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ABSTRACT

Context. Protostellar discs are mostly modelled as circular structures of gas and dust orbiting a protostar. However, a number of
physical mechanisms, for example, the presence of a (sub)stellar companion or initial axial asymmetry, can cause the gas and dust
orbital motion to become eccentric. Theoretical studies have revealed that, when present, disc eccentricity is expected to occur with
predictable profiles that can be long-lasting and potentially observable in protostellar systems.
Aims. We construct an analytical model predicting the typical features of the kinematics and morphology of eccentric protostellar
discs, with the final goal of characterising the observational appearance of eccentricity in discs.
Methods. We validate the model using a numerical simulation of a circumbinary disc (where the binary makes the disc eccentric). We
finally post-process the simulation with Monte Carlo radiative transfer to study how eccentric features would appear through the ‘eyes’
of ALMA.
Results. Besides the motion of the material on eccentric Keplerian orbits in the disc orbital plane, the most characteristic eccentric
feature emerging from the analytical model is strong vertical motion with a typical anti-symmetric pattern (with respect to the disc line
of pericentres). A circumbinary disc with a ≈ 40 au eccentric cavity (ecav = 0.2), carved by an abin = 15 au binary, placed at a distance
d = 130 pc, is expected to host in its upper emission surface vertical oscillations up to vz ∼ 400 m s−1 close to the cavity edge, that is to
say, well within ALMA spectral and spatial resolution capabilities. A residual spiral pattern in the vertical velocity ∆vz ∼ 150 m s−1 of
the simulation cannot be captured by the theoretical model, we speculate it to be possibly linked to the presence of a companion in the
system.
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1. Introduction

In celestial mechanics, particles orbiting spherically symmetric
objects follow Keplerian ellipses. This classical physics result,
at the heart of solar and extrasolar planet mechanics for cen-
turies, comes from Newton’s 1/r potential. These orbits naturally
extend to continuous distributions of matter orbiting point-like
masses, known as accretion discs, where the horizontal fluid
motion follows a set of nested confocal, Keplerian ellipses.

The mathematical complexity of describing the evolution
of fluid flows in eccentric discs has meant that circular discs
are almost always preferred as ‘spherical cows’ to derive mod-
els that can be compared with observations (e.g. Shakura &
Sunyaev 1973; Pringle 1981), filtering out effects such as vari-
able scale heights and non-axisymmetric orbital compression. In
that sense, the widely used terminology ‘Keplerian discs’, abu-
sively used for ‘circular Keplerian discs’, is misleading, since it
propagates the idea that discs have no eccentricity by default.

The dynamics of eccentric discs has been the subject of a
number of theoretical studies (e.g. Ogilvie 2001; Goodchild &
Ogilvie 2006; Ogilvie & Barker 2014; Teyssandier & Ogilvie
2016; Ogilvie & Lynch 2019; Lee et al. 2019a,b), which have
shown that the eccentricity propagates in the disc as a form of
density waves. In these formalisms the (generally non-linear)

radial and azimuthal velocity perturbations from circular motion
can be expressed in terms of orbital eccentricity and the orien-
tation of the apsidal angle. Disc eccentricity can be excited by
a companion in the disc (binary star, planet, e.g. Lubow 1991a;
Kley & Dirksen 2006). It has also been shown to be damped by
bulk viscosity, but it is generally excited by shear viscosity (e.g.
Syer & Clarke 1992; Kley et al. 1993).

However, it is not clear that viscous models of turbulence
are even applicable to eccentric discs, making the evolution
of eccentric discs a promising approach to constraining the
behaviour of real disc turbulence – see for example Ogilvie
(2001, 2003), Ogilvie & Proctor (2003), and Lynch & Ogilvie
(2021) for theoretical works, and Papaloizou (2005), Pierens
et al. (2020), Dewberry et al. (2020), Oyang et al. (2021), and
Chan et al. (2022) for numerical works concerning turbulence in
eccentric discs.

Disc eccentricity also places a chronological constraint
on scenarios of planet formation, with recent work showing
that discs are likely born eccentric (Hennebelle et al. 2020;
Lebreuilly et al. 2021; Lovascio et al. 2024), consistent with
the young non-axisymmetric discs observed in the eDisk sur-
vey (Ohashi et al. 2023; Thieme et al. 2023; van’t Hoff et al.
2023). This contrasts with the large fraction of more evolved
discs that are observed to be nearly circular (Long et al. 2018;
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Andrews et al. 2018; Öberg et al. 2021), with some exceptions
represented by some discs with central cavities (often referred
to as transition discs) where kinematic or morphological mea-
surements of protostellar disc eccentricity were possible (Dong
et al. 2018; Kuo et al. 2022; Garg et al. 2021; Yang et al. 2023;
Kozdon et al. 2023); other systems showed non-axisymmetric
residuals when a circular Keplerian velocity map was subtracted
from their kinematics (Wölfer et al. 2023), possibly hinting at
their eccentric nature. The future availability of new high spa-
tial and spectral resolution datasets (e.g. the coming exoALMA
survey) creates the need for new detailed models of disc kine-
matics and also enables the possibility of testing them directly
with observations.

Hence, in this study, we aim to characterise kinematic sig-
natures of eccentricity in protostellar accretion discs. We show
how the kinematics and morphology of eccentric discs is fully
described by fixing three functions: the eccentricity profile e(a),
the pericentre longitude profile ϖ(a), the disc mass distribu-
tion Ma(a), acting as a sort of density profile that is constant
on orbits, and an assumption about the disc thermodynamics,
here done prescribing a locally isothermal sound speed profile
⟨cs⟩(a). In the definition of the profiles we just discussed, a is the
disc semi-major axis coordinate from celestial mechanics.

We finally note, for completeness, that eccentric disc dynam-
ics has been proven to be relevant in other astrophysical contexts
than protostellar discs: for example, disc eccentricity has been
directly measured and discussed in debris discs in the late stages
of star formation (MacGregor et al. 2013; Olofsson et al. 2019;
Faramaz et al. 2019; Booth et al. 2021; MacGregor et al. 2022;
Lynch & Lovell 2022; Lovell & Lynch 2023); similarly, debris
discs formed after the tidal disruption of asteroids around white
dwarfs feature changes in the shape of spectral lines that have
been interpreted as the precession of an eccentric disc due to
pressure and/or to general relativistic effects (Wilson et al. 2015;
Manser et al. 2016a,b; Cauley et al. 2018; Miranda & Rafikov
2018; Dennihy et al. 2018, 2020); and finally, in tidal disruption
events of stars around black holes where the disc formed after
the stellar disruption is expected to be eccentric (Liu et al. 2017;
Cao et al. 2018; Hung et al. 2020; Wevers et al. 2022).

This paper is divided as follows: in Sect. 2, we provide a sim-
plified analytical model that, taking as input e(a), ϖ(a), Ma(a),
and ⟨cs⟩(a), predicts the following: the radial motion vR, the
orbital motion vθ, the vertical motion vz, and disc morphology,
in the form of H/R and Σ(a, ϕ) – that is, predicting over-dense
regions due to the eccentric nature of the disc. We compare
the eccentric disc theoretical model developed to a numerical
simulation of an eccentric circumbinary disc in Sects. 3 and 4.
Finally, in Sect. 5, we examine the observability of these features
in protostellar discs using ALMA. To do so, we rescaled the sys-
tem and performed Monte Carlo radiative transfer simulations
to quantify the amplitude of the velocity perturbations. We draw
our conclusions in Sect. 6.

2. Analytic representation of the disc kinematics
and structure

Eccentric discs can be described as a continuous set of nested,
confocal, ellipses, orbiting the baricentre located at the common
focus, with an eccentricity e(a) and pericentre phase ϖ(a) pro-
files (see Fig. 1), where a is the semi-major axis of the ellipse.
Below we summarise some key aspects concerning the formal-
ism used for describing their structure and dynamics. Details
concerning eccentric disc evolution (i.e. how the eccentricity

Fig. 1. Example of the morphology of a disc composed by a set of nested
ellipses with both eccentricity e(a) and pericentre phase ϖ(a) varying
for different values of the semi-major axis.

profile evolves) are beyond the scope of the paper, however we
refer the reader to Appendix A and references therein for a quick
overview of the theory.

To do so, as is common in eccentric disc literature (e.g.
Ogilvie 2001; Ogilvie & Barker 2014), we introduce in Sect. 2.1
a new coordinate system specialised to deal with eccentric
orbits, then putting together celestial mechanics results, hydro-
dynamic considerations we provide a description of eccentric
discs morphology and kinematics. The model presented sum-
marises results from the existing literature, here self-consistently
re-derived to unify the notation, for an (a, ϕ, z) coordinate sys-
tem in Eulerian form in Sects. 2.1–2.4. We also introduce a new
effective prescription for pressure corrections of the azimuthal
velocity to simplify the equations in 2.5.

2.1. Eccentric discs coordinates

In this section we introduce a convenient coordinate system for
describing the kinematics and structure of eccentric discs. We
first note that using cylindrical coordinates (R, θ, z) when deal-
ing with eccentric disc geometry is very inconvenient: a single
value of R spans through multiple elliptical orbits for different
values of θ. As mentioned above, since the orbital structure of an
eccentric disc is defined by e(a) andϖ(a), a much better choice is
an elliptical coordinate system using (a, ϕ), where a is the semi-
major axis of the ellipse, while the azimuthal coordinate ϕ is
related to the true anomaly by f = ϕ − ϖ(a). Since we assume
that the focus of the ellipses is fixed at the origin, ϕ is coincident
with the polar azimuthal coordinate θ.

Assuming that the focus of all the confocal ellipses is
at the origin of the cartesian coordinate system (x, y, z), the
transformation rules between (a, ϕ, z)→ (x, y, z) coordinates are

x(a, ϕ) = R(a, ϕ) cos[ϕ] (1)
y(a, ϕ) = R(a, ϕ) sin[ϕ], (2)
z = z, (3)

where R(a, ϕ) is

R(a, ϕ) =
a[1 − e(a)2]

1 + e(a) cos[ϕ −ϖ(a)]
. (4)
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The Jacobian matrix from this transformation is

J =
∂(x, y, z)
∂(a, ϕ, z)

. (5)

Its determinant, J(a, ϕ) = det(J), will be useful for a number of
purposes below, it has the dimension of a length and and it is
given by

J(a, ϕ) = R(a, ϕ)3 1 − e(a)[e(a) + 2aea(a)]
a2[1 − e(a)2]2

· {1 − q cos[ϕ −ϖ(a) − α]} , (6)

where the angle α and variable q are introduced to simplify the
form of the equations, by exploiting the relation for cos(a − b),
and are related to e, aea, and aϖa by

q cos(α) =
[1 + e(a)2]aea(a) − [1 − e(a)2]e(a)

1 − e(a)[e(a) + 2aea(a)]
, (7)

q sin(α) =
e(a)[1 − e(a)2]aϖa(a)

1 − e(a)[e(a) + 2aea(a)]
. (8)

The quantities ea(a) and ϖa(a) indicate the derivative with
respect to a of e(a) andϖ(a), and are often referred to as ‘eccen-
tricity gradient’ and ‘twist’, respectively. Equations (7) and (8)
also imply that the angle α in Eq. (6) satisfies

tan(α) =
ae(a)[1 − e(a)2]ϖa(a)

[1 + e(a)2]aea(a) − [1 − e(a)2]e(a)
. (9)

We note that since the coordinate z does not depend on a
and ϕ, the expression of J is the same both when we deal with a
2D disc using the (a, ϕ) coordinates only, and for a full 3D disc
(a, ϕ, z).

In order to provide a physical interpretation to J, we note
that it constitutes the multiplicative factor to preserve element
volume dV = dxdydz or area dA = dxdy while transforming to
eccentric coordinates as follows

dV = Jdadϕdz, (10)
dA = Jdadϕ. (11)

In the light of this, we note that a vanishing value of J
indicates a coordinate singularity (one value of a characterises
multiple ellipses at that location), the nested ellipses overlap
causing an orbit intersection (e.g. Statler 2001). From Eq. (6), it
is easy to verify that this instance occurs when q ≥ 1. Similarly α
represents the true anomaly, that is the angle from the pericentre
longitude ϖ, where the maximum orbital compression occurs.

2.2. Orbital velocity field: Keplerian motion

In this section we define the velocities in the ‘eccentric’ (a, ϕ)
coordinate system.

From celestial mechanics we know that the radial and
azimuthal orbital velocities, in cylindrical coordinates (R, θ), of a
test mass in Keplerian motion around a central body are (Murray
& Dermott 1999)

vR(a, ϕ) = Ṙ = aΩ0
e(a)√

1 − e2(a)
sin[ϕ −ϖ(a)], (12)

vθ,K(a, ϕ) = Rθ̇ = aΩ0
1 + e(a) cos[ϕ −ϖ(a)]√

1 − e2(a)
, (13)

where the dot notation indicates total time derivative, d/dt, and
Ω0 is the mean motion

Ω0 =

√
GM
a3 . (14)

From Eq. (13) we define the angular orbital velocity along an
eccentric orbit as

Ω(a, ϕ) ≡ θ̇ = Ω0
{1 + e(a) cos[ϕ −ϖ(a)]}2

[1 − e2(a)]3/2 . (15)

The standard analytical treatment of differential operators in
the eccentric coordinate system requires the definition of con-
travariant velocities as va ≡ ȧ and vϕ ≡ ϕ̇. With these definitions
in mind we can define va and vϕ consistently with the orbital
velocities in Eqs. (12) and (13). Along an eccentric orbit the
semi-major axis does not change, so that

va = 0, (16)

while, given the coincidence between ϕ and θ, vϕ is

vϕ = Ω. (17)

We remark that vϕ is a contravariant variable, with the dimension
of an angular velocity. While vθ is the azimuthal velocity, with
the dimension of a standard spatial velocity, not the covariant
velocity component that might be expected from the notation. In
this context, vθ and vϕ have different dimensions and should not
be confused.

2.3. Vertical motion

During an eccentric orbit the material undergoes vertical oscilla-
tions driven by the periodic variation of the vertical gravitational
potential along the orbit (the distance from the central source of
gravity varies through the orbit Ogilvie & Barker 2014). Since we
use a new coordinate system, we write the continuity equation in
contravariant form,

∂ρ

∂t
= −

1
J
∂

∂a
(Jvaρ) −

1
J
∂

∂ϕ
(Jvϕρ) −

∂

∂z
(vzρ), (18)

obtained from the expression of the divergence of a vector field
u in a generic coordinate system {xi},

∇i(ui) =
1
J
∂

∂xi
Jui. (19)

For our purpose we also need the equation for momentum
conservation in the vertical direction,

∂vz

∂t
+ va
∂vz

∂a
+ vϕ
∂vz

∂ϕ
+ vz
∂vz

∂z
= −

GM
R2

z
R
−

1
ρ

∂p
∂z
. (20)

We now look for steady solutions and substitute va = 0
and vϕ = Ω(a, ϕ) – as we prescribed in Sect. 2.2. After these
operations, Eqs. (18) and (20) reduce to

∂

∂z
(vzρ) = −

1
J
∂

∂ϕ
(JΩρ), (21)

Ω
∂vz

∂ϕ
+ vz
∂vz

∂z
= −

GM
R2

z
R
−

1
ρ

∂p
∂z
. (22)
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We assume the disc to be locally isothermal so that ρ and p
have Gaussian form (e.g. Lodato 2008 for a review of classical
disc dynamics)

ρ =
ρ0
√

2π
exp

(
−

z2

2H2

)
, (23)

p =
p0

ρ0
ρ, (24)

where p0 and ρ0 represent the density value in the midplane.
We note that p0/ρ0 = c2

s is the squared local isothermal sound
speed at the disc midplane; H(a, ϕ), is the standard deviation of
the vertical density distribution, here representing the disc local
vertical scale-height1. The form of the final equations does not
change for different assumptions on ρ and p, with some caveats
discussed in Appendix C.

In order to study the evolution of H along the orbit, we need
a reasonable ansatz for vz. We impose the quantity z/H to be
a Lagrangian variable – that is, z/H does not change along the
orbit – that follows the disc expansion

d
dt

z
H
=
∂

∂t
z
H
+ Ω
∂

∂ϕ

z
H
+ vz
∂

∂z
z
H
= 0. (25)

This ansatz is physically the homogeneous vertical expansion of
the gas column. When the disc is stationary (∂/∂t = 0) such a
condition is satisfied if vz has the form2

vz = Ω
∂H
∂ϕ

z
H
. (27)

We use Eq. (27) as an ansantz for the solution of vz. By sub-
stituting this into Eqs. (21) and (22), they can be re-written
as

Ω
∂ρ0

∂ϕ
= −ρ0

[
1
J
∂

∂ϕ
(JΩ) +

Ω

H
∂H
∂ϕ

]
, (28)

Ω2 ∂
2H
∂ϕ2 = −Ω

∂H
∂ϕ

∂Ω

∂ϕ
−

GM
R3 H +

c2
s

H
. (29)

A similar set of equations can be obtained from the Lagrangian
viewpoint (e.g. Ogilvie & Barker 2014; Lynch & Ogilvie 2021).

We first solve Eq. (29), as it does not depend on Eq. (28).
In particular, Fig. 2 shows the solutions to Eq. (29) for the
azimuthal dependence of H for different values of eccentricity
and fixed ϖ = 0, and the resulting vz from Eq. (27). The value
of ρ0 solving Eq. (28) can then be easily obtained by noting that
Eq. (28) can be rewritten as

1
J
∂

∂ϕ
(JΩHρ0) = 0, (30)

implying that JΩHρ0 ≡ F (a) depends on the semi-major axis
only and is a conserved mass flux along the orbit. Further con-
siderations on F (a) will be used in the next section to discuss
the disc morphology.
1 In the general framework (e.g. when the disc is not locally isother-
mal), H is defined by the second vertical moment of the density
distribution as H2 =

∫
z
z2ρdz/

∫
z
ρdz.

2 By making explicit the azimuthal dependence of Ω = Ω0ω(ϕ) and
H = H0h(ϕ) it is possible to rewrite

vz ≡ cs

[
ω(ϕ)

∂h
∂ϕ

]
z
H
. (26)

where cs = H0Ω0, highlighting that cs sets the natural scale for the
velocity vz.

Fig. 2. Vertical height H and vertical velocity vz as a function of ϕ.
Top panel: H/H0 as a function of ϕ, where H0 = cs/Ω0, obtained solv-
ing Eq. (29). Bottom panel: vz/cs as a function of ϕ, obtained from
Eq. (27) after solving Eq. (29), calculated at an elevation z = H above
the midplane – cs is the most natural normalisation2 for vz. Solution to
Eq. (29) was obtained solving for periodic solutions across one orbit,
i.e. H(a, 0) = H(a, 2π), using a shooting method for solving the bound-
ary value problem.

To conclude this section, we comment on the validity of the
assumption that the disc is locally isothermal. This assumption
implies that the gas temperature does not experience changes in
its temperature due to compression or expansion, even though
for large eccentricities the disc might undergo a very strong
vertical expansion (compression) at the apocentre (pericentre).
Relaxing the assumption of the disc being locally isothermal
implies treating also the internal energy or assuming an adiabatic
equation of state. This would cause pressure forces to increase
more steeply during the compression at the pericentre, reducing
the ratio between maximum and minimum disc scale-height at
apocentre and pericentre Hapo/Hperi. A full derivation with an
adiabatic equation of state is beyond the scope of the paper, but
can be found in Ogilvie & Barker (2014) or Lynch & Ogilvie
(2021).

Beyond values of eccentricity of e ≈ 0.5–0.6 the value of the
cs/H term in Eq. (29) can become very large close to pericentre,
causing integration issues.
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2.4. Morphology

Eccentric discs might present steady over-densities, caused by
orbital compression (i.e. ea , 0 and ϖa , 0), that result in a
characteristic non-axisymmetric morphology. In this section we
put together the previous geometrical considerations and con-
servation of flux along the orbit to derive the expression of
Σ(a, ϕ).

We obtained in Eq. (30) conservation of mass flux along
elliptical orbits. We note that Σ =

∫
z ρdz = Hρ0, thus we can

rewrite F (a) as3

F (a) = J(a, ϕ)Ω(a, ϕ)Σ(a, ϕ). (31)

We note that integrating the r.h.s. of Eq. (31) over an orbital
time torb implies

∫ torb

0
J(a, ϕ)Σ(a, ϕ)Ω(a, ϕ)dt =

∫ 2π

0
J(a, ϕ)Σ(a, ϕ)dϕ = Ma(a)

(32)

where Ma(a) is the derivative of the total disc mass enclosed
within the semi-major axis a, M(a), with respect to the semi-
major axis – that is, Mada is the mass of an infinitesimal
eccentric annulus of width da.

Since F (a) does not depend on ϕ, we have torbF (a) = Ma(a),
which can be rewritten as F (a) = Ma(a)Ω0/2π, where we recall
Ω0 is the mean motion (Eq. (14)). In the light of these consider-
ations, Eq. (31) can be rewritten as (Ogilvie 2001; Statler 2001)

Σ(a, ϕ) =
Ma(a)Ω0

2πJ(a, ϕ)Ω(a, ϕ)
. (33)

If ea(a) = 0 and ϖa(a) = 0 – that is, the disc has vanish-
ing eccentricity gradient and twist – the expression of Σ(a, ϕ)
simplifies to an expression that does not depend on ϕ.

This implies that an eccentric disc can, in principle, show
no morphological features at all for arbitrary large eccentrici-
ties, provided its eccentricity and pericentre phase profiles are
constant. Conversely, a negative (positive) eccentricity gradient
ea(a) < 0 (ea(a) > 0) will produce an azimuthal overdensity
located at the apocentre (pericentre); if the disc also presents
some orbit twisting (ϖa(a) , 0), the overdensity is located at
angle ϕ satisfying ϕ −ϖ(a) = α, where α is presented in Eq. (9).

It is important to note that any e(a) = const, ϖ(a) = const
profile is not steady. Such a disc will evolve in time produc-
ing a strong eccentricity gradient and twist, due to the transport
throughout the disc of angular momentum and energy in the
form of eccentric waves. If some dissipation is present, the disc
will finally settle in a steady eccentricity configuration. More
considerations concerning the evolution of eccentricity profiles
can be found in Appendix A.1.

2.5. Approximated pressure corrections

In a pressure supported disc the centrifugal balance is reached
with a sub/super-Keplerian orbital velocity. In analogy with clas-
sic disc accretion theory, we apply a generalisation of the stan-
dard pressure correction δvθ,P required for a circular accretion

3 Equation (31) can be directly obtained in this form by vertically inte-
grating the continuity equation Eq. (18) using Σ =

∫
z
ρdz and looking

for stationary solutions.

disc, that is, (e.g. Lodato 2008 for a review of classical disc
dynamics):

vθ = vθ,K
√

1 + η, (34)

η = (Ω0a)−2
(

a
Σ0

dP
da

)
(35)

P = ⟨cs⟩
2Σ0, (36)

where vθ,K is the Keplerian velocity (Eq. (13)), Σ0 constitutes an
averaged value along the orbit defined as

Σ0 =
Ma

2πa
, (37)

and ⟨cs⟩ is an averaged value of cs along an orbit with semi-major
axis a.

Equation (34) constitutes a simplification with respect to
solving the fluid dynamics equations accounting for the pressure
term. The analysis in Appendix A of Ogilvie & Lynch (2019)
allows for a self-consistent derivation of the pressure correction
within the Hamiltonian hydrodynamics framework, however for
the clarity of presentation we prefer to stick to the simplified
approach provided in this section, that provides a good match
with numerical simulations anyway, as will be discussed in
Sect. 3.

2.6. Disc eccentricity evolution: growth and damping

We summarise here for completeness the main physical mech-
anisms responsible for disc eccentricity growth and damping,
despite remarking that the model we developed is indepen-
dent of how the system arrived in its eccentricity configuration.
More considerations concerning the existence and evolution
of secularly evolving eccentric eigenmodes is discussed in
Appendix A.1.

Concerning growth, two main mechanisms can be found:
eccentricity pumping by a companion mass and primordial
growth of the disc eccentricity.

In the first, a second mass in the system4, above a certain
mass-ratio threshold (q ≳ 10−3, Kley & Dirksen 2006, even
though larger values of q appear to be required in 3D, Li et al.
2023) injects angular momentum and energy at resonant loca-
tions that cause the disc eccentricity to grow (Lubow 1991a;
Goldreich & Sari 2003). This has been confirmed by numerical
studies explicitly investigating the evolution of the disc eccen-
tricity assuming both low mass-ratio companions (Papaloizou
et al. 2001; Kley & Dirksen 2006; D’Angelo et al. 2006; Dunhill
et al. 2013; Ragusa et al. 2018; Teyssandier & Lai 2019; Dempsey
et al. 2021; Tanaka et al. 2022) and high mass-ratio companions,
both in circumbinary discs (MacFadyen & Milosavljević 2008;
Marzari et al. 2009; Shi et al. 2012; Dunhill et al. 2015; Miranda
et al. 2017; Ragusa et al. 2020; Muñoz & Lithwick 2020; Pierens
et al. 2020; Dittmann & Ryan 2022; Siwek et al. 2023) and in
the discs surrounding the individual masses (Lubow 1991a,b;
Whitehurst 1994; Murray 1996; Kley et al. 2008; Regály et al.
2011). Numerical simulations of flybys – that is, the two stars
are not gravitationally bound – in star formation regions have
also measured a substantial growth of the disc eccentricity after
the close encouter between the two stars (Cuello et al. 2019).
Furthermore numerous numerical works on circumbinary discs,

4 Binary stars or planets for protostellar systems – but also moons, for
planets with rings like Saturn, or compact objects, for X-ray binaries,
cataclismic variables and stellar/supermassive binary black hole.
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despite not measuring directly the disc eccentricity, highlighted
the formation of visibly eccentric cavities (e.g. D’Orazio et al.
2013; Farris et al. 2014; Ragusa et al. 2016, 2017; Price et al.
2018b; Calcino et al. 2019, 2020; Heath & Nixon 2020; Tiede
et al. 2020; Franchini et al. 2023) or eccentric gaps for planets
and low mass-ratio companions (e.g. Ataiee et al. 2013; Zhu &
Stone 2014; Scardoni et al. 2022).

A second relevant scenario for eccentric discs concerns the
primordial deviations from circular motion of the material in the
discs that were excited and impressed during its formation – that
is, the disc was born eccentric.

In the process of star formation, it is reasonable to expect
that the phase of cloud collapse is not spherically symmetric,
seeding an initial eccentricity in the protostellar disc. Numerical
simulations studying this phase appear to produce, as a natural
outcome, eccentric discs, even in presence of symmetric ini-
tial conditions (Hennebelle et al. 2020; Lebreuilly et al. 2021;
Lovascio et al. 2024). Similarly, tidal disruption events (TDE)
of eccentric (or parabolic) bodies around compact objects are
expected to form eccentric discs surrounding the central body –
be it a white dwarf (Trevascus et al. 2021), neutron star (Kurban
et al. 2023) or a black hole (Shiokawa et al. 2015; Bonnerot et al.
2016; Zanazzi & Ogilvie 2020; Lynch & Ogilvie 2021; Cufari
et al. 2022). In this scenario, the debris are expected to inherit
the eccentricity of the disrupted body – in the event of parabolic
orbits as in the context of TDEs of stars on supermassive black
holes, half of the disrupted body remains bound to the central
object with an eccentricity e ≲ 1.

Concerning disc eccentricity damping, we can identify a res-
onant and a viscous/dissipative mechanisms. On the one hand,
while some resonances can pump the disc eccentricity, others
can damp it (Goldreich & Sari 2003). Both eccentricity damp-
ing and pumping resonances can be present in a disc. Whether
the disc eccentricity is growing or decreasing depends on the
balance of the contributions of individual resonances, akin to
what determines the direction of satellite migration: when some
resonances push the satellite inwards and others outwards.

On the other hand, viscous/dissipative processes decrease the
disc eccentricity. Viscosity is often included in theoretical mod-
els to describe turbulence, that, among its effects, causes the
material to accrete on to the central mass. Pure shear, as for
the Shakura & Sunyaev (1973) α-prescription, is not expected
to produce eccentricity damping. In contrast, in some instances it
can even trigger a viscous-overstability (e.g. Syer & Clarke 1992;
Kley et al. 1993; Lyubarskij et al. 1994; Latter & Ogilvie 2006)
that results in a growth of the disc eccentricity. Bulk viscos-
ity instead always produce eccentricity damping (Ogilvie 2001;
Goodchild & Ogilvie 2006; Lynch 2022).

Numerical dissipation, intrinsically present in any numerical
scheme, produces a spurious form of bulk viscosity that causes
eccentricity damping. In general, this implies that any numerical
simulation is affected by a spurious decrease of the disc eccen-
tricity due to unavoidable numerical dissipation. This produces
a damping rate that is most likely to be higher than what would
be reasonable to expect if the fluid was inviscid and turbulent.
To date, no reliable estimate about eccentricity damping rates is
available. A study about the interplay between disc eccentric-
ity and turbulence has been attempted by Wienkers & Ogilvie
(2018).

2.7. How the disc eccentric nature affects the dynamics

In the previous sections we provided equations that describe the
kinematics and structure of eccentric discs. As obvious from

celestial mechanics considerations, compared with the circular
case where vθ,circ = const and vR = 0 along an orbit, an eccen-
tric disc has vθ and vR varying around the orbit. The azimuthal
velocity vθ (Eqs. (13), (34) for the pressure corrected) reaches
its maximum at the phase of pericentre ϖ and minimum at
the phase of the orbit apocentre. Similarly, vR (Eq. (12)) oscil-
lates around vR = 0, reaching its absoulute maxima (|vR|) at true
anomaly f = π/2 and f = 3π/2.

However, eccentric discs are also characterised by motion
out of the disc plane, in the vertical direction. This motion is
the result of the change of the vertical gravitational field along
the orbit that produces a change in the vertical scale height
H of the disc (Eq. (29)). This effect causes H to reach its
minimum at pericentre and maximum at apocentre. The ratio
between Hapo at apocentre and Hperi at pericentre depends on
the orbital eccentricity and can easily reach Hapo/Hperi ≳ 6 for
e ≳ 0.4 (see Fig. 2). It is useful to note that the ratio z/H
remains constant along the orbit (Eq. (25)), implying that the
material moves along the orbit following eccentric streamlines
with z ∝ H.

This change of altitude along the orbit implies that the mate-
rial develops a vertical velocity vz (Eq. (27)) that oscillates
between vz = 0 at the pericentre and apocentre and reaches its
maximum absolute value |vz| at f ∼ π/2 and f ∼ 3π/2.

The amplitude of these vertical vz oscillations scales with
z/H (Eq. (27)). This implies that the oscillations increase in
amplitude the higher a fluid element is in the disc atmosphere,
and are anti-symmetric with respect to the midplane – that is,
top and bottom layers of the disc have opposite sign of vz. In par-
ticular, at z = H, the amplitude of the vertical oscillations has as
natural scale factor the sound speed cs (see footnote 2). Given the
linear scaling with z, vz can easily become supersonic in higher
disc layers with respect to the midplane (z > H). This type of
oscillations are often referred to as a ‘breathing mode’.

Changes in the disc geometry due to eccentricity and peri-
centre phase variations across the disc result in overdensities and
depletions of the disc surface density, Σ (Eq. (33)). However,
one should always keep in mind that a change in the disc thick-
ness might affect the volume density, ρ, at the midplane without
affecting the surface density: for example, a disc with e = const
andϖ = const across its entire domain, produces no variations in
the surface density morphology, that is, Σ(θ) = const. But, since
the volume density at the midplane is ρ = Σ/H, ρ changes as the
inverse of H – that is, ρ is maximum at pericentre and minimum
at apocentre even when Σ is constant along the orbit.

3. Numerical simulation

In this section, we present a 3D hydrodynamical simulation of a
circumbinary disc that throughout its evolution becomes eccen-
tric (as expected due to binary-disc interaction) and perform
a comparison with the analytical model predictions. We note
that for the remainder of the paper we do not use contravariant
notation – from now on we refer to cylindrical (non-covariant)
velocities as vR, vθ, vz and to cartesian velocities as vx, vy, vz.

We approached the problem as follows (Sect. 3.3 for more
details): we first extracted from the simulations the profiles of
e(a), ϖ(a) and M(a), on which the analytical model depends.
From these profiles, using the formalism discussed in Sect. 2,
we generated a 3D analytical model attributing to a grid of pix-
els (x, y, z), representing the coordinates of the disc surface, the
corresponding (vx, vy, vz). We finally compared the predictions of
the theoretical model with the simulations.
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Fig. 3. Rendering of the surface density of the dump used as a refer-
ence numerical simulation for testing the analytical models. Dump from
simulation 4A (mass-ratio M2/M1 = 0.1, H/R = 0.05) in Ragusa et al.
(2020) after t = 500tbin. The dump features a cavity with an eccentricity
of ecav ≈ 0.2 and a cavity with a semi-major axis acav ≈ 2.7abin.

We note that quantities generated using the theoretical model
are indicated with a subscript ‘th’ (e.g. xth) while those cal-
culated directly from the simulation with subscript ‘sim’ (e.g.
xsim).

3.1. SPH numerical setup

As a benchmark simulation to test the analytical model presented
in Sect. 2 we use one of the simulations from the numerical set
presented in Ragusa et al. (2020), that is, a 3D hydrodynamical
disc surrounding a binary (here used as a source for the disc
eccentricity).

Simulations in Ragusa et al. (2020) were meant to study the
evolution of the disc eccentricity exploring various choices of
binary mass-ratios and disc parameters. All simulations with
M2/M1 > 0.05 presented in Ragusa et al. (2020) show a rapid
growth of the disc eccentricity after t ≈ 400–500tbin due to
binary-disc interaction, and constitute the perfect testbed for the
analytical model developed in this paper.

In general, we note that the dynamics in the simulation
is a priori richer than the one described by the theoretical
model: viscosity, waves, quadrupolar potential, accretion and
disc spreading are not at all considered in the derivation we
provided above.

From that set, we select simulation 4A (mass-ratio M2/M1 =
0.1). In particular, its t = 500tbin dump (shown in Fig. 3), where
tbin is the binary orbital timescale represents a good candidate
for our direct comparison: i) because at that time the disc eccen-
tricity has reached a saturation value of ecav ≈ 0.2 at the cavity
edge, which is qualitatively consistent with the few observation-
ally measured ones in transition discs (e.g. Garg et al. 2021; Yang
et al. 2023); ii) because the simulations with binary mass-ratios
M2/M1 > 0.1 feature prominent density spirals and an orbit-
ing overdense lump of material that alter the kinematics. The

motion of the material in those simulations is in fact eccentric,
but it is also characterised by additional perturbations that are
not captured by the model in Sect. 2.

Simulation 4A of Ragusa et al. (2020) was performed using
the code PHANTOM (SPH, Price et al. 2018a), it used Np = 106

particles, and consisted of a circular, live binary with mass-ratio
M2/M1 = 0.1 surrounded by a circumbinary disc with initial
mass Md = 5 · 10−3 Mbin (Md = 4.8 · 10−3 Mbin after t = 500 tbin),
where Mbin = M1 + M2. The equation of state was chosen to be
locally isothermal – with radial temperature profile producing
cs ∝ R−0.25 and H/R = 0.05 at Rin = 2abin. A circular cavity with
R = Rin was initially excised at t = 0. The mechanisms responsi-
ble for angular momentum transport were modelled using SPH
artificial viscosity, producing an effective Shakura & Sunyaev
(1973) αss ≈ 5 × 10−3 (obtained using αAV = 0.2, β = 2 Price
et al. 2018a)5 at the beginning of the simulation.

3.2. Obtaining maps of vR, vθ, vz, H, Σ from the simulation

For the comparison with the analytical model, we start gener-
ating projected x − y maps of vx,sim, vy,sim, vz,sim, Hsim, and Σsim
using vertical particle integration and density weighted integra-
tion – that is, an SPH equivalent of a density weighted average
along the vertical direction. The calculation of these quantities is
performed using SPLASH as detailed below, the implementation
of the integration procedures is described in Price (2007).

Velocities in the disc orbital plane are defined as vx,sim = ⟨vx⟩z
and vy,sim = ⟨vy⟩z, where ⟨·⟩z indicates density weighted inte-
gration along the vertical direction and vx and vy the velocities
of individual SPH particles in the density weighted integration.
Then, vR,sim and vθ,sim are obtained projecting u2D = {vx,sim, vy,sim}

on radial and azimuthal unit vectors, respectively.
The map for Hsim is obtained through a density weighted

integration along the vertical direction as Hsim = ⟨z2⟩
1/2
z – that

is, based on the definition of scale-height Hsim as the second
moment of the particles vertical density distribution. Again, here
z2 indicates that the value of z2 of individual SPH particles has
been used in the density weighted integration. Since the disc is
locally isothermal with a sound speed cs(R), the vertical den-
sity profile has the form of a Gaussian with standard-deviation
σ = Hsim.

Similarly, the map for vz,sim is obtained performing a density
weighted integration of the quantity vz,sim =

√
π/2⟨vzsign(z)⟩z

along the vertical direction. This choice regarding the func-
tional form and normalising pre-factor of the quantity to be
vertically averaged has the following motivations: i) concern-
ing the functional form, since vz is anti-symmetric with respect
to the midplane, the quantity vzsign(z) has the nice property
of providing a vz,sim maintaining the sign of the velocities of
the z > 0 half of the disc during the average across the mid-
plane. In contrast, ⟨|vz|⟩z or ⟨v2z ⟩z would produce a map that is
everywhere positive, while the vertical average of ⟨vz⟩z, would
produce vz,sim = 0 across the whole disc. ii) The pre-factor
√
π/2 is introduced because, since the vertical density distribu-

tion is Gaussian, ⟨zsign(z)⟩z = H
√

2/π. Under the assumption
that vz ∝ z/H, as derived in Eq. (27), the introduction of the
pre-factor makes sure that vz,sim traces the vertical velocity of
particles at z ∼ Hsim above the midplane. We anticipate that the
results presented in the following sections confirm the validity
of this assumption.

5 Such an implementation implies an unavoidable amount of bulk vis-
cosity (Lodato & Price 2010), in contrast with the pure shear nature of
the Shakura & Sunyaev (1973) prescription.
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Finally, the map of Σ is obtained using the standard vertical
integration of the particles’ masses performed by SPLASH.

3.3. Constructing a 3D analytical model from the
hydrodynamical simulation

The entire set of equations constituting our analytical model to
predict the kinematics and the morphology of eccentric discs
rely exclusively on the profiles e(a), ϖ(a), their derivatives, ea
and ϖa, Ma and an assumption on the sound speed cs, that here
we choose to have a radial dependence cs(R) for consistency with
what is prescribed in the simulation. In this section, starting from
the aforementioned profiles, we generate a 3D analytical model
attributing a velocity vector (vx, vy, vz) to each (x, y, z), where z
represents the reference altitude of the disc surface – this will be
further clarified below.

From the reference snapshot discussed in Sect. 3.1 we extract
the profiles of e(a), ϖ(a), and Ma(a) (details about how semi-
major axis profiles are calculated can be found in Teyssandier &
Ogilvie 2017 and Ragusa et al. 2020), we filter each profile using
the Savitzky–Golay filter (Savitzky & Golay 1964) to reduce the
noise of the datasets and we interpolate them using cubic spline
interpolation so that we can compute the derivatives ea(a),ϖa(a)
with respect to the semi-major axis. We set the filter window
to be wsg = 50 profile points (corresponding to a ∆a ∼ 1.6abin)
and polynomial order psg = 2. We note that filtering is a very
important step, since noisy datasets of e(a),ϖ(a) would produce
unusable outputs when taking derivatives with respect to a.

In Fig. 4, we show the profiles extracted from our refer-
ence snapshot and the interpolated profiles we use for generating
the analytical model. No appreciable differences can be found
changing the parameter choice of the filter: as shown in Fig. 4,
the filtering process has the only effect of reducing the noise of
the dataset but it does not alter appreciably its qualitative form.

We use Eqs. (12), (34) to calculate vR,th and vθ,th. We then
solve Eq. (29) to obtain the vertical scale height Hth and use it
for calculating vz,th from Eq. (27). We finally use Eq. (33) to cal-
culate the surface density morphology Σth. Results are plotted
as 2D maps where the region with a < acav has been excised –
where acav = 2.7abin is the semi-major axis where Ma is max-
imum. This is done in order to exclude from our analysis the
cavity area in the simulation, where the dynamics of the gas is
strongly affected by the binary.

4. Numerical simulation versus the analytical
model

4.1. Eccentric model vs. circular

We show a comparison between the simulation and the 3D ana-
lytical model discussed in the previous section in Figs. 5–8.
Velocities vR, vθ, and vz are presented in the form of residuals
obtained subtracting the theoretical model from the correspond-
ing maps computed from the simulation. For comparison we
plot also the residuals obtained subtracting a circular Keple-
rian velocity field in order to highlight how large would be the
systematic error of not accounting for the disc being eccentric,
and the typical residual patterns obtained. We note that sub-
traction of kinematic models different from circular, non-tilted
discs is not yet a common practice when analysing line emission
observations.

More specifically, Fig. 5 shows a comparison between the
normalised residuals for vR and vθ. In the same figure, the resid-
uals obtained subtracting vR,circ = 0 and vθ,circ =

√
GMbin/R. We

Fig. 4. Profiles of e(a) (top panel),ϖ(a) (middle panel), and Ma (bottom
panel) from our reference simulation (blue curves) and corresponding
filtered-interpolated profiles (orange curves). For clarity, we remark that
the orange curves are obtained by filtering and interpolating with cubic
splines the blue curve. The orange curve is used as an input to generate
the theoretical model based on the numerical simulation.

normalise the residuals for vθ with vθ,circ, that is, the circular
Keplerian velocity at the x − y pixel radius; we normalise vR
using ecavvθ,circ where ecav = 0.2, which represent the maximum
vR achieved by the material at the cavity edge.

Figure 6 shows a comparison between the disc aspect ratio
H/R in the simulation and the one calculated from Eq. (29).
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Fig. 5. Maps of vR and vθ. Top panels: comparison of the velocity fields vR and vθ in the form of residuals between the simulation and the theoretical
predictions in Eqs. (12) and (34): (vR,sim − vR,th)/vθ,circ (top left panel) and (vθ,sim − vθ,th)/vθ,circ (top right panel), respectively. Bottom panels: similar
to top panels but subtracting a circular Keplerian velocity profile (vθ,circ) from the vR,sim and vθ,sim in order to highlight the impact on the residuals
of not accounting for the eccentric nature of the disc and of pressure corrections in the radial/azimuthal motion; (vR,sim − vR,circ)/vθ,circ (bottom left
panel), where obviously vR,circ = 0, and (vθ,sim − vθ,circ)/vθ,circ (bottom right panel). In the bottom right panel it can be clearly seen that the simulation
azimuthal velocity vθ,sim at large radii is sub-Keplerian, as vθ,circ does not account for the pressure support term.

Fig. 6. Maps of disc aspect-ratio H/R. Left panel: disc Hsim/R from simulation, calculated as Hsim/R = ⟨z2(R)⟩1/2/R; we note that ⟨z2(R)⟩ = Hsim
by definition, with it being the vertical second moment of the density distribution. Right panel: disc Hth/R from solving Eq. (29) using e(a), ϖ(a),
and cs(R) from the simulation as input.
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Fig. 7. Maps of disc vertical velocity vz. Top panels: vz,sim/cs velocity field from the simulation (top left panel) compared to the theoretical model
vz,th/cs obtained solving Eq. (29) (top right panel). Bottom panels: residuals of the simulation against the theoretical model (vz,sim − vz,th)/cs (bottom
left panel), i.e. the top left panel minus the top right panel of this figure, and with respect to a circular disc (vz,sim − vz,circ)/cs (bottom right panel),
i.e. vz,circ = 0; this last plot is in fact the same as top left panel but with rescaled colourbar for a direct comparison with the other residuals plot in
the bottom left panel. We note that in the simulation the m = 1 spiral shaped vertical velocity feature standing out even after the subtraction of the
eccentric theoretical model suggests that some additional physical processes are affecting the disc dynamics.

Fig. 8. Σ density field from the simulation (left panel) and relative analytical model (right panel) from Eq. (33).
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Figure 7 shows a comparison between the vertical velocity field
in the simulation vz,sim against the one obtained from the the-
oretical model vz,th. In Fig. 7, we also show the residuals from
the subtraction of the two, and one where vz,circ = 0 is sub-
tracted. This allows us to perform a direct comparison of the
order of magnitude of the residuals when vertical oscillations
are neglected, e.g. when considering a circular disc model. We
normalise the residuals for vz with cs: as mentioned in footnote 2,
that is a natural scale for eccentric vertical velocity perturbations
at z = H.

Finally, in Fig. 8, we show a comparison between the sur-
face density Σ for both the simulation and the theoretical model,
obtained from Eq. (33).

4.2. Agreement between the simulation and the model

We here discuss more quantitatively the agreement between the
numerical simulation and the theoretical model results presented
in the previous sections.

The residuals shown in Fig. 5 highlight that the azimuthal
and radial motion in the simulation are well described by the
theoretical model.

Residuals of the vR field show a maximum residual value
of |∆vR|max/(ecavvθ,circ) ∼ 15% located at the cavity pericentre,
where a tidal stream of material is launched from the tidal inter-
action with the binary (which is not captured by the theoretical
model). The average residual value is |∆vR|avg ≲ 5%, the pattern
of these residuals suggest that the disc wobbles around the cen-
tre of the numerical domain. This is expected, since the disc
has finite mass, both the centre of mass of the disc and that
of the binary orbit around the centre of mass of the binary +
disc system (which by construction is located in the centre of the
domain in (x, y) = (0, 0)). Not considering the corrections due to
the disc eccentric nature for vR, that is, in a circular disc, pro-
duces |∆vR,circ|max/(ecavvθ,circ) ∼ 100%. The comparison with the
circular case, shows as expected an increase of the radial veloc-
ity reaching its maximum in absolute value |vR| at true anomaly
f = π/2 and f = 3π/2.

The vθ field similarly has a maximum residual value of
∆vθ/vθ,circ ∼ 2%, again located at the cavity pericentre where
the tidal interaction of the binary is strongest, resulting in a
transfer of angular momentum and energy to the disc. In the
comparison with the circular disc case, the residuals grow to
|∆vθ,circ|/vθ,circ ∼ 15%. Also in this case, the comparison with
the circular case, shows that the azimuthal velocity reaches its
maximum at pericentre and minimum at apocentre, as expected.

Figure 6 shows a comparison between the disc vertical scale
height in the simulation and the theoretical prediction in the form
of the disc aspect ratio H/R. Both the numerical simulation and
theoretical model highlight the precence of a ‘breathing’ mode
that causes the disc to compress towards the midplane at peri-
centre and an expansion at apocentre. The difference between
the disc thickness at pericentre and apocentre at the edge of the
cavity reaches Hapo/Hperi ∼ 3, as visible in Fig. 2 for eccentricity
e ≈ ecav = 0.2.

The vertical velocity field vz associated with this expansion
and compression at apocentre and pericentre, respectively, is
plotted in Fig. 7. We can recognise a good overall agreement
between the simulation and the theoretical model. When com-
pared with the residuals for the circular case, where vz,circ = 0,
the theoretical eccentric disc model appears to perform much
better in reproducing the numerical simulation, producing over-
all a reasonable agreement.

However, some differences are evident and should not be
ignored. In particular, an m = 1 spiral feature in the numerical
simulation appears not to be captured by the theoretical model.
Furthermore, the vz field in the numerical simulation shows a
small level of asymmetry with respect to the pericentre longi-
tude: that is, the positive vz lobe looks slightly different in shape
with respect to the negative one. Finally, the simulation vz map
appears to show a slight shift with respect to the pericentre and
apocentre of the location where vz vanishes, in contrast with what
predicted by the theoretical model.

We identify two possible origins of these effects, that are not
mutually exclusive: on the one hand, the binary nature of the
central source of gravity in the simulation is responsible for the
additional features; on the other hand, the additional features in
the simulation might be captured by the eccentric disc theoret-
ical model if we considered also the effect of viscosity when
calculating the disc vertical dynamics (Eqs. (27) and (29)).

We explored this second possibility by including the bulk
viscosity stress term in Eq. (20) – the derivation of the final equa-
tion including bulk viscosity can be found in Appendix B. A bulk
viscosity component is expected to be spuriously present in any
numerical scheme due to numerical dissipation. As explained in
the appendix, the effect of this additional viscous term produce
some asymmetry in the vertical velocity field and a shift of the
location where vz vanishes, consistently with the one observed in
the simulation. However, the new theoretical prescription for vz
fails in any case to reproduce the m = 1 spiral pattern visible in
the residuals of vz. For this reason we decided to keep the model
in a simpler form, and not to include the comparison with the
viscous theoretical model for vz, which is beyond the scope of
the current paper.

In conclusion, we cannot identify the precise origin of the
discrepancies in the predicted vz and the simulated one. Such
a spiral feature in the vz field of the simulation appears to be
related to the presence of the binary or to spurious dissipation
resulting in an effective bulk viscosity. We postpone a thorough
investigation about the origin of this discrepancy to a future
work.

Spiral features in the vertical vz have been previously
described in planet-disc simulations by Bae et al. (2021), and
have been referred to as ‘buoyancy spirals’. Even though the spi-
ral features in our simulations possibly share a similar dynamical
‘trigger’, that is, the presence of a secondary mass in the system,
buoyancy effects cannot be excited in our vertically isothermal
numerical simulations, implying that vertical thermal stratifica-
tion is not a fundamental requirement for these features to arise,
at least in the q ≳ 0.1 mass-ratio regime. To our knowledge,
such spiral features in the vertical vz have not been documented
before in the literature of locally isothermal circumbinary disc
simulations.

More generally, a new analysis of the numerical set in Ragusa
et al. (2020) reveals that other simulations show similar spiral
features in the disc vertical velocity field. We missed this at first
because our standard approach to produce 2D maps of 3D sim-
ulations requires vertically averaging the fluid properties. Given
the anti-symmetric nature of the perturbation with respect to the
midplane, vertical integration of the vz 3D field produces vz = 0
maps in the entire disc x–y domain.

We remark that this perspective is particularly intriguing, in
the light of the detection of a spiral kinematic feature possibly
associated with vertical motion in the 12CO emission of the sys-
tem HD142527 (Garg et al. 2021), that features a well known
circumbinary eccentric disc.
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5. Synthetic observations

In this section we investigate the physical magnitude of the
eccentric kinematic features discussed in the previous sections
trying to assess their observability. To do so we rescale the
hydrodynamical simulation and perform Monte Carlo radiative
transfer on it, in order to explicitly check whether the velocity
perturbations are within the current observational capabilities.

5.1. Monte Carlo radiative transfer

We perform Monte Carlo radiative transfer simulations using the
code MCFOST (Pinte et al. 2006, 2009) to produce channel maps
of the line emission from the 3–2 transition of the 12CO. For this
purpose, we rescale the numerical simulations for the binary to
have a separation of 15 au, by multiplying the spatial quantities
by xsc = 15. This results in a cavity size in the disc of ≈ 40 au.
The two stars are assumed to have masses M1 = 0.91 M⊙ and
M2 = 0.09 M⊙ and to radiate as two black bodies with tem-
perature T1 = 4200 K and T2 = 2900 K consistently with an
age of 3 Myr (Siess et al. 2000), respectively. Following this
assumption about the binary mass, we rescale the velocities by
vsc = 29.7/

√
15 to have the velocities in km s−1. The total gas

mass is 5 MJ, while the dust component is included reflecting
the gas density distribution rescaled by a factor 100. We remark
that our purpose is to produce mock synthetic observations of
the eccentric kinematic features discussed in the previous sec-
tions. As a consequence, a self-consistent evolution of both gas
and dust is beyond the scope of the paper. We assume a chemical
abundance ratio6 ρ12CO/ρH = 5 × 10−5.

We here perform the radiative transfer analysis with the sole
purpose of investigating the qualitative appearance of the gas
kinematics, which is instead not affected by this assumption.
A self-consistent treatment of the dynamics of the gas + dust
mixture is beyond the scope of the paper.

Dust opacities are calculated using Mie theory assum-
ing astrosilicate grains (Weingartner & Draine 2001), with
sizes ranging between s = 0.03–1000µm and a distribution
dn(s)/ds ∝ s7/2.

We use Nγ = 107 photons for calculating the temperature
structure, which is then used for determining the line emission
properties; the final channel maps are then calculated through
ray-tracing with Nγ = 107 photons.

Angular scales and fluxes are calculated placing the source at
a distance d = 130 pc, consistently with the distance of the Tau-
rus region. We study the appearance of the system for two incli-
nations: i = 0◦ – that is, face-on – and i = 30◦. These values are
chosen in order to study the detectability of the vertical oscilla-
tions and of the other eccentric features predicted in the previous
sections for both face-on and for moderately inclined discs.

The result of the radiative transfer is a datacube with ‘infi-
nite’ spatial resolution (set by the hydrodynamical simulation),
while spectral resolution bins in the cube are ∆v = 0.004 km s−1

for the face-on case and ∆v = 0.01 km s−1 for i = 30◦.

5.2. Observability of the eccentric features

With the purpose of extracting a projected velocity map of the
disc surface from the radiative transfer data cube, we produce
moment 1 maps (M1, i.e. channels are collapsed attributing to

6 Our choice of ρ12CO/ρH instead of the typical ρ12CO/ρH = 10−4 con-
stitutes a conservative estimate for the vertical velocity. An optically
thinner disc receives less contribution in the line emission from the
highest disc layers, that have larger vertical velocities.

each pixel the brightness-weighted average of the velocity from
brightness-velocity profile) and moment 9 (M9, i.e. maps where
the channels are collapsed attributing the value of the ‘brightest’
velocity in the brightness-velocity profile of each pixel) maps,
shown in Fig. 9. A selection of channel maps can be found for
completeness in Fig. D.1. In order to qualitatively reproduce a
real observation, we convolve the image spatially with a cir-
cular, Gaussian beam ∆s = 0.05 arcsec and the velocity with
∆v = 0.05 km s−1 (i.e. within ALMA observational capabilities).

It can be easily noted that the collapse of the channel maps
into the moment 1 map significantly underestimates the vertical
velocity component in the i = 0◦ case compared to the moment
9. This can be understood by looking at the brightness-velocity
plot in the bottom panels of Fig. 9. The emission in each spa-
tial pixel of the data cube has a broad spectrum that depends on
the projected velocity and temperature in the different disc layers
encountered along the line of sight – the temperature stratifica-
tion typical of protostellar discs (i.e. hot on the disc surface, cold
close to the disc midplane) explains also the secondary peaks
that are visible in both i = 0◦ and i = 30◦ pixel spectra (Pinte
et al. 2018). Producing an M1 map implies taking the brightness
averaged velocity as the representative velocity of each pixel:
with brightness profiles such as those shown in the right panels
of Fig. 9, M1 maps strongly underestimate the velocity of the
upper emission surface in the pixel. M9 maps better capture the
fact that the velocity in the upper layers is vz , 0, but remain far
from a precise estimate.

To strengthen this statement, in Fig. 10 we show the bright-
ness map of the 0.72 km s−1 channel from the radiative transfer
data cube of the i = 0◦ simulation. We can clearly see that,
even though the M9 map shows a maximum vertical velocity
of vz,max ≈ 0.25 km s−1, higher velocity channels can be quite
bright and detectable using ALMA. We also note that in the top
layer, the two lobes have opposite velocities, while in Fig. 10
they appear almost equally bright with positive velocities: that
is, each pixel contains emission from both the top and bottom
layers. See also the following section for a direct comparison of
the moment maps with the upper emission surface kinematics.

Despite the poor performance of moment maps at portraying
the upper emission surface kinematics, M9 maps show recogniz-
able patterns of the disc’s eccentric nature both for face-on discs
and for inclined ones: in the form of vertical motion and asym-
metry between the projected velocity at apocentre and pericentre,
respectively.

In conclusion, both M9 and M1 maps are not representative
of the velocities in the upper emission surface, so we cannot
provide a direct comparison of the radiative transfer with the the-
oretical model. However, the typical eccentric features, that is,
double anti-symmetric vertical velocity pattern and asymmetry
between apocentre and pericentre are recognisable. More sophis-
ticated tools are required to properly reconstruct the geometry of
the upper emission surface from channel maps (e.g. DISCMINER,
Izquierdo et al. 2021, 2023), in order to carry out a detailed
comparison with the model.

In the light of these considerations, we do not attempt a direct
comparison of the radiative transfer results with the theoretical
model. Instead, we limit our analysis to inclining the simula-
tion data and compare them with an inclined theoretical model
generated for this purpose in the next section.

5.3. Modelling the disc upper emission surface

In the previous section we saw we cannot directly compare
the results from the radiative transfer moment maps with the

A264, page 12 of 20



Ragusa, E., et al.: A&A, 686, A264 (2024)

Moment 1 (M1)

Moment 9 (M9)

Fig. 9. Moment maps from the RT simulations. Top panels: Moment 1 maps from Monte Carlo radiative transfer simulations i = 0◦ (left) and
i = 30◦ (right). The grey circle in the bottom left corner represents the corresponding beam size. Middle panels: Moment 9 maps, again obtained
from the Monte Carlo radiative transfer of the simulation dump, i = 0◦ (left) and i = 30◦ (right). Bottom panels: Brightness-velocity maps, i = 0◦
(left) and i = 30◦ (right), for selected pixels for highlighting the large span of different velocity contributions in individual pixels. The maps are
obtained after convolving spatially the image with a Gaussian beam of ∆s = 0.05 arcsec (marked as a grey circle in the bottom left corner of each
image) and ∆v = 0.05 km s−1. We note that the convention about velocities in observations is that blue-shift of lines is associated with negative
velocities, while red-shift is associated with positive velocities – for example, this implies that vz in this plot is opposite in sign with respect to that
in Fig. 7. The case i = 0◦ shows well how M1 maps tend to underestimate the vertical velocity contribution compared to M9 maps.
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Fig. 10. Brightness map of the 0.72 km s−1 channel from the data cube
of the Monte Carlo radiative transfer, face-one i = 0◦ inclination, per-
formed on the simulation dump. The image clearly shows that, even
though the M9 map in Fig. 9 shows maximum velocity of ∼ 0.25 km s−1

for vertical velocities, a bright contribution in higher velocities channels
is also expected to be observable.

theoretical model, as it is not possible to define precisely the
velocities of the upper emission surface. Let us assume that we
observe a circumbinary disc and that we have the tools to prop-
erly reconstruct from the channel maps the velocity projected
on the observer’s line of sight in the upper disc layers – this
is motivated by the current development of new observational
tools for extracting the kinematics of the upper emission surface
(DISCMINER, Izquierdo et al. 2021). In this section, we inves-
tigate how the residuals from the subtraction of an eccentric
disc model compare to those from a circular model, and how
strongly the eccentric nature of the disc stands out compared to
the circular model.

To answer these questions, we create a 3D model of the disc
for both the theoretical models (eccentric and circular) and the
numerical simulation, and we perform a direct comparison. The
3D model consists of spatial coordinates S = {x, y, z} defining
the 3D disc upper emission surface, and velocities u = {vx, vy, vz}
as the velocity vector field of the material on it.

We first define the altitude of the disc upper surface using
the altitude of the τ = 1 surface above the midplane Hτ=1 output
from the Monte Carlo radiative transfer simulation. The value
of τ is calculated integrating along the line of sight the optical
depth using the local maximum opacity maxν[kν(x, y, z)] (i.e. the
centre of the local line), where kν(x, y, z) is the local opacity, that
is the surface z(x, y) satisfying

τ =

∫ z(x,y)

+∞

ρ(x, y, z) max
ν

[kν(x, y, z)]dz = 1. (38)

Such a surface qualitatively represents the highest elevation in
the disc atmosphere at which the material contributes to the line
emission, assuming the disc is face-on. We plot the altitude of
the upper emission surface as Hτ=1/Hsim for a comparison with
the vertical scale height of the simulation in Fig. 11. The average
value ⟨Hτ=1/Hsim⟩ ≈ 2.5, and it appears to be relatively constant
throughout the entire disc. For this reason, we define our disc
surface to be z = 2.5Hsim for the simulation and z = 2.5Hth for
the circular and eccentric theoretical models.

Since Eq. (38) is based on the maximum local opacity, it
does not imply necessarily that the material at z < Hτ=1 is not

Fig. 11. Map of the ratio between Hτ=1, obtained from radiative transfer,
tracing the upper emission surface and Hsim, representing the simulation
scale height. The ratio Hτ=1/Hsim ≈ 2–3 across the disc. We consider
Hτ=1 ≈ 2.5Hsim a conservative estimate of the location of the upper
emission surface – ‘conservative’ since the higher in the disc atmo-
sphere, the larger the vertical velocity.

visible, as that would be the case only if vz = const throughout
the entire gas column. Indeed, τ defined in Eq. (38) should not be
confused with τν, which instead is a function of the frequency,
and is obtained by integrating the opacity using the local kν (and
not its local maximum as done for τ). Since the opacity kν of the
material changes with the material velocity, τν = 1 qualitatively
defines a set of iso-velocity surfaces (one for each value of ν,
that is, one for each velocity channel), probing different altitudes
above the mid-plane. In fact, different layers of the disc atmo-
sphere along the line of sight contribute to the line emission at
different frequencies, despite lying at altitudes z < Hτ=1.

The disc has a top and a bottom surface, thus for our
3D eccentric and circular model we define them to be Stop =
{x, y, 2.5Hth} for the top surface and Sbottom = {x, y,−2.5Hth}.

We define the velocity field on the disc surfaces as utop =
{vx, vy, vz} for the top layer and ubottom = {vx, vy,−vz} for the bot-
tom layer, where vx and vy are obtained projecting vR and vθ from
Eqs. (12) and (34) on to the x and y unit vectors, while vz is cal-
culated from Eq. (27), calculated at z = 2.5Hth. We produce a
model with the same characteristics also for a circular disc, by
projecting vcirc on to Cartesian unit vectors.

Similarly, after rescaling the numerical simulation as
described in Sect. 5.1 (abin = 15 au, Mbin = 1 M⊙, d = 130 pc,
that is, xsc = 15, vsc = 29.7/

√
15), we define the upper sur-

face in the simulation to be Ssim = xsc{x, y, 2.5Hsim} and u =
vsc{vx,sim, vy,sim, 2.5vz,sim}, where, we note, we applied an addi-
tional scaling of a factor 2.5 to the original zsim and vz,sim,
to account for the higher elevation of the upper emission sur-
face compared to the vertical scale-height set by pressure – this
operation exploits the fact that vz ∝ z/Hth.

5.4. Morphology of projected velocity residuals
in circumbinary discs

Consider an observer located at z = +∞, and define the projected
velocity vproj = −vz (following the convention that redshifted
velocities are positive). At this point, the observer, looking down
on the x − y plane observing vproj will see the kinematics and
geometry of a face-on disc. We do this for both the eccentric and
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Fig. 12. Residuals of the subtraction of the eccentric theoretical model (left panels) and circular model (right panels) from the projected velocity
in the simulation for i = 0◦ (top panels) and i = 30◦ (bottom panels). These maps were obtained assuming the upper emission surface to be
Hτ=1 = 2.5H (as discussed in Sect. 5.3), and rescaling the simulations to have a binary with abin = 15 au, Mbin = 1 M⊙, placed at a distance of
d = 130 pc. Similarly to Fig. 9, we note that the convention about velocities in observations is that blue-shift of lines is associated with negative
velocities, while red-shift is associated with positive velocities – for example, this implies that vz in this plot is opposite in sign with respect to that
in Fig. 7. We note that the top right panel residual is obtained by subtracting vz,circ = 0 (as the circular case does not have vertical motion) from vz,
thus this residuals map portrays the vertical velocity map on the τ = 1 surface for the case i = 0◦. This highlights that the amplitude of the vertical
oscillations reaches vz ∼ 0.4 km s−1 in the upper emission layer.

circular models, which constitute our face-on models. For the
eccentric model the line of apses inherits its orientation from the
simulation.

Inclined models are generated by rotating the face-on discs
(described by S and u), keeping the observer (and associated
coordinate system) fixed. First we perform a rotation around the
z-axis, which sets the longitude of pericentre (this step is omit-
ted in this work, meaning the inclined discs inherit the longitude
of pericentre of the face-on disc). We then rotate around the x-
axis by i = 30◦, resulting in an inclined disc with its line of
nodes aligned with the x-axis. The longitude of pericentre is
unchanged by this rotation, however the projected line of apses
will be shifted towards the line of nodes as a result of foreshort-
ening. Finally, without loss of generality, we set the position
angle, PA = −90◦ (calculated from the north anti-clockwise), as
the position angle has no effect on the imaged disc.

In general, the kinematics of inclined eccentric disc is
affected by two angles: the inclination, which sets the relative
contribution of the vertical and horizontal velocity; and the argu-
ment of periapsis, which sets the relative contribution of the

on-apse and off-apse velocities to the horizontal velocities. For
symmetric beams, considered here, the position angle has no
effect on the image.

We now have three different models of the geometry and
projected velocity kinematics of the upper emission surface of
a disc inclined by i = 30◦. One for the circumbinary disc simula-
tion, the other two for the eccentric and circular disc theoretical
models.

For the analysis described in this section, we consider only
Stop, under the assumption we made above that we can isolate the
kinematics coming exclusively from the top emission layer. We
subtract both the ‘eccentric theoretical model’ and the ‘circular
theoretical model’ from the simulation, the residuals of these two
operations are shown in Fig. 12.

A large, trailing, m = 1 spiral with a velocity residual o f
0.15 km s−1 appears in the vproj kinematics (i.e. detectable with
ALMA) when subtracting the eccentric theoretical model and
the circular model. The eccentric theoretical model however
appears to perform well in capturing all the other eccentric kine-
matic features that are not reproduced by a purely circular model.
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Indeed, residuals from the subtraction of the circular model from
the simulation show instead a broad single-lobed azimuthal kine-
matic feature at the edge of the disc cavity with ∆v > 0.3km s−1.
Interestingly, such a feature does not have the appearance one
might naively expect when subtracting a circular model from an
eccentric disc: a double lobed feature (two lumps in the residu-
als with opposite signs) due to the faster and slower velocity of
the material at pericentre and apocentre, respectively. However,
the structure of the residuals will change when orienting the sys-
tem in a way that results in the disc having a different argument
of periapsis (e.g. it is possible to get a two lobed feature with a
different disc orientation).

In the light of the results presented here, it is important to
consider the possible eccentric nature of the disc for explain-
ing single and double-lobed structures in the projected velocity
residuals. We also remark that we cannot be conclusive about the
origin of the spiral-shaped velocity feature, not captured by the
eccentric disc model. However, when observed, it might hint at
the presence of a hidden (sub)stellar companion (if undetected).

6. Conclusion

In this paper we discussed the morphology and kinematics
of eccentric discs, with the final goal of providing observa-
tional signatures, aiding their identification in observational
campaigns. To do so, we presented a theoretical model that takes
as input information only three functions: namely, the disc eccen-
tricity profile e(a), the longitude of pericentre profile ϖ(a), the
derivative of the disc mass distribution Ma(a), and an assumption
about the locally isothermal disc sound speed ⟨cs⟩(a). Eccentric
discs show a number of characteristic features:

(i) The azimuthal and radial velocities vθ vR, along with the
surface density Σ vary around the orbit (Eqs. (12), (34) and (33)).

(ii) The changing vertical gravity around the eccentric orbit
excites a vertical oscillation, corresponding to a variation of the
disc scale height H around the orbit (Eq. (29)), and results in a
vertical velocity vz ∝ z/H (Eq. (27)).

(iii) The theoretical model explains many features of a
numerical simulation of an eccentric circumbinary disc. How-
ever, a residual, m = 1, spiral pattern in vz is not captured by the
theoretical model. We speculate this could be produced by the
binary potential or the effect of viscosity, neither included in our
analytical treatment. The origin of this feature will be explored in
future studies. We estimate this residual velocities in the spirals
to be of the order of ∆vz ≈ 0.15 km s−1.

(iv) We perform radiative transfer Monte Carlo on our
numerical simulation snapshot to obtain information about 12CO
line emission for inclination i = 0◦ (face-on) and i = 30◦. We
find that moment 1 maps are not suitable to highlight the vertical
motion in the i = 0◦ case, since vz is anti-symmetric with respect
to the mid-plane. Better results can be obtained with moment
9 maps.

(v) Both i = 0◦ and i = 30◦ radiative transfer M9 maps
show features of eccentric disc evolution that are within ALMA
observational capabilities: the first showing a vertical velocity
contribution that is is not present in circular face-on discs; the
second showing an asymmetric butterfly diagram of the iso-
velocity contours, indicating different velocity at pericentre and
apocentre.

(vi) In the face-on case (i = 0◦), the M9 map reveals the
vertical velocity reaches a maximum of vz,max ∼ 0.25 km s−1.
However, channel maps show significant signal at higher veloc-
ities from the upper layers of the disc, making vz eccentric

signatures potentially detectable in face-on discs even for eccen-
tricities e ≪ 0.2 (e.g. vz,max ∼ 0.4 km s−1 on the τ = 1 surface in
Fig. 12).

(vii) The subtraction of a circular Keplerian disc model from
an eccentric disc’s kinematics can, counterintuitively, produce a
single lobed pattern in the projected velocity map. Eccentric disc
kinematics should be considered when patterns such as those vis-
ible in Fig. 12 are observed. However, other patterns are possible
for different disc orientations.

In future works we will further investigate the origin of the
spiral velocity pattern discussed in (iii), determining whether
such a feature can be considered a smoking gun signature of the
presence of a binary (sub)stellar companion or a feature of any
eccentric disc. In any case, the results presented in this paper rep-
resent an intriguing starting point for the interpretation of similar
spiral patterns in the vertical velocity field that are starting to be
observed (e.g. Garg et al. 2021).
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Appendix A: Other useful pieces of information
about eccentric discs

A.1. Eccentric disc eigenmodes

In this section, we discuss the main aspects relating to the evo-
lution of the eccentricity e(a, t) and pericentre longitude profiles
ϖ(a, t) with time.

Under the assumption that no perturbations to the cen-
tral, point-like, gravitational potential are present and under the
assumption that the material in the disc does not self-interact,
neither gravitationally nor through hydrodynamical effects (e.g.
pressure/viscosity), e(a) and ϖ(a) do not depend on time.

However, for gaseous astrophysical discs the effects of pres-
sure and the presence of additional non-point-like terms of the
gravitational potential – for example, disc self-gravity, the pres-
ence of a second mass such as a binary star or a planet, oblateness
of the central mass or general relativistic corrections – cause the
disc to differentially precess at a rate ω(a), producing a twisted
eccentricity pattern and oscillations of the value of e(a, t) and
ϖ(a, t). Pressure, disc self-gravity, and viscosity transport these
oscillations as waves throughout the disc.

For the purpose of reducing the complexity of the equations
describing the dynamics of eccentric discs, e(a, t) and ϖ(a, t)
can be effectively merged in one complex quantity E(a, t) (e.g.
Ogilvie 2001; Goodchild & Ogilvie 2006; Ogilvie 2008):

E(a, t) = e(a, t)eiϖ(a,t). (A.1)

We note that the typographical difference between the eccentric-
ity e and the mathematical constant e.

Both linear (|E| ≪ 1 and |aEa| ≪ 1, that is q ≪ 1 in Eq. (6))
and non-linear theory predict the existence of a special set of
solutions of the form (e.g. Teyssandier & Ogilvie 2016; Ogilvie
& Lynch 2019):

E(a, t) = e(a)eiωt. (A.2)

In absence of dissipation, this expression implies that the
disc have a stationary e(a) profile that coherently precesses at
the rate ωi throughout the whole disc. If dissipation is present
the complex phase will also include a twist ϖ(a) of the pericen-
tre orientation, however the whole profile still precesses rigidly
conserving the shape of the twist. These configurations are called
‘eccentric eigenmodes’.

Eccentric eigenmodes are analogous to normal quantum
states. In the linear regime, E(a, t) can be described as a linear
superposition of eccentric eigenmodes

E(a, t) =
∑

i

ciEi(a, t) , (A.3)

where ci are complex coefficients. Out of the linear regime, non-
linear eigenmodes can be always identified even though they do
not superimpose in the same way.

The coexistence of multiple eccentric eigenmodes precessing
at different rates overall produces some peculiar secular oscilla-
tions in the shape of the eccentricity profile and precession rate
(e.g. see the evolution of the disc eccentricity in Thun et al. 2017
or Ragusa et al. 2018).

A.2. Linear theory and eccentric eigenmodes

In this section we provide an explanation of the origin of the
functional form of eccentric eigenmodes.

In the approximation of linear perturbations from circular
orbits, the unperturbed state has e = 0 implying a = R, mak-
ing it reasonable to develop the equations in standard cylindrical
coordinates.

The evolution of E(R, t) in a 3D locally isothermal disc,
due to pressure effects only (i.e. no self-gravity, no compan-
ion mass) is governed by (Ogilvie 2008; Ogilvie & Barker 2014;
Teyssandier & Ogilvie 2016):

ΣR2Ω
∂E
∂t
=

i
R
∂

∂R

(
1
2
Σc2

s R3 ∂E
∂R

)
+

ir
2

d
dR

(
Σc2

s

)
E

−
i

2R
∂
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(
Σ

dc2
s
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R3E

)
+

3i
2R
Σ

d
dR

(
c2

s R2
)

E. (A.4)

We note that eccentric eigenmodes profiles of the form
Ei(R, t) = ei(R)eiωit cause Eq. (A.4) to reduce to the form of:

ωiA(R)ei(R) =
d

dR

(
B(R)

dei

dR
(R)

)
+ C(R)ei(R). (A.5)

where A(R), B(R) and C(R) are real functions of the disc
parameters.

It can be shown that, after performing some change of vari-
ables, Eq. (A.5) can be rewritten in the form of the Shrödinger
equation:

−
d2Ξi(x)

dx2 + VΞi(x) = EiΞi(x), (A.6)

where x and a are related by:

dx
dR
=

[
ω0A(R)
B(R)

]1/2

. (A.7)

Functions ei(R) and Ξi(x) are related by:

Ξi(x) = ei(R)[A(R)B(R)]1/4. (A.8)

The effective energy eigenvalue Ei is given by:

Ei = −
ωi

ω0
, (A.9)

where ω0 relates with the disc thickness (H/R)0 and mean
motion Ω0 at the inner disc edge as follows:

ω0 =
1
2

(H
R

)
0
Ω0. (A.10)

The effective potential V(x) reads:

V = −
C(R)
ω0A(R)

+ (A(R)B(R))−1/4 d2

dx2 [A(R)B(R)]1/4. (A.11)

As a consequence, in analogy to quantum mechanics, there
exist a countable infinity of eccentric eigenmodes Ei(R, t). Pro-
grade (ωi) modes correspond to the finite number of negative
energy bound states of the potential. These solutions have the
form of Eq. (A.2), that is, they feature a stationary eccentricity
profile precessing at a rate ωi.
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A.3. Functional form of the eccentricity profile in circumbinary
discs

Following on from the previous section, we discuss the radial
eccentricity profile of eccentric eigenmodes. We solve Eq. (A.4)
assuming radial power-law profiles of surface density Σ ∝ R−σ
and soundspeed c2

s ∝ R−q. Under this assumption, it can be
shown that E(R, t) can be expanded in series as (Goodchild &
Ogilvie 2006; Ogilvie 2008)

E(R, t) =
∑

i

ai(t)Ψi(R), (A.12)

where {ai(t)} are complex coefficients, which depend on time
only. The functions Ψi(R) are functions of radius only and read

Ψi(R) = Rσ/2+q−1Zν
(
(R/Ri)β

)
, (A.13)

where Zν is a form of Bessel function that can be written as

Zν(x) = AJν(x) + BYν(x), (A.14)

where Jν and Yν are Bessel functions of the first and second kind,
respectively, with order ν which is related to q, σ, and β by ν2 =
β−2(2q + qσ + q2 + σ2/4 − 5). A, B, and {Ri} are set by the (zero
gradient) boundary conditions, ∂RΨi|ain = ∂RΨi|aout = 0 and an
appropriate normalisation condition.

In a locally isothermal, 3D, powerlaw, disc with only pres-
sure forces then β = (1 + 2q)/4 and Ψi correspond to the linear
eccentric eigenmodes (with Ψi = ei(R) as defined in Eq. (A.2)).
The fundemental mode is then given by

E0(R, t) = a0(t)Ψ0(R). (A.15)

When a quadrupole potential (e.g. from a binary), and non-
linear effects are included the fundermental mode will contain
contributions from the other Ψi’s. However, at order zero, the
radial part of the fundamental mode can be written in the form

e(R) = AR−γ
{
Jν

(
[R/R0]β

)
+ CYν

(
[R/R0]β

)}
, (A.16)

where C, β, γ, and R0 are constants whose value depend on the
powers of the profiles of Σ and cs, as discussed above, as well
as other disc properties and other assumptions (e.g. boundary
conditions), whileA sets the amplitude of the mode.

A simpler functional form can be found by solving Eq. (A.4)
by using the WKB approximation (Shi et al. 2012; Lee et al.
2019b; Muñoz & Lithwick 2020). Again, assuming radial power-
law profiles of surface density and soundspeed, it can be shown
that the eccentricity profile in a disc has the form

e(R) = AR−g exp
[
(R/r0)b

]
. (A.17)

Similarly to Eq. (A.16), b, g, and r0 are constants whose value
depend on the powers of the profiles of Σ and cs as well as other
disc properties, whileA sets the amplitude of the mode.

Appendix B: Vertical Structure including bulk
viscosity

It is possible to include bulk viscosity for calculating the disc
vertical structure, as follows: we introduce the T zz bulk viscous
stress tensor term Eq. (20), which becomes:

∂vz

∂t
+ va
∂vz

∂a
+ vϕ
∂vz

∂ϕ
+ vz
∂vz

∂z
= −

GM
R2

z
R
−

1
ρ

∂

∂z
(p − T zz) . (B.1)

where T zz is the bulk viscous stress tensor

T zz = µb

(
1
J
∂

∂ϕ
(JΩ) +

∂vz

∂z

)
, (B.2)

parametrised by a µb given by (Ogilvie 2001; Ogilvie & Barker
2014; Lynch & Ogilvie 2021):

µb = αb pΩ−1
0 . (B.3)

The addition of the T zz term causes Eq. (29) to become

Ω2 ∂
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∂H
∂ϕ
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−

GM
R3 H+

+
p0

ρ0H

[
1 −
αb

Ω0

(
1
J
∂

∂ϕ
(JΩ) +

Ω

H
∂H
∂ϕ

)]
. (B.4)

We note that in order to produce the same plots for αb , 0
one needs specify q and α in Eq. (7) and (8) making the param-
eter space larger. Since the solution would not be general, we do
not provide an example plot.

In practice, the main effect of the bulk viscosity term is an
azimuthal shift of the location of the minimum and maximum of
H with respect to the pericentre and apocentre of the orbit, where
minimum and maximum of H are located for αb = 0, respec-
tively. In addition, bulk viscosity produces also small changes in
the maximum and minimum vertical velocity reached along the
orbit.

Appendix C: A more general choice of the form of
ρ(a, ϕ, z) and p(a, ϕ, z)

It can be shown that the final form of Eq. (28) and (29) does
not change for different assumptions on ρ(a, ϕ, z) and p(a, ϕ, z),
with the only caveat that the form of ρ and p must guarantee
the separability of the solution in the variables in the midplane
(a, ϕ), or (R, ϕ), and z (see e.g. Ogilvie & Barker 2014).

ρ(a, ϕ, z) = ρ0(a, ϕ)Fρ(z/H), (C.1)
p(a, ϕ, z) = p0(a, ϕ)Fp(z/H), (C.2)
∂

∂z
Fp(z/H) = −

z
H2 Fρ(z/H), (C.3)

which are fully satisfied when the disc is assumed to be locally
isothermal as we did in Eqs. (23) and (24).

Appendix D: Channel maps and moment 1 maps

For completeness, we present in Fig. D.1 a selection of channel
maps obtained from the RT simulation for both the i = 0◦ and
i = 30◦. Both channel maps are obtained smoothing the ‘infi-
nite’ resolution synthetic image from MCFOST using a circular
Gaussian beam with ∆x = 0.05′′ and ∆v = 0.05 kms−1.
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Fig. D.1. Selection of channel maps from the RT model for the inclination i = 0◦ (top panels) and i = 30◦ (bottom panels), after smoothing the
synthetic image from MCFOST using a circular Gaussian beam with ∆x = 0.05′′ and ∆v = 0.05 kms−1. The velocity of each channel is marked in
the top left corner of each panel. The grey circle in the bottom left corner represents the corresponding beam size.
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