuum-faint galaxies in UDF-Mosaic and UDF-10, provid-
ing a catalog of rsH, rsC, and halo- and compact-flux measure-
ments from which a halo fraction could be determined. Spectral
analysis in B23 provided measures for σ and γ. Distributions
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Fig. 4. Individual parameter tests for three of the LAH model parameters. Each panel gives the completeness fraction fC = 0.5 as a function of
intrinsic line flux and wavelength for a commonly observed range of a given parameter’s values (shown by the colored curves), with the remaining
five parameters held fixed at an average value. This demonstrates the variable contribution to the detectability each parameter can make, with γ
changing the 50% detection point by only ∼0.05 dex in intrinsic flux, while the q and rsC lead to average changes of 0.08 and 0.13 dex, respectively.

of these parameters in the observed sample are shown in Fig. 6.
Ellipticity measurements are not commonly available for the L17
sample, especially since many of the continuum-faint sample do
not have resolved compact components. In the Lensed Lyman-
Alpha MUSE Arcs Sample (LLAMAS), Claeyssens et al. (2022)
took advantage of the magnification from gravitational lensing to
measure the ellipticity distribution for a comparable LAE sam-
ple (Richard et al. 2021). They found half the LAEs consistent
with circular compact components (q = 1), with the other half

relatively evenly distributed across other values of q. As the lens-
ing magnification provides both improved spatial resolution and
access to fainter sources, it is reasonable to use this as a statisti-
cally comparable distribution for the ellipticities.

Prior to fitting the LAH parameters, the L17 sample went
through several selection cuts, as described in Sect. 2.2 of
that paper. Most selection criteria were for data quality pur-
poses and are unlikely to bias the sample toward or against a
particular configuration of halo parameters. The one caveat to
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Fig. 5. Same as Fig. 4 but for the three remaining LAH model parameters. These parameters have a much more substantial influence on the
detectability than the previous set, with fH producing changes of ∼0.12 dex, rsH changing by ∼0.22 dex, and σ generating changes in the fC = 0.5
point of up to 0.5 dex.

note is the removal of LAEs in close pairs (defined as having
<50 kpc projected transverse separation and <1000 km/s veloc-
ity offsets). It is possible that interacting systems have sys-
tematically different distributions in one or more of the halo
parameters, but determining this would require a large sam-

ple of interacting LAEs with well-fit LAH parameters, which
is currently not available. The characteristics of this subpopu-
lation will thus be investigated in future work, and the distri-
butions derived in this work will describe the individual LAE
population.
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Fig. 6. Top: Observed distributions of the compact scale length, halo scale length, and halo fraction in LAHs from the L17 catalog. Bottom:
Observed distributions of the line widths and skewness factors for the same sample of LAHs, using the spectral fit results from the B23 catalog.
Vertical magenta lines indicate the grid sampling values described in Table 1.

3.3. Selection function grids

With the set of LAHs described in Sect. 3.2 as a comparison
sample, we designed a parameter grid for which a comprehen-
sive set of selection functions could be generated for LAHs in
UDF-Mosaic. The grid design is described in Table 1, and the
grid points are shown relative to the observed sample in Fig. 6.

With the potential for a 6D grid to consume substantial com-
puting time, we chose to sample the grid with different step pat-
terns for each parameter based on the parameter’s expected influ-
ence on the selection function as measured in the single-variable
tests described in Sect. 3.1. We selected the two most influen-
tial parameters, σ and rsH, to have finer samplings spanning the
observed parameter distributions shown in Fig. 6. Given the dis-
tributions show strong peaks at lower values of σ and rsH with
long tails at higher values, we opted to sample these parame-
ters in log space, yielding a finer grid where most objects are
observed.

We sampled the remaining parameters in linear steps, and
with larger step sizes amounting to just two or three sample
points per parameter axis. We note as well that for γ, we did
not sample the entire observed range, stopping instead at a max-
imum skewness of γ = 3. As we observe very little change in the
selection function for changes in γ beyond γ ' 2 (see Fig. 4), it

Table 1. Grid parameters for UDF-Mosaic.

q γ log(rsH) rsC fH log(σ)
(kpc) (kpc) (km/s)

Xmin 0.1 0 −0.3 0.3 0.1 1.7
Xmax 1 3 1.2 1.5 0.9 2.9
∆step 0.9 3 0.25 0.4 0.4 0.2
Nsteps 2 2 7 4 3 7
Cumulative 2 4 28 112 336 2352

should suffice for the model to simply test the difference between
unskewed (γ ≈ 0) and skewed (γ ' 2) profiles.

Generating a grid to the specifications given in Table 1 pro-
duced 2352 individual LAH models and associated selection
functions.

3.4. Marginalized selection functions

The relatively coarse sampling of the selection function grid
does pose a potential problem for modeling specific LAH pro-
files that fall between the grid points. This requires a more gen-
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Fig. 7. Completeness fraction curves for a series of LAH models that
marginalize over the grid axes of the rsC, q, and γ parameters at a fixed
central wavelength of λ0 = 6800 Å. These models show fixed values
of fH and rsH but variable σ, as indicated by the different colors of the
curves. The dashed lines show a flat marginalization, where a simple
average is taken over the models of variable rsC, q, and γ at the given fH,
rsH, and σ values. The solid lines show the results of a marginalization
weighted by the observed distributions of the marginalized parameters
(as shown in Fig. 6). This weighted marginalization increases the con-
tribution of models with smaller rsC lengths, resulting in completeness
curves that drop off at fainter fluxes.

eralized adaptation of the selection function grid, whereby the
selection function for any potential combination of parameter
values within the grid ranges can be individually modeled.

To reduce the complexity of the models, we chose to
marginalize over the less influential LAH parameters. Selecting
q, γ, and rsC as the parameters with the least expected influence
on the selection function3, we averaged the completeness curves
at each wavelength along the axes of these variables for each set
of fixed values of σ, rsH, and fH.

Figure 7 shows a series of example marginalized complete-
ness curves for models with rsH fixed to 5 kpc and fH = 0.9,
while varying the line width σ. The marginalization is shown
in two possible implementations. First, the dashed curves show
flat marginalizations, taking a simple average of completeness
curves across models of all values of q, γ, and rsC. However,
since we have shown that variations in these parameters can still
have some influence on the selection function (see Fig. 4), it
would likely produce more accurate results for the marginaliza-
tion to capture as much of the true distribution of those parame-
ters as possible.

We accomplished this via a weighted marginalization, in
which the completeness curve average is weighted by the
observed distributions of the marginalized parameters as shown
in Fig. 6. The primary impact of this is to increase the contri-
bution of models with short rsC values (rsC < 0.5 kpc), which
are detected much more frequently and are expected to have the
largest impact on detectability out of the remaining three param-
eters. We weighted the marginalizations along q by the distri-

3 Though rsC and fH had similar impacts on detectability in the single-
parameter tests, observations of fH are more likely to span the full tested
range, given the rarity of rsC values greater than 1 kpc as measured from
high-resolution HST imaging, and the limitations of measuring low-rsC
with a seeing-limited PSF. Therefore, we expect the practical effects of
fH to be more substantial.

bution measured by Claeyssens et al. (2022). For the skewness
parameter, we weighted by the γ distribution from B23.

The results of this weighted marginalization are shown as
solid lines in Fig. 7. The general effect of this marginalization
is to shift the completeness curves to fainter fluxes, with the F50
point shifting 0.05−0.1 dex lower in log10 FLyα. This makes intu-
itive sense, given the increased weight to low-rsC models, whose
compactness improves their detectability. Of course, weighting
the marginalization to observed distributions of the marginalized
parameters does potentially induce a bias by under-weighting
the contributions of less detectable parameter values (e.g., very
extended core scale lengths or very high skewness values). But
since we only marginalized the parameters previously deter-
mined to have small influences on detectability across their
entire observed ranges, such a bias is likely small. LAHs with
very high rsC are not so much less detectable than more compact
LAHs that missing some will substantially affect the marginal-
ization weights, for example. Thus, we used this set of marginal-
ized models to reduce the parameter space and explore in more
detail the distributions of the remaining three LAH parameters.

4. Recovering the intrinsic LAH distribution

4.1. The LAH sample

We used the generalized selection function grid to recover the
intrinsic distributions of the line widths, halo scale lengths, and
halo flux fractions of 3 < z < 5 LAHs. To begin with, we
took a subsample cut of the L17 LAH sample at a S/N level
where approximately the full range of observed parameters are
still observed. Our fC-based completeness correction can correct
a low number of detections to a higher, intrinsic number, but
such a correction cannot be applied to zero detections. Ideally,
we would make use of as large an observed LAH sample as pos-
sible for the best number statistics in assessing the population,
but including LAHs at a lower S/N can bias even the corrected
distribution, since we could not correct for parameter values that
dropped below detection altogether.

We assessed the proper cutoff via S/N diagrams, shown in
Fig. 8. Each panel in the figure gives the S/N as a function of σ,
rsH, and fH. We needed to select a S/N cut at a level where LAHs
were detected across the total observed range of each parameter.
For this, we chose S/N = 7, indicated by the dashed red line in
Fig. 8. At this approximate level of signal, there is at least one
detection even among the rarer LAHs with very high σ or rsH.

The one exception is fH, for which no low-S/N LAHs are
detected for very low halo flux fractions. There is an apparent
anticorrelation between the S/N and fH, with only high-fraction
LAHs detected with lower S/N. Given the results of the parame-
ter detectability tests described in Sect. 3.1, which suggest that a
lower halo flux fraction increases detectability, this implies that
lower-signal low- fH galaxies may simply be intrinsically rarer.
This would support findings that lower flux fractions are found
with higher intrinsic Lyα luminosities at both low and high red-
shift (Hayes et al. 2014; Östlin et al. 2014; Wisotzki et al. 2016;
Leclercq et al. 2017). Given this, we can take the fH subsample
to be complete even if no low- fH LAHs are detected in the sam-
ple at S/N = 7.

4.2. The 1/Vmax estimator

The 1/Vmax method is a nonparametric estimator and commonly
used completeness metric derived for measuring a galaxy LF
(Schmidt 1968; Felten 1976). As a nonparametric method, there

A343, page 10 of 16



Pharo, J., et al.: A&A, 690, A343 (2024)

Fig. 8. S/N measured from LSDCat for the L17 LAH sample as a function of three LAH parameters: σ, rsH, and fH. Black dots show the individual
LAH values, and the dashed red line shows the adopted S/N cutoff at S/N > 7. One feature to note is the S/N behavior of fH, particularly for lower
halo fractions. LAHs with low fH are generally not detected with low S/N, despite the detectability advantages for low halo fractions. We discuss
this further in Sects. 4.1 and 4.4.

is no underlying assumption of distribution shape, so this estima-
tor can be readily adapted to estimate an unknown distribution of
galaxies as a function of halo parameters other than luminosity.
A generic form of a binned, differential distribution given by the
1/Vmax estimator can be written as

φ1/Vmax (〈Xk〉) =
1

∆Xk

∑
i

1
Vmax,i

, (5)

where Xk is a given LAH physical parameter out of a set of k
parameters being measured, and each Vmax in the sum is evalu-
ated for the ith out of N galaxies. In this approach, the 1/Vmax,i
terms are summed over binned values of Xk, the bin width for
which is given by ∆Xk.

The term Vmax represents the maximum volume within which
a given galaxy can still be detected and included in a given obser-
vation (Johnston 2011) and so can be used as a completeness
estimator. We used a definition for Vmax modified to account
for redshift- and luminosity-dependent detection (Caditz 2016;
Herenz et al. 2019):

Vmax,i = ω

∫ zmax

zmin

fc(LLyα, z)
dV
dz

dz. (6)

In this definition, ω is the angular area subtended by the survey,
and zmin and zmax are the lower and upper bounds of the redshift
range under consideration. For UDF-Mosaic, ω = 9 arcmin2,
corresponding to nine 1′ × 1′ MUSE fields of view. We took
zmin = 3 and zmax = 5, corresponding to the redshift range of the
L17 sample after our S/N cuts. The dV/dz term is the differential
cosmological volume element (Hogg 1999).

The term fc(LLyα, z) represents the selection function, the
detection completeness fraction as a function of the intrinsic Lyα
line luminosity and the redshift of the observed halo. For each
LAH in the L17 sample cut, we used the halo parameters from
the L17 and B23 fits to model fc for a specific LAH. We took
the total line fluxes measured in L17 for each LAH, converted

to the intrinsic Lyα luminosity at the LAH’s measured redshift,
and then evaluated the selection function for the model from zmin
to zmax in redshift steps equivalent to the MUSE spectral resolu-
tion (approximately ∆z = 0.001 for the Lyα line center) at fixed
intrinsic luminosity.

We then evaluated 1/Vmax for each LAH in the L17 sample
cut, integrating the selection function and volume element over
the sample redshift range.

4.3. Fitting intrinsic parameter distributions

We evaluated Eq. (6) for binned distributions of σ, rsH, and fH.
The results are shown in Fig. 9. Error bars for the 1/Vmax bins
account for two major contributions to the uncertainty. First, we
included an error term for the Poissonian counting statistics of
the 1/Vmax sum (Johnston 2011):

σ∆Xk =

 N∑
i=1

(
1

Vmax

)21/2

. (7)

The second major contribution to the error estimation results
from errors in binning due to the measurement uncertainties of
the halo parameters. We accounted for this with a simple boot-
strap resampling, wherein we treated each parameter measure-
ment in the sample as the center of an individual Gaussian dis-
tribution with a width equal to the measurement error. Then we
resampled each measurement in the sample 1000 times, and per-
formed the same binned 1/Vmax estimation for each of the 1000
new distributions. We took the standard deviation of the 1/Vmax
sums in each bin to be the sampling error, and added this error
in quadrature with the Poissonian statistics to represent the error
in each bin. Typically, the sampling error was on the order of
10% of the counting errors, so the error bars are dominated by
the Poissonian term.
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Fig. 9. Differential parameter distributions for critical LAH physical characteristics. The panels show distributions for σ (blue), rsH (red), and fH
(black), with the top row showing a histogram of input sample LAHs, and the bottom panel the binned 1/Vmax distributions. Individual bins are
shown as diamonds with error bars, with the best functional fit shown by the solid or dot-dash lines. Solid lines are lognormal fits, used for the σ
and fH distributions, while the rsH distribution was best fit by a broken power law (dot-dash line). The shaded region shows the inter-quartile range
of possible fit parameters. The best-fit values are given in Table 2.

The σ and fH distributions are both well fit by a lognormal
distribution:

Φ(X, µ, ν, A) =
A

X ·
√

2πν2
e−(log10 X−µ)2/(2ν2), (8)

where X represents the mid-bin value for either σ or fH. The
free parameters of the fit are the amplitude A, the mean µ, and
the standard deviation ν. The best-fit values for these parame-
ters are shown in Table 2. A lognormal function was chosen as
the probability distribution that provided the best fit, though a
Schechter function also provides a reasonable match.

As with the grid construction, we analyzed the 1/Vmax distri-
bution as a function rsH in log space, allowing a finer sampling
of the more populated low-r bins. This distribution we fit with a
smoothly broken power law, defined as

Φ(RH,Rb, A, α1, α2,∆) = A
(

RH

Rb

)−α1
1

2

1 +

(
RH

Rb

) 1
∆




(α1−α2)∆

.

(9)

Here we define RH = log10(rsH), with free parameters Rb (the
“break” point between the two power laws), amplitude A, power
law indices α1 and α2, and the smoothing parameter ∆. Though
we allowed these parameters to fully vary, we obtained the best
fits only with a very small smoothing parameter of ∆ = 0.003,
just above the minimum allowable value of 0.001, resulting in a
fit very similar to a simple broken power law.

For each fit, we obtained a confidence interval by repeating
the fit over 1000 iterations, varying the values of the input 1/Vmax
bins according to a Gaussian resampling with widths equal to
the bin measurement errors. The shaded regions shown in Fig. 9

show the interquartile range of possible best-fit parameters from
this process. We estimated uncertainty in the fit parameters as
well by taking the inter-quartile range of their values from these
1000 perturbed fits. These are also shown in Table 2.

The general forms of the lognormal fits are well constrained,
with two caveats: one, the steepness of the drop-offs at low σ or
fH could be less constrained due to low-number statistics, and
two, the dip as fH → 1 could be consistent with a flat distribu-
tion.

The confidence interval for the power law fit shows more
features. The bulge around log10(rsH) ≈ 0.8 and some of the
other seemingly sharp features in the interval are a result of vari-
ation in the free break parameter combined with the fits’ tenden-
cies toward very low smoothness. Compared with the lognor-
mal fits, the edges of the distribution at very low and very high
log10(rsH) are less well constrained. However, the downturn at
low rsH occurs below what is actually resolvable from the PSF,
and so is not a meaningful prediction. At high rsH, it is possible
the distribution drops off much more steeply than predicted, but
the overall configuration of rising then falling power laws stays
the same.

4.4. Implications for the intrinsic LAH population

Next we explored some of the implications of these findings for
the intrinsic LAH population at 3 < z < 5, beginning with the
flux fraction and halo scale length. We discuss the line width
and implications related to the spectral profile in Sect. 4.5. First,
we confirm what was suggested above by the parameter tests
and S/N distributions: LAHs at 3 < z < 5 with halo flux frac-
tions fH < 0.3 are intrinsically very rare for Lyα luminosities
down to 1041.5 erg s−1. As mentioned in Sect. 4.1, this has been
hinted at in previous observations that find low- fH galaxies only
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Table 2. Best-fit lognormal and smoothly broken power law distributions for halo parameters.

Xk µ ν A

σ 5.3 ± 0.1 0.27 ± 0.04 0.0017 ± 3 × 10−4

fH −0.26 ± 0.22 0.5 ± 0.1 0.0024 ± 9 × 10−4

Xk xb A α1 α2 ∆

rsH 0.75 ± 0.1 0.0026 ± 1 × 10−3 −0.5 ± 0.4 5.0 ± 3.9 0.003 ± 0.006

Table 3. Line width distribution fit parameters.

Lognormal Distribution µ ν A

Observed 5.3 0.267 0.00168
Physical 5.07 ± 0.03 0.42 ± 0.02 0.00175 ± 1.4 × 10−4

Power law Distribution A σB α1 α2 ∆

Physical 2.4 × 10−6 ± 1.7 × 10−6 287 ± 35 −2.1 ± 0.13 14 ± 4 0.31 ± 0.03

in small numbers and only at very high Lyα luminosities (e.g.,
Runnholm et al. 2023, in low-z analogs), an already-rare class
of galaxy. But knowing the substantial detectability advantage
such galaxies should have, we can now confirm their intrin-
sic rarity. This also supports previous indications that extended
LAHs are essentially ubiquitous around LAEs at this redshift
(Wisotzki et al. 2016; Leclercq et al. 2017).

Turning next to the intrinsic distribution of the scale lengths,
we find that the most common halo scale length is expected
to be around log10(rsH) ≈ 0.7, a scale length of about 5 kpc.
This would mean the median halo is extended by factors of
2.5−5 more than the half-light radii measured for galaxies
at these redshifts (Bouwens et al. 2004). These scale lengths
are not dramatically more common than LAHs with rsH <
4 kpc, but it is notable that they are expected to be the most
common scale length in the intrinsic distribution when the
observed sample in Fig. 6 shows scale lengths of 1−3 kpc to
be more frequent. From the parameter tests, we can expect
LAHs with scale length of 2 kpc to be more detectable than
those with rsH = 5 by 0.1−0.2 dex in intrinsic flux, a distinc-
tion that shapes the difference between the observed and intrinsic
distributions.

The distribution drops off sharply at higher scale lengths,
though the intrinsic distribution expects LAHs with rsH ≈ 8 kpc
to be more common than in the observed distribution by about a
factor of 2. The slope of the drop-off is not well constrained, due
to the very low number of S/N-sufficient halos, but such extreme
extended objects are still expected to be quite rare. Nonethe-
less, this suggests the importance of the detection of low-surface-
brightness galaxies for obtaining a more complete observational
sample.

In our initial parameter tests, we operated under the assump-
tion that each variable in the LAH profile can be studied in
isolation, independent of the values of the other parameters.
There is limited observational testing of this thus far, but L17
(3 < z < 5) and Runnholm et al. (2023, low-z analogs) find little
indication that fH correlates meaningfully with the scale length.
L17 and Wisotzki et al. (2016) find a significant but relatively
weak correlation between the halo and compact-component
scale lengths (the Pearson correlation coefficient for the com-
bined sample is ρ = 0.32), albeit with high scatter. So although
more extended halo components may be associated with more
extended continuum-like components, it is still possible and

even common to detect extended halos around more compact
continuum-like sources.

Observational tests relating these halo components to physi-
cal characteristics of the CGM or host galaxy are similarly lim-
ited, due to the small sizes of available samples of LAHs with
fit parameters. Here we summarize some results in the litera-
ture concerning the halo scale length. With a sample of eight
3 < z < 6 LAEs, Song et al. (2020) find that the halo scale length
is significantly driven by the underlying scale length of neutral
hydrogen, determined as a fit parameter of the shell radiative
transfer model. They find no significant correlation with other
shell model parameters. The halo scale length can also corre-
late with characteristics of the stellar population, such as mass
(Zhang et al. 2024), age (Song et al. 2024), and spatial extent of
star-forming regions (Rasekh et al. 2022), but the physical con-
nection underlying these correlations must still be explored.

Finally, both simulations and clustering studies suggest that
the broad spatial extents of LAHs can be partially explained
by contributions from faint LAE satellites (Byrohl et al. 2021;
Herrero Alonso et al. 2023b). The L17 sample from which this
intrinsic rsH distribution derives was selected to avoid satellites,
so this should not be a contributing factor unless the surface
brightness contribution from faint satellites below detection lim-
its is significant. The possible impact of such faint satellites will
be explored in subsequent work (Kozlova et al., in prep.).

4.5. LSF correction to the line width distribution

Before commenting further on the implications of the intrinsic
distribution of spectral line widths, we note that this quantity is
not yet measuring a fully physical parameter of the galaxies. In
observations, the physical size and shape properties of galaxies
are convolved with the effects of observing conditions that alter
the observed measurements, spatially through the PSF and spec-
trally through the LSF. The spatial components such as rsH have
already incorporated the PSF information through the Galfit pro-
cedure (see Sect. 2.1.3), but spectral components such as σ are
still convolved with the LSF.

This LSF was already incorporated into the LAH models
used to generate the selection function grid for UDF-Mosaic,

such that σ =

√
σ2

0 + σ2
LSF. This allowed us to model complete-

ness fractions for observed properties of the L17 LAH sample,
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Fig. 10. Intrinsic distribution of the line width, σ, in both observed
and LSF-corrected forms. Blue diamonds and the blue line and shaded
region replicate the distribution from Fig. 9, which is the intrinsic dis-
tribution of the observed line widths. This represents a convolution of
the physical spread of the line emission with the wavelength-dependent
LSF. The purple squares show the intrinsic distribution deconvolved
from the LSF, as described in Sect. 4.5. While the observed σ distri-
bution is well fit by a lognormal function, for the LSF-corrected distri-
bution (shown with the solid purple line), this tends to produce a large
tail at the high-σ end that is unrealistic for a procedure that reduces
the values of σ. A smoothly broken power law function (dot-dash line),
as used for the rsH distribution, models the tail end of the distribution
more successfully. The LSF deconvolution reduces the σ value of the
peak of the distribution from 187 km/s to either 133 km/s (lognormal)
or 157 km/s (power law).

for which the σ values fit in B23 give the observed line widths,
including the LSF contribution.

For a specific sample of LAHs, such as the L17 subsample,
by knowing the emission line wavelengths one can measure the
LSF contribution and thereby determine the physical line spread
(σ0) for each galaxy. For the recovered intrinsic distribution of
σ, however, this is not as straightforward. We could not directly
measure the LSF contribution of a galaxy drawn from a predicted
distribution, but with our knowledge of the redshift distribution
of the observed sample, we could model it.

We took cumulative distributions of the redshifts of the L17
sample and the intrinsic distribution of σ values shown in Fig. 9,
which we then normalized into cumulative density distributions.
These we sampled one million times, drawing random redshifts
and line widths for a mock sample of one million LAHs with
statistically similar z and σ distributions.

For this mock sample, since each galaxy was assigned a spe-
cific redshift, we could calculate the LSF contribution to its line
width and remove it from each mock LAH’s σ value, thereby

obtaining σ0 for that mock galaxy. With each mock galaxy
deconvolved from its LSF, we took the numerical σ0 distribu-
tion and rescaled it to the intrinsic distribution of observed line
widths, thereby reconstructing an intrinsic distribution of physi-
cal line widths for 3 < z < 5 LAHs.

This reconstructed distribution is shown in Fig. 10, in com-
parison with the observed intrinsic distribution. Removing the
LSF contribution obviously shifts the distribution toward lower
σ0 values, but we also found that, while the lognormal distri-
bution described the observed intrinsic distribution well, when
applied to the physical σ0 distribution, the fit tended to produce
too large a tail at high-σ values. As can be seen in the figure, the
lognormal fit is unable to replicate the steeper dropoff at high
σ0, instead predicting slightly higher numbers of σ0 > 300 km/s
lines in the deconvolved sample than in the uncorrected distribu-
tion, an unrealistic scenario.

We obtained a superior fit with the smoothly broken power
law, previously applied to the rsH distribution. This function is
better able to represent the expected steep drop off at high line
widths, while still matching the more populated parts of the dis-
tribution (see Table 3).

This choice of functional form does impact the interpretation
of the physical line width distribution. Comparing the observed
intrinsic fit to the two fits of the intrinsic physical distribution,
we find that the peak line width in the LAH population reduces
from 187 km/s in the observed intrinsic to 133 km/s (lognormal)
or 157 km/s (power law) in the physical reconstruction. The shift
of 30 km/s from the observed to physical distributions is very
similar to the results of Claeyssens et al. (in prep.), who per-
formed a similar analysis of a sample of lensed LAEs and found
an average correction of 20 km/s.

Compared with the spatial parameters discussed above, the
Lyα line width has been analyzed more extensively, in both
observations and simulations. The intrinsic Lyα line width4

is a key component of the Lyα shell model (Verhamme et al.
2006; Gronke et al. 2015), though its value is often degenerate
with other parameters of the model, such as the neutral hydro-
gen column density. Yang et al. (2017) and Hu et al. (2023) fit
Lyα emission from low-redshift LAEs, including “green pea”
galaxies, to the shell model, obtaining fit results for the shell
model parameters, including the width of the Lyα line. Both
are small samples, and both distributions peak at higher line
widths (200−250 km/s) than the peaks predicted by the LSF-
corrected intrinsic distributions. Subsequent studies of the shell
model have noted that it predicts unrealistically broad intrinsic
Lyα lines compared to observed Balmer emission Orlitová et al.
(2018), indicating that the physically simplistic shell model is
not a sufficient representation of the real CGM physics driving
LAH spectral properties.

More recent attempts to model Lyα radiative transfer replace
the expanding spherical shell model with a clumpy, multiphase
medium (Li et al. 2021, 2022). Li & Gronke (2022) compare
the two approaches, demonstrating both the existing parame-
ter degeneracies in the shell model and showing that a clumpy
model can better fit the broad wings and asymmetric profiles
found in observed Lyα spectra without excessively broad intrin-
sic line widths. Using spatially resolved spectroscopy of 12 z ∼ 2
LAEs from the Keck Cosmic Web Imager, Erb et al. (2023)
applied a clumpy, multiphase model to the observed Lyα pro-

4 In radiative transfer studies of Lyα, the intrinsic line width typically
refers to the width of the line prior to resonant scattering in the CGM,
making this a distinct measure from the observed Lyα line width or even
the LSF-deconvolved physical line width described above.
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files. They show that the best-fit clump velocity dispersions (one
of the six critical parameters in the clumpy model) are found to
be .150 km/s, which is in line with both the LSF-corrected neb-
ular line widths of their sample and comparable to the peak of
our recovered physical line width distribution. In the multiphase
clumpy model, intrinsic line widths (prior to radiative transfer)
are small, and the velocity dispersion in the neutral gas clumps
in the CGM are responsible for broadening the line width in the
spectrum. This is a promising connection, and application of this
clumpy model to larger LAE samples will further clarify the
relationship between the intrinsic distribution of observed line
widths and the kinematics of gas clouds in the CGM.

Apart from radiative transfer modeling, many studies have
attempted to link Lyα spectral profile characteristics to other
observable parameters of LAEs. Yang et al. (2017) find that the
width of the observed Lyα red peak (analogous to the spec-
tral feature in our models) correlates with the Lyα escape frac-
tion, and thus anticorrelated with the O32 ratio5, a common
diagnostic tracer of ionization in the ISM. This anticorrela-
tion is also observed weakly with a larger sample of 87 low-
z LAEs in Hayes et al. (2023), who also observe a weak cor-
relation between O32 and the skewness parameter, but with
peak line widths in agreement with the expectation from our
distribution (see Fig. 11 in that paper). This could imply a
connection between the scattering line width of Lyα emis-
sion and the prevalence of ionization channels or ionized out-
flows in LAEs, although some recent Lyα escape models sug-
gest the photons may be more prone to escape via scatter-
ing through higher-density gas than through ionized regions
(Almada Monter & Gronke 2024). Ultimately, these are specu-
lative connections in low-z analogs; better comparisons via sim-
ulations or high-redshift observations are needed to disentangle
the intrinsic line width’s relationship to other characteristics of
the halo and galaxy.

There do exist some observational comparisons at
higher redshift. González Lobos et al. (2023) find very large
(∼500 km/s) line widths associated with strong, large-scale gas
outflows in z ∼ 4 LAEs with quasar contributions, but these
would be predicted to be an extreme rarity by our intrinsic
distribution. L17 also inspected the relationship between
the line width and the halo scale length. They measured no
overall correlation, but did find that LAHs with rsH < 2 kpc
were found to only have narrow lines, while more extended
LAHs had line widths across the whole parameter space.
Leclercq et al. (2020) measure a significant correlation between
line width in the halo component and the halo flux fraction, and
a weaker correlation between fH and the ratio of line widths
in the halo and the compact component. While not a direct
comparison, Claeyssens et al. (2022) also find a significant
correlation between the line width and the Lyα 50% light
radius. Verhamme et al. (2018) note a correlation between Lyα
line width and the line’s velocity offset from systemic redshift
among both low- and high-redshift LAEs, and Muzahid et al.
(2020) find for z ∼ 3.3 LAEs that this velocity offset also
correlates with the host galaxy star formation rate (though this is
not found in all studies, e.g., Song et al. 2024). This further hints
at connections between the internal dynamics of the host galaxy,
the escape pathways available to Lyα emission, the physical
extension of the halo gas, and the observed properties of the
line. We will explore these possible connections in subsequent
work.

5 Commonly defined as log10([OIII]4959, 5007/[OII]3727, 3729).

5. Conclusions

We have developed a 3D model of the spatial and spectral pro-
files of 3 < z < 5 LAHs based on six key halo characteristics:
the halo and compact exponential scale lengths (rsH and rsC), the
halo flux fraction ( fH), the compact component ellipticity (q), the
spectral line width (σ), and the spectral line skewness parameter
(γ). By inserting the model halos into miniature datacubes that
mimic specific observations by VLT/MUSE, including the asso-
ciated variance spectrum, we were able to test detection recovery
of different LAH models with LSDCat as a function of the line
central wavelength and the intrinsic Lyα line flux. We used this
procedure to test the impact on halo detectability of each of the
six key parameters in isolation, finding that the line width, σ, the
halo scale length, rsH, and the halo flux fraction, fH, influence
the line detectability the most.

We used a large sample of 145 LAEs with measured halo
spatial properties from the L17 analysis of deep MUSE observa-
tions in UDF-Mosaic, reaching LLyα > 41.5 erg s−1. Combining
this with spectral properties from the MUSE Hubble Ultra Deep
Field Data Release II (Bacon et al. 2023), we had observational
measures for the six LAH properties needed for the halo model.
We designed a grid of models to span the observed parameter
spaces, with finer resolution on the axes of the three most influ-
ential parameters. With this spanning grid, we then developed a
generalized LAH completeness model that marginalizes over the
distributions of the ellipticity, compact scale length, and skew-
ness parameter. This allowed the construction of general selec-
tion functions for any LAH based on the input line width, halo
scale length, and halo flux fraction.

Taking a subset of the L17 halos for which the subsam-
ple was complete for the entire range of observed values for
all three key parameters, we reconstructed the intrinsic distribu-
tions of these parameters using a version of the 1/Vmax estimator
that accounts for variable completeness as a function of intrin-
sic luminosity and redshift. We present the best-fit functional
forms for the intrinsic distributions, finding that the σ and fH
distributions are well represented by lognormal functions, while
the log10(rsH/kpc) distribution is best fit by a smoothly broken
power law with a break at log10(rsH/kpc) = 0.75. We confirm
the intrinsic rarity of LAEs with low halo fractions, fH < 0.3, in
this redshift-luminosity regime and show that the most common
halo scale lengths are toward the middle of the observed distri-
bution (rsH ≈ 5 kpc), though halos with smaller scale lengths
are most common in the observations (rsH < 3 kpc). This shows
that LAHs tend to be more extended than observed distributions
would indicate at first glance, and thus that analyses of LAH pop-
ulations should carefully account for this less detectable group.

We modeled an LSF deconvolution for the intrinsic σ dis-
tribution, developing a distribution that represents the physical
line widths without the effects of observational line broadening.
This intrinsic physical distribution is best fit by a smoothly bro-
ken power law, and it reduced the peak line width from 187 km/s
to 157 km/s. We compared these distributions to some basic pre-
dictions from shell models, as well as observations from L17 and
low-redshift Lyα analogs. There is some evidence of a correla-
tion between the line width and ionization indicators in the inter-
stellar gas, indicating a possible connection between Lyα escape
pathways and the physical extension of the emission line. How-
ever, this study is still very limited and will have to be expanded
upon in subsequent work.

The methods we outline in this work will be applicable to
other MUSE surveys, or indeed any contemporary or future
IFU observations whose 3D profiles and noise properties can be
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determined in a similar way. It also provides a framework for
modeling and predicting detection results for future Lyα surveys,
such as what will be available with the upcoming BlueMUSE
instrument, which may be able to detect much larger samples of
LAHs in similar observing conditions at lower redshifts.
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