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We present a new multi-dimensional, robust, and cell-centered finite-volume scheme for the ideal 
MHD equations. This scheme relies on relaxation and splitting techniques and can be easily used 
at high order. A fully conservative version is not entropy satisfying but is observed experimentally 
to be more robust than standard constrained transport schemes at low plasma beta. At very low 
plasma beta and high Alfvén number, we have designed an entropy-satisfying version that is 
not conservative for the magnetic field but preserves admissible states and we switch locally a-

priori between the two versions depending on the regime of plasma beta and Alfvén number. This 
strategy is robust in a wide range of standard MHD test cases, all performed at second order with 
a classic MUSCL-Hancock scheme.

1. Introduction

Developing a robust multi-dimensional numerical scheme for the ideal MHD equations remains a challenge that is of great impor-

tance for astrophysics and plasma physics applications. A MHD flow is characterized by an exact zero-divergence magnetic field, and 
by using terms that are proportional to the divergence of the magnetic field, the MHD equations can be put in a fully conservative 
form, with density, momentum, energy and magnetic field conservation. However this form introduces a source term proportional 
to the divergence of the magnetic field on the entropy evolution equation, leading to an unstable scheme for multi-dimensional test 
cases, because of discretization errors on this source term.

A solution to this problem is to remove the divergence errors so that the source term in the entropy evolution equation is as 
small as possible. Such a solution encompass the divergence-cleaning method (see [1–4]) and the constrained transport method (see 
[5–8]). These methods greatly improve the stability of MHD numerical schemes and have been used in numerous applications in 
astrophysics and plasma physics. However, they are not entropy satisfying and may fail with negative energies especially in the low 
plasma beta regime. This problem is mitigated by using a threshold value for the internal energy, effectively breaking the energy 
conservation of the numerical scheme (ref divB cleaning with threshold). Another solution is to design an entropy satisfying numerical 
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scheme for any value of the divergence of the magnetic field. This solution has been explored using relaxation methods in [9–11]. 
Originally, it has been shown that a multi-dimensional solver with the introduction of non-conservative Powell source terms in the 
momentum, induction and energy evolution equations allows to obtain a symmetric form of the MHD equations [12,13], but [11]

has demonstrated that it is also possible to obtain a symmetric form with a source term only on the induction equation, therefore 
preserving energy and momentum conservation with an entropy satisfying numerical scheme.

In recent years, significant advancements have been made in splitting strategies for designing numerical solvers for Euler equations. 
In the works by [14–16], the approximation algorithm is divided into two steps: an acoustic step and a transport step. For one-

dimensional cases, these methods resemble the explicit Lagrange-Projection approach [17–19]. However, this new splitting technique 
avoids the use of a moving Lagrangian mesh and is readily adaptable to multi-dimensional problems. On the other hand, significant 
progresses have also been made on approximate Riemann solvers based on relaxation strategies [20–25].

In this paper, we build on the proposition of a relaxation approximation for the MHD system [10,11] by taking advantage of 
splitting techniques introduced in [14] to design a fully-conservative multi-dimensional MHD solver in regions of high plasma beta / 
low Alfvén number, and an entropy satisfying version with an entropy correction in regions of low plasma beta / high Alfvén number. 
The resulting solver, therefore, allies a robust entropy-satisfying and a fully-conservative scheme depending on the regime of the flow. 
In Sect. 2, we introduce the different systems of equations for MHD (conservative and non-conservative) and the corresponding entropy 
evolution equation. In Sect. 3, we present the splitting of the equations in a magneto-acoustic and transport subsystems. Sect. 4 and 
5 introduce the numerical methods used to solve the evolution of these subsystems and Sect. 6 provides the global fully-conservative 
scheme for the MHD system of equations. Sect. 7 is devoted to the entropy analysis of the numerical method, showing that the fully-

conservative solver is not entropy-satisfying and introduces an entropy correction on the induction equation in order to obtain an 
entropy-satisfying method at the price of loosing the magnetic field conservation. In Sect. 8, we provide numerical tests in 1D and 
2D at second order by leveraging the advantages of the fully-conservative and entropy-satisfying solvers depending on the regime of 
the flow. We provide our conclusions and a discussion in Sect. 9.

2. MHD equations

The ideal MHD equations are given by the evolution equations of the fluid density 𝜌, momentum 𝜌𝐮, energy 𝜌(𝑒 + 𝐮2∕2), and the 
Faraday’s law of induction describing the evolution of the magnetic field 𝐁

𝜕𝑡𝜌+∇ ⋅ (𝜌𝐮) = 0,

𝜕𝑡(𝜌𝐮) + ∇ ⋅ (𝜌𝐮⊗ 𝐮) = −∇𝑝+ 𝐣 ×𝐁,

𝜕𝑡(𝜌(𝑒+ 𝐮2∕2)) + ∇ ⋅ (𝜌(𝑒+ 𝐮2∕2)𝐮) = −∇ ⋅ (𝑝𝐮) + (𝐣 ×𝐁) ⋅ 𝐮,

𝜕𝑡𝐁+∇×𝐄 = 0. (1)

The term 𝐣 ×𝐁 is the Lorentz force. This system of equations is closed with the ideal Ohm’s law 𝐄 = −𝐮 ×𝐁, the low frequency Maxwell 
equation 𝐣 = ∇ × 𝐁 assuming a system of units in which the vacuum permeability is one, and an equation of state connecting the 
pressure 𝑝 to the density 𝜌 (or specific volume 𝜏 = 1∕𝜌) and internal energy 𝑒. The equation of state also defines the specific physical 
entropy 𝑠(𝜏, 𝑒) assuming that −𝑠 is a convex function of (𝜏, 𝑒), and satisfies

𝑑𝑒+ 𝑝𝑑𝜏 = 𝑇 𝑑𝑠. (2)

This equivalently means that the internal energy is convex with respect to specific volume and entropy, hence the sound speed 𝑐𝑠

defined by

𝑐2
𝑠
=
(

𝜕𝑝

𝜕𝜌

)
𝑠

(3)

is positive and ensures the hyperbolicity of the system. Assuming smooth solutions of (1), one can show that they satisfy the following 
equation of conservation for the entropy

𝜕𝑡(𝜌𝑠) + ∇ ⋅ (𝜌𝑠𝐮) = 0. (4)

For the non-conservative form of the MHD equations, this holds for any value of the divergence of the magnetic field ∇ ⋅𝐁. Assuming 
that the divergence of the magnetic field is zero at an initial time ∇ ⋅ 𝐁 = 0, it remains zero at all time following the divergence of 
the induction equation,

𝜕𝑡(∇ ⋅𝐁) = 0. (5)

The free divergence constraint is therefore a consequence of the induction equation and not a dynamical constraint.

Equivalently, by adding terms proportional to ∇ ⋅ 𝐁 in the momentum and energy equations (see Appendix A), one can obtain a 
conservative form for the MHD equations

𝜕𝑡𝜌+∇ ⋅ (𝜌𝐮) = 0,
2

𝜕𝑡(𝜌𝐮) + ∇ ⋅ (𝜌𝐮⊗ 𝐮+ 𝜎 −𝐁⊗𝐁) = 0,
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𝜕𝑡(𝜌𝐸) + ∇ ⋅ (𝜌𝐸𝐮+ 𝜎 ⋅ 𝐮− (𝐁 ⋅ 𝐮)𝐁) = 0,

𝜕𝑡𝐁+∇ ⋅ (𝐮⊗𝐁−𝐁⊗ 𝐮) = 0, (6)

with 𝜎 = (𝑝 + 𝐁2∕2)𝐈 and 𝐸 = 𝑒 + 𝐮2∕2 + 𝐁2∕(2𝜌). Assuming smooth solutions of (6), one can show that they satisfy the following 
equation for the evolution of the entropy by subtracting the evolution of the kinetic and magnetic energy from the evolution of the 
total energy

𝜕𝑡(𝜌𝑠) + ∇ ⋅ (𝜌𝑠𝐮) = −𝐮 ⋅𝐁
𝑇

∇ ⋅𝐁, (7)

which is compatible with entropy conservation only when ∇ ⋅ 𝐁 = 0 in contrast to the non-conservative form presented above [26]. 
This shows that the entropy balance is closely related to the free divergence constraint for the conservative MHD equations.

In the case of discontinuities such as shocks and in order to ensure dissipation, the second law of thermodynamics must be enforced 
and implies the entropy inequality

𝜕𝑡(𝜌𝑠) + ∇ ⋅ (𝜌𝑠𝐮) ≥ 0, (8)

After discretization, truncation errors on the ∇ ⋅𝐁 source term in Eq. (7) therefore leads to some issues in order to obtain an entropy 
satisfying numerical scheme ensuring a discrete version of Eq. (8).

In the next sections (3, 4, 5 and 6), we introduce a new fully-conservative solver relying on a splitting between a magneto-acoustic 
and a transport subsystem. This solver is entropy satisfying and is not compatible with Eq. (8). We then introduce in Sect. 7 an entropy 
correction following [11] ensuring that the modified scheme is compatible with Eq. (8) while breaking the magnetic field conservation 
but maintaining the momentum and energy conservation.

3. Magneto-acoustic/transport splitting

Similarly to [14], we propose the following splitting of the conservative MHD equations into a magneto-acoustic sub-system

𝜕𝑡𝜌+ 𝜌∇ ⋅ 𝐮 = 0,

𝜕𝑡(𝜌𝐮) + 𝜌𝐮∇ ⋅ 𝐮+∇ ⋅ (𝜎 −𝐁⊗𝐁) = 0,

𝜕𝑡(𝜌𝐸) + 𝜌𝐸∇ ⋅ 𝐮+∇ ⋅ (𝜎 ⋅ 𝐮− (𝐁 ⋅ 𝐮)𝐁) = 0,

𝜕𝑡𝐁+𝐁∇ ⋅ 𝐮−∇ ⋅ (𝐁⊗ 𝐮) = 0, (9)

and a transport sub-system

𝜕𝑡𝜌+ 𝐮 ⋅∇𝜌 = 0,

𝜕𝑡(𝜌𝐮) + 𝐮 ⋅∇(𝜌𝐮) = 0,

𝜕𝑡(𝜌𝐸) + 𝐮 ⋅∇(𝜌𝐸) = 0,

𝜕𝑡𝐁+ 𝐮 ⋅∇(𝐁) = 0. (10)

We emphasize that all the components of the magnetic field are transported at velocity 𝐮 in the transport sub-system. We then propose 
to approximate the solution of Eq. (6) by approximating the solutions of the two sub-systems (9) and (10), i.e. for a discrete state 
𝐔𝑛

𝑖
= (𝜌, 𝜌𝐮, 𝜌𝐸, 𝐁)𝑛

𝑖
in a cell Ω𝑖 at time 𝑡𝑛, the update to 𝐔𝑛+1

𝑖
is first an update from 𝐔𝑛

𝑖
to 𝐔𝑛+1−

𝑖
by approximating the solution of 

(9), then an update from 𝐔𝑛+1−
𝑖

to 𝐔𝑛+1
𝑖

by approximating the solution of (10). We present in Sect. 4 and in Sect. 5 the discretization 
and the entropy analysis for each sub-system respectively.

4. Relaxation approximation of the magneto-acoustic sub-system

The relaxation approximation of the magneto-acoustic sub-system and the associated entropy analysis in Sect. 7 heavily relies on 
earlier works by [10,11]. We highlight two main differences in our approach: we keep in the analysis gradients of the magnetic field 
perpendicular to the interface that appears in the multi-dimensional case and we propose a different choice of relaxation parameters 
in the 5-wave solver to ensure the strict hyperbolicity of the relaxed system.

The multi-dimensional scheme will be obtained by taking advantage of the rotational invariance of the magneto-acoustic sub-

system, following the lines of [18]. We, therefore, rewrite sub-system (9) in 1D, and simplify it by using the density evolution 
equation

𝜌𝜕𝑡𝜏 − 𝜕𝑥𝑢 = 0,

𝜌𝜕𝑡𝐮+ 𝜕𝑥(𝜎𝐞𝑥 −𝐵𝑥𝐁) = 0,

𝜌𝜕𝑡𝐸 + 𝜕𝑥(𝜎𝑢𝑥 − (𝐁 ⋅ 𝐮)𝐵𝑥) = 0,
3

𝜌𝜕𝑡(𝜏𝐁) − 𝜕𝑥(𝐵𝑥𝐮) = 0, (11)
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with 𝐞𝑥, the unit vector normal to the interface, 𝐵𝑥, 𝐵𝑦, and 𝐵𝑧 the components of the magnetic field and 𝑢𝑥, 𝑢𝑦, and 𝑢𝑧 the components 
of the velocity field. The eigenvalues of this sub-system are given by

−𝑢,0,±𝑐𝑚𝑠,±𝑐𝑚𝑎,±𝑐𝑚𝑓 (12)

with 𝑐𝑚𝑎, the magnetic Alfvén speed, 𝑐𝑚𝑠, the slow magnetosonic speed, 𝑐𝑚𝑓 , the fast magnetosonic speed defined by

𝑐𝑚𝑎 =
|𝐵𝑥|√

𝜌
,

𝑐2
𝑚𝑠

= 1
2

⎛⎜⎜⎝𝑐2𝑠 + 𝐁2

𝜌
−

√(
𝑐2
𝑠
+ 𝐁2

𝜌

)2
− 4𝑐2

𝑠
𝑐2
𝑚𝑎

⎞⎟⎟⎠ ,

𝑐2
𝑚𝑓

= 1
2

⎛⎜⎜⎝𝑐2𝑠 + 𝐁2

𝜌
+

√(
𝑐2
𝑠
+ 𝐁2

𝜌

)2
− 4𝑐2

𝑠
𝑐2
𝑚𝑎

⎞⎟⎟⎠ . (13)

We then introduce a relaxation procedure [10,14] with the relaxation pressures 𝜋𝐮 playing the role of the fluxes in the impulsion 
equation and the relaxation variable 𝑟 playing the role of the density in front of the time derivatives

𝑟𝜕𝑡𝜏 − 𝜕𝑥𝑢 = 0,

𝑟𝜕𝑡𝐮+ 𝜕𝑥𝜋𝐮 = 0,

𝑟𝜕𝑡𝐸 + 𝜕𝑥(𝜋𝐮 ⋅ 𝐮) = 0,

𝑟𝜕𝑡(𝜏𝐁) − 𝜕𝑥(𝐵𝑥𝐮) = 0, (14)

with the following equations for the relaxation variables

𝜕𝑡𝑟 =
𝜌− 𝑟

𝜖
,

𝑟𝜕𝑡𝜋𝑢 + (𝑐2
𝑏
+ 𝑏2

𝑦
+ 𝑏2

𝑧
)𝜕𝑥𝑢− 𝑐𝑎𝑏𝑦𝜕𝑥𝑣− 𝑐𝑎𝑏𝑧𝜕𝑥𝑤+ 𝑑𝑥𝜕𝑥𝐵𝑥 =

𝜎 −𝐵2
𝑥
− 𝜋𝑢

𝜖
,

𝑟𝜕𝑡𝜋𝑣 − 𝑐𝑎𝑏𝑦𝜕𝑥𝑢+ 𝑐2
𝑎
𝜕𝑥𝑣+ 𝑑𝑦𝜕𝑥𝐵𝑥 =

−𝐵𝑥𝐵𝑦 − 𝜋𝑣

𝜖
,

𝑟𝜕𝑡𝜋𝑤 − 𝑐𝑎𝑏𝑧𝜕𝑥𝑢+ 𝑐2
𝑎
𝜕𝑥𝑤+ 𝑑𝑧𝜕𝑥𝐵𝑥 =

−𝐵𝑥𝐵𝑧 − 𝜋𝑤

𝜖
. (15)

The parameters 𝑐𝑎, 𝑐𝑏, 𝑏𝑦, 𝑏𝑧 play the role of approximations of 
√

𝜌|𝐵𝑥|, 𝜌𝑐𝑠, sign(𝐵𝑥)
√

𝜌𝐵𝑦, sign(𝐵𝑥)
√

𝜌𝐵𝑧, respectively, as in [10]. 
The extra parameters 𝑑𝑥, 𝑑𝑦, 𝑑𝑧 are linked to the possibility of a non-constant 𝐵𝑥 in the magneto-acoustic sub-system and play the 
role of approximations of 2𝐵𝑥𝑢∕𝜏 + 𝐮 ⋅𝐁(𝜕𝑒𝑝 − 1∕𝜏), (𝐵𝑥𝑣 +𝐵𝑦𝑢)∕𝜏 , and (𝐵𝑥𝑤 +𝐵𝑧𝑢)∕𝜏 , respectively. If these extra parameters are 
fixed to zero, the relaxation equations for 𝜋𝐮 is the Lagrangian form of the relaxation equations used in [10]. By replacing all these 
parameters exactly by the quantities they approximate, Eq. (15) reduces to the evolution equation of 𝜎 −𝐵2

𝑥
, −𝐵𝑥𝐵𝑦, and −𝐵𝑥𝐵𝑧 in 

the limit 𝜖 →∞. In order to obtain the same Riemann invariants as [10], we fix 𝑑𝑥, 𝑑𝑦, and 𝑑𝑧 to zero and the other constants are 
evolved with

𝜕𝑡𝑐𝑎 = 𝜕𝑡𝑐𝑏 = 𝜕𝑡𝑏𝑦 = 𝜕𝑡𝑏𝑧 = 0. (16)

In the limit 𝜖 → 0, the relaxation equations in Eq. (15) ensures that 𝑟 → 𝜌, 𝜋𝑢 → 𝜎 −𝐵2
𝑥
, 𝜋𝑣 → −𝐵𝑥𝐵𝑦, and 𝜋𝑤 → −𝐵𝑥𝐵𝑧. In this limit, 

Eq. (14) is then equivalent to Eq. (11). A classical approach to achieve the limit 𝜖 → 0 numerically is to first enforce the equilibrium 
relations 𝑟 = 𝜌 and 𝜋𝐮 = 𝜎𝐞𝑥 − 𝐵𝑥𝐁 at time 𝑡𝑛 and then solve (14) and (15) without the relaxation source terms. Using 𝐿 ≡ 𝑟∕𝜌, the 
full system without the relaxation source term is

𝜕𝑡𝐿− 𝜕𝑥𝑢 = 0,

𝜕𝑡(𝜌𝐿𝐮) + 𝜕𝑥𝜋𝐮 = 0,

𝜕𝑡(𝜌𝐿𝐸) + 𝜕𝑥(𝜋𝐮 ⋅ 𝐮) = 0,

𝜕𝑡(𝐿𝐁) − 𝜕𝑥(𝐵𝑥𝐮) = 0,

𝜕𝑡(𝜌𝐿) = 0,

𝜕𝑡(𝜌𝐿𝜋𝑢) + (𝑐2
𝑏
+ 𝑏2

𝑦
+ 𝑏2

𝑧
)𝜕𝑥𝑢− 𝑐𝑎𝑏𝑦𝜕𝑥𝑣− 𝑐𝑎𝑏𝑧𝜕𝑥𝑤 = 0,

𝜕𝑡(𝜌𝐿𝜋𝑣) − 𝑐𝑎𝑏𝑦𝜕𝑥𝑢+ 𝑐2
𝑎
𝜕𝑥𝑣 = 0,
4

𝜕𝑡(𝜌𝐿𝜋𝑤) − 𝑐𝑎𝑏𝑧𝜕𝑥𝑢+ 𝑐2
𝑎
𝜕𝑥𝑤 = 0. (17)
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After some tedious algebra, one can compute the eigenvalues of this system of 16 equations (including 𝜕𝑡𝑐𝑎 = 𝜕𝑡𝑐𝑏 = 𝜕𝑡𝑏𝑦 = 𝜕𝑡𝑏𝑧 = 0),

−𝑢∕𝐿,0,±𝑐𝑟𝑠∕(𝜌𝐿),±𝑐𝑟𝑎∕(𝜌𝐿),±𝑐𝑟𝑓∕(𝜌𝐿) (18)

with

𝑐𝑟𝑎 = 𝑐𝑎,

𝑐2
𝑟𝑠
= 1

2

(
𝑐2
𝑏
+ 𝑐2

𝑎
+ 𝑏2

𝑦
+ 𝑏2

𝑧
−
√(

𝑐2
𝑏
+ 𝑐2

𝑎
+ 𝑏2

𝑦
+ 𝑏2

𝑧

)2
− 4𝑐2

𝑎
𝑐2
𝑏

)
,

𝑐2
𝑟𝑓

= 1
2

(
𝑐2
𝑏
+ 𝑐2

𝑎
+ 𝑏2

𝑦
+ 𝑏2

𝑧
+
√(

𝑐2
𝑏
+ 𝑐2

𝑎
+ 𝑏2

𝑦
+ 𝑏2

𝑧

)2
− 4𝑐2

𝑎
𝑐2
𝑏

)
. (19)

The central wave at zero velocity has multiplicity 9. All the waves are linearly degenerate. Similarly to [10], 𝑐𝑟𝑠 ≤ 𝑐𝑎 ≤ 𝑐𝑟𝑓 , 𝑐𝑟𝑠 ≤ 𝑐𝑏 ≤

𝑐𝑟𝑓 and the eigenvalues of (17) match the eigenvalues of (11) for 𝑐𝑎 =
√

𝜌|𝐵𝑥|, 𝑐𝑏 = 𝜌𝑐𝑠, 𝑏𝑦 = sign(𝐵𝑥)
√

𝜌𝐵𝑦, 𝑏𝑧 = sign(𝐵𝑥)
√

𝜌𝐵𝑧. 
Similarly to [10], a Chapman-Enskog analysis can be performed on the relaxation equations which leads to the following stability 
conditions

1
𝜌
−

𝐵2
𝑥

𝑐2
𝑎

≥ 0,

𝑐2
𝑏
− 𝜌2𝑐2

𝑠
≥ 0,

(𝑐2
𝑏
− 𝜌2𝑐2

𝑠
)

(
1
𝜌
−

𝐵2
𝑥

𝑐2
𝑎

)
≥

(
𝐵𝑦 −

𝐵𝑥𝑏𝑦

𝑐𝑎

)2
+
(

𝐵𝑧 −
𝐵𝑥𝑏𝑧

𝑐𝑎

)2
, (20)

in order to ensure positive eigenvalues of the entropy diffusion matrix.

The 3+1 and 5+1 wave solver The solution of the Riemann problem associated to (17) contains 7+1 waves in the general case, 7 
waves that are identical to a Lagrangian version of the 1D relaxation solver presented in [10] to which we add a wave at −𝑢∕𝐿
associated to 𝐵𝑥. Similarly to [11] we can design an approximate Riemann solver with 5+1 waves by choosing 𝑏𝑦 = 𝑏𝑧 = 0, or with 
3+1 waves by choosing in addition 𝑐𝑎 = 𝑐𝑏 = 𝑐. The 5+1 wave solver is a good compromise between accuracy ad computational cost 
and we will use this approximation for now on.

We now look for strong Riemann invariants for the different waves by finding quantities transported at the corresponding wave 
speed [18]. 𝐵𝑥 is a strong Riemann invariant associated to the wave at −𝑢∕𝐿. Note that 𝐵𝑥 is not constant but advected at velocity 
−𝑢∕𝐿. 𝐵𝑥 has to be understood as evaluated locally, upwind relative to the wave −𝑢∕𝐿. 𝑐𝑎 and 𝑐𝑏 are strong Riemann invariants for 
the central wave with

1
𝜌
+

𝜋𝑢

𝑐2
𝑏

,
𝐵𝑦

𝜌
+

𝐵𝑥

𝑐2
𝑎

𝜋𝑣,
𝐵𝑧

𝜌
+

𝐵𝑥

𝑐2
𝑎

𝜋𝑤, 𝑒+ 𝐁2

2𝜌
−

𝜋2
𝑢

2𝑐2
𝑏

−
𝜋2

𝑣
+ 𝜋2

𝑤

2𝑐2
𝑎

. (21)

Similarly to [11], there are six strong Riemann invariants for the left and right waves 𝜋𝐮 + 𝑐𝐮𝐮 and 𝜋𝐮 − 𝑐𝐮𝐮, respectively, in which 
we have defined 𝑐𝐮 = (𝑐𝑏, 𝑐𝑎, 𝑐𝑎). Strong Riemann invariants for a given wave are weak Riemann invariants for the other waves. They 
are, therefore, weak Riemann invariants for the central wave, hence, 𝐮 and 𝜋𝐮 take the same value on the left and right of this wave 
that we shall define as 𝐮∗ and 𝜋∗

𝐮 respectively. By using the weak Riemann invariants, we get

𝐮∗ =
𝑐𝐮,𝑙𝐮𝑙 + 𝑐𝐮,𝑟𝐮𝑟 + 𝜋𝐮,𝑙 − 𝜋𝐮,𝑟

𝑐𝐮,𝑙 + 𝑐𝐮,𝑟

,

𝜋∗
𝐮 =

𝑐𝐮,𝑟𝜋𝐮,𝑙 + 𝑐𝐮,𝑙𝜋𝐮,𝑟 + 𝑐𝐮,𝑙𝑐𝐮,𝑟(𝐮𝑙 − 𝐮𝑟)
𝑐𝐮,𝑙 + 𝑐𝐮,𝑟

. (22)

Then one has

𝐵𝑥(𝑥, 𝑡) =
{

𝐵𝑥,𝑙 if 𝑥∕𝑡 < −𝑢∕𝐿
𝐵𝑥,𝑟 if 𝑥∕𝑡 > −𝑢∕𝐿,

(23)

hence, at the interface, we define 𝐵−𝑢∗
𝑥

= 𝐵𝑥(0, 𝑡) with

𝐵−𝑢∗
𝑥

=
{

𝐵𝑥,𝑙 if 𝑢∗ < 0
𝐵𝑥,𝑟 if 𝑢∗ > 0. (24)

The other intermediate states, e.g. 𝜏∗
𝑙,𝑟

and 𝑒∗
𝑙,𝑟

can be obtained by using (21), but are not needed for deriving the update of the 
numerical scheme. The discrete numerical scheme for the magneto-acoustic sub-system is then given by
5

𝐿𝑛+1−
𝑖

= 1 + Δ𝑡

Δ𝑥
(𝑢∗

𝑖+1∕2 − 𝑢∗
𝑖−1∕2),
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𝜌𝑛+1−
𝑖

𝐿𝑛+1−
𝑖

= 𝜌𝑛
𝑖
,

𝜌𝑛+1−
𝑖

𝐮𝑛+1−
𝑖

𝐿𝑛+1−
𝑖

= 𝜌𝑛
𝑖
𝐮𝑛

𝑖
− Δ𝑡

Δ𝑥
(𝜋∗

𝐮,𝑖+1∕2 − 𝜋∗
𝐮,𝑖−1∕2),

𝜌𝑛+1−
𝑖

𝐸𝑛+1−
𝑖

𝐿𝑛+1−
𝑖

= 𝜌𝑛
𝑖
𝐸𝑛

𝑖
− Δ𝑡

Δ𝑥
(𝜋∗

𝐮,𝑖+1∕2 ⋅ 𝐮
∗
𝑖+1∕2 − 𝜋∗

𝐮,𝑖−1∕2 ⋅ 𝐮
∗
𝑖−1∕2),

𝐁𝑛+1−
𝑖

𝐿𝑛+1−
𝑖

= 𝐁𝑛
𝑖
+ Δ𝑡

Δ𝑥
(𝐵−𝑢∗

𝑥,𝑖+1∕2𝐮
∗
𝑖+1∕2 −𝐵−𝑢∗

𝑥,𝑖−1∕2𝐮
∗
𝑖−1∕2), (25)

with the CFL condition for this scheme

max
𝑖∈ℤ

(
𝑐𝑟𝑓 ,𝑖

𝜌𝑖

)
Δ𝑡 ≤

Δ𝑥

2
. (26)

5. Transport sub-system

The transport sub-system is a quasi-hyperbolic system that only involves the transport of conservative variables with the velocity 
𝑢. We choose to approximate the solution of the 1D version of (10) thanks to a standard upwind Finite-Volume approximation for 
𝐔 = (𝜌, 𝜌𝐮, 𝜌𝐸, 𝐁) by discretizing

𝜕𝐔
𝜕𝑡

+ 𝑢
𝜕𝐔
𝜕𝑥

= 𝜕𝐔
𝜕𝑡

+ 𝜕(𝑢𝐔)
𝜕𝑥

−𝐔 𝜕𝑢

𝜕𝑥
= 0, (27)

with

𝐔𝑛+1
𝑖

=𝐔𝑛+1−
𝑖

− Δ𝑡

Δ𝑥
(𝑢∗

𝑖+1∕2𝐔𝑖+1∕2 − 𝑢∗
𝑖−1∕2𝐔𝑖−1∕2) +

Δ𝑡

Δ𝑥
𝐔𝑛+1−

𝑖
(𝑢∗

𝑖+1∕2 − 𝑢∗
𝑖−1∕2), (28)

with two possible choices of discretization for the interface states 𝐔𝑖−1∕2 and 𝐔𝑖+1∕2. The first choice

𝐔𝑖+1∕2 =

{
𝐔𝑛+1−

𝑖
if 𝑢∗

𝑖+1∕2 ≥ 0,
𝐔𝑛+1−

𝑖+1 if 𝑢∗
𝑖+1∕2 ≤ 0, (29)

leads to a magneto-acoustic+transport scheme of stencil 2 similar to [14]. The second choice

𝐔𝑖+1∕2 =

{
𝐔𝑛

𝑖
if 𝑢∗

𝑖+1∕2 ≥ 0,
𝐔𝑛

𝑖+1 if 𝑢∗
𝑖+1∕2 ≤ 0, (30)

leads to a magneto-acoustic+transport scheme of stencil 1 similar to [16]. We will refer to these choices of discretization as “stencil 1” 
and “stencil 2” in the rest of the paper. In both cases and using the notation 𝑢± = 𝑢±|𝑢|

2 , the CFL condition of the transport sub-system 
is given by

max
𝑖∈ℤ

((𝑢∗
𝑖−1∕2)

+ − (𝑢∗
𝑖+1∕2)

−)Δ𝑡 ≤Δ𝑥. (31)

The transport can also be written in the form

𝐔𝑛+1
𝑖

=𝐔𝑛+1−
𝑖

𝐿𝑛+1−
𝑖

− Δ𝑡

Δ𝑥
(𝑢∗

𝑖+1∕2𝐔𝑖+1∕2 − 𝑢∗
𝑖−1∕2𝐔𝑖−1∕2). (32)

6. Magneto-acoustic+transport scheme

The global scheme is given by

𝜌𝑛+1
𝑖

= 𝜌𝑛
𝑖
− Δ𝑡

Δ𝑥
(𝜌𝑖+1∕2𝑢

∗
𝑖+1∕2 − 𝜌𝑖−1∕2𝑢

∗
𝑖−1∕2),

(𝜌𝐮)𝑛+1
𝑖

= (𝜌𝐮)𝑛
𝑖
− Δ𝑡

Δ𝑥
((𝜌𝐮)𝑖+1∕2𝑢∗𝑖+1∕2 + 𝜋∗

𝐮,𝑖+1∕2

−(𝜌𝐮)𝑖−1∕2𝑢∗𝑖−1∕2 − 𝜋∗
𝐮,𝑖−1∕2),

(𝜌𝐸)𝑛+1
𝑖

= (𝜌𝐸)𝑛
𝑖
− Δ𝑡

Δ𝑥
((𝜌𝐸)𝑖+1∕2𝑢∗𝑖+1∕2 + 𝜋∗

𝐮,𝑖+1∕2 ⋅ 𝐮
∗
𝑖+1∕2

−(𝜌𝐸)𝑖−1∕2𝑢∗𝑖−1∕2 − 𝜋∗
𝐮,𝑖−1∕2 ⋅ 𝐮

∗
𝑖−1∕2),

𝐁𝑛+1
𝑖

= 𝐁𝑛
𝑖
− Δ𝑡

Δ𝑥
(𝐁𝑖+1∕2𝑢

∗
𝑖+1∕2 −𝐵−𝑢∗

𝑥,𝑖+1∕2𝐮
∗
𝑖+1∕2

−𝐁𝑖−1∕2𝑢
∗
𝑖−1∕2 +𝐵−𝑢∗

𝑥,𝑖−1∕2𝐮
∗
𝑖−1∕2). (33)

The global scheme of stencil 2 is stable under the most restrictive CFL condition between the magneto-acoustic and transport sub-

systems. The scheme of stencil 1 is stable under a CFL condition involving the sum of the speeds of the magneto-acoustic and transport 
6

subsystem as demonstrated in [16] and in Sect. 7.



Journal of Computational Physics 519 (2024) 113455P. Tremblin, R. Bourgeois, S. Bulteau et al.

7. Entropy analysis

In this section, we first introduce under which conditions the 1D relaxation solver is entropy-satisfying. For a non-constant 𝐵𝑥 in 
a multi-dimensional setup, it is clear that the fully-conservative solver is not entropy-satisfying: on the −𝑢∕𝐿 wave, 𝐵𝑥 is the only 
quantity that jumps, hence, induces a jump in internal energy because of the last Riemann invariant in (21). Similarly to [11], an 
entropy satisfying solver will require the introduction of an entropic correction on the induction equation to get a symmetric version 
of the MHD equations. We will present the multi-dimensional entropy-satisfying solver at the end of the section.

The choice of the relaxation parameter 𝑐 = 𝑐𝑎 = 𝑐𝑏 for the 3+1 wave approximate Riemann solver and 𝑐𝑎, 𝑐𝑏 for the 5+1 wave 
solver is made to ensure that the solver is entropy satisfying for a constant 𝐵𝑥 in 1D. If for all intermediate states 𝐔∗

𝑙,𝑟
, one has 𝜏∗

𝑙,𝑟
> 0

and

(𝜌2𝑐2
𝑠
)∗,𝑙,𝑟 ≤ 𝑐2

𝑏
,

𝜏∗
𝑙,𝑟

−
𝐵2

𝑥

𝑐2
𝑎

≥ 0,

(
𝐵2

𝑦,𝑙,𝑟
+𝐵2

𝑧,𝑙,𝑟

)
≤ (𝑐2

𝑏
− (𝜌2𝑐2

𝑠
)∗,𝑙,𝑟)

(
𝜏∗
𝑙,𝑟

−
𝐵2

𝑥

𝑐2
𝑎

)
, (34)

with (𝜌2𝑐2
𝑠
)∗,𝑙,𝑟 ≡ sup𝜌∈(𝜌∗ ,𝜌𝑙 ,𝜌𝑟)(𝜌

2𝑐2
𝑠
(𝜌, 𝑠𝑙,𝑟)), there exists a numerical flux function 𝑞𝑛

𝑖+1∕2 = 𝑞(𝐔𝑛
𝑖
, 𝐔𝑛

𝑖+1), consistent with zero (see [14]) 
such that

𝜌𝑛+1
𝑖

𝑠(𝐔𝑛+1
𝑖

) − 𝜌𝑛
𝑖
𝑠(𝐔𝑛

𝑖
) + Δ𝑡

Δ𝑥
(𝑞𝑛

𝑖+1∕2 + (𝜌𝑠)𝑖+1∕2𝑢∗𝑖+1∕2
−𝑞𝑛

𝑖−1∕2 − (𝜌𝑠)𝑖−1∕2𝑢∗𝑖−1∕2) ≥ 0. (35)

Following [11], optimal choices of 𝑐𝑎 and 𝑐𝑏 for smooth solutions are given by

𝑐2
𝑎
= 𝜌(𝐵2

𝑥
+ |𝐵𝑥|√𝐵2

𝑦
+𝐵2

𝑧
)

𝑐2
𝑏
= 𝜌2𝑐2

𝑠
+ 𝜌(𝐵2

𝑦
+𝐵2

𝑧
+ |𝐵𝑥|√𝐵2

𝑦
+𝐵2

𝑧
) (36)

for the 5+1 wave solver and 𝑐 = 𝜌𝑐𝑚𝑓 for the 3+1 wave solver. Optimal choices for discontinuous solutions are given in [11], however, 
in all the tests performed in Sect. 8 the smooth version has been sufficient to ensure stability and is therefore preferred for its low 
computational cost. As noted in [11], the diffusion of the 5+1 solver is zero when 𝐵𝑥 = 0 or 𝐵2

𝑦
+𝐵2

𝑧
= 0 which means that the solver 

is exact in these conditions. We, however, point out that this is exactly where the MHD system is not strictly hyperbolic with 𝑐𝑚𝑎 = 0
for 𝐵𝑥 = 0 and 𝑐𝑚𝑎 = 𝑐𝑚𝑠 for 𝐵2

𝑦
+𝐵2

𝑧
= 0. Therefore, in practice, we employ a more diffusing approximation for the choices of 𝑐𝑎 and 

𝑐𝑏 by using the following inequality |𝐵𝑥|√𝐵2
𝑦
+𝐵2

𝑧
≤ (𝐵2

𝑥
+𝐵2

𝑦
+𝐵2

𝑧
)∕2:

𝑐2
𝑎
= 𝜌(𝐵2

𝑥
+ (𝐵2

𝑥
+𝐵2

𝑦
+𝐵2

𝑧
)∕2)

𝑐2
𝑏
= 𝜌2𝑐2

𝑠
+ 𝜌(𝐵2

𝑦
+𝐵2

𝑧
+ (𝐵2

𝑥
+𝐵2

𝑦
+𝐵2

𝑧
)∕2) (37)

to ensure the use of a stable strictly hyperbolic approximation even when 𝐵𝑥 or 𝐵2
𝑦
+ 𝐵2

𝑧
vanishes. It also helps with the isotropy 

of the numerical diffusion whenever there is a large difference between the normal and transverse magnetic intensity, avoiding the 
generation of spurious patterns. We decompose the proof of the entropy analysis of the global scheme into an entropy analysis of 
each sub-system, magneto-acoustic and transport, respectively.

7.1. Entropy analysis of the magneto-acoustic sub-system in 1D

Proposition 1. Let 𝑠𝑙,𝑟 = 𝑠(𝜏𝑙,𝑟, 𝑒𝑙,𝑟). If the inequality

𝑒∗
𝑙,𝑟

≥ 𝑒(𝜏∗
𝑙,𝑟

, 𝑠𝑙,𝑟) (38)

is verified, there exists a numerical flux function 𝑞𝑛
𝑖+1∕2 = 𝑞(𝐔𝑛

𝑖
, 𝐔𝑛

𝑖+1), consistent with zero such that

𝐿𝑛+1−
𝑖

𝜌𝑛+1−
𝑖

𝑠(𝜏𝑛+1−
𝑖

, 𝑒𝑛+1−
𝑖

) − 𝜌𝑛
𝑖
𝑠(𝜏𝑛

𝑖
, 𝑒𝑛

𝑖
) + Δ𝑡

Δ𝑥
(𝑞𝑛

𝑖+1∕2 − 𝑞𝑛
𝑖−1∕2) ≥ 0 (39)

Proof. According to Eq. (2), at fixed 𝜏 , 𝑒(𝜏, 𝑠) is an increasing function of 𝑠, hence 𝑒(𝜏∗
𝑙,𝑟

, 𝑠∗
𝑙,𝑟
) ≥ 𝑒(𝜏∗

𝑙,𝑟
, 𝑠𝑙,𝑟) implies 𝑠∗

𝑙,𝑟
≥ 𝑠𝑙,𝑟. This 

inequality then implies that for any 𝑐 > 0
7

0 ≥ −𝑐(𝑠∗
𝑙
− 𝑠𝑙) + 𝑐(𝑠𝑟 − 𝑠∗

𝑟
) (40)
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which is consistent with the integral form of the entropy inequality 𝜕𝑡(𝑠(𝜏, 𝑒)) ≥ 0. As in [14], this implies the existence of 𝑞𝑛
𝑖+1∕2 =

𝑞(𝐔𝑛
𝑖
, 𝐔𝑛

𝑖+1) such that

𝑠(𝜏𝑛+1−
𝑖

, 𝑒𝑛+1−
𝑖

) − 𝑠(𝜏𝑛
𝑖
, 𝑒𝑛

𝑖
) + 𝜏𝑛

𝑖

Δ𝑡

Δ𝑥
(𝑞𝑛

𝑖+1∕2 − 𝑞𝑛
𝑖−1∕2) ≥ 0 (41)

The inequality (39) follows from 𝐿𝑛+1−
𝑖

𝜌𝑛+1−
𝑖

= 𝜌𝑛
𝑖
. □

Proposition 2. The 5+1 wave approximate Riemann solver associated to the relaxation (17) of the magneto-acoustic sub-system is positive 
and satisfies all discrete entropy inequalities whenever for all intermediate states 𝐔∗

𝑙,𝑟
, 𝜏∗

𝑙,𝑟
are positive and the inequalities (34) are verified.

Proof. According to (21), the 5+1 wave relaxation Riemann problem has the same Riemann invariants as [11] apart from the addition 
of 𝐵𝑥 as a strong Riemann invariant of the −𝑢∕𝐿 wave. 𝐵𝑥 has therefore to be understood as evaluated locally according to (23). By 
introducing the decomposition into elementary dissipation terms similarly as in [27], using the Riemann invariants (21) and defining 
𝜎(𝐔) = 𝑝(𝜏, 𝑠 = 𝑠𝑙,𝑟) +𝐁2∕2, one can show that

𝑒(𝜏∗
𝑙,𝑟

, 𝑠𝑙,𝑟) − 𝑒∗
𝑙,𝑟

= 𝐷0(𝐔∗
𝑙,𝑟

,𝐔𝑙,𝑟) −
1
2

|||||
𝜎(𝐔∗

𝑙,𝑟
)𝐧−𝐵𝑥𝐁∗ − 𝜋∗

𝐮

𝑐𝐮

|||||
2

, (42)

with 𝐷0 the dissipation associated to the central wave given by

𝐷0(𝐔∗
𝑙,𝑟

,𝐔𝑙,𝑟) = 𝑒(𝜏∗
𝑙,𝑟

, 𝑠𝑙,𝑟) − 𝑒(𝜏𝑙,𝑟, 𝑠𝑙,𝑟) + 𝑝(𝜏∗
𝑙,𝑟

, 𝑠𝑙,𝑟)
(
𝜏∗
𝑙,𝑟

− 𝜏𝑙,𝑟

)
+ 1
2𝑐2

𝑏

(
𝜎(𝐔∗

𝑙,𝑟
) − 𝜎(𝐔𝑙,𝑟)

)2

−
(
𝜏𝑙,𝑟 −𝐵2

𝑥
∕𝑐2

𝑎

) 1
2
||𝐁∗ −𝐁𝑙,𝑟

||2 . (43)

The proof of Proposition 2 then follows directly from the entropy analysis of [10] who showed that under (34) and by using (42), the 
inequality (38) is verified. □

The final part of the analysis requires to give the conditions under which the relaxation approximation is positive for the inter-

mediate states of the specific volume 𝜏∗
𝑙,𝑟

> 0. These conditions for the relaxation parameters are provided in proposition 3.3 of [11], 
however we do not explicitly specify them here because we will use a less restrictive choice with Eq. (37) which seems sufficient in 
practice in all the numerical tests performed in Sect. 8.

7.2. Entropy analysis of the transport sub-system in 1D

By using 𝑢± = 𝑢±|𝑢|
2 , the transport step of the global scheme of stencil 2 can be written in the form

𝐔𝑛+1
𝑖

= Δ𝑡

Δ𝑥
𝑢
∗,+
𝑖−1∕2𝐔

𝑛+1−
𝑖−1 − Δ𝑡

Δ𝑥
𝑢
∗,−
𝑖+1∕2𝐔

𝑛+1−
𝑖+1 +

(
1 − Δ𝑡

Δ𝑥
(𝑢∗,+

𝑖−1∕2 − 𝑢
∗,−
𝑖+1∕2)

)
𝐔𝑛+1−

𝑖
, (44)

hence 𝐔𝑛+1
𝑖

is a convex combination of 𝐔𝑛+1−
𝑖−1 , 𝐔𝑛+1−

𝑖
and 𝐔𝑛+1−

𝑖+1 as their pre-factors are positive and sum to 1. By convexity of the 
function 𝐔 → −𝜌𝑠(𝐔)

𝜌𝑛+1
𝑖

𝑠(𝐔𝑛+1
𝑖

) ≥ 𝜌𝑛+1−
𝑖

𝐿𝑛+1−
𝑖

𝑠(𝐔𝑛+1−
𝑖

) − Δ𝑡

Δ𝑥
((𝜌𝑠)𝑖+1∕2𝑢∗𝑖+1∕2 − (𝜌𝑠)𝑖−1∕2𝑢∗𝑖−1∕2). (45)

By combining, the inequalities (39) and (45) we obtain the inequality (35). Following [16], the global scheme of stencil 1 can be 
written in the form

𝐔𝑛+1
𝑖

= 𝛼𝑖𝐔𝐴
𝑖
+ (1 − 𝛼𝑖)𝐔𝑇

𝑖
(46)

for any 𝛼𝑖 ∈]0, 1[ and

𝐔𝐴
𝑖
=𝐔𝑛

𝑖
+ 1

𝛼𝑖

Δ𝑡

Δ𝑥
(𝐔𝑛+1−

𝑖
𝐿𝑛+1−

𝑖
−𝐔𝑛

𝑖
),

𝐔𝑇
𝑖
=𝐔𝑛

𝑖
− 1

1 − 𝛼𝑖

Δ𝑡

Δ𝑥
(𝑢∗

𝑖+1∕2𝐔𝑖+1∕2 − 𝑢∗
𝑖−1∕2𝐔𝑖−1∕2), (47)

with 𝐔𝐴
𝑖

corresponding to a magneto-acoustic update with Δ𝑡𝐴 = 1
𝛼𝑖
Δ𝑡 and 𝐔𝑇

𝑖
corresponding to a conservative transport update also 

with Δ𝑡𝑇 = 1
1−𝛼𝑖

Δ𝑡. Following [16], 𝐔𝑇
𝑖
∕𝜌𝑛+1

𝑖
can be written as a convex combination of 𝐔𝑛

𝑖
∕𝜌𝑛

𝑖
. Thus, we can also obtain (35) by 
8

using the convexity of (46) under the CFL conditions:
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max
𝑖∈ℤ

((𝑢∗
𝑖−1∕2)

+ − (𝑢∗
𝑖+1∕2)

−) 1
𝛼𝑖

Δ𝑡 ≤Δ𝑥. (48)

max
𝑖∈ℤ

(
𝑐𝑟𝑓 ,𝑖

𝜌𝑖

)
1

1 − 𝛼𝑖

Δ𝑡 ≤
Δ𝑥

2
. (49)

As the local choice of 𝛼𝑖 is free, we can pick it so that both conditions coincide, giving the following condition for the stencil 1 scheme:

max
𝑖∈ℤ

((𝑢∗
𝑖−1∕2)

+ − (𝑢∗
𝑖+1∕2)

− + 2
𝑐𝑟𝑓 ,𝑖

𝜌𝑖

)Δ𝑡 ≤Δ𝑥. (50)

7.3. Entropic correction for multi-dimensional MHD

Similarly to [11], we introduce an entropic correction on the induction equation proportional to ∇ ⋅ 𝐁,

𝜕𝑡𝐁+∇ ⋅ (𝐮⊗𝐁−𝐁⊗ 𝐮) + 𝐮∇ ⋅𝐁 = 0. (51)

The rest of the MHD system is not changed and, of course, (51) is equivalent to the standard form when ∇ ⋅ 𝐁 = 0. Smooth solutions 
follow the entropy evolution

𝜕𝑡(𝜌𝑠) + ∇ ⋅ (𝜌𝑠𝐮) = 0. (52)

We recall the discretization of the source term as [11] which results in two different values of 𝐵−𝑢∗
𝑥

at an interface, 𝐵−𝑢∗

𝑥,𝑖+1∕2,𝑙 = 𝐵𝑛
𝑥,𝑖

and 𝐵−𝑢∗

𝑥,𝑖+1∕2,𝑟 = 𝐵𝑛
𝑥,𝑖+1, hence giving a non-conservative discretization of the induction equation with

𝐁𝑛+1
𝑖

= 𝐁𝑛
𝑖
− Δ𝑡

Δ𝑥
(𝐁𝑖+1∕2𝑢

∗
𝑖+1∕2 −𝐵𝑛

𝑥,𝑖
𝐮∗

𝑖+1∕2

−𝐁𝑖−1∕2𝑢
∗
𝑖−1∕2 +𝐵𝑛

𝑥,𝑖
𝐮∗

𝑖−1∕2). (53)

With this non-conservative source term, the evolution equation of 𝐵𝑥 is simply 𝜕𝑡𝐵𝑥 = 0 and the system becomes symmetric with 
an additional wave centered at 0 instead of the −𝑢∕𝐿 wave [12]. The strong Riemann invariant 𝐵𝑥 jumps at 0, similarly to the 
other Riemann invariant (21). As in [11], the 3+1 and 5+1 approximate Riemann solvers with the non-conservative source term are 
entropy satisfying with the same proof presented above, 𝐵𝑥 simply needs to be understood as evaluated locally with a jump on the 
central wave.

We emphasize that the normal component of the magnetic field for 𝐵−𝑢∗
𝑥

in (53) is always the value at cell center 𝐵𝑛
𝑥,𝑖

both at 
first and second order. As noted by [28], the source term vanishes for smooth solutions at second order if one uses the reconstructed 
values at interfaces. The proposed discretization in (53) avoids this problem and can be employed for both 1st and 2nd order.

8. Numerical results

In order to take advantage of the fully conservative and entropy-satisfying solvers, we use an hybrid strategy in our simulations 
by switching between both depending on the regime of the flow. On cells where the plasma beta number 𝛽 = 𝑝∕𝐁2

2 is inferior to a 
tunable threshold 𝛽𝑚𝑖𝑛 or where the local Alfvén number 𝐴𝑙 =

√
𝜌
∣𝑢∣
∣𝐵∣ is superior to another tunable threshold 𝐴𝑙𝑚𝑎𝑥, we use locally 

the entropy-satisfying solver instead of the fully conservative solver. In all our experiments, we set 𝛽𝑚𝑖𝑛 = 10−3 and 𝐴𝑙𝑚𝑎𝑥 = 10. The 
entropic correction is only activated in the specifically designed low-plasma-beta blast problem (see Sect. 8.2.4) and the field loop 
advection test case (see Sect. 8.2.6).

All the simulations performed in this section are using the stencil 1 solver and a MUSCL-Hancock scheme [29], with second order 
accuracy in space with states reconstructions at interfaces and second order accuracy in time with a predictor-corrector step at half 
time-step. We perform the extrapolation on the primitive variables (𝜌, 𝑝, 𝐮, 𝐁) and use the classical minmod limiter in order to ensure 
the admissibility of the Riemann states. The time-step is computed with Δ𝑡 = CFL × Δ𝑥∕(𝑐𝑚𝑓 + |𝐮|) with 𝑐𝑚𝑓 the speed of the fast 
magneto-acoustic waves. With a standard MUSCL-Hancock scheme the CFL condition with CFL < 0.5 ensures a positive numerical 
scheme. In practice, this CFL condition is often observed to be too restrictive and we use in all simulations a fixed CFL number of 0.8. 
We also use an ideal gas equation of state. All numerical experiments were conducted using the one step 5 + 1 waves solver with 𝑐𝑎

and 𝑐𝑏 given by Eq. (37) to avoid the loss of hyperbolicity of the relaxation whenever 𝐵𝑥 or 𝐵𝑦 and 𝐵𝑧 vanish. We also use the 3 + 1
waves solver for the 2D rotated shock tube test to provide a comparison with the 5 + 1 waves solver.

8.1. 1D tests cases

In this section, we reproduce several 1D Riemann problems that were used in [11]. The values of the left and right states, the 
final time, length of the domain and adiabatic indexes are given in table (54). The simulations were all performed with Δ𝑥 = 10−2. 
9

The reference solutions were all generated with the 5 + 1 waves solver using Δ𝑥 = 5 × 10−4.
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Fig. 1. 𝜌 and 𝐵𝑦 for the Dai and Woodward shock tube at 𝑡 = 0.2, 5 + 1 waves solver against a reference solution.

Test case name, (𝛾, 𝑡𝑒𝑛𝑑 ,𝐿) 𝜌 (𝑢, 𝑣,𝑤) p (𝐵𝑥,𝐵𝑦,𝐵𝑧)
Dai & Woodward, ( 53 ,0.2,1.1)
L state 1.08 (1.2,0.01,0.5) 0.95 ( 4√

4𝜋
,

3.6√
4𝜋

,
2√
4𝜋
)

R state 1.0 (0.0,0.0,0.0) 1.0 ( 4√
4𝜋

,
4√
4𝜋

,
2√
4𝜋
)

Brio & Wu I, (2.0,0.2,1.0)
L state 1.0 (0.0,0.0,0.0) 1.0 (0.65,1.0,0.0)
R state 0.125 (0.0,0.0,0.0) 0.1 (0.65,−1.0,0.0)
Brio & Wu II, (2.0,0.012,1.4)
L state 1.0 (0.0,0.0,0.0) 1000.0 (0.0,1.0,0.0)
R state 0.125 (0.0,0.0,0.0) 0.1 (0.0,−1.0,0.0)
Slow rarefaction, ( 53 ,0.2,1.0)
L state 1.0 (0.0,0.0,0.0) 2.0 (1.0,0.0,0.0)
R state 0.2 (1.186,2.967,0.0) 0.1368 (1.0,1.6405,0.0)
Expansion I, ( 53 ,0.15,1.4)
L state 1.0 (−3.1,0.0,0.0) 0.45 (0.0,0.5,0.0)
R state 1.0 (3.1,0.0,0.0) 0.45 (0.0,0.5,0.0)
Expansion II, ( 53 ,0.15,1.4)
L state 1.0 (−3.1,0.0,0.0) 0.45 (1.0,0.5,0.0)
R state 1.0 (−3.1,0.0,0.0) 0.45 (1.0,0.5,0.0)

(54)

8.1.1. Dai-Woodward shock tube

This shock tube configuration was introduced in [30]. During the computation, the solution displays the full eigen-structure of the 
MHD system as it generates shocks and discontinuities on all fields. We observe in Fig. 1 that our method captures the density and 
transverse magnetic field robustly, without spurious oscillations. We observe the effect of numerical diffusion smoothing the various 
waves. A density undershoot is observed at 𝑥 ≃ 0.7 and is due to the choice of CFL number 0.8, higher than what the 0.5 allowed by 
the stability analysis of MUSCL methods. These results are very similar to what is obtained in [11].

8.1.2. Brio-Wu shock tube, configuration I
The Brio-Wu shock tube was first introduced in [31]. The solution of this shock tube is composed of shocks, rarefactions, contact 

discontinuities and a compound wave, in this case a discontinuity attached to a slow rarefaction. In Fig. 2, we can see that our solver 
captures all features of the solution of this Riemann problem. The effect of diffusion is mainly observed on the 𝑥 ≃ 0.6 shock and 
the density peak around 𝑥 ≃ 0.45 as it is a very fine feature. At the same location, the low-resolution result does present a smoothed 
bump. These results are very similar to what is obtained in [11]. Note that as in [11], the slow shock position does not seem to be 
well captured at low resolution.

8.1.3. Brio-Wu shock tube, configuration II
The second Riemann problem from [31] also involves a complex wave structure but with a high magneto-acoustic Mach number. 
10

In Fig. 3, we observe that our solver captures all features of the shock tube, similarly to the results of [11]. The effect of diffusion is 
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Fig. 2. 𝜌 and 𝐵𝑦 for the Brio and Wu -I- shock tube at 𝑡 = 0.2, 5 + 1 waves solver against a reference solution.

Fig. 3. 𝜌 and 𝐵𝑦 for the Brio and Wu -II- shock tube at 𝑡 = 0.012, 5 + 1 waves solver against a reference solution.

mainly observed at 𝑥 ≃ 1.05 where a discontinuity and an undershoot are observed on the high resolution plot. This corresponds to 
the smoothed dip observed in the low-resolution solution.

8.1.4. Slow rarefaction tube

This test has been first proposed in [32]. It involves a sonic point, where the slow magneto-acoustic speed equals the fluid velocity. 
This feature is problematic for linearized method like the Roe solver, but our scheme is stable as we can see in Fig. 4, just like the 
resolution shown in [11]. The 𝑥 ≃ 0.75 dip and 𝑥 ≃ 0.85 bump present on the high-resolution line are smoothed but still present on 
the low-resolution solution.

8.1.5. Expansion problem, configuration I
This test is taken from [33]. It consists of two out-going rarefaction separating a low density region that is difficult to tackle in a 

stable manner. Our solver is able to simulate this region as we can see in Fig. 5. The effect of numerical diffusion on the sharpness of 
the 𝑥 = 0.5 density and magnetic field dip is visually enhanced by the use of the log scale. Similar results are found in [11].

8.1.6. Expansion problem, configuration II
This test is a modification of 8.1.5 suggested by [11] where we simply set 𝐵𝑥 = 1.0 instead of 0. Taking 𝐵𝑥 nonzero causes the 

thermal pressure to be low in the central region which can be hard to tackle robustly. Nevertheless, we can see in Fig. 6 that our 
11

method is stable and provides results that are very similar to the ones presented in [11].
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Fig. 4. 𝜌 and 𝐵𝑦 for the slow rarefaction tube at 𝑡 = 0.2, 5 + 1 waves solver against a reference solution.

Fig. 5. 𝜌 and 𝐵𝑦 for the expansion -I- tube at 𝑡 = 0.15, 5 + 1 waves solver against a reference solution. logscale on the 𝑦-axis.
12

Fig. 6. 𝜌 and 𝐵𝑦 for the expansion -II- tube at 𝑡 = 0.15, 5 + 1 waves solver against a reference solution. logscale on the 𝑦-axis.
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Fig. 7. Density map of the Orszag-Tang vortex at 𝑡 = 0.5 s. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

8.2. 2D tests cases

All 2D test cases are using Δ𝑥 = Δ𝑦 = 1
256 . We also have tested all the resolutions between 64 and 2048 without any issue to 

report. In all 2D setups, the quantity 𝑟 always refers to the distance from the center of the domain.

8.2.1. Orszag-Tang vortex

The Orszag-Tang vortex test case was first introduced by [34] and has become a standard multi-dimensional benchmark case for 
ideal MHD. The dynamic of this vortex involves the formation of shocks as well as interactions between them which are challenging 
to simulate robustly. For instance, 1D solvers like HLLD straightforwardly extended to 2D fail at this task. We recall that this problem 
takes place in the [0 ∶ 1]2 periodic domain with initial data:

𝜌(𝑥, 𝑦) = 25∕36𝜋,

𝑝(𝑥, 𝑦) = 5∕12𝜋,

𝐮(𝑥, 𝑦) =
(
−sin 2𝜋𝑦

sin 2𝜋𝑥

)
,

𝐁(𝑥, 𝑦) = 1∕
√
4𝜋

(
−sin 2𝜋𝑦

sin 4𝜋𝑥

)
,

𝛾 = 5∕3.

We show the density map at 𝑡 = 0.5 in Fig. 7. We observe that the shocks and discontinuities are well captured without spurious 
numerical artifacts. We also notice the usual “eye-shape” high frequency feature at the center of the domain, demonstrating the 
accuracy of our solver. Note that this test does not show any low 𝛽 zone. Thus, the solver is fully conservative with respect to 𝐁 as 
the entropic correction is never activated.

8.2.2. Rotated shock tube

The rotated shock tube problem has been proposed in [7]. It consists of a 1D shock tube rotated by an angle 𝜃 in order to obtain a 
2D shock propagation that is not aligned with the grid. The test takes place in the [0 ∶ 1]2 square with Neumann boundary conditions. 
The setup is given by:

𝜃 = arctan(−2),

𝐑(𝜃) =
(

sin 𝜃 cos 𝜃

cos 𝜃 −sin 𝜃

)
,

𝐮0 =
(

0
10

)
,

5
(
1
)

13

𝐁𝟎 = √
4𝜋 1 ,
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Fig. 8. Parallel component of the magnetic field along the rotated shock propagation at t=0.03.

(𝑥𝜃, 𝑦𝜃) = (tan𝜃(𝑥− 0.5), 𝑦− 0.5),

𝜌(𝑥, 𝑦) = 1,

𝐁(𝑥, 𝑦) =𝐑(𝜃)𝐁𝟎,

𝐮(𝑥, 𝑦) =
{

𝐑(𝜃)𝐮𝟎 for 𝑥𝜃 < 𝑦𝜃,

−𝐑(𝜃)𝐮𝟎 elsewhere.
.

𝑝(𝑥, 𝑦) =
{

20 for 𝑥𝜃 < 𝑦𝜃,

1 elsewhere.
.

Note that the magnetic field is initialized as a constant on the whole domain, hence the condition ∇ ⋅𝐁 = 0 is verified at the beginning 
of the computation. Our solver is able to robustly and accurately simulate this rotated shock propagation. A quantity of interest in this 
problem is the component of the magnetic field that is parallel to the shock propagation. Without discretization error, this quantity 
should remain constant similarly to 𝐵𝑥 in a purely 1D setup. In Fig. 8, we show the component of the magnetic field that is parallel to 
the shock propagation, with both 3 +1 and 5 +1 solvers. Both schemes produces discretization errors at the location of discontinuities, 
the errors with the 5 + 1 waves solver are larger than the errors with the 3 + 1 waves solver. These errors can be compared with 
[7] for constrained transport schemes and we point out that the 3 + 1 and 5 + 1 waves solvers produce less oscillations around the 
discontinuities.

8.2.3. MHD blast - standard configuration

The Blast test case was introduced in [35]. The setup takes place in the periodic [0 ∶ 1]2 square. A circular region of radius 𝑟𝑐 = 0.1
is initialized with a greater pression than the rest of the domain. As the computation starts, the blast expands outwards in an elliptical 
shape due to the presence of a magnetic field. We recall the exact setup:

𝑝(𝑥, 𝑦) =
{

10 for 𝑟 < 𝑟𝑐,

0.1 for 𝑟 ≥ 𝑟𝑐 ,

𝐁(𝑥, 𝑦) =

(√
2𝜋√
2𝜋

)
,

𝛾 = 5∕3,

𝜌(𝑥, 𝑦) = 1,

𝐮(𝑥, 𝑦) = 0.

Our numerical method is able to simulate the expansion of this blast wave accurately and is stable as demonstrated in Fig. 9 where 
we show the density map at 𝑡 = 0.2. We can see that the expanding wave is well captured. Note that this test does not show any low 
𝛽 zone. Thus, the solver is fully conservative with respect to 𝐁.

8.2.4. MHD blast - low 𝛽 configuration

This test case is inspired from [36]. It consists of the same setup as section 8.2.3 with a lower 𝛽 ≃ 10−6:{
1000 for 𝑟 < 𝑟𝑐,
14

𝑝(𝑥, 𝑦) = 0.1 for 𝑟 ≥ 𝑟𝑐 ,
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Fig. 9. Density map of the MHD Blast at 𝑡 = 0.2 s.

𝐁(𝑥, 𝑦) =

(
250∕

√
2

250∕
√
2

)
,

𝛾 = 1.4,

𝜌(𝑥, 𝑦) = 1,

𝐮(𝑥, 𝑦) = 0.

The dynamic of the low 𝛽 blast wave is the same as in 8.2.3 but is harder to tackle as the simulation reaches the limit of the 
admissibility domain (𝑒 ≃ 0) and develops strong 𝐁 gradients. Note that the 5 + 1 wave solver and the constrained transport method 
[37] fail to produce an admissible result as the computation presents negative internal energies (directly after few iterations). We 
point out that the 5 + 1 solver seems, however, more robust than the constrained transport method on such problems: for lower 
values of the magnetic field 25∕

√
2, the relaxation solver is stable while the constrained transport method fails after few iterations. 

It is possible to still get an admissible result by artificially forcing the internal energy to stay above a small threshold (hence loosing 
energy conservation), a solution used here with the constrained transport method, or by using an entropic correction on the induction 
equation (hence loosing the magnetic field conservation), a solution used here with the 5 + 1 waves relaxation solver. In Figs. 10, 
we show the density map of this test case at 𝑡 = 0.02 with our method and the energy-fixed constrained transport solver from the 
Heracles code [38]. Both methods are able to capture the low 𝛽 Blast propagation, however, we point out that the 5 +1 waves solver 
is less diffusing as it reaches higher values for the magnetic field up (+18%).

8.2.5. MHD rotor

The MHD Rotor test case was first introduced in [6]. The setup consists of launching a rapidly spinning cylinder in a light ambient 
fluid. This rotation sends strong torsional Alfvén waves in the surrounding fluid. We initialize the solution in the [0 ∶ 1]2 periodic 
square as follows:

𝑝(𝑥, 𝑦) = 1.0,

𝜌(𝑥, 𝑦) =
⎧⎪⎨⎪⎩
10 for 𝑟 < 𝑟0,
1 + 9𝑓 for 𝑟 ≥ 𝑟1 & 𝑟 ≤ 𝑟0,
1 elsewhere

𝐮(𝑥, 𝑦) =
⎧⎪⎨⎪⎩

𝑢0
𝑟0

(0.5 − 𝑦,𝑥− 0.5) for 𝑟 < 𝑟0,

𝑓 𝑢0
𝑟0

(0.5 − 𝑦,𝑥− 0.5) for 𝑟 ≥ 𝑟1 & 𝑟 ≤ 𝑟0,

(0,0) elsewhere

𝐁(𝑥, 𝑦) =
(
5∕

√
4𝜋

0

)
,

𝛾 = 1.4,
15

(𝑟0, 𝑟1) = (0.1,0.115),
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Fig. 10. Density map of the low 𝛽 MHD blast at 𝑡 = 0.2 s with our solver and the Heracles code’s constrained transport method [38], [37].

𝑓 = (𝑟1 − 𝑟)∕(𝑟1 − 𝑟0),

𝑢0 = 2.

We show the result of our simulation in Fig. 11. We observe that the central shear ring as well as the torsional waves is well 
captured by our solver. Note that this simulation does not require the use of entropic correction. Thus, the solver is fully conservative 
with respect to 𝐁.

8.2.6. Field loop advection

This test was introduced in [39] and involves advecting a field loop (a cylindrical current distribution) diagonally across the 
grid. One can choose any arbitrary angle. For the 2D results presented here, the problem domain is defined as −1 < 𝑥 < 1 and 
−0.5 < 𝑦 < 0.5. The flow has an inclination with 𝑉𝑥 = 2 and 𝑉𝑦 = 1. Both the density and pressure are set to 1.0, with the gas constant 
given by 𝛾 = 5∕3. Periodic boundary conditions are applied across the domain. The magnetic field is initialized using an arbitrary 
vector potential. We set 𝐴𝑧 = max([𝐴0(𝑟0 − 𝑟)], 0). This results in (𝐵𝑥, 𝐵𝑦)(𝑟) =

𝐴0
𝑟
(−𝑥, 𝑦) if 𝑟 < 𝑟0, and (0, 0) otherwise. We chose 

𝐴0 = 0.001 and set the radius for the loop as 𝑟0 = 0.3. After a duration of 𝑡 = 2.0𝑠, the field loop is expected to have been advected 
and returned to its initial state. The quality of the solution can be assessed by comparing it to the initial solution shown in Fig. 12. 
The magnetic intensity, defined as 𝐼 =

√
𝐵2

𝑥
+𝐵2

𝑦
, obtained with our 5 + 1 waves solver, is illustrated in Fig. 13. One can observe 

that the entropic correction helps with preserving the shape of the cylinder and suppresses the spurious patterns observed with the 
16

conservative method. The source terms are activated here as the Alfvén number is above 𝐴𝑙𝑚𝑎𝑥 = 10 in this test.
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Fig. 11. Density map of the MHD Rotor at 𝑡 = 0.15 s.

Fig. 12. Magnetic intensity of the field loop advection at time 𝑡 = 0.

9. Conclusion and discussion

In this paper, we have developed a new multi-dimensional, robust, and cell-centered finite-volume solver for ideal MHD. The 
solver is based on splitting and relaxation techniques, and can easily be extended to higher orders because of its reduced stencil. 
A symmetric version of the solver has been developed by introducing an entropic correction on the induction equation, in order to 
obtain an entropy-satisfying (but non-conservative for the magnetic field) scheme robust in low plasma beta regions and accurate in 
high Alfvén number regions. An other solution could be to use a floor value for the internal energy as classically done with constrained 
transport or divergence cleaning schemes that are not entropy satisfying. We, however, point out that the fully conservative relaxation 
solver is observed to be more robust than constrained transport schemes on low plasma beta test cases.

This cell-centered scheme could be coupled to a divergence cleaning or constrained transport method. We, however, highlight that 
all the tests we have performed do not seem to require a specific treatment of the divergence of the magnetic field, and a divergence 
consistent with zero with errors proportional to Δ𝑥 and Δ𝑡 at the power of the order of the spatial and temporal reconstructions seem 
sufficient. It is a common belief that the stability of MHD numerical schemes is closely tied to errors in magnetic field divergence. 
However, our research, as presented in this paper, suggests that this may not always be the case. To illustrate, we have successfully 
designed an entropy-satisfying MHD solver using the symmetric form of MHD equations without specifically addressing divergence 
issues. Furthermore, we have found that constrained transport schemes, while maintaining zero divergence at machine precision, do 
17

not necessarily satisfy entropy conditions and can fail to maintain positive internal energy in areas of low plasma beta.
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Fig. 13. Magnetic intensity of the field loop advection at time 𝑡 = 2.0. Top: With the entropic correction. Bottom: Without the entropic correction.

Additionally, there is a prevalent view that errors in magnetic divergence significantly impact the physical accuracy of simulations, 
potentially leading to artificial magnetic monopoles. We offer several arguments to challenge this perspective. Even in constrained 
transport schemes, certain terms involving divergence in the conservative forms of the Lorentz force and the energy evolution equation 
do not achieve zero at machine precision, despite a zero divergence. These residual terms in the entropy evolution equation are indeed 
the reason why constrained transport schemes are not entropy satisfying. Moreover, it can be demonstrated that constrained transport 
schemes are not immune to divergence errors. For example, the rotated shock tube case detailed in [7] shows that at the continuous 
level, a zero divergence equates to a constant magnetic field parallel to the shock tube. However, constrained transport schemes 
do not maintain this constant magnetic field at machine precision, thus resulting in “divergence errors” that are significant for the 
physics at play.

In conclusion, while ensuring zero magnetic divergence at machine precision in simulations is physically relevant, this is only 
feasible when aligning the grid to a specific magnetic field configuration. This issue is akin to preserving angular momentum in a 
rotating structure, achievable at machine precision only in a polar grid. Consequently, for simulations with highly dynamic magnetic 
fields, maintaining zero divergence at machine precision on a Cartesian grid may not be as critical with a solver that is entropy-

satisfying.

The MHD relaxation solver presented in this paper is a direct extension of 1D relaxation solvers already used for the Euler equations 
and can be implemented in a one-step flux-update algorithm, that can easily be extended to higher orders and to non-ideal MHD. 
Because of its simplicity, this solver should also have improved performances compared to other multi-dimensional MHD solvers 
(constrained transport and divergence cleaning) and offers interesting possibilities for large-scale physical applications on the next 
generation of exascale supercomputers.
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Appendix A. Deriving the conservative MHD equations

A.1. Useful vector identities

A.1.1. Lorentz’s force in conservative form

The first identity we derive is

𝒋 ×𝑩 = −(∇ ⋅𝑩)𝑩 −∇ ⋅
(
𝑩2

2
𝑰 −𝑩 ⊗𝑩

)
. (A.1)

We only verify this equality for the 𝑥 component as the relationship for the two other components are checked by rotational invariance. 
We have 𝒋×𝑩 = (∇ ×𝑩) ×𝑩. Expanding the first component, we get [(∇ ×𝑩) ×𝑩]𝑥 = 𝐵𝑧

(
𝜕𝑧𝐵𝑥 − 𝜕𝑥𝐵𝑧

)
−𝐵𝑦

(
𝜕𝑥𝐵𝑦 − 𝜕𝑦𝐵𝑥

)
. Moreover, 

[∇ ⋅
(
𝑩2

2 𝑰
)
]𝑥 = 𝐵𝑥𝜕𝑥𝐵𝑥 + 𝐵𝑦𝜕𝑥𝐵𝑦 + 𝐵𝑧𝜕𝑥𝐵𝑧. Lastly, [∇ ⋅ (𝑩 ⊗𝑩)]𝑥 = (∇ ⋅𝑩)𝐵𝑥 + 𝐵𝑥𝜕𝑥𝐵𝑥 + 𝐵𝑦𝜕𝑦𝐵𝑥 + 𝐵𝑧𝜕𝑧𝐵𝑥. Collecting the right 

hand side terms, we get −(∇ ⋅𝑩)𝐵𝑥 −𝐵𝑥𝜕𝑥𝐵𝑥 −𝐵𝑦𝜕𝑥𝐵𝑦 −𝐵𝑧𝜕𝑥𝐵𝑧 + (∇ ⋅𝑩)𝐵𝑥 +𝐵𝑥𝜕𝑥𝐵𝑥 +𝐵𝑦𝜕𝑦𝐵𝑥 +𝐵𝑧𝜕𝑧𝐵𝑥 where both the terms 
proportional to the divergence of 𝑩 and 𝐵𝑥𝜕𝑥𝐵𝑥 cancel out and provide the desired result.

A.1.2. Fully developed Lorentz force

Using ∇ ⋅ (𝑩 ⊗𝑩) =𝑩(∇ ⋅𝑩) + (𝑩 ⋅∇)𝑩, we get:

𝒋 ×𝑩 = (𝑩 ⋅∇)𝑩 −∇
(
𝑩2

2

)
(A.2)

A.1.3. Curl of a cross product

∇× (𝒖 ×𝑩) = ∇ ⋅ (𝑩 ⊗ 𝒖− 𝒖⊗𝑩). (A.3)

∇× (𝒖 ×𝑩) = 𝒖(∇ ⋅𝑩) −𝑩(∇ ⋅ 𝒖) + (𝑩 ⋅∇)𝒖− (𝒖 ⋅∇)𝑩 (A.4)

A.1.4. Transport of a squared quantity

((𝒖 ⋅∇)𝑨) ⋅𝑨 = (𝒖 ⋅∇)𝑨
2

2
= ∇

(
𝑨2

2

)
⋅ 𝒖 (A.5)

A.2. Full system

Our goal is now to go from the non conservative MHD system:

𝜕𝑡𝜌+∇ ⋅ (𝜌𝐮) = 0,

𝜕𝑡(𝜌𝐮) + ∇ ⋅ (𝜌𝐮⊗ 𝐮) = −∇𝑝+ 𝐣 ×𝐁,

𝜕𝑡(𝜌𝑒) + ∇ ⋅ (𝜌𝑒𝐮) = −𝑝∇ ⋅ 𝒖,
19

𝜕𝑡𝐁−∇× (𝒖 ×𝑩) = 0, (A.6)
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to the conservative MHD system.

𝜕𝑡𝜌+∇ ⋅ (𝜌𝐮) = 0,

𝜕𝑡(𝜌𝐮) + ∇ ⋅ (𝜌𝐮⊗ 𝐮+ 𝜎 −𝐁⊗𝐁) = 0,

𝜕𝑡(𝜌𝐸) + ∇ ⋅ (𝜌𝐸𝐮+ 𝜎𝐮− (𝐁 ⋅ 𝐮)𝐁) = 0,

𝜕𝑡𝐁+∇ ⋅ (𝐮⊗𝐁−𝐁⊗ 𝐮) = 0. (A.7)

Where 𝑒𝑚𝑎𝑔 =
𝑩2

2𝜌 and 𝜎 = 𝑝 + 𝑩2

2 Obtaining the conservative momentum equation is straightforward using (A.1), substituting for 
𝐣 ×𝐁 and assuming ∇ ⋅𝑩 = 0. Obtaining the conservative induction equation is also straightforward using (A.3) (note that using the 
∇ ⋅𝑩 = 0 hypothesis is not necessary to obtain the induction equation). This leaves us with deriving the total energy equation.

A.2.1. Kinetic energy evolution equation

From the non conservative momentum equation, we can deduce the evolution equation of the velocity 𝜕𝑡𝒖 + (𝒖 ⋅∇)𝒖 + 𝛁𝒑∕𝜌 =
𝒋×𝑩∕𝜌. Dotting this equation against 𝒖, we get 𝜕𝑡

(
𝒖2

2

)
+((𝒖 ⋅∇)𝒖) ⋅𝒖+𝛁𝒑 ⋅𝒖∕𝜌 = (𝒋×𝑩) ⋅𝒖∕𝜌. Using (A.5), we have that ((𝒖 ⋅∇)𝒖) ⋅𝒖 =

(𝒖 ⋅ ∇) 
(
𝒖2

2

)
. Substituting this transport term and multiplying by 𝜌, we get 𝜌𝜕𝑡

(
𝒖2

2

)
+ 𝜌(𝒖 ⋅ ∇) 

(
𝒖2

2

)
+ 𝛁𝒑 ⋅ 𝒖 = (𝒋 × 𝑩) ⋅ 𝒖. Adding 

𝒖2

2

(
𝜕𝑡𝜌+∇ ⋅ (𝜌𝒖)

)
= 0, we get: 𝜕𝑡(𝜌

𝒖2

2 ) + 𝜌(𝒖 ⋅∇) 
(
𝒖2

2

)
+ 𝒖2

2 ∇ ⋅ (𝜌𝒖) +𝛁𝒑 ⋅𝒖 = (𝒋 ×𝑩) ⋅𝒖. Since 𝜌(𝒖 ⋅∇) 
(
𝒖2

2

)
+ 𝒖2

2 ∇ ⋅ (𝜌𝒖) =∇ ⋅
(

𝜌𝒖2𝒖
2

)
, 

noting 𝑒𝑘𝑖𝑛 =
𝒖𝟐

2 , we get:

𝜕𝑡(𝜌𝑒𝑘𝑖𝑛) + ∇ ⋅
(
𝜌𝑒𝑘𝑖𝑛𝒖

)
+𝛁𝒑 ⋅ 𝒖 = (𝒋 ×𝑩) ⋅ 𝒖. (A.8)

Summing this with the internal energy evolution equation, we get: 𝜕𝑡(𝜌(𝑒 + 𝑒𝑘𝑖𝑛)) +∇ ⋅
(
𝜌(𝑒+ 𝑒𝑘𝑖𝑛)𝒖+ 𝑝𝒖

)
= (𝒋 ×𝑩) ⋅ 𝒖. Replacing 

the right hand side using (A.2), we get:

𝜕𝑡(𝜌(𝑒+ 𝑒𝑘𝑖𝑛)) + ∇ ⋅
(
𝜌(𝑒+ 𝑒𝑘𝑖𝑛)𝒖+ 𝑝𝒖

)
= ((𝑩 ⋅∇)𝑩) ⋅ 𝒖−∇

(
𝑩2

2

)
⋅ 𝒖. (A.9)

A.2.2. Magnetic energy evolution equation

Using the identity (A.4), we get 𝜕𝑡𝑩 − 𝒖(∇ ⋅𝑩) +𝑩(∇ ⋅ 𝒖) − (𝑩 ⋅∇)𝒖+ (𝒖 ⋅∇)𝑩 = 0. Dotting against 𝑩, we get

𝜕𝑡(𝜌𝑒𝑚𝑎𝑔) − (∇ ⋅𝑩)(𝒖 ⋅𝑩) + (∇ ⋅ 𝒖)𝑩2 − ((𝑩 ⋅∇)𝒖) ⋅𝑩 + ((𝒖 ⋅∇)𝑩) ⋅𝑩 = 0. (A.10)

A.2.3. Total energy evolution equation

Summing (A.9) and (A.10), we get 𝜕𝑡(𝜌𝐸) + ∇ ⋅
(
𝜌(𝑒+ 𝑒𝑘𝑖𝑛)𝒖+ 𝑝𝒖

)
= ((𝑩 ⋅ ∇)𝑩) ⋅ 𝒖 − ∇ 

(
𝑩2

2

)
⋅ 𝒖 + (∇ ⋅ 𝑩)(𝒖 ⋅ 𝑩) − (∇ ⋅ 𝒖)𝑩2 +

((𝑩 ⋅∇)𝒖) ⋅𝑩 − ((𝒖 ⋅∇)𝑩) ⋅𝑩. Using (A.5), we have −((𝒖 ⋅∇)𝑩) ⋅𝑩 −∇ 
(
𝑩2

2

)
⋅ 𝒖 =∇(𝑩2) ⋅ 𝒖. Moreover, since ∇(𝑩2) ⋅ 𝒖+ (∇ ⋅ 𝒖)𝑩𝟐 =

∇ ⋅ (𝑩2 𝒖) =∇ ⋅ (𝜌𝑒𝑚𝑎𝑔𝒖+𝑩2∕2 𝒖), we can show that:

𝜕𝑡(𝜌𝐸) + ∇ ⋅ (𝜌𝐸𝒖+ 𝜎𝒖) = ((𝑩 ⋅∇)𝑩) ⋅ 𝒖+ (∇ ⋅𝑩)(𝒖 ⋅𝑩) + ((𝑩 ⋅∇)𝒖) ⋅𝑩. (A.11)

As ((𝑩 ⋅∇)𝑩) ⋅ 𝒖+ ((𝑩 ⋅∇)𝒖) ⋅𝑩 = (𝑩 ⋅∇)(𝒖 ⋅𝑩) = ∇(𝑩 ⋅ 𝒖) ⋅𝑩 and ∇(𝑩 ⋅ 𝒖) ⋅𝑩 + (∇ ⋅𝑩)(𝒖 ⋅𝑩) =∇ ⋅ ((∇ ⋅𝑩) ⋅𝑩), we get the desired 
result. Note that it is not required to assume ∇ ⋅𝑩 = 0 to obtain the conservative total energy equation.

A.3. Entropy inequality

A.3.1. Entropy inequality of the non conservative MHD system

We start with the classical result of the entropy inequality of the MHD system (A.6), starting from the evolution equation of the 
internal energy. We note 𝐷𝑡 = 𝜕𝑡 + 𝑢∇. We have 𝐷𝑡𝑒 = −𝑝(∇ ⋅ 𝒖)𝜏 where 𝜏 = 1∕𝜌. From the density evolution equation, we have that 
𝐷𝑡𝜏 = 𝜏(∇ ⋅ 𝒖). Therefore, 𝐷𝑡𝑒 + 𝑝𝐷𝑡𝜏 = 0. Using the first principle of thermodynamics 𝑑𝑒 + 𝑝𝑑𝜏 = 𝑇 𝑑𝑠, we get

𝐷𝑡𝑠 = 0. (A.12)

A.3.2. Entropy inequality of the conservative MHD system

To go from the non conservative system to the conservative system, we only had to cancel one term in the momentum equation, 
using the ∇ ⋅𝑩 = 0 hypothesis. This means that if we are discretizing the conservative momentum equation and that the numerical 
value of the divergence is not zero, we are in fact discretizing 𝜕𝑡(𝜌𝐮) +∇ ⋅ (𝜌𝐮 ⊗ 𝐮) = −∇𝑝 + 𝐣 ×𝐁 + (∇ ⋅𝑩)𝑩. We want to derive the 
corresponding internal energy equation. We dot the momentum equation against 𝒖 and subtract it to the conservative total energy 
equation. Doing this, we get 𝜕𝑡(𝜌𝑒) +∇ ⋅ (𝜌𝑒𝐮) = −𝑝∇ ⋅ 𝒖 − (∇ ⋅𝑩)(𝑩 ⋅ 𝒖). Performing the same steps as above, we get 𝐷𝑡𝑒 + 𝑝𝐷𝑡𝜏 =
−𝜏(∇ ⋅𝑩)(𝑩 ⋅ 𝒖) thus:
20

𝐷𝑡𝑠 = − 𝜏

𝑇
(∇ ⋅𝑩)(𝑩 ⋅ 𝒖) (A.13)
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