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S U M M A R Y 

The Gr üneisen parameter is an important parameter for the thermal state and evolution of the 
core, but its uncertainties and their implications are sometimes ov erlooked. Sev eral formalisms 
using different parameters values have been used in different studies, making comparison 

between studies difficult. In this paper, we use pre viousl y published data sets to test the 
sensitivity of modelling the thermal state of the early core to the different formalisms and 

parameter values used to describe the evolution of the Gr üneisen parameter with density. The 
temperature of the core obtained in our models is less sensitive to the uncertainties of the 
parameters used in Al’Tshuler et al. formalism than the uncertainties of the parameters used 

in Anderson formalism. 

Key words: Composition and structure of the core; Equations of state; High-pressure be- 
haviour; Numerical modelling; Planetary interiors. 
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 I N T RO D U C T I O N  

onstraining the core heat content, whether at the present time
Lin et al. 2003 ; Labrosse 2015 ) or for the primitive core (Clesi
 Deguen 2023 ), implies making assumptions on the thermal ex-

ansion and compressibility of the core components. For this, the
r üneisen parameter (first defined in Gr üneisen 1912 ) is often used.
his parameter has the advantage of being comprised between 0.9
nd 2 for metallic materials, which is a narrower range than the
hermal expansion coefficient or bulk modulus, and its value has
een determined b y dif ferent methods : thermodynamic modelling
Anderson 1967 ; Al’Tshuler et al. 1987 ), ab initio (Dubrovinsky
t al. 2000 ; Alf è et al. 2007 ), experiments (Jeanloz 1979 ; Umemoto
 Hirose 2015 ). Using the Gr üneisen parameter allows to simplify

he models by getting rid of the thermal expansion parameter α
hich is more sensitive to the composition. 
Ho wever , there are several approaches to model the variations

f the Gr üneisen parameter, especially with pressure. Some stud-
es assume a constant value (Anderson & Ahrens 1994 ; Labrosse
015 ), some use the Al’Tshulher formalism (Al’Tshuler et al. 1987 ;
e w aele et al. 2006 ; Umemoto & Hirose 2015 ), some use the
o wer la w first proposed by Anderson in 1967 (Anderson 1967 ;
ubrovinsky et al. 2000 ; K uw ayama et al. 2020 ), while others

alculate it within the study: by ab initio in Alf è et al. ( 2007 )
nd Ichikawa et al. ( 2014 ), by linear expansion in Badro et al.
 2014 ). In this paper, we will use the results of our previous study
Clesi & Deguen 2023 ) to assess the model sensitivity to different
pproaches of Gr üneisen parameter when modelling the initial heat
C © The Author(s) 2024. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License (
permits unrestricted reuse, distribution, and reproduction in any medium, provided
ontent of the core. We use previous results linking core composition
nd temperature, and test dif ferent w ays of calculating the value of
. By fitting the effect of each parameter on temperature, we can as-

ess the variations introduced by using different formalisms, and the
rror introduced by variations of the parameters within the formal-
sm chosen. We show that the formalism of Al’Tshuler (Al’Tshuler
t al. 1987 ) is less prone to yield large errors in the calculations
hile being theoretically the most sound of all formalism studied. 

 G R  ̈U N E I S E N  PA R A M E T E R  

O D E L L I N G  A N D  T H E R M A L  M O D E L  

.1 Accretion scenario and thermal modelling 

e use the accretion and core/mantle differentiation models that
ave been pre viousl y determined in Clesi & Deguen ( 2023 ). These
odels yield mantle compositions close to the Bulk Silicate Earth

BSE) given in McDonough & Sun ( 1995 ), while yielding com-
ositions for the core compatible with a ∼10 per cent wt. of light
lements (Si and O) in the core. To determine the heat content and
emperature of the core we consider the following steps: 

(i) The initial temperature of each addition of metal is set at
he bottom of the magma ocean, where the metal is assumed to
quillibrate with the silicates. The initial temperature is therefore
i ven b y the liquidus of silicate at the pressure of the bottom of the
agma ocean, as given by Andrault et al. ( 2011 ). 
oyal Astronomical Society. This is an Open Access 
 https://creati vecommons.org/licenses/b y/4.0/ ), which 
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1276 V. Clesi and R. Deguen 

Figure 1. Summary of the results from Clesi & Deguen ( 2023 ), showing 
the correlation between the isentropic temperature at the CMB at the end 
of accretion ( y -axis), light elements concentration in the core (here Si and 
O, x -axis) and mean value of equilibrium pressure ( P eq , colour scale). The 
temperatures obtained here are obtained with the Gr üneisen parameter cal- 
culated with Al’Tshuler formalism, with γ 0 = 1.875 and γ ∞ 

= 1.305. The 
points plotted here are the models matching the compositional constraints 
defined in Clesi & Deguen ( 2023 ). 
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(ii) The metal is then heated by compression while migrating 
from the bottom of the magma ocean to the growing core. At each 
step of accretion its composition is different, and we do not consider 
any mixing, thus resulting in the formation of a stratified core [as 
in Jacobson et al. ( 2017 )]. 

(iii) The initial temperature profile is then set by the additional 
compression of the metal up to the final core pressures. We use this 
initial temperature and density profile to calculate the heat content. 

(iv) We assume that the core is then mixed from the stratified 
state to an isentropic state, and use the pre viousl y calculated heat 
content to get the corresponding temperature at the CMB ( T is CMB ). 
This is a strong assumption, since the core is often found to be 
stably stratified at the end of accretion (Clesi & Deguen 2023 ). 
Whether the core would be ef ficientl y mixed depends on the radial 
variations in composition, ratio of temperature gradient to isentropic 
gradient (which depends on γ ), and of the nature and intensity of 
the possible stirring processes (Jacobson et al. 2017 ; Bouffard et al. 
2020 ). Ho wever , the main purpose of this assumption is to provide 
a single measure of the temperature of the core – the temperature 
T is CMB of the CMB after mixing to an isentropic state – which can be 
seen as a convenient measure of the amount of heat stored into the 
core. 

The details on the model and the different calculations are de- 
scribed in Clesi & Deguen ( 2023 ). The main result of the paper 
is that mean pressure of metal-silicate equilibrium, light elements 
concentration in the core, and core temperature are positi vel y cor- 
related. A summary of the results are presented in Fig. 1 . 

The initial temperature of the metal is set to be the liquidus 
temperature of the silicate (Andrault et al. 2011 ) at the bottom of 
the magma ocean where chemical equilibrium happens. It is given 
by: 

T eq = 1940 

(
P eq 

29 
+ 1 

)1 / 1 . 9 

, (1) 
where P eq is the pressure at the bottom of the magma ocean (in GPa) 
which is the pressure where metal and silicate are equilibrated. The 
temperature changes calculated in steps (ii) and (iii) are obtained 
from: 

dT 

dP 

= 

γ T 

K s 
, (2) 

where γ is the Gr üneisen parameter of the metal, T its tempera- 
ture and K s its isentropic bulk modulus. We use the Murnaghan 
approximation for the bulk modulus, 

K s = K 0 + K 

′ P , (3) 

with K 0 = 128.49 GPa the bulk modulus for P = 0, and K 

′ = 3.67 
the first deri v ati ve of the bulk modulus, which yields the following 
equation of state for the metal: 

ρ( P ) 

ρ0 
= 

(
1 + 

K 

′ 

K 0 
P 

)1 /K ′ 

. (4) 

with ρ( P ) is the density of the metal at pressure P . The value of 
ρ0 , that is the density of the metal at the reference pressure, is 
varying throughout accretion, depending on the composition of the 
metal, which is set by chemical equilibration with the silicates at 
the bottom of the magma ocean (see Clesi & Deguen ( 2023 ) for the 
details). 

The heat content of the core is then calculated as 

Q = 4 π
∫ R c 

0 
ρ( r ) C p T ( r ) r 

2 dr, (5) 

with R C = 3470 km the total radius of the core, C p = 1000 J kg −1 K 

−1 

the specific heat of the metal and T ( r ) the temperature in the core at 
the radius r ; where the distance r from the center and the pressure 
are linked by 

P core ( r ) = P centre + 

(
P CMB − P centre 

R 

2 
c 

)
r 2 (6) 

with P CMB and P centre the pressure at the CMB and at the centre of 
the core, respecti vel y. The isentropic temperature profile can then 
be obtained from (

∂ ln T is 

∂ ln ρ is 

)
s 

= γ. (7) 

where ρ is is the density profile of the core after isentropic mixing. 
As seen in eq. ( 7 ), the final isentropic temperature is a function 
of the Gr üneisen parameter, γ . Depending on the γ formalism 

(constant value, Al’Tshuler et al. ( 1987 ) or Anderson ( 1967 ) power 
laws), integration of eq. ( 7 ) will yield different results. We then 
consider that the core is fully mixed with a constant heat content. 
The isentropic mixed core temperature profile is determined by 
integration of eq. ( 7 ) for a mixed density profile ρ is ( r ), and combined 
with the heat content calculated by eq. ( 5 ), we can calculate the 
temperature at the CMB after mixing as 

T is CMB = 

Q 

4 π
∫ R c 

0 ρ is ( r ) C p T is ( r ) r 2 dr 
, (8) 

which is e v aluated numericall y. In the following sections, we cal- 
culate T is CMB from eq. ( 8 ) for the three different formalisms tested 
in this study, and we vary parameters values within each of the 
for malism to deter mine the sensitivity of T is CMB to the formalisms 
and parameter values. Before varying the parameters, Fig. 2 shows 
how, for three solutions in the data set presented in Fig. 1 , changing 
the formalism affects each step of the calculation. As can be seen 
on this figure, changing the value of the Gr üneisen parameter tends 

art/ggae117_f1.eps
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Figure 2. Description of three steps of the model for different formalisms of the Gr üneisen parameter tested in this study. Left-hand column: constant γ = 

1.7. Middle column: Anderson’s po wer la w, with γ 0 = 2.05 and b = 0.6. Right-hand column: Al’Tshuler formalism with γ 0 = 1.305 and γ ∞ 

= 1.875. Each 
row represents one of the steps of the scenario described in Section 2.1 . Top row: initial compression between the bottom of the magma ocean and the growing 
core-mantle boundary (step (i) and part of step (ii) in the text), with the liquidus curve in black and the adiabat of the first and last steps of the model shown 
by the arrows. The cross symbols represents the P –T conditions of the metal reaching the CMB at each step of accretion, before the core is fully formed. The 
arro ws sho w the changes in P –T conditions undergone by the metal through the crystallized part of the mantle in the first step of accretion (round markers) 
and last step of accretion (square markers). Middle row: temperature profile of the core when stratified and after compression of the metal due to the growth 
of the core (step (ii) and step (iii) in the text). Bottom row: temperature profile in the core after mixing to an isentropic state (step (iv) in the text). The black 
dots mark the temperature at the CMB. A similar figure with more details on the model steps can be found at Clesi & Deguen ( 2023 ). Red curves: Model 1, 
obtained for the f c = 0.6, a P = 0.4 and λ = 5, with P eq = 19 . 7 GPa and χ core 

S i + O = 2 . 47 per cent. Blue curves: Model 2, obtained for the f c = 0.85, a P = 0.6 

and λ = 1, with P eq = 34 . 1 GPa and χ core 
S i + O = 5 . 24 per cent. Green curves: Model 3, obtained for the f c = 1, a P = 0.65 and λ = 0.4, with P eq = 43 . 9 GPa and 

χ core 
S i + O = 7 . 86 per cent. 
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o shift the temperature profiles up and down, irrespecti vel y of the

tratification. 

.2 Constant Gr üneisen parameter 

he first assumption that can be made is assuming γ to be constant.
ntegration of eq. ( 2 ) then yields: 

T ( P ) = T eq 

(
K 

′ P + K 0 

K 

′ P eq + K 0 

) γ

K ′ 
. (9) 

his equation is used as input to calculate the heat content (eq. 5 )
nd then the value of T is CMB (eq. 8 ). 
.3 Power law formalism of Anderson 

he second assumption is that the variation of γ follows a power
aw of the form 

= γ0 

(
ρ0 

ρ

)b 

. (10) 

here γ 0 is the Gr üneisen parameter for ρ = ρ0 and b is the
xponent of the power law. This formalism has been proposed by
nderson ( 1967 ), in order to simplify the calculation of the thermal

xpansion coefficient of some materials. This po wer la w is practical
or integration, and is especially fitted for Murnaghan equation of
tate, as it was one of the reasons for choosing this formalism in the
riginal paper. eq. ( 2 ) with γ given by eq. ( 10 ) has the following

art/ggae117_f2.eps
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in Table 2 . 
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analytical solution: 

T ( P ) = T eq exp 

[ 

γ0 

b 

( (
1 + 

K 

′ P eq 

K 0 

)−b/K ′ 

−
(

1 + 

K 

′ P 

K 0 

)−b/K ′ 
) ] 

. (11) 

2.4 Formalism of Al’Tshuler 

The last model investigated in this study is given by 

γ = γ∞ 

+ ( γ0 , j − γ∞ 

) 

(
ρ0 

ρ

)β

, (12) 

where β = γ 0, j /( γ 0, j − γ ∞ 

), and γ 0, j the Gr üneisen parameter for ρ
= ρ0 and γ ∞ 

the asymptotic value of the Gr üneisen parameter when 
P → ∞ . This equation also takes the form of a po wer la w, used 
by multiple studies (Dewaele et al. 2006 ; Clesi & Deguen 2023 ). 
It is howe ver dif ferent than the one from Anderson ( 1967 ), because 
it is derived from the theoretical isothermal density evolution of 
metal (Al’Tshuler et al. 1987 ). Though eq. ( 12 ) might be seen as 
an extended version of Anderson’s power law (it is the sum of a 
po wer la w in ρ and a constant), note that the power exponent and 
the pre-factor of the power law part are here linked theoretically, 
which is not the case in Anderson’s power law. One implication is 
that the number of parameters involved in Al’Tshuler’s formalism 

is not higher than in Anderson’s formalism, in spite of its seamingly 
greater complexity. With this formalism, integrating eq. ( 2 ) gives 

T ( P ) = T eq 

(
K 0 + K 

′ P 

K 0 + K 

′ P eq 

) γ∞ 

K ′ 

× exp 

[ 

γ0 , j − γ∞ 

β

( (
1 + 

K 

′ P eq 

K 0 

)− β

K ′ 

−
(

1 + 

K 

′ P 

K 0 

)− β

K ′ 
) ] 

. (13) 

2.5 Sensitivities of T 

is 
CMB to the different parameters 

In order to compare the three formalisms presented above, we fitted 
eqs ( 10 ) and ( 12 ) to a data set of Gr üneisen parameter measurements 
for pure iron. This allows to obtain in a self-consistent way the 
values and uncertainties of the parameters appearing in Al’Tshuler 
et al. ( 1987 ) and Anderson ( 1967 )’s formalisms. We use the data 
set provided by Murphy et al. ( 2011 ), to which we fitted the values 
of γ 0 , b , γ ∞ 

and γ 0, j (Fig. 3 ). Given the limited number of points 
(10) in the data set, we created for each value of ρ0 

ρ
a random data 

set of 20 γ values distributed following a normal law centred on 
the mean value with a standard deviation equal to the uncertainty 
given in Murphy et al. ( 2011 ). We then fitted the parameters of each 
formalism to the data set, thus allowing us to define a range of value 
for each parameter, given in Table 1 , that will be tested throughout 
the study. 

We use the subset of core formation models ( n = 382) from Clesi 
& Deguen ( 2023 ). Each solution represents a different evolution of 
the core composition while yielding an acceptable fit on the Bulk 
Silicate Earth (McDonough & Sun 1995 ). We then calculate for each 
solution the CMB temperature after core mixing with eqs ( 5 ) and ( 8 ) 
with the three different formalisms: eq. ( 9 ) for constant γ , eq. ( 10 ) 
for Anderson’s power law, and eq. ( 13 ) for Al’Tshuler’s formalism. 
We vary each parameter independently to assess their effect on the 
mean and variance of T is CMB value on the 382 models tested. In the 
following sections we discuss the strengths and weaknesses of each 
formalism in the same style. 

For each formalism, we estimate the effect of varying parameter 
values on the mean value of T is CMB in the data set. In order to estimate 
the sensitivity of the model results to the parameters, we fitted a 
linear equation to explain the mean T CMB 

is value of our data set: 

T is CMB = a 0 + a 1 x (14) 

where x is one of the parameters ( γ , γ 0 , b or γ ∞ 

). 
The size of the data set we chose [382 different accretion sce- 

narios, spanning different core compositions, see Clesi & Deguen 
( 2023 )] also allows us to assess the sensitivity of the actual values 
within a formalism to the others parameters in the models. Indeed, 
the variations of T is CMB , as shown in Clesi & Deguen ( 2023 ), depend 
also on the composition of the core (light element concentrations), 
the pressure of equilibrium and its variation throughout accretion as 
well as the oxygen fugacity of the impactors. A small dispersion of 
the T is CMB values means that the Gr üneisen parameter obtained for 
the set of parameter tends to mask the sensitivity of the model to 
other parameters (composition, pressure, etc.). A large dispersion 
of T is CMB on the other hand means that the Gr üneisen parameter tend 
to exacerbate the effect of the other parameters of the model. 

As shown in the following sections, varying the values of the 
Gr üneisen parameter can change the output of the same models 
b y se veral hundreds of K elvin. When modelling the compression of 
liquid metal, especially at high pressure, the data on compressibility 
is mostly derived from solid iron experiments and ab initio calcula- 
tions. This situation presents several problems when modelling the 
Earth’s core: the fact that liquid metal compressibility is not well 
constrained, and the fact that several light elements can affect this 
compressibility compared to pure iron. The Gr üneisen parameter 
presents the advantage of having a limited range of value, thus ex- 
trapolating from solid iron value to the metal alloy forming the core 
limits the risk in terms of temperature calculation. 

On the other hand, this advantage of having less chance to be 
far away from the results can become a disadvantage when trying 
to be more precise (for instance investigating the effect of small 
variations in composition on the temperature). 

In the following sections we discuss the effect and robustness of 
the different formalisms presented above by using the sensitivity 
results obtained by fitting eq. ( 14 ) to the mean values of T is CMB . To 
do so we will estimate the variation of temperature induced by a 
deviation from the following values: 

(i) In Section 3 , a constant γ of 1.7, as used by Labrosse ( 2015 ). 
(ii) In Section 4 , Anderson ( 1967 ) formalism with γ 0 = 2.05 and 

b = 0.63 from K uw ayama et al. ( 2020 ). 
(iii) In Section 5 , Al’Tshuler et al. ( 1987 ) formalism with γ 0 = 

1.875 and γ ∞ 

= 1.305 from Clesi & Deguen ( 2023 ). 

3  C O N S TA N T  G A M M A  

Fig. 4 shows the effect of varying the value of a constant γ on 
the isentropic temperature at the CMB. The range of γ tested is 
between 0.9 and 2.1, which is representative of the range of values 
of γ for iron given by several authors (see Dubrovinsky et al. ( 2000 ) 
or Wagle & Steinle-Neumann ( 2019 ) and references therein). T is CMB 

is increasing with increasing γ : the mean value goes from 3424 K 

to 4615 K. The effect of γ on the mean CMB temperature can be 
fitted by a polynomial function, for which the parameters are given 



Gr ̈uneisen parameter formalism 1279 

Figure 3. Results of the fit from the data of Murphy et al. ( 2011 ) with the formalism of Anderson ( 1967 ) (left-hand panel) and Al’Tshuler et al. ( 1987 ) 
(right-hand panel). The data from Murphy et al. ( 2011 ) have been bootstrapped to account for the error bar by randomly distributing 20 values for each point 
following a Gaussian distribution, thus allowing the fit to be made on ∼200 points instead of 10. 

Table 1. Values obtained from fitting the measurements of γ from Murphy 
et al. ( 2011 ) to the Anderson’s and Al’Tshuler’s formalisms. 

Parameters γ 0 b γ 0, j γ ∞ 

Mean value 1 .875 0 .752 1 .933 0 .916 
Minimum value 1 .555 0 .432 1 .608 0 .591 
Maximum value 2 .195 1 .07 2 .258 1 .241 
1 σ 0 .08 0 .08 0 .0812 0 .0812 

Figure 4. Variation of the mean T is CMB determined by eqs ( 8 ) and ( 9 ) as 
a function of γ . The error bar are the 2 σ variation on the subset of core 
formation models used in this study. For comparison the estimates of current 
CMB temperature from Nomura et al. ( 2014 ) (dotted blue line) and Davies 
et al. ( 2015 ) (dashed green line) are also shown. 

Table 2. Values of parameters fitting the trend of mean values in Fig. 4 . The 
equation fitted is eq. ( 14 ) with x replaced by γ . 

a 0 a 1 χ2 

2116 1202 1.6676 
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The 2 σ values are higher as γ decreases: from 440 K at γ = 0.9
o 60 K at γ = 2.05. This indicates that the variability coming for
he different accretion histories is buffered by high values of γ . 
F rom Tab le 2 , it is possib le to calculate the � T (error on the
nal temperature at the CMB) induced by changing the value of γ
rom a reference value chosen to be γ = 1.7. With the value of a 1 
rom Table 2 , changing γ by ±0.1 induces a variation � T = 120 K,
hich is higher than the dispersion of values observed in the other

ormalisms tested in this study. This trend shows that the results are
ighl y sensiti ve to the v alue of a constant γ . 

 A N D E R S O N ’ S  P OW E R  L AW  

he formalism of Anderson ( 1967 ) has two parameters that can
f fect the sensiti vity of T is CMB to γ . The parameter b values are
mpirically fitted for each composition of the metal, with values
panning from 0.63 (K uw ayama et al. 2020 ) and 0.69 (Dubrovinsky
t al. 2000 ) to 1.0 (McQueen et al. 1970 ) and 1.69 (Jeanloz 1979 ).
n the case of liquid metal, most of the values converges toward b ≤
. Here we tested values of b between 0.4 and 1.1 so as to cover the
ntire range of b values obtained from the fitting of Murphy et al.
 2011 )’s data set (see Table 1 ). As for the γ 0 value, it is the value
or liquid metal at 1 bar, and since γ decreases with pressure it has
o be higher than the value of γ at high pressures. The published
ange for γ 0 is between 1.59 (Brown & McQueen 1986 ) and 2.05
K uw ayama et al. 2020 ), with 1.713 (Anderson & Ahrens 1994 )
nd 1.8 (Dubrovinsky et al. 2000 ) having also been proposed and
sed. As for the value of b , we tested the range presented in Table 1 ,
hich is 1.5 to 2.2. 
The top panel of Fig. 5 shows that increasing the value of γ 0 tends

o increase the mean value of T is CMB , irrespectively of the value of b .
or γ 0 = 1.2, the mean value of T is CMB is between 3227 and 3492 K,
nd for γ 0 = 2.1 the mean value is between 3869 and 4474 K,
epending on the value of b ; for b = 1.1, the temperature varies
etween 4131 and 3500 K over the same γ 0 range. The sensitivity
f T is CMB to γ 0 is stronger at the lower values of b , though this effect
s not very strong. The bottom panel of Fig. 5 shows the effect of
ncreasing the exponent of the power law. The higher b is, the lower
he temperature is: for b = 0.4 the temperature is between 4535
nd 3750 K depending on γ 0 values; for b = 1.1 the mean value is
etween 3527 and 4131 K. The higher the value of γ 0 and the lower
he value of b , the lower the dispersion of values: for b = 0.4, the
 σ variation is 22 K at γ 0 = 2.2 and 150 K at γ 0 = 1.5; for b = 1.1
he 2 σ is 48 and 160 K for γ 0 = 2.2 and γ 0 = 1.5, respecti vel y. 

A linear fit (eq. 14 ) of the effect of both parameters on the mean
alues can be performed with good χ 2 values. The fitted parameter
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Figure 5. Top panel: effect of γ 0 on T is CMB for different values of b . Red 
squares: b = 0.4. Dark blue squares: b = 0.6. Dark green squares: b = 1.1. 
Bottom panel: effect of b on T is CMB for dif ferent v alues of γ 0 . Red squares: 
γ 0 = 2.2. Dark green squares: γ 0 = 1.875. Dark blue squares: γ 0 = 1.5. 
T is CMB is calculated from eqs (8) and ( 11 ). For comparison, we also show 

the estimates of present-day CMB temperature from Nomura et al. ( 2014 ) 
(dotted blue line, lower estimate) and the re vie w of Davies et al. ( 2015 ) 
(dashed green line). 

Table 3. Values of parameter fitting the trend of mean values in Fig. 5 . The 
equations fitted are: T is CMB = a 0 + a 0 γ0 , and T is CMB = a 0 + a 1 b. The first 
part of the table shows the variation for fixed values of b (Fig. 5 , left-hand 
panel), and the second part shows the variation for fixed values of γ 0 (Fig. 5, 
right-hand panel). 

Conditions a 0 a 1 χ2 

b = 0.4 1984 1158 0.1855 
b = 0.6 2059 1065 0.1151 
b = 1.1 2197 877 0.0424 

γ 0 = 2.2 4764 −587 0.4068 
γ 0 = 1.875 4319 −445 0.0244 
γ 0 = 1.5 3872 −317 0.0041 
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are shown in Table 3 , showing a positive effect of γ 0 , and a ne gativ e 
effect of b . 

Let us now assume that we used the values of γ 0 = 2.05 and 
b = 0.6 from K uw ayama et al. ( 2020 ) to make the calculation on 
the models of Clesi & Deguen ( 2023 ). It is then possible to use the 
parameters from Table 3 to calculate what is the induced error if 
the ‘true’ values are different. For γ 0 = 2.2, changing b by only 
0.1 (corresponding to 15 per cent of the range of values given in 
Table 1 ) changes T 

is 
CMB by 58 K. If we rather consider b = 0.6, then 

a variation of 0.1 (also corresponding to 15 per cent of the range of 
v alues gi ven in Table 1 ) for the parameter γ 0 yields � T ∼ 100 K. 

The error induced by getting a wrong value for the exponent 
is therefore less important than getting the value of γ 0 wrong, 
but the variations are not negligible, especially if both parameters 
estimations are wrong: if for example γ 0 = 1.875 and b = 0.4, then 
the final temperature calculated with the reference values ( γ 0 = 

2.05 and b = 0.6) is overestimated by ∼300 K. 

5  A L ’ T S H U L E R  P OW E R  L AW  

The formalism of Al’Tshuler et al. ( 1987 ) depends on two param- 
eters, γ 0 and γ ∞ 

, with γ ∞ 

< γ 0 . The values of γ ∞ 

represent the 
minimum value of the Gr üneisen parameter for infinite pressure (i.e. 
when the compressibility reaches a minimum asymptotic value) due 
to the quantum-statistical Gr üneisen coefficient under extreme pres- 
sure (Gilvarry 1956 ; Burakovsky & Preston 2004 ). For liquid iron 
this value is between 1 and 1.4 (De w aele et al. ( 2006 ), and refer- 
ences therein), and we tested values between 0.6 and 1.25 as given 
in Table 1 . As for γ 0 , it is the value of the Gr üneisen parameter at 
the pressure of the reference state ( ρ/ ρ0 = 1). Therefore it is higher 
than γ ∞ 

and close to the values of the parameter γ 0 from Anderson 
( 1967 ), studied in the previous section. Here we tested values be- 
tween 1.6 and 2.25, as given by the results of the fit in Table 1 .Fig. 6 
shows that the temperature is positi vel y correlated with both γ 0 and 
γ ∞ 

. Higher values of γ 0 lead to less dispersion of the results: for 
instance, at γ ∞ 

= 0.6, the 2 σ value for the data set is 35 K for γ 0 = 

2.25 and 144 K for γ 0 = 1.6. When γ 0 is fixed, varying the value of 
γ ∞ 

has less impact on the dispersion of the results: for instance at 
γ 0 = 1.6, the 2 σ for the data set is 141 K for γ ∞ 

= 0.9 and 128 K 

for γ ∞ 

= 1.25. 
The variation of the mean temperature of our data set is more 

af fected b y v arying γ 0 than γ ∞ 

. For instance, the mean temperature 
goes from 4319 to 3762 K with γ ∞ 

= 1.25 and for γ 0 varying 
from 2.25 to 1.6, respecti vel y. On the other hand the temperature 
decreases from 4319 to 4254 K with γ 0 = 2.25 for γ ∞ 

varying 
from 1.25 to 0.6, respecti vel y. 

The linear fits of the mean values of T is CMB yield good χ 2 values, 
with the parameters values given in Table 4 . T is CMB correlates posi- 
ti vel y with both γ 0 and γ ∞ 

, and the strongest effect of γ 0 is due to 
the higher value of a 1 (Table 4 ). 

The variations in temperature are minimized if γ 0 ≥ 2 and γ ∞ 

≤ 1, as shown by the corresponding values of the fit in Table 4 . 
Therefore, choosing high values of γ 0 [like 1.837 as in Dewaele 
et al. ( 2006 ) and Clesi & Deguen ( 2023 ) or 2.05 as in K uw ayama
et al. ( 2020 )] combined with relati vel y low v alues of γ ∞ 

can mini- 
mize the error in the output. The γ ∞ 

value of 1.3 used in De w aele 
et al. ( 2006 ) and Clesi & Deguen ( 2023 ) or 1.2 for Dubrovinsky 
et al. ( 2000 ) are a bit high in terms of minimizing the dispersion 
and error in the output. 

Let us now assume that the values of γ 0 = 1.875 and γ ∞ 

= 

1.305 in the original study of Clesi & Deguen ( 2023 ) [taken from 

De w aele et al. ( 2006 )] are wrong. It is then possible to estimate 
the error induced in the final mean temperature by calculating the 
variation in temperature induced by a variation in the values of 
γ 0 and γ ∞ 

using the parameters in Table 4 . For γ 0 = 1.875, a 
v ariation in γ ∞ 

v alue b y 0.1 induces a variation of the temperature 
of ∼15 K. The main parameter that can induce error is γ 0 : for γ ∞ 

= 1.25, a deviation of ±0.1 in the value of γ 0 leads to a deviation of 
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Figure 6. Evolution of the mean value of T is CMB as a function of γ 0 (top) and 
γ ∞ 

(bottom) in the formalism of Al’Tshuler et al. ( 1987 ), gi ven b y eqs ( 13 ) 
and ( 8 ). On the top panel γ ∞ 

values are fixed at 1, 1.25, 1.305 and 1.5. 
On the bottom panel, γ 0 values are fixed at 2.05, 1.875, 1.75 and 1.5. For 
comparison we also show the estimates of current CMB temperature from 

Nomura et al. ( 2014 ) (dotted blue line) and Davies et al. ( 2015 ) (dashed 
green line). 

Table 4. Values of parameters fitting the trend of mean values in Fig. 6 . The 
equation fitted is: T is CMB = a 0 + a 1 γx , with γ x being γ 0 or γ ∞ 

. The first 
part of the table are for fixed values of γ ∞ 

, the second one for fixed values 
of γ 0 . The value of χ2 for each fit is given in the last column. 

Conditions a 0 a 1 χ2 

γ 0 = 2.25 4191 100 0.0047 
γ 0 = 1.9 3845 115 0.0013 
γ 0 = 1.6 3560 150 0.0020 

γ ∞ 

= 0.6 2151 933 0.0538 
γ ∞ 

= 0.9 2188 927 0.0629 
γ ∞ 

= 1.25 2312 890 0.1284 
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90 K. Then if the value of γ 0 is not the one proposed by Dewaele
t al. ( 2006 ), but the one proposed b y K uw ayama et al. ( 2020 ) ( γ 0

 2.05), even if the value of γ ∞ 

is correct, then � T would be a
ositive 200K, meaning that the initial value from Clesi & Deguen
 2023 ) underestimates the temperature. Getting the value wrong
ould place the conclusions of the study towards a conservative
stimate of the temperature. 
 D I S C U S S I O N  

e propose in the previous sections an overview of the effect of
ach parameter on the output of a given model. All three formalisms
ave their own merits and none of them should be discarded a priori .
n this section we will provide an estimate of the error induced by
he type and values used in each formalism, and argue that one can
hoose the formalism that suits the best the purpose of the study. 

.1 T her modynamic theory compliance versus practicality 

n terms of theoretical merits, Al’Tshuler et al. ( 1987 ) is the more
orrect formalism. It is derived from the study of variations in
sotherms using the original definition of the parameter of Gr üneisen
 1912 ), and Mie-Gruneisen equation of state. The whole original pa-
er of Al’Tshuler et al. ( 1987 ), is very strong in terms of theoretical
ompliance, since the relationship between density and Gr üneisen
arameter is derived by calculus alone. It also takes into account
he asymptotic behaviour of γ at high pressure (Burakovsky & Pre-
ton 2004 ). On the other hand, the formalism of Anderson ( 1967 )
s justified only by the sentence: 

”Assuming the power law γ = γ 0 (V/V 0 ) q ”

ollowed by an integration of the γ function. In term of theoretical
oundness, it is less sound than Al’Tshuler et al. ( 1987 ) study. But
n term of integration and data fitting, it is more convenient. Indeed,
his formalism combined with a Murnaghan equation of state yield
n easy-to-integ rate for mula, while still fitting the experimental
ata. 

The same kind of reasoning applies for studies using constant
, despite its limitations. Table 2 shows that the variations in tem-
erature induced by a choice of constant value are much larger.
ur ther more, there is e xtensiv e e xperimental (Boehler & Ramakr-

shnan 1980 ; Dubrovinsky et al. 2000 ) and theoretical (Gilvarry
956 ; Al’Tshuler et al. 1987 ) evidences that the Gr üneisen param-
ter is not independent of pressure. Ho wever , the integration of a
onstant parameter within a much more complicated model tends to
implify readability and interpretations. One example is the study
f the energetics of the core (e.g. Labrosse 2015 ): γ is not expected
o vary strongly within the core, and the effect of these variations
s likely secondary compared to the effect of thermal conductivity
ariations. 

.2 Assessing the uncertainties in the output of the model 

sing the data set of Murphy et al. ( 2011 ), we fitted the range of
lausible value for each parameter in the formalism of Anderson
 1967 ) and Al’Tshuler et al. ( 1987 ). This allows us to assess the
rror induced by choosing one formalism over another, and the er-
or induced by choosing a parameter value over another in a given
ormalism.When using the mean value presented in Table 1 in each
ormalism, we can compare the effect of choosing one formalism
ver another by calculating, for each model in the data set, the
ifference in T is CMB . In Table 5 , we show the results of this compar-
son with �T = T is CMB ( Anderson ) − T is CMB ( Al ′ T shuler ) . The for-
alism of Anderson tends to yield higher values of T is CMB in any

ase, but the difference is small (8 K, 0.2 per cent of variation
aximum). Therefore, as long as the parameters of each formalism

re consistently fitted to the same data set, choosing a formalism
oes not induce much variations. On the other hand, the range of
alues chosen within a formalism is much more important than the
ariations induced by a chosen formalism. In Table 6 , we show the
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Table 5. Difference � T between the core temperature T is CMB obtained us- 
ing Anderson’s and Al’Tshuler’s power laws with the mean values of the 
parameters given in Table 1 . The table gives the mean difference amongst 
our core-formation models (Clesi & Deguen 2023 ), as well as the minimum 

and maximum of � T . The formalism of Al’Tshuler is the reference point 
for calculating the relative variation in temperature. 

Absolute 
� T (K) 

Relative � T 
(per cent) 

Mean 3 .21 0 .08 
Minimum 0 .008 0 .0001 
Maximum 8 .05 0 .20 
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range of variation when using the maximum and minimum values 
of the parameters presented in Table 1 . Variation in the values of γ 0 

is the most important: the mean variation induced by a change in γ 0 

value in both formalisms yield a mean � T of ∼300 K, slightly lower 
in the Al’Tshuler formalism (Table 6 ). Varying the parameter γ ∞ 

within the range given in Table 1 yield a low error range, between 
−26 and + 50 K (Table 6 ). On the other hand, the range of b values 
given in Table 1 yield variations of temperature between −136 and 
+ 156 K. The Anderson formalism is more prone to yielding large 
error: taking into account both parameters value ranges, the final 
value of T is CMB can vary by ∼20 per cent, with a mean variation of 
11–15 per cent. The range of T is CMB is smaller when using Al’Tshuler 
formalism: given the small variation induced by an error on γ ∞ 

, the 
maximum error on the final value of T is CMB is ∼10 per cent, with a 
mean error of ∼8 per cent. In summary, the Al’Tshuler formalism 

yield lower uncertainties than the Anderson formalism on this type 
of model. Ho wever , when fitting any of the formalism to the same 
data set, there is little to none variation in the output (Table 5 ). Since, 
as it is done in this study, it is possible to explain satisfactorily the 
same data with two different formalisms, the choice of formalism 

is not critical. For instance the data of Boehler & Ramakrishnan 
( 1980 ) is fitted with Anderson ( 1967 ) formalism, but is used by 
Al’Tshuler et al. ( 1987 ) to test the formalism. The two formalisms 
are close in terms of mathematical writing (both of them are power 
laws) so it may be that for a given problem and a given data set 
of γ values, either formalism can be used (with different values of 
parameters). In this instance it depends on the quality of the data 
available and the best fit available. This problem of uncertainties 
range and representativity of the data needs to be addressed when 
choosing a formalism and the values of parameters. 

6.3 Choosing a formalism and its parameter value: a 
function of the study’s goal 

In the original study of Clesi & Deguen ( 2023 ) the choice has been 
made to use the formalism of Al’Tshuler et al. ( 1987 ) with the values 
of De w aele et al. ( 2006 ). In the supplementary information of the 
same study are presented different results with the Gr üneisen param- 
eter formalism of Anderson ( 1967 ) with the values of Kuwayama 
et al. ( 2020 ). The results are sensibl y dif ferent with e verything else 
being the equal. In this section we argue that, for this particular 
type of model, it is indeed better to use Al’Tshuler et al. ( 1987 ) 
formalism, because it enhances the robustness and replicability of 
the results. Indeed, using Al’Tshuler formalism is limiting the vari- 
ance and the risk of error, as shown pre viousl y in Section 5 , and 
limits the overall uncertainty of the result as shown in Section 6.2 . 
Fur ther more, in the models presented in Clesi & Deguen ( 2023 ) 
and briefly re-explained in Section 2.1 , there are several hypothe- 
ses that are made and are a source of possible error in the model; 
among others: the number of element in the compositional model, 
the equilibrium rate, the discretization of core/mantle se gre gation 
in 20 steps, the choice of equation of state, the parameters values 
of equation of state, the neglect of dissipation and diffusion, the 
thermal state of the solid mantle. All of these hypotheses are more 
accurately described and justified in the original publication. On 
top of these simplifying hypotheses, the values of γ 0 and γ ∞ 

from 

De w aele et al. ( 2006 ) are assumed to be independent of the com- 
position of the core, which might be a source of error in the model. 
Choosing a robust formalism that limits the variation if those values 
are wrong is then a better option: for instance the main purpose of 
the publication of Clesi & Deguen ( 2023 ) is to show the existence of 
a correlation between core composition and its temperature, doing 
so by applying a number of hypotheses, which is a broader goal 
than getting a precise value for the core temperature. Thus, limiting 
the scattering of the results when many other process in the model 
might also be a source of scattering helps us to get a better view of 
the problem. After all, for models of this type, it may be hard to tell 
if the scattering of the results is an actual scattering or an artifact 
created by the hypotheses and calculations techniques. This kind 
of limitation in the scattering also facilitates comparison between 
studies. For instance, one topic that is highly debated is the amount 
of light elements such as N, H or C in the core (Malavergne et al. 
2019 ; Gre w al et al. 2019 ; Fischer et al. 2020 ; Blanchard et al. 2022 ;
Suer et al. 2023 ). The presence of such elements in the core will af- 
fect the temperature of the core by affecting the density of the metal, 
which in turn affects the temperature (through the effect of density 
on γ ; see eqs ( 2 ), ( 7 ) and ( 8 ). Ho wever , each of the aforementioned
study use a different model of accretion with a different set of hy- 
pothesis than in the Clesi & Deguen ( 2023 ). If one were to calculate 
the effect of carbon on temperature using the data and accretion 
models of Fischer et al. ( 2020 ) or Blanchard et al. ( 2022 ) studies in 
combination with a thermal evolution model, and find a significant 
effect of the carbon concentration on the temperature, can this effect 
be attributed to carbon or to the type of accretion and thermal model 
used to calculate carbon concentration and temperature? Among the 
source of uncertainties is the Gr üneisen parameter formalism and 
value. Using a less sensitive formalism such as Al’Tshuler will at 
least close one of the point of discussion about the validity of the 
results: whether or not the values of γ 0 and γ ∞ 

are the ‘true’ val- 
ues, at least the error is low and if differences arise between models, 
then they are probably not due to the Gr üneisen parameter. On the 
other hand, if the end goal is to best describe the entirety of the phe- 
nomenon or get a precise estimate of the core temperature (Driscoll 
& Davies 2023 ; Dobrosavljevic et al. 2022 ), then the best formalism 

is the one that fits the best the data, or the values that are calculated 
directly within ab initio studies (Vo ̌cadlo 2007 ; Alf è 2009 ; Alf è 
et al. 2007 ). If one would use a core se gre gation model to calculate 
the actual temperature at the CMB instead of highlighting the cor- 
relations between parameters, or actually deriving a precise value 
on those correlations, then the choice of formalism and parameters 
value must be driven by the quality of the data, the quality of the 
fit, and the range of uncertainties on the parameters as highlighted 
in Section 6.2 . As an example, let us assume one wants to calculate 
the effect of hydrogen incorporation in the core on temperature us- 
ing for instance models from Clesi et al. ( 2018 ), Malavergne et al. 
( 2019 ) or Suer et al. ( 2023 ). There are some data available on the 
hydro gen ef fect on the Gr üneisen parameter (Umemoto & Hirose 
2015 ). If Anderson’s formalism fitted to the data from Umemoto & 

Hirose ( 2015 ) yields a narrower range of value for γ 0 and b , than 
the range of value for γ 0 and γ ∞ 

obtained through fitting the data 
with Al’Tshuler formalism, then using the formalism of Anderson 
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Table 6. Variation of � T within a chosen formalism. The absolute value are in K, the number in parenthesis are the 
v ariation relati vel y to the mean value in per cent. Top part of the Table: Anderson’s po wer la w parameter. Bottom 

part: Al’Tshuler power law parameter. The variation on temperature is calculated using the temperature obtained by 
calculating with the mean value of the parameter presented in Table 1 . The terms maximum and minimum refers to 
the absolute deviation from the initial value, not to the value itself (i.e. −205 K is a higher value than −313 K but the 
absolute variation is lower). 

Mean � T Minimum � T Maximum � T 

γ 0 = 1.555 − 300 K ( −7.56 per cent) − 226 K ( −5.47 per cent) − 334 K ( −8.52 per cent) 
γ 0 = 2.195 331.5 K (8.34 per cent) 243 K (5.90 per cent) 372 K (9.49 per cent) 
b = 0.432 152 K (3.8 per cent) 136 K (3.30 per cent) 156 (3.98 per cent) 
b = 1.07 − 132 K (8.34 per cent) − 118 K (5.89 per cent) − 136 K (9.48 per cent) 

γ 0 = 1.608 − 279 K ( −7.03 per cent) − 205 K ( −4.98 per cent) − 313 K ( −7.99 per cent) 
γ 0 = 2.258 311 K (7.83 per cent) 223 K (5.43 per cent) 351 K (8.97 per cent) 
γ ∞ 

= 0.591 − 27.15 K ( −0.68 per cent) − 26 K ( −0.64 per cent) − 27 K ( −0.70 per cent) 
γ ∞ 

= 1.241 47 K (1.17 per cent) 45 K (1.09 per cent) 47 K (1.19 per cent) 

w  

s

6

A  

t  

t  

o  

p  

s  

t
 

t  

c  

D  

±  

t  

r  

l  

F  

w  

D  

o  

l  

t  

(  

t  

t  

t  

o  

p

7

T  

i  

k  

f  

u  

d  

s  

A  

v  

i  

(
 

f  

l  

b  

k  

i  

w  

t

A

T  

u  

t  

O  

s

D

T  

c

R

A  

A  

 

A  

 

A  

A  

A  

 

 

A  

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/237/3/1275/7634376 by guest on 16 D

ecem
ber 2024
ould be better, especially if the range is narrow enough to yield
maller error than the one presented in Table 6 . 

.4 Implications for the CMB temperature 

s highlighted in the previous sections, there are some limitations
o the inferences that can be made yet as to the relationship between
he Gr ünesien parameter and the core temperature. The main goal
f this study is to derive the sensitivity of T is CMB to the variations of
arameters controlling the Gr üneisen parameter. Ho wever , from the
ensitivity study some implications can be drawn about the initial
emperature of the core. 

All three formalisms applied to the model described in Sec-
ion 2.1 can yield acceptable T is CMB for the Earth when compared to
urrent estimates of CMB temperature from Zhang et al. ( 2016 ) or
avies et al. ( 2015 ) (4000 ± 200 K), Nomura et al. ( 2014 ) (3570
200 K) or Dobrosavljevic et al. ( 2022 ) (3500 ± 200 K). In all

he formalisms presented, it is possible to find values of the pa-
ameters that yield initial T is CMB higher than the current estimates
isted abov e. Howev er, none of the values tested and presented in
igs 4 , 5 and 6 can yield initial temperature at the CMB compatible
ith the estimates of Andrault et al. ( 2017 ) (5400 ± 100 K) or
riscoll & Davies ( 2023 ) (5000–6000 K). This may be due to the

wn limitations of the model used in this study. Indeed, among other
imitations described in the original paper (Clesi & Deguen 2023 ),
he viscous dissipation that tends to increase temperature of the core
King & Olson 2011 ) is neglected, thus leading to lower tempera-
ures. Fur ther more the choice of the Murnaghan equation of state
o simplify the calculations can also lead to an underestimation of
emperature. This does show the importance of having constraints
n this parameter when trying to constrain the core temperature
recisely. 

 C O N C LU S I O N  

he Gr üneisen parameter γ is an important parameter when study-
ng the thermal state of the core, yet its value is not very well
nown for different composition of iron alloys in the core. Dif-
erent formalisms are used throughout the litterature: constant val-
es, ad hoc power law (Anderson 1967 ) and thermodynamically
erived po wer la w (Al’Tshuler et al. 1987 ). W ith this sensitivity
tudy, we show that the thermodynamically derived po wer la w of
l’Tshuler et al. ( 1987 ) is less likely to yield errors when the actual
alues of the parameters controlling γ are not precisely known, and
s theoretically more sound than the ad hoc power law of Anderson
 1967 ). 

Ho wever , with the data at hand it is not yet possible to exclude any
ormalism or parameter values based on this study alone. Nonethe-
ess, the sensitivity of temperature to the Gr üneisen parameter can
e high depending on the formalism adopted and need to be ac-
nowledged when modelling temperature evolution. Further work
n constraining the compositional dependencies of the parameters
ould greatly improve the thermal models of the core and their links

o the light element concentrations. 
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Badro , J. , C ˆ ot é, A.S. & Brodholt, J.P., 2014. A seismolo gicall y consistent 
compositional model of Earth’s core, Proc. Natl. Acad. Sci., 111 (21), 
7542–7545. 

Blanchard , I. , Rubie, D.C., Jennings, E.S., Franchi, I.A., Zhao, X., Petit- 
girard, S., Miyajima, N., Jacobson, S.A. & Morbidelli, A., 2022. The 
metal–silicate partitioning of carbon during Earth’s accretion and its 
distribution in the early solar system, Earth planet. Sci. Lett., 580, 
doi:10.1016/j.epsl.2022.117374. 

Boehler , R. & Ramakrishnan, J., 1980. Experimental results on the pres- 
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