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Abstract

We examine various physical processes that may explain the shallow high-mass slope of the initial mass function
(IMF), as well as the low star formation rate (SFR) in star-forming molecular clouds (MCs) in the Central
Molecular Zone (CMZ). We show that the strong tidal field and shear experienced by the CMZ have opposite
effects on the collapse of density fluctuations and cannot explain these properties. Similarly, we show that the
intense magnetic field in the CMZ provides a negligible pressure support and, for the high densities at play, should
not modify the probability density function of the turbulent gas flow, thus affecting negligibly the IMF. However,
we show that, in contrast to the MCs in the Galactic disk, the ones in the CMZ experience only one single episode
of turbulence cascade. Indeed, their rather short lifetime, due to their high mean densities, is similar to one typical
turbulence crossing time. Consequently, according to the Hennebelle–Chabrier theory of star formation, within this
“single turbulence cascade episode,” the cloud experiences one single field of turbulence-induced density
fluctuations, leading eventually to gravitationally unstable cores. As shown in Hennebelle & Chabrier (2013), this
yields a shallower IMF than usual and leads to the correct observed slope for the CMZ star-forming clouds.
Similarly, this single large-scale turbulence event within the cloud lifetime yields a 5–6 times lower SFR than
under usual conditions, in agreement with the observed values. Therefore, we suggest that this “single turbulence
cascade” scenario can explain both the shallow IMF and low SFR of clouds in the CMZ.

Unified Astronomy Thesaurus concepts: Milky Way Galaxy (1054)

1. Introduction

The Central Molecular Zone (CMZ), i.e., the region within a
Galactocentric radius R; 300 pc, hosts several young massive
clusters, including the young nuclear cluster (YNC;
∼2.5–5.8 Myr, M� 2× 104Me; Lu et al. 2013) and the
Arches cluster (∼2–4Myr, M∼ 4–6× 104Me; Lohr et al.
2018), characterized by an unusual stellar initial mass function
(IMF) compared with the canonical IMF, which is usually
found to exhibit very little variation in various environments.
Indeed, the slopes of these IMFs, = µ a-( ) M dN dM M ,
have been found to be significantly flatter than the usual
Salpeter slope (α= 2.35), with α= 1.7± 0.2 for the YNC (Lu
et al. 2013) and a = 1.800.05

0.05–2.00.19
0.14 for the Arches cluster,

depending on the functional form fitted, with potentially a
strong steepening above ∼4–8 Me (Hosek et al. 2019). The
same behavior, with a = 1.680.09

0.13, has been found for the
Quintuplet cluster (Hußmann et al. 2012), although it is unclear
whether or not this is due to mass segregation for this slightly
older cluster. Other Galactic clusters might have slopes
consistent with that seen in the Arches cluster (e.g., Wd1,
NGC 3603; Lim et al. 2013; Pang et al. 2013; Andersen et al.
2017; Lu et al. 2020), although these results are more uncertain.
There is also tentative evidence that this shallow mass function
is also present for the prestellar cores, with an apparent excess
of high-mass sources, even though substantial uncertainties

remain in these measurements (Lu et al. 2020; Henshaw et al.
2023).
Furthermore, the mean value of the star formation rate (SFR)

in the CMZ is found to be about 
-M0.07 yr0.02

0.08 1, significantly
below the Kennicutt–Schmidt relation for its gas surface
density and about an order of magnitude below Lada’s
relationship (Lada et al. 2012) between the SFR and the mass
of dense, molecular gas, a relationship that holds for nearby
molecular clouds (MCs) as well as for external galaxies
(Longmore et al. 2013; Hosek et al. 2019). It is not clear yet,
however, whether this low SFR for the amount of dense gas is
also found for the CMZs of external galaxies or only for the
Galactic CMZ. Numerous studies have been devoted to the
unusual SFR of the CMZ, invoking, in particular, feedback
radiation or Galactic shear to explain its lower-than-expected
value (see Henshaw et al. 2023), with no real conclusive
explanation. To the best of our knowledge, however, only one
study has been devoted to the puzzle of the top-heavy, shallow
IMF of the CMZ clusters, though only through numerical
simulations (Dib et al. 2007).
In this paper, we examine both issues, IMF and SFR,

throughout an analytical exploration of the various physical
processes that could be responsible for these CMZ particular
properties. The paper is organized as follows. In Section 2, we
summarize the thermodynamic and dynamical properties of the
CMZ. In Section 3, we recall the various relevant scaling
properties for star-forming MCs. In Sections 4 and 5, we derive
the equations allowing us to characterize the impact of the
Galactic tidal field and shear on the IMF, respectively. In
Section 6, we examine the dynamics of the star formation
process in the CMZ and explore the consequences for both the
IMF and the SFR. Section 7 is devoted to the conclusion.
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2. Properties of the Central Molecular Zone

A recent summary of the properties of the CMZ can be found
in the review of Henshaw et al. (2023). The conditions in the
CMZ are extreme compared with the solar neighborhood and
comparable to those found in the early universe (e.g., Kruijssen
& Longmore 2013). The part where most of the molecular gas
is located, 45 r/pc 115, denoted the gas stream, includes
all the major cloud complexes in the Galactic center (GC).

The molecular gas in the CMZ is distributed along an
approximately ringlike, or possibly a more torus-like, structure
(Kruijssen et al. 2015), and thus follows eccentric orbits. This
gas exhibits velocity dispersions much larger than those
measured in Galactic disk clouds, indicating a much higher
level of turbulence, as found in extreme environments. Various
mechanisms can be responsible for injecting such amounts of
large-scale turbulence, a point we will examine in more detail
in Section 6.2.

The properties of the CMZ are the following (Henshaw et al.
2023). The temperature ranges from about 50 to 100 K, which
yields a typical sound speed CS; 0.4–0.6 km s−1. The scale
dependence of the mean density of MCs in the CMZ can be
inferred from the determinations of Tanaka et al. (2020) and
Krieger et al. (2020):
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However, while the first authors suggest M0= 103.5Me,
yielding n0= 6× 104 cm−3, the second group gets
M0= 200Me, and then n0= 3.8× 103 cm−3. Typical sizes
for star-forming MCs in the CMZ are Lc∼ 1–10 pc. The
scaling properties of the 3D rms velocity slightly differ from
the usual Larson relation, with
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where V0 is the 1D observational determination along the line
of sight. Whereas the power index η; 0.7 is found in most
studies, the observationally determined normalization at 1 pc
differs substantially. It should be stressed, however, that these
determinations do not probe the same scales! Using tracers CO
(3–2) and CO (1–0) from 1 to 100 pc, Krieger et al. (2020) find
a value V0= 2 km s−1. At smaller scales, in the range 0.1–1 pc,
Tanaka et al. (2020), using HCN as a tracer, find
V0= 10 km s−1. At even smaller scales, Henshaw et al.
(2019), using a different method to determine the velocity
dispersion, find an even larger value for the Brick,
V0(0.07 pc)= 4.4± 2.2 km s−1, substantially higher than extra-
polations from the above larger-scale determinations. Thus,
there seems to be an increase of the observed velocity
dispersion normalization with decreasing scale. It is worth
noting that while 1–100 pc scales are relevant for cloud scales,
the smaller (1 pc) scales are more representative of core
scales. As will be discussed later, it is important to take into
consideration this difference of scales in the observational
determination of the velocity dispersion, depending on whether
one considers clouds or prestellar cores, which is the case for
the IMF/core mass function (CMF). We will come back to the
issue in Section 5.1. In the study of Federrath et al. (2016),

devoted to one of the CMZ clouds, the turbulence appears to be
purely solenoidal, implying a factor b; 1/3 or even b= 0.2
for the turbulence driving parameter, a consequence of the
strong shear. This does not imply, however, that this dominant
solenoidal nature of turbulence applies to all clouds in
the CMZ.
Using Equations (1) and (2), we can determine a few

typical mean quantities for the CMZ (taking a fiducial value
= -n̄ 10 cm4 3), notably the Jeans length, l r= ¯C GsJ

0.4–0.6 pc, and Jeans mass, p l r= »( ) ¯M 4 3 50J J
3 –150 Me.

The typical 3D rms Mach number at the injection scale
(Li ; Lc for the star-forming clouds) lies in the range
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crossing time and sonic length:
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3. The Slope of the IMF

3.1. Impact of the Velocity–Size Relation

In the general gravoturbulent scenario of star formation
(Padoan & Nordlund 2002; Hennebelle & Chabrier 2008;
Hopkins 2012), density fluctuations in MCs are due to the
shock cascade of large-scale compressible turbulence char-
acterized by a log-density power spectrum d µ -( ) k n, where
d r r= ( ¯ )log , with a typical 3D index found to be very similar
to the one found for the velocity, n; 3.8 (Beresnyak et al.
2005). The variance of the dispersion of the log-density field
generated by turbulence at scale R is taken to be (Hennebelle &
Chabrier 2008, hereafter HC08)
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The variance at small (core) scale (R= Lc), which is what
really matters for the IMF, is found in hydrodynamical and
MHD simulations to be reasonably well described under some
conditions by the relation (Molina et al. 2012)
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where b = ( ) 2 A
2 and = V VA rms A is the 3D rms

Alfvenic Mach number, where m r= ¯V BA 3D 0 denotes the
3D mean Alfvén velocity, with μ0 the permeability of vacuum.
In the canonical Hennebelle & Chabrier theory of the IMF

(Equation (29) of HC08), the collapsing barrier for the density
fluctuations of scale R generated by turbulence reads
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where l=R̃ R J and =M̃ M MJ are normalized to the
Jeans length and the Jeans mass, respectively. =

 »l h l( ) ( )( ) 2
L

V

C3 1 pci S

J J 0 and ∼10 for Krieger et al. (2020)

and Tanaka et al. (2020) 1 pc normalizations, respectively, is
the Mach number at the Jeans scale. In the time-dependent
extension of the theory (Equation (21) of Hennebelle &
Chabrier 2013, hereafter HC13), the slope of the high-mass tail
of the IMF is given by

a
h

h
h
h s
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+
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2 1
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1

2 1

ln
. 9

2 2

One can already notice that, because of the larger-than-usual
Larson turbulent index η= 0.7 (instead of η≈ 0.5), the first
term in Equation (5) yields a shallower slope than the one
predicted in the solar neighborhood by a factor ∼0.25, while,
under the present conditions, the second term amounts to about
−0.1. This flattening reflects the high gas dispersion due to
more vigorous turbulence, which prevents large-scale star-
forming clumps from collapsing (Chabrier & Hennebelle 2011).
Then, although contributing to the flattening of the high-mass
tail of the IMF, this modification of the velocity–size relation of
turbulence is not sufficient to explain the aforementioned
observed values of α.

3.2. Impact of Gravity on the Probability Density Function

It must be remembered that the HC theory is based on the
assumption of a purely lognormal probability density function
(pdf) in MCs. There is ample observational evidence, however,
that the pdf of star-forming clouds develops a power law at
high density, due to the onset of gravity, and thus cannot be
entirely described by a lognormal form (e.g., Schneider et al.
2022). Recently, Jaupart & Chabrier (2020) developed a
predictive analytical theory to characterize the impact of
gravity on the pdf of turbulence. They demonstrated that the
power law will start to develop above a critical density

r r= ( ¯ )s logcrit crit given by the condition
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assuming that σ0 weakly depends on scale. This yields scrit; 9
for the value of V0 obtained by Tanaka et al. (2020) and
scrit; 5 for the value derived by Krieger et al. (2020). The fact
that no (or a quite small) power law is observed in the pdf of
MCs of the CMZ (Henshaw et al. 2023) suggests that V0 should
be close to the first value. This is also consistent with the higher
velocity amplitude suggested by Henshaw et al. (2019) for the
Brick. The Jaupart–Chabrier formalism thus shows that the
power law in the pdf of the CMZ will develop at a higher
density (or later for a given high enough density) than for
standard Milky Way MCs, highlighting again the vigorous
level of turbulence in these regions.

3.3. Impact of the Magnetic Field

The magnetic field in the CMZ ranges from about 10 to
1000 μG, a much stronger value than in the solar neighborhood
(Henshaw et al. 2023; Lu et al. 2024). It is generally admitted
that at high density the amplitude of the magnetic field scales as

rµB nB, with nB varying from 1/2 to 0 at very high density,
where it saturates. We examine both cases below.
In the case nB= 1/2, the magnetic energy in the virial

equation does not depend on the scale, so we simply need to
rescale the Jeans length as

⎜ ⎟
⎛
⎝

⎞
⎠

l
r

l
 + = =

h
¢

¢

¢

( )

( )
¯


11

C C V
C

G

V

C
; ;

1

3 1 pc
,s s

B s

s

B
2

A
2 1 2

J
0 J

2

where m r= ~ -¯V B 1 km sA 0
1.

In the case nB= 0, the impact of the magnetic field pressure
can be taken into account by rescaling (see Section 2.3.1
of HC13):
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The collapsing barrier is the same as in Equation (7) with the
rescaled value of.
Typical CMZ conditions yield ~ ~ V30, 1A A . For the

velocity dispersions of Tanaka et al. (2020), the correction on
, and thus on the slope, is found to be negligible. For the
smaller value of Krieger et al. (2020), the correction on the
slope is ∼0.05. In all cases, the impact of the magnetic field
pressure on the slope of the IMF is found to be too small to
explain the flattening of the high-mass tail of the IMF.
It is interesting to estimate the magnetic field that would be

necessary to explain the flattening of the high-mass slope of the
IMF, Δα∼ 0.6 (see Section 1). Using Equation (5), the slope
difference between the magnetized and nonmagnetized (B= 0)
cases is
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Picking the most favorable case, i.e., a small (1 pc), moderately
turbulent (Krieger et al. 2020; rms velocity normalization)
cloud, for the magnetic pressure to provide sufficient support to
explain the slope of the IMF, the magnetic field should be
about 3 orders of magnitude larger than the upper limit of the
aforementioned observed values. Using the velocity normal-
ization of Tanaka et al. (2020), the field would need to be at
least 5 orders of magnitude larger than this upper value.
However, depending on its dependence on density, the

magnetic field can modify or not the pdf of the turbulence in
the star-forming gas. In the case nB= 1/2, the magnetic field
yields a narrower variance than in the purely hydrodynamical
case, as seen from Equation (6). Recent observations (Lu et al.
2024) have allowed us to infer the turbulent component of the
magnetic field, Bt, in some clouds of the CMZ,

º = á ñ á ñ( )V V B B Vt tA,rms A,
2

tot
2 1 2

A,tot. Using their Table 1, we
get typical values of the rms Alfvenic velocity VA,rms≈
1–3 km s−1 and rms Alfvenic Mach numbers » 20A –40.
This yields β≈ 0.1–0.5. These values are consistent with the
results of the numerical simulations of Federrath et al. (2016).
In that case, we have verified that the modification of the pdf of

3
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the gas due to the strong turbulent magnetic field flattens
significantly the slope of the IMF and potentially yields values
consistent with the observed value. This will be illustrated later
on in Section 6.1. As will be seen, however, this depends on the
chosen value of the field at core scales, a quantity very difficult
to determine precisely.

However, a case nB= 1/2 in the magnetic field–density
dependence is probably not realistic for the high densities
typical of the CMZ clouds (  -n̄ 10 cm4 3). At such densities,
the gas and the magnetic field are decoupled and the shock
continuity equation is independent of the magnetic field
strength, yielding nB; 0 (Molina et al. 2012). In that case,
we recover the nonmagnetic, hydrodynamical regime
(β→∞ ), and the density variance in Equation (6) simply
becomes s = +[ ( ) ]bln 10

2 2 (Padoan et al. 1997).

4. The Tidal Field

Due to its central Galactic location, the CMZ experiences the
strong impact of the Galactic tidal field. The spherically
symmetric, enclosed mass distribution over the range
R= 1–300 pc has been derived by Launhardt et al. (2002).
The inferred mass profile has been shown by Kruijssen et al.
(2015) to be well modeled by a power law M(r)∝ r ξ with
ξ= 2.2 in the region 45< r/pc< 115 (solid-body rotation
corresponds to ξ= 3), which matches the radial extent of the
gas stream, where the star-forming clouds are located. The fact
that ξ> 2 implies that all the components of the tidal tensor are
compressible. The complete derivation of the equations is
given in Appendix A. As shown in this appendix, the global
collapse condition for an ellipsoidal overdensity r r̄R of scale
R in the presence of a tidal field becomes e es sR R

c
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where ˜ ˜ ˜a b c, , are the semiaxis of the ellipsoidal cloud, with ã
its longest length, normalized to the Jeans length; I is the
normalized deformation tensor; m r= ( ) ¯M r r 0.080 0

3 at
r0= 100 pc is the tidal factor; and qf produces a potential
flattened in the z-direction (qf= 1 corresponds to a spherically
symmetric potential). The best-fitting value to the orbital
parameters of the observed clouds yields qf= 0.63 (Dale et al.
2019). The first term in the brackets of Equation (A11) is the
usual HC08 barrier (see Equation (7)) while the second term is
the tidal contribution. Assuming, for sake of simplicity, that the
turbulence-induced perturbations remain nearly spherical
(a= b= c), the threshold collapse density becomes

r
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where k x= - + + f
-(( ) )q2 1 15 0.222 . We see that the

collapsing barrier is decreased uniformly by the tidal field by a
very small factor, μκ≈ 0.02 for the relevant parameter values.
The tidal field thus (slightly) favors collapse.

Although the tidal parameter is very small, it is nevertheless
interesting to examine its impact on the slope of the CMF.
Indeed, one can imagine that the role of the tides might be
increased by more complicated nonaxisymmetric mass dis-
tribution in the CMZ. Since the collapse barrier is decreased
compared with the usual one, we need to verify that the
condition below is fullfilled:
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This introduces a maximum scale R1 for collapse:
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Furthermore, as seen from Equation (17), the mass–size
relation is no longer monotonic. This implies one more
condition for collapse and thus another specific scale R̃2:

 h mk + + -h˜
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c
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For ˜ ˜R R2 1, >˜ ˜dM dR 0R
c , M̃R

c decreases with R̃, and the
clump will keep being gravitationally unstable, whereas in the
opposite case a clump with a density above the threshold value
may eventually become stable again after its initial collapse.
Since we are interested in the large scales of the IMF, R̃ 1,
we can estimate the maximum scale for pursuing collapse, R̃2,
as
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It is easy to verify that, under the present conditions,
mk»˜ ˜R R 2 3 12 1 . Therefore, if condition (16) is fullfilled,

so is condition (21). A case <˜ ˜R R2 1 would imply
μκ (2η+ 1)/(2− 2η)≈ 4. Under such conditions, tidal
effects could stabilize initially gravitationally unstable density
fluctuations, modifying drastically the formation of prestellar
cores. Given the relevant values of μ for the CMZ, however,
such a regime does not occur in this region.
It is not simple to compute the exact dependence of the

density on the critical mass under the combined action of
turbulence and tides. However, we can approximate µ g˜ ˜M R
with γ; 2η+ 1; 2 when turbulence dominates over tidal
effects (see HC08) and γ→ 0 when ˜ ˜R R2 (since

=˜ ˜dM dR 0R
c for this scale). Thus, the dominant term in the

expression of the IMF scales as (Equation (5))

= µ a- -˜ ( ˜ ) ˜
˜ ( )( )

M M
dN

d M
M

log
22

R
R

1

µ ˜
˜
˜ ( )de

dR

dR

dM
23

sR
c

µ h- - -g˜ ( )( )M . 241 12

Note that the first derivative, ˜de dRsR
c

, is not impacted by the
tidal contribution since the term modifying the usual barrier
does not depend on R. As γ→ 0, the slope of the IMF becomes
steeper and steeper, as expected since the tidal field favors the
collapse, as mentioned above. It is interesting to note, at this
stage, that for clump sizes R 1 pc, Tanaka et al. (2020, their
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Figure 3) derive a much steeper mass–size relation, µ d˜ ˜M R ,
with δ; 2.7. Assuming that these clumps are approximately in
equilibrium, this corresponds to a barrier ρ∝ R δ−3= R−0.3.
The dominant term in the expression of the IMF thus becomes

µ µd- -˜ ( ˜ ) ˜ ˜M M M M3 1.1, flattening the high-mass slope of
the IMF, but in any case still steeper than the observed slope.
As mentioned earlier, however, the aforementioned scales are
more characteristic of clouds than cores. For the latter typical
scales (1 pc), Tanaka et al. (2020) recover a value δ; 1.6, in
agreement with our above estimate 0 γ 2.

In summary, the tidal field slightly steepens the slope of the
IMF compared with the usual Salpeter value. As mentioned
previously, the main reason for this small impact of tidal
interactions is the high compressibility of the tidal field for the
inferred potential of the CMZ.

5. The Galactic Shear

Because it is located near the GC, the CMZ is also subject to
a strong shear. The role of the shear has been suggested in
many studies to explain the low SFR in the CMZ (e.g.,
Krumholz & Kruijssen 2015; Krumholz et al. 2017; Colling
et al. 2018; Henshaw et al. 2023, and references therein). The
impact of the shear on the IMF, however, has never been
studied in detail (see, however, Dib et al. 2012 for a study on
the observational side).

This impact is twofold. First, it contributes to the velocity
dispersion. Second, it distorts the shape of the star-forming
clumps. We examine both effects in detail.

5.1. The Shear as a Source of Velocity Dispersion

The calculations of the impact of the shear on the velocity
dispersion are detailed in Appendix B. As mentioned in
Section 2, the CMZ velocity dispersion seems to be well
described by the Larson relation, although with an exponent
(η; 0.7) larger than the usual value (η; 0.5). This reflects the
fact that the shear gradient contributes to the velocity
dispersion, besides turbulence (se,e e.g., Kruijssen et al.
2019). It must be kept in mind that observations are done
along a line of sight, so the observed velocity dispersion is the
1D total velocity dispersion:

= +( ) ( ) ( )V V V , 25D D D1 1
shear 2

1
turb 2

where (see Equation (B6))

⎜ ⎟
⎛
⎝
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⎠
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= -( ) ( )V
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r
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2
0.7

1pc
km s , 26shear

3
1

where ξ= 2.2 is the coefficient of the enclosed mass
distribution M(r)∝ r ξ determined from the gravitational
potential of the CMZ, with M= 5× 108Me at r= 90 pc
(Kruijssen et al. 2019). Here we have used the value of the
velocity normalization at 1 pc of Krieger et al. (2020),
V0= 2 km s−1. Indeed, as mentioned previously, this value has
been determined in the range 1–100 pc, whereas the observa-
tions of Tanaka et al. (2020) concern the smaller scales
(�1 pc), where the shear becomes negligible. The turbulent
velocity dispersion scales as µ hV Rturb

turb, with ηturb; 0.5 for
Burger’s like turbulence, while Vshear∝ R. The turbulent

dispersion velocity at 1 pc is thus given by

= - -( ) ( ) ( ) ( )
( )

V V V1pc 1pc 1 pc 1.6 km s .

27
1D
turb

1D
2 shear 2 1

Using a value ηturb; 0.5 for the index of turbulence,
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the scale at which the shear-induced motions will start to
dominate the turbulent ones is given by

⎛
⎝

⎞
⎠

=
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( )R pc 5 pc. 29
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Vshear
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sh

1
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This result is consistent with the value of 8 pc above which
Federrath et al. (2016) show that the shear dominates the
turbulent motions for the Brick cloud. These authors, however,
supposed in their study that the shear leads to a 3D dispersion
velocity, whereas the shear yields essentially 1D motions. This
assumption increases the role of the shear. Since at large scales
turbulence is isotropic, the turbulent velocity dispersion
dominates the total 3D velocity dispersion over a much
broader range of scale. Because of the 3 correction forV3D

turb in
Equation (29), in reality the shear dominates the turbulent
dispersion only for R 15 pc. The predicted scalings of the 1D
and 3D velocity dispersions are plotted in Figure 1. According
to Equation (1), the shear will thus affect the formation of large
MCs, for M 105 Me. This is consistent with the study of
Jeffreson et al. (2018): these authors suggest that while at large
(R 100 pc) and small (R 45 pc) galactocentric radii the
cloud lifetime in the CMZ is dominated by galactic shear, cloud
evolution in the zone in between, which corresponds to the
region of compressible tidal field, is dominated by dynamically
compressive mechanisms. Consequently, clouds at short and
large galactocentric distances are expected to be sheared apart
before collapse.
Therefore, at the 10 pc scale, i.e., for the star-forming

clouds, the shear plays no or a modest role because the medium
is very dense. It might affect indirectly the mean SFR of the
whole CMZ—since fewer clouds are formed, fewer stars are
formed—but not the very star formation process, and thus the
IMF. Therefore, at these scales, we should expect the exponent
of the velocity–size relation to be η; 0.5, the usual Larson
coefficient characteristic of the compressible turbulence
cascade, instead of the observed value η= 0.7 for the
determination of the IMF. Indeed, it is worth noting that there
is a significant dispersion in the data (see Figure 4 of Tanaka
et al. 2020) and a value η= 0.5 is well compatible for sizes 1
pc and is probably more physically justified. We will thus use
η= 0.5 as the fiducial value for the velocity scale at the core
scales in our calculations for the IMF. This well-established
Burgers value for shock-dominated turbulence is confirmed by
most observations in MCs (see, e.g., review by Hennebelle &
Falgarone 2012). It should be noted that Henshaw et al. (2020)
suggest a value η= 0.37 for the Brick. We have verified that
using this value does not affect qualitatively our results,
presented in Section 6.1. Note also that these observations rely
on one single cloud in the CMZ, with a relatively low large-
scale rms Mach number, namely  11 (Federrath et al.
2016). Therefore, the observations of the substructure in the
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Brick observed by Henshaw et al. (2020) are unlikely to be
representative of the star-forming cloud population in the CMZ.

As shown in Appendix B, the collapse condition with the
shear becomes (see Equation (B8))

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

x m
= + +

-h

˜
( ˜ ) ˜ ( )e

I c
a c

2 1
1

3

2 3
, 30s

2
2 2

2
2c

where m r= ( ) ¯M r r 0.430 0
3 . The expression is similar to the

one due to the tidal force (Equation (16)), but, in contrast to the
latter, the shear always acts as a support to star formation, and it
vanishes in case of solid-body rotation (ξ= 3), as expected.
The reason is that the shear tears apart the gas accumulating in
a given region, softening the local gravitational potential and
thus allowing more gas to accumulate before collapsing
eventually. As in the tidal case, we can estimate the impact
of this support on the CMF. Using again M∝ R γ with
γ; 2η+ 1 when the shear is negligible compared to the
turbulence and γ→ 3 when R? 1, the dominant term in IMF
scales as

µ µ h- - -g

˜ ˜
˜ ( )( )dN

d M

de

dM
M

log
. 31

R

s
1 1R

c
2

As γ varies from 2η+ 1≈ 2 to 3, the slope varies from −1.25
to −1.2. The impact on the slope of the IMF due to the shear
velocity dispersion is thus very small.

It should be mentioned that some studies have suggested that
the impact of the shear on the dispersion velocity is comparable
to the one due to turbulence (Federrath et al. 2016; Petkova
et al. 2023). As mentioned previously, however, these studies
suppose that the shear leads to a 3D dispersion velocity,
whereas it should affect essentially 1D motions, yielding a
smaller global impact.

5.2. The Shear as a Source of Deformation

The second effect of the shear is to distort the star-forming
clump. The deformation of the semiaxis of a clump of size R
due to the shear gradient during a typical turbulent timescale,
assuming that the gas velocity is the shear velocity, can be

estimated as (see Equation (B6))

t= +  ( )a

c
v1 2 32r ct
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1 0.6
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, 33rms

0

1 0.3

where t = R V D
ct rms

1 is the typical turbulent crossing time at
scale R and we have taken V0= 2 km s−1 and η= 0.7 for the
velocity–size relation for the cloud. This value is comparable to
the one found in Krieger et al. (2020) and Tanaka et al. (2020),
between 1.2 and 1.6. For a collapsing cloud, however, a more
relevant timescale is the freefall time. Replacing τct by τff in the
equation above, we get a value » 1.07a

c
for a 4 pc cloud like

the Brick.
The correction due to the shear deformation on the

collapsing barrier can be estimated by considering the integral
of the deformation tensor (Chandrasekhar 1987), I(a/c= 1.6,
b/c= 1); 1.9 and I(a/c= 1.07, b/c= 1); 1.09. The collap-
sing barrier is thus slightly increased because of the stabilizing
effect of the ellipsoidal deformation.
Therefore, although the shear can have a substantial

stabilizing effect for large-scale, noncollapsing clouds, it is
negligible for small-scale collapsing ones.
The above two sections show that both the shear and the

tides slightly affect the IMF slope of star-forming clumps in the
CMZ (as a source of either deformation or velocity dispersion)
within about the same order of magnitude, although with
opposite contributions, yielding a global negligible effect. For
the sake of completeness, we have examined in Appendix C the
cumulative effect of tides and shear. In order to maximize the
effects, we have considered ellipsoidal density fluctuations.
The global result is that the collapsing barrier is found to be
lower than the usual HC one. This was intuitively expected
since, while the shear acts only in one dimension, the tides act
in the three directions and thus dominate the global impact.
However, the final result remains unchanged, as the global
effect is found to be too small to explain the shallow IMF. It is
worth pointing out that the results strongly depend on the
chosen parameters at the cloud scale, b, V0, and n̄. The impact

Figure 1. Top: 1D (observed); bottom: 3D total velocity dispersion.
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on the CMF is maximized for a high velocity dispersion
(typically 10 km s−1) and low density = ´ -n̄ 2 10 cm3 3. Such
densities, however, seem to be inconsistent with the star-
forming main cloud conditions observed in the CMZ.

6. The Dynamics of Star Formation in the CMZ

6.1. The Mass Function

There are observational suggestions that star formation in the
CMZ does not occur continuously but through episodic
starbursts (Yusef-Zadeh et al. 2009; Kruijssen et al. 2014;
Henshaw et al. 2023). This is supported by numerical
simulations that suggest bursts lasting about ∼5–10Myr and
separated by about ∼20–40Myr, about the time for the clouds
to migrate inward to the gravitationally unstable region at
R∼ 100 pc (Krumholz & Kruijssen 2015; Krumholz et al.
2017), a process also found for other extragalactic nuclei (see
review by Henshaw et al. 2023). The fact that the CMZ would
be currently between two starbursts provides a plausible
explanation for its particularly low SFR (see, e.g., Krumholz
& Kruijssen 2015).

As shown, e.g., by Jeffreson et al. (2018), clouds are
expected to collapse and form stars at radii from ∼45 to 100 pc,
where shear is reduced and gas accumulates, while at short and
large galactocentric distances the clouds are expected to be
sheared apart before collapse and star formation occur, yielding
low star formation efficiency (see, e.g., Krumholz & Kruijs-
sen 2015; Jeffreson et al. 2018). Because of their high densities,
these clouds have short lifetimes, ∼0.3–4Myr (Kruijssen et al.
2015; Jeffreson et al. 2018). Interestingly enough, this
corresponds to about one turbulence crossing time,
t L Vcct rms

1D , for the clouds of interest, with Lc∼ 1–10 pc.
Furthermore, given their short typical lifetimes compared with
the timescale between two starburst episodes (see above), the
clouds have experienced only one such episode before
collapsing. In any case, the fact that τcloud< τct implies that
the cloud experiences only one turbulent episode during its
lifetime. According to the Hennebelle–Chabrier time-depen-
dent theory (Hennebelle & Chabrier 2011, 2013), the crossing
time at the cloud scale is the typical time that is necessary for
the density field generated by large-scale turbulence to be
significantly modified, triggering a new set of density
fluctuations, statistically independent of the former one. In
strongly magnetized flows, as in the present case, the time
required to rejuvenate a self-gravitating structure is even
longer. Therefore, star formation within clouds in the CMZ
should occur rapidly, throughout one single episode of large-
scale injection of turbulence.

In that case, the static, time-independent approach of the HC
theory should be used instead of the time-dependent one.
Indeed, in the latter case, small-scale density fluctuations can
keep collapsing during the collapse of large ones (which have a
longer freefall timescale) because turbulence is constantly
replenished at the the cloud scale during the cloud lifetime
(t t<ct ff

0 ). In contrast, for the CMZ conditions, the above
estimate shows that the cloud has collapsed before the first
episode of turbulence has had time to dissipate and a new one
will be generated at large scales.

As shown in HC13, the time-independent description of the
IMF yields a shallower IMF than the time-dependent one, by a
factor Δα= (η− 1)/(2η+ 1) (see their Equations (24) and
(25)). This is illustrated in the left panel of Figure 2. While the

time-dependent derivation yields a too-steep high-mass tail for
the IMF, the time-independent formulation properly reproduces
the observed value. We stress the fact that there is no adjustable
parameter in this theory. It is just applied in the present context
to the characteristic properties of the CMZ star-forming clouds
(Section 2). In order to verify this result, we have carried out
the same type of calculations with the Hopkins (2012)
excursion set formalism (long-dashed line in Figure 2). As
seen in the figure, the result is confirmed.
It is worth noting that, as seen in the figure, not only does the

time-dependent calculation fail to reproduce the correct value
for the Arches cluster, but it does not even recover the Salpeter
value. This seems to be at odds with Figures 1 and 2 of HC13,
which show that, for standard MW clouds, the time-dependent
theory yields the correct slope. The key point is that while usual
Larson MW conditions correspond to  2 , the present
ones give  10 for the velocity dispersion appropriate to
the core scales (Tanaka et al. 2020; see Section 3.1). As shown
in HC08 (their Figure 1), the larger  is, the shallower the
high-mass slope, a consequence of the more vigorous
turbulence cascade. Such levels of turbulence are reached in
massive early-type galaxies, even though the proper slope of
the IMF is recovered with the time-dependent HC theory
(Chabrier et al. 2014). These galaxies, however, are at least 10
times denser than in the present case (see Table 1 of Chabrier
et al. 2014), increasing the role of gravity to counteract the one
of turbulence in the collapse process. This confirms the fact
that, for typical density–turbulence conditions in CMZ star-
forming clouds, an ongoing injection process of large-scale
turbulence cannot produce the observed high-mass slope, in
contrast to the “one single turbulence injection episode”
scenario.
For the sake of completeness, we also show in the right panel

of Figure 2 the IMF obtained in the time-independent case if
the pdf of the cloud is modified by the strong magnetic field for
the (unlikely) case µ ¯B n1 2, as discussed in Section 3.3. We
have used the more appropriate velocity dispersion value of
Tanaka et al. (2020) for the cores (see discussion in
Section 3.2). In that case, the high-mass slope of the CMF is
flattened and becomes consistent with the observed value.
However, such a field–density amplification is unlikely to
occur for CMZ cloud densities. Indeed, the magnetic field is
usually found to saturate at densities 104 cm−3 (e.g., Hu &
Lazarian 2023). As discussed in Section 3.3, in that case the
magnetic field plays no role in the gas pdf.
As shown in HC08, the transition from the large-scale

turbulence-dominated regime to the small-scale thermal one
corresponds to a mass  »h-˜ ( )M 2 0.021 under the
present conditions against ∼0.8Me for usual cloud conditions
(see Equation (45) of HC08). Therefore, whereas for usual MW
conditions the peak of the IMF ( =˜d dM 0) occurs in the
thermal regime, under the present conditions it occurs in the
turbulence-dominated one, as shown in Figure 2. From the
physical point of view, this means that under CMZ cloud
conditions the vigorous turbulence can generate and prevent
from collapsing a larger number of density fluctuations than
under usual conditions. Note also that the warmer gas provides
a larger thermal support. We stress again that, as explained in
detail in Chabrier & Hennebelle (2011), the role of turbulence
in the HC theory of the IMF should not be considered in a static
(pressure-like) sense because turbulence has already dissipated
by the time the prestellar core is formed. Turbulence in the HC
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sense must be understood as a dynamical, statistical process,
turbulence generating at the very initial stages a field of density
fluctuations and sweeping away the ones not dense enough to
have a chance to collapse under the action of gravity, allowing
more gas to accumulate locally before becoming gravitationally
unstable. By the time a dense enough fluctuation has started to
collapse into a prestellar core, the turbulence at the core scale
has dissipated and has become transonic or subsonic. What
matters in this formalism is thus the turbulence rms velocity
rather than pressure.

6.2. The Source of Turbulence

Various sources of turbulence driving in the CMZ have been
examined in Kruijssen et al. (2014) and Henshaw et al. (2023).
Among different processes, these authors found that bar inflow
could explain the observed turbulent energy. This is confirmed
in a study by Sormani & Barnes (2019), who find that gas
inflow is a promising candidate for driving the turbulence in the
CMZ. It is indeed well-known that the bar transports matter and
energy radially from the Galactic disk to the CMZ (see, e.g.,
Krumholz & Kruijssen 2015; Portail et al. 2017). Mass
transport is a natural consequence of the disk instability, as
the strongly nonaxisymmetric structure of the Galactic bar
exerts torques that tend to drive angular momentum out and
thus yield inward mass transport by angular momentum
conservation. When mass is transported inward through the
disk and down the overall potential well, part of the
gravitational energy gain can be converted into turbulence
(see, e.g., Wada et al. 2002). Shear stress, notably near the
boundary between the (inner) gravitationally dominated region
and (outer) shear-dominated region of the CMZ, will also
contribute to turbulent driving at large scales. On the other
hand, estimates of energy injected by supernovae in the CMZ,
after a first generation of stars has been formed, are also found
potentially to contribute significantly to turbulence in the CMZ
(Henshaw et al. 2023). This list, of course, is not exhaustive,

and processes like acoustic or MRI disk instabilities might also
contribute to the turbulence driving, even though it seems
difficult for these processes alone to sustain the observed high
levels of turbulence (Henshaw et al. 2023). All these processes,
at different levels, constantly drive high levels of velocity
dispersion in the CMZ. This provides the seed for the
generation of density fluctuations, once enough gas has
accumulated again in the potential dominated region, after
the leftover gas due to the previous star formation episode has
been dispersed. This will provide the turbulent dense gas
reservoir necessary to generate a new field of density
fluctuations, eventually yielding a new starburst episode.
Interestingly enough, note that 30–40Myr, the expected
duration of the quiescent phase, is about the lifetime of a
8Me star, the smallest mass for Type II supernova progenitors,
before it explodes as a supernova. During this period,
supernova explosions will at the very least slow down the
inward gas inflow. This provides a support, besides the
aforementioned inward gas migration argument, for the
duration of the quiescent phase. Furthermore, as mentioned
by Krumholz & Kruijssen (2015), “quiescent” does not
necessarily mean that the gas is completely depleted, but
rather that it is driven out of a self-gravitating state.

6.3. The Star Formation Rate

The fact that star formation occurs within one single
turbulent episode will also reduce the SFR. Indeed, once a
fluctuation of scale R has collapsed, it will not be rejuvenated
by a new episode of turbulence cascade dissipation. In that
case, the derivation of the SFR per freefall time yields
(see HC13)

ò r
=

( )
¯

( )M M
dMSFR 34

M

ff
0

0

cut

ò r r=
r

+¥
( ˜ ) ˜ ( )

˜
 d 35

cut

Figure 2. Left: IMF dN d Mlog calculated with the time-dependent (HC13; short-dashed line) and time-independent (HC08; solid line) Hennebelle–Chabrier theory
for a magnetized cloud of size Lc = 10 pc with no impact of the magnetic field on the pdf (B∝n0). Long-dashed line: time-independent IMF calculated with the
Hopkins (2012) excursion set formalism; dotted line: Salpeter IMF; dashed–dotted line: IMF observed for the Arches Hosek et al. (2019). Right: IMF calculated with
the time-independent (HC08) theory for two representative values of the turbulent magnetic field from Lu et al. (2024) taking into account the modification of the
variance of the pdf (Equation (6)), which corresponds to β = 0.25 and 1, respectively. This supposes a field–density dependence B ∝ n1/2, and we have taken the
velocity normalization of Tanaka et al. (2020).
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where r r r=˜ ¯ and we assume that the probability distribution
depends weakly on scale R. As in HC13, we take
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Compared with Equation (45) of Hennebelle & Chabrier
(2011), we notice the absence of the prefactor s( )e 3 82

, which
stems from the disappearance of the density freefall timescale
r̃1 2 in the integral.

Figure 3 compares the SFR predicted by the usual time-
dependent HC theory for fiducial MC conditions
( s= =  b15, 0.5 2) with the SFR typical of CMZ
conditions ( s= =  b100, 0.3 2.6). We see that
assuming that star formation in CMZ MCs occurs throughout
one single episode of turbulence injection at the cloud scale
reduces the SFR by about a factor 5–6. As shown in Figure 3,
this ratio depends very weakly on the choice of ycut.

A point worth mentioning is that feedback has often been
suggested as an explanation to reduce the SFR in the CMZ. At
least dynamical feedback, however, is already implicitly taken
into account in the stronger-than-usual velocity dispersion and
in the modified index n of turbulence through the Larson
parameter η. Indeed, as shown in HC08 (their Equation (24)),
both indexes are related through the relation η= (n− 3)/2. The
observed value η= 0.7 thus implies an index of turbulence
n= 4.4, larger than the Burgers value. It seems thus reasonable
to suggest that the shear and the dynamical feedback are the
reasons for such a modification of the velocity dispersion
relation in the CMZ. Distinguishing between the turbulence

and shear contributions, however, is generally not done in the
observational analysis.
Some simulations have pointed out the shear for lowering

the SFR both in the solar neighborhood (Colling et al. 2018)
and in the CMZ (Emsellem et al. 2015; Dale et al. 2019; Li &
Zhang 2020), even though Dib et al. (2012) show that the
impact of the shear on the SFR is not relevant far from the GC.
This seems to be in contradiction with the analysis carried out
in Section 5.
These studies, however, consider a much less dense medium

(or much larger clouds) than the one characteristic of the CMZ,
although with a strong shear. As shown in Section 5, the more
diluted the medium, the greater the impact of the shear.
Similarly, Federrath et al. (2016) have suggested that turbulent
velocity dispersion, density, and forcing parameter like the
ones observed in the Brick cloud and used in Kruijssen et al.
(2019) lead to the right SFR. However, as mentioned in
Section 5, these authors assume in their analysis that the shear
acts in the three directions. Taking a more reasonable
assumption of a 1D action of the shear, we have shown that
its effect is much more modest in the region of the star-forming
clouds.

7. Conclusion

In this paper, we have examined various physical processes
that may explain the shallow high-mass slope of the IMF, as
well as the low SFR in star-forming MCs in the CMZ. We
show that neither the strong tidal field nor the Galactic shear
experienced by the CMZ can explain these unusual properties,
in the molecular gas region where star-forming clouds form.
Both effects have a negligible impact in this region. Moreover,
interestingly enough, shear and tidal interactions have opposite
effects. While tides lower the collapsing barrier, promoting the
collapse of overdense fluctuations, the shear increases the
barrier, bringing support against collapse. Both effects are
similar and nearly compensate. Similarly, we show that the
intense magnetic field in the CMZ provides a negligible
pressure support and does not modify the pdf of the turbulent
gas flow in the clouds, except if it does not saturate and keeps
being amplified at these high densities. This hypothesis lacks a
robust physical explanation and is thus unlikely.
In contrast, we show that, contrary to the case of MCs in the

Galactic disk, clouds in the CMZ experience only one single
episode of turbulence injection at large scales, most likely due
to bar instabilities and radial mass transport (see Section 6.2).
Indeed, their rather short lifetime, due to their high mean
densities, is similar to one typical turbulence crossing time at
the injection (i.e., cloud) scale. Consequently, according to the
Hennebelle–Chabrier theory of star formation, within this
“single turbulence episode” scenario, the cloud experiences one
single field of turbulence-induced density fluctuations, leading
eventually to gravitationally unstable prestellar cores. New
generations of large-scale turbulence-induced density fluctua-
tions have no time to occur. As shown in Hennebelle &
Chabrier (2013), for a given cloud mass, this yields a flatter
IMF than usual, leading to the correct observed value for the
characteristics of the CMZ star-forming clouds. We also
suggest that the severe steepening observed in the IMF of the
Arches cluster, with an age of ∼2–4Myr, above ∼40Me
(Hosek et al. 2019) can be explained by the maximum lifetime
of these stars before they explode as supernovae. More massive
stars have already exploded as supernovae.

Figure 3. Ratio of the SFR in the Galactic plane (GP) and in the CMZ from
the HC13 model as a function of r̃cut. The SFR in the CMZ is calculated from
the time-independent model (Equation (36)) with parameters characteristic of
the CMZ. The SFR in the GP is calculated from the time-dependent model
from HC13 with parameters characteristic of the GP.
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Furthermore, this single large-scale turbulence event within
the cloud lifetime yields by itself a 5–6 times lower SFR than
under usual MW cloud conditions, again in agreement with the
observed values. Therefore, we conclude that our “single large-
scale turbulence injection” scenario for CMZ star-forming
clouds provides a plausible, consistent explanation for both the
observed shallow high-mass slope and the low SFR in
the CMZ.

Appendix A
Tidal Tensor and Virial Collapse Condition

We consider an MC whose center of mass m0 is at a distance
r0 from the GC. We also consider a mass m1=m0 located in
the MC at the position r from its mass center and at r1= r0+ r
from the GC. The mass in the CMZ creates an axisymmetric
gravitational field f. The tidal force on m1 is the difference
between the force exerted on m1 and the one exerted on the
center of mass of the system {m0+m1}:

f f = - + -[ ( ) ( )] ( )F r r rm . A1t 1 0 0

As the mass of the cloud is very small compared with the one
generating the tidal field, we neglect its gravitational field. A
Taylor expansion in the Cartesian frame ex, ey, ez (as in Dale
et al. 2019), ex∥r0, yields

f
= -

¶
¶ ¶

( ) ( ) ( )r rF m r
x x

. A2t
j

k
k j

1

The tidal term involved in the virial theorem is given by

ò òr r
f

= -
¶
¶

( )fT r dV
r

r dV , A3ii t
i

i
i

i2
2

where ri= x, y, or z and ft= Ft/m1 is the tidal force by unit of
mass. Note that in the last equality we neglected the
nondiagonal terms of Equation (A2) because they correspond
to negligible corrections. The system of coordinates used here
is summarized in Figure 4. In the cylindrical frame associated
with the GC, the radial gravitational field is given by

f
x

= -  =
-

( ) ( ) ( ) ( )
( )

( )G er
GM r

r
r r

GM r

r1
, A4

2

where M(r)∝ r ξ is the mass enclosed within a radius r, with
ξ= 2.2 the value determined from the gravitational potential of
the CMZ (Launhardt et al. 2002; Kruijssen et al. 2015; solid-
body rotation corresponds to ξ= 3). Using dr/dy= y/r0 and
considering the flattening of the gravitational field along the z-
axis (Dale et al. 2019), we deduce the three diagonal
components of the tensor:

f
x

f f¶
¶

= -
¶
¶

=
¶
¶

=
f

( ) ( ) ( ) ( )

( )
x

GM r

r y

GM r

r z

GM r

q r
2 ; ; ,

A5

2

2 3

2

2 3

2

2 2 3

where qf produces a potential flattened in the z-direction. As
ξ> 2, all components of the tidal tensor are compressive.
Doing the usual change of variable between Cartesian and
spherical coordinates for an ellipsoid yields for the components
of the tidal tensor

x
=

- ( ) ( )T M c
GM r

r

2

5
, A6xx c

2 0

0
3

= -
( ) ( )T M b

GM r

r

1

5
, A7yy c

2 0

0
3

= -
f

( ) ( )T M c
GM r

q r

1

5
, A8zz c

2 0
2

0
3

whereMc is the total mass of the studied MC and a, b, and c are
the three lengths of the ellipsoid.
An equation of motion can be written for each axis:

¶
¶

= + + + ( )I

t
PV K W T

1

2
2 , A9ii

ii ii ii

2

2

where Iii, Kii, Wii, and Tii denote, respectively, the inertial,
kinetic, gravitational, and tidal tensors. Denoting x̃ the
quantities normalized to the Jeans length, l r= ¯C GsJ , Jeans

mass, p rl= ¯M 4 3J J
3, and mean freefall time, t r= ¯G1 , one

gets after calculations

pa
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h
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with m r= ( ) ¯M r r 0.080 0
3 and qf= 0.63 (Dale et al. 2019).

For the sake of simplicity, we neglect the possible modification
of turbulence by accretion on or dissipation of the cloud and
thus replace a2 η by a(t= 0)2η, where a is the longest length of
the cloud.
Following the Hennebelle–Chabrier formalism, the global

collapse condition is obtained be summing these three
equations:

⎡
⎣

⎞

⎠
⎟

⎤

⎦
⎥
⎥

r

r
m

x= = + - -

+ +

h

f

¯ ˜
( ˜ ) ˜ (( )

˜
˜
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( )

e
I c

a c

b
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a
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2 1
1

15
2

, A11

s R
c

2
2 2 2

2

2

2
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c

where ò=
¥

+ + +( )( ) ( )
( )

)( )(
I a b c, , du

u u u
0

1 1 1c

a

c

b

2 2
(Chandrase-

khar 1987). The first term in the brackets is the usual HC08
barrier, while the second term is the tidal contribution.

Figure 4. Reference frame for the calculation of the tides and the shear.
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Appendix B
Shear

We consider a rotating frame of angular velocity Ω
associated with the center of mass of a cloud located at a
distance r from the GC. Using the usual transformations for
time derivatives between the rotation and inertial frames (at the
GC), we deduce the relation at any point of the cloud:

d d dW+ = + - ´ +( ) ( ) ( ) ( ) ( )v r r v r r r rr , B1r i

where δr= x ex+ y ey in the rotating basis, Ω=Ω ez, and
vi=Ω(r+ δr)× (r+ δr). Thus,

d d
d d

W
 W

= + ´ + - W
= + ´

( ) ( ( ) ( ))
( ) [( · ) ( )] ( )

v r r r r r
r r r r . B2

r

We define the axis orientation illustrated in Figure 4. We thus
have

d= + = +
+

+∣ ∣ ( )r rr r
x y

r

x

r
1 2 . B31

2 2

2

At first order, we deduce r1= r+ x. Then, using this
expression, we have

d= - + ´
W

= -
W( ) ( )v r r e ex

d

dr
rx

d

dr
. B4r z y

The minus sign comes from the fact that Ω is oriented in the
direction opposite to ez. To compare with the conditions used in
simulations (Dale et al. 2019; Kruijssen et al. 2019), we give
the numerical value of the velocity gradient:

  

x
 =

W
=

-

´ - - - - -

( )

( )

v r
d

dr

GM r

r

3

2
1 10 s 0.7 Myr 700 km s kpc ,

B5

r 3

14 1 1 1 1

where ξ= 2.2 is the coefficient of the mass distribution
M(r)∝ r ξ determined from the gravitational potential of the
CMZ, with M= 5× 108 Me at r= 90 pc (Kruijssen et al.
2019). This value is larger than the one used by Colling et al.
(2018); this is due to the fact that in these simulations they are
far from the GC. At first order, the velocity dispersion only
exists along the y-axis, but at second order there is also an
effect along the x-axis, as emphasized by Kruijssen et al. (2019,
see their Table 3). In the rotational frame, the velocity
dispersion at scale R is thus

 ⎜ ⎟
⎛
⎝

⎞
⎠

=  - ( )v v r
R

0.7
1 pc

km s , B6r r
1

which is smaller by at least a factor of 3 than the turbulent
velocity dispersion (see Section 2). The associated energy per

unit mass can be estimated as

⎛
⎝

⎞
⎠

x
=

- ( ) ( )v
GM r

r
R

1

2

1

2

3

2
. B7r

2
2

3
2

The collapsing barrier in HC08 thus becomes

⎡
⎣⎢

⎛
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where m r= ( ) ¯M r r 0.080 0
3 .

Appendix C
The Cumulative Role of Shear and Tides in the Stability of

an Ellipsoidal Deformable Perturbation

In the global energy budget of the perturbation, the shear is
dominated by the tides because the latter act in three directions
while the shear applies only on one axis. In order to quantify
the global effect, we solve the complete system of the three
virial equations accounting for both shear and tides. Starting
from Equation (A10) and adding a velocity dispersion coming
from the shear along one of the axes (here the axis c, the one
for which the shear is the strongest relative to the tides), we
have

⎛
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where m r= ( ¯ )M r0 0
3 is the mass enclosed within a galacto-

centric radius r0= 100 pc, M(r)= r ξ with ξ= 2.2, as inferred
from the galactic density profile. By comparing the tidal terms
and the shear term, we notice that the support from both the
shear and the tides increases when ξ→ 0 (ξ= 3), i.e., when the
density quickly decreases. Note that the shear supports
tangentially the cloud, explaining why the shear term enters
in the equation of evolution of the axis b.
In the case ξ= 2.2, we have the equality

⎛
⎝

⎞
⎠

x x-
- = -

-
< ( )5

2

3

2

1

2

2

2
0. C2

2

The evolution of the axes b and c will thus be the same, and the
three axes will collapse if the initial density is the one given by
the HC08 critical density in spite of the support of the shear.
This confirms that the shear is dominated by the tides. This is
illustrated in Figure 5.
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