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ABSTRACT

Dust grains play a significant role in several astrophysical processes, including gas/dust dynamics, chemical reactions, and
radiative transfer. Replenishment of small-grain populations is mainly governed by fragmentation during pair-wise collisions
between grains. The wide spectrum of fragmentation outcomes, from complete disruption to erosion and/or mass transfer, can be
modelled by the general non-linear fragmentation equation. Efficiently solving this equation is crucial for an accurate treatment
of the dust fragmentation in numerical modelling. However, similar to dust coagulation, numerical errors in current fragmentation
algorithms employed in astrophysics are dominated by the numerical overdiffusion problem — particularly in three-dimensional
hydrodynamic simulations where the discrete resolution of the mass-density distribution tends to be highly limited. With this
in mind, we have derived the first conservative form of the general non-linear fragmentation with a mass flux highlighting the
mass transfer phenomenon. Then, to address cases of limited mass density resolution, we applied a high-order discontinuous
Galerkin scheme to efficiently solve the conservative fragmentation equation with a reduced number of dust bins. An accuracy

of 0.1-1 per cent is reached with 20 dust bins spanning a mass range of 9 orders of magnitude.

Key words: methods: numerical — (ISM:) dust, extinction.

1 INTRODUCTION

Dust grains play a fundamental role at all scales in astrophysics.
Dust surfaces act as an efficient catalyst for the formation of H,
(Cazaux & Tielens 2004), which impacts the star formation rate
in galaxies (Yamasawa et al. 2011; Chen et al. 2018). Dust grains
absorb, scatter and reemit stellar light, thereby governing the thermal
balance between heating and cooling in star forming regions and
protoplanetary discs (McKee & Ostriker 2007; Andrews 2020). Gas
and dust dynamics are closely linked through drag forces (Testi
et al. 2014; Lesur et al. 2023a). During star formation, large grains
decouple dynamically from the gas and concentrate in regions of
high gas density (Lebreuilly et al. 2020). In protoplanetary discs, the
decoupling of large grains from the gas leads to momentum transfer
and radial drift towards pressure maxima (Weidenschilling 1977;
Lesur et al. 2023a). When dust becomes sufficiently concentrated in
discs, it produces a ‘backreaction’ on the gas which is central for the
development of the streaming instability and the eventual formation
of planetesimals (Youdin & Goodman 2005; Gonzalez, Laibe &
Maddison 2017; Squire & Hopkins 2020; Lesur et al. 2023a, and
references therein). Importantly, the efficiency of all these physical
processes depends on the grain-size distribution and how it evolves
in time. Thus, accurate dust modelling is a much needed feature of
modern astrophysical simulations.

* E-mail: maxime.lombart@cea.fr

Because the grain-size distribution plays such a key role in the
above phenomenon, many studies have been devoted to understand-
ing how poly-disperse distributions evolve in time. Evolutionary
changes can be dynamical (e.g. advection and diffusion) or collisional
(e.g. coagulation and fragmentation) in nature. For purposes of this
study, we will focus exclusively on fragmentation. Fragmentation is
typically modelled in one of three ways: (i) spontaneous breaking
driven by an external force, such as radiative force (Hoang 2019;
Hirashita & Hoang 2020), modelled by the linear fragmentation
equation; (ii) collision between two grains where only one grain
fragments, modelled by the non-linear fragmentation equation (Kos-
toglou & Karabelas 2000; Banasiak, Lamb & Laurencot 2019;
Lombart, Hutchison & Lee 2022); (iii) collision between two grains
where both grains can fragment, modelled by the general non-linear
fragmentation equation (Safronov 1972; Blum 2006; Hirashita & Yan
2009). Note the third model is a generalization of the second one,
which produces a size distribution of solids that can be generically
parametrized from experiments. Two main outcomes observed in
laboratory experiments are the complete destruction of the two
grains or a partial destruction with mass transfer (Giittler et al.
2010; Bukhari Syed et al. 2017; Blum 2018). The phenomenon
of mass transfer is important since, during a fragmentation event,
a grain can increase in mass — even at high impact velocities.
For example, several studies have demonstrated that mass transfer
during fragmentation can overcome the so-called bouncing and
fragmentation barriers (Windmark et al. 2012; Garaud et al. 2013).
Only the general non-linear fragmentation equation can effectively
model fragmentation with mass transfer, making it essential for a
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full treatment of the problem. The general non-linear fragmentation
equation is formalized within the framework of the Smoluchowski-
like equation by a mean-field approach (Safronov 1972; Gillespie &
List 1978; Feingold, Tzivion (Tzitzvashvili) & Leviv 1988; Blum
2006; Hirashita & Yan 2009; Jacobson 2011; Banasiak et al. 2019).
The model considers spherical grains of the same composition.
Because the general non-linear fragmentation equation does not
have a generic analytical solution, astrophysical problems inevitably
require numerical solutions.

Unfortunately, incorporating accurate numerical solutions to the
fragmentation (and/or coagulation), together with tracking the dust-
size distribution in three-dimensional (3D) multiphysics hydrody-
namics simulations, is currently out of reach. So far only 3D
hydrodynamics simulations with a mono-disperse model of dust
coagulation and fragmentation have been performed for proto-
planetary discs (Vericel et al. 2021). Meanwhile, poly-disperse
models of dust coagulation and fragmentation have been confined
to one-dimensional (1D) or two-dimensional (2D) hydrodynamic
simulations (Suttner & Yorke 2001; Brauer, Dullemond & Hen-
ning 2008; Drazkowska et al. 2019; Kobayashi & Tanaka 2021;
Lebreuilly et al. 2022; Stammler & Birnstiel 2022; Tu, Li &
Lam 2022; Robinson, Booth & Owen 2024 ) primarily due to the
near ubiquitous use of piecewise constant functions to model the
dust-size distribution. Piecewise constant functions are known to
suffer from a numerical overdiffusion for insufficient mass grid
resolution (Grabowski 2022; Birnstiel 2024). This overdiffusion
stems from the difficulty to handle the complexity of the integro-
differential and the non-linear properties of the coagulation and the
fragmentation equations with only a low-order approximation of
the continuous dust-size distribution. Moreover, these algorithms
account for each pair-wise collision by redistributing the mass over
the mass grid to conserve the total mass. The combinatorics treatment
of the collisions requires the need of a large number of mass bins
to keep high accuracy. Therefore, these algorithms need a high
resolution of the mass grid (more than 100 mass bins) to accurately
follow the evolution of the dust-size distribution. However, 3D
hydrodynamic codes, such as RAMSES (Teyssier 2002) or PHANTOM
(Price et al. 2018), can only handle a few tens of dust mass bins
for a multiphysics gas and dust simulation. Further generation
of Exascale code will reach further performance, but the energy,
the carbon impact and the computational costs of the simulation
should remain acceptable. Current algorithms for poly-disperse dust
evolution and 3D hydrodynamic codes are simply incompatible. In
contrast, numerical schemes using high-order approximations of
the continuous dust-size distribution are able to efficiently solve
the coagulation and the fragmentation equations with a reduced
number of mass bins. This study contains two main parts: (i)
the derivation of the flux of fragmentation in mass space, which
encompasses all the combinatorics of the pair-wise collisions, in
order to obtain the general non-linear fragmentation equation in
conservative form and (ii) the application of a high-order solver
based on the discontinuous Galerkin (DG) method, inspired by the
recent works of Liu, Gropler & Warnecke (2019) and Lombart et al.
(2022). The DG method is shown to efficiently solve the general
non-linear fragmentation equation with a reduced number of mass
bins while still maintaining high accuracy.

The paper is structured as follows. Properties of the general non-
linear fragmentation equation and derivation of its conservative
form are presented in Section 2. The DG method applied to the
conservative form is presented in Section 3. In Section 4, we
analyse the numerical performance of our algorithm on some test
cases, including how it copes with the numerical diffusion problem.

Dust fragmentation with high-order schemes
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Section 5 presents the applicability of the DG method to treat dust
fragmentation in astrophysics.

2 GENERAL NON-LINEAR FRAGMENTATION

The fragmentation process resulting from the collision of two grains
of arbitrary size is described by the general non-linear fragmentation
equation, also known as the ‘collision-induced breakup’ or the
‘stochastic breakage’ equation in atmospheric science and mathemat-
ics communities (Safronov 1972; Gillespie & List 1978; Feingold
et al. 1988; Blum 2006; Giri & Laurencot 2021a). The general non-
linear fragmentation model is a natural extension of the non-linear
fragmentation model that describes how a small grain fragments after
collision with a large grain (Cheng & Redner 1990; Kostoglou &
Karabelas 2000; Ernst & Pagonabarraga 2007; Lombart et al. 2022).
This fragmentation model is described by a non-linear partial integro-
differential hyperbolic equation that depends on two functions: (i) the
fragmentation kernel, and (ii) the distribution function of fragments.
This general non-linear fragmentation model was initially formalized
in astrophysics by Safronov (1972) and in atmospheric science by
List & Gillespie (1976) to study the evolution of the drop size
distribution in clouds. Currently in the literature, only one analytical
solution exists for a constant fragmentation kernel and a specific
form of the distribution of fragments (Feingold et al. 1988). Several
recent mathematical works have been dedicated to the study of
the general non-linear fragmentation equation, including proving
the existence and uniqueness of mass-conserving solutions for a
large class of collision kernels and fragment distribution functions
(Giri & Laurengot 2021a, b). However, no exact solutions exist
for the ballistic collision kernel studied in astrophysics (Safronov
1972; Tanaka, Inaba & Nakazawa 1996; Dullemond & Dominik
2005; Kobayashi & Tanaka 2010; Stammler & Birnstiel 2022)
and in atmospheric science (Hu & Srivastava 1995; McFarquhar
2004; Prat & Barros 2007; Jacobson 2011; Khain & Pinsky 2018;
Grabowski 2022). Therefore, numerical solutions are required for
the ballistic collision kernel. The detailed expression of the ballistic
kernel is given in Section 2.3. In this work, numerical results are
compared to the exact solution obtained for the constant collision
kernel and a distribution of fragments taken from Feingold et al.
(1988, Section 4.3) or a multiplicative collision kernel with a power-
law distribution of fragments (Section 4.4).

2.1 Collision outcomes for fragmentation

In astrophysics, the outcome of two colliding dust grains leading to
the formation of fragments is described by one of three scenarios,
illustrated in Fig. 1 (Giittler et al. 2010; Windmark et al. 2012; Blum
2018; Birnstiel 2024). First, destructive fragmentation accounts for
cases where both grains fragment totally or partially. The second
scenario describes mass transfer events where the resulting fragments
come from only one body. This scenario has been observed in
experiments when a small grain collides with a larger one (Bukhari
Syed et al. 2017). During the collision, the smaller grain fragments
and leaves a portion of its mass stuck to the larger (intact) grain,
causing the mass of the larger grain to increase. The third scenario
is the same as the second, but now with cratering of the larger grain.
For sufficiently high-velocities, the small grain both transfers mass
to and excavates mass from the large grain. Since the non-linear
fragmentation equation (Kostoglou & Karabelas 2000; Banasiak
et al. 2019; Lombart et al. 2022) cannot account for mass transfer
or the fragmentation of both grains, the above scenarios can only be
modelled by the general non-linear fragmentation equation. This is of
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Figure 1. Illustration of the collision outcomes leading to the formation of
fragments. Depending on the differential velocity of the two colliding grains,

three outcomes are possible: destructive fragmentation, mass transfer, and
mass transfer with cratering.

particular interest to the planetary science community because mass
transfer may be an avenue to circumvent the fragmentation barrier
(Windmark et al. 2012; Garaud et al. 2013) and provide larger seeds
for planetesimal formation.

2.2 Original rate equation

We begin by formulating a rate equation for fragmentation that
describes the gains and losses in number density as a function
of grain mass. An alternative form is given later in Section 2.5
that has improved mass conservation properties. Hereafter, we will
distinguish between these two formulations using the labels ‘original’
and ‘alternative’, respectively.

We consider a volume composed of a large number of uniformly
distributed grains undergoing fragmentation through collisions. The
number of grains is considered sufficiently large to be treated in
a statistical sense, while the even spatial distribution of the grains
permits the exclusion of their motion from consideration. Moreover,
colliding grains and fragments are considered to be spherical.

We denote K (m', m") to be the fragmentation kernel that encodes
the collision frequency of grains leading to fragmentation with di-
mension [length]*[time]~!. The function K is symmetric in variables
m and m’. Therefore, the mean number of collisions per unit time and
unit volume between the grains of mass in the ranges [m’, m" + dm’]
and [m”, m" + dm"] is given by

K@m', m"n(m’, t)n(m”, t)dm'dm" (collision rate), €))

where m’ and m” are the initial masses of the colliding grains and
n(m’,t) and n(m”,t) are the number densities function per unit
mass of grains in mass ranges [m’, m’ 4+ dm’] and [m”, m" + dm"],
respectively. We denote by b(m;m’, m") the distribution of fragments
of mass m produced by the collision of grains of mass m’ and
m”. The only physical constraint on the function b is that the
mass of a fragment cannot exceed the total mass of the colliding
grains; therefore, one has b(m;m’,m") = 0if m > m’ + m”. In the
derivations that follow, this condition is represented by the operator
1, defined as

1ifm +m” >m,
]lm’+m”>m = . (2)
- 0 otherwise.

Therefore, the distribution of fragments writes
Lo ymrsmb(m;m’',m"”). The term b(m;m’,m”)dm is the mean
number of fragments of mass whose masses reside in the range
[m, m + dm] produced in a collision of one pair of grains of mass
m’ and m”. The dimension of b is [mass]~!. The formation rate of
grains of mass [m, m 4+ dm] by fragmentation of larger grains of

MNRAS 533, 4410-4434 (2024)

masses [m’, m’ + dm'] and [m”, m"” + dm"] is equal to the product
of the collision rate (equation 1) with the mean number of fragments
produced by the collision, b(m;m’, m")dm. The formation rate of
grains within mass range [m, m + dm] is obtained by considering
all collisions, and is expressed as

N =

00 o
//lmurm”zmg(m;m/sm//)K(m/7 m//)
0 0

x n(m’, Hn(m”, t)dm'dm” | dm (formation rate), 3)

where the factor 1/2 prevents grain pairs from being double counted.
The loss rate of grains of mass [m, m 4+ dm] by collision with all
other grains is given by

/K(m, mn(m, Hn(m’, t)dm' | dm (loss rate). )
0

Therefore, the rate equation for the number density of grains of mass
[m, m + dm] at time ¢ is obtained by balancing the formation and
loss rates

a(n(m, t)dm) 1 Yy ~ ’ " ’ ”

Rt R Attt Ly gmr>mb(msm’, m")K (m', m")
ot 2

0 0

x n(m', Hn(m”, t)dm'dm” | dm

- /K(m,m/)n(m,t)n(m/,t)dm/ dm. 5)
0

By dividing by dm, we obtain the continuous general non-linear frag-
mentation equation originally formalized in a mean-field approach
by List & Gillespie (1976) and Gillespie & List (1978):

0 Jt 1 Y ~
On(m,t) _ 1 / /Mm,,)mb(m;m,,m,,)K(m,’m,,)
ot 2 -
0 0

xn(m', Hn(m”, t)dm'dm”

—n(m,t)/K(m,m/)n(m’,t)dm’. (6)
0

To obtain a dimensionless general non-linear fragmentation equation,
we first define nyo(m) = n(m, 0) to be the initial number density per
mass unit. The total mass density M, the total number density of
particles Ny and the mean mass of the initial distribution m can then
be written as

o0

T M
M= /mno(m)dm, Ny = /no(m)dm, my = o @)
0
0 0

Then, we define the dimensionless variables and functions as follows:

m m m
X=—,y=—,z=—,
mo mo mo
K(m,m'
Koo y) = ) g, mo)Not, ®)
K (mgo, mo)

flx.T) = %n(m, 1), b(x:y. ) = mob(m;m', m"),
0
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where K(mg, mg) is a constant with dimensions of the kernel
[length]*[time]~!. To be consistent with the existing literature in
mathematics (Banasiak et al. 2019; Giri & Laurencot 2021a), we
use the variables x, t, and f for the dimensionless mass, time,
and number density, respectively, to write the general non-linear
fragmentation equation in the following dimensionless form:

0f(x,7t)
ot
1 o0 o0
E//]1)'+22xb(X;y,Z)}C(YaZ)f()’vf)f(L 7)dydz
0 0
—f e T) / K 9 £, Ty, ©
0

Unless otherwise noted, we will use those dimensionless variables
for the remainder of the paper.

2.3 Fragmentation kernels

The fragmentation kernel describes the collision rate per unit volume
of two grain masses. The expression of the kernel is determined by
the mechanism driving the collisions between grains (e.g. turbulence,
radial drift, vertical settling). The kernel depends on the mass of
the grains, and on the properties of any surrounding gas, such as
temperature, pressure, and the characteristics of the flow field. In
astrophysics, the collision between grains is modelled by the ballistic
kernel,

K, y) = Econ(x, ¥) Prrag(x, ¥, Av)o (x, y)Av(x, y), (10)

where o (x, y) is the geometric cross-section, Av is the mean relative
velocity between two grains of mass x and y, while Pyg,, denotes
the probability that the two colliding grains fragment. The collision
efficiency, E o, describes the probability of two grains embedded
in a flow field colliding. For instance, a large grain surrounded by
gas in the Stokes regime has a small probability of collision with
a small grain dragged along the gas stream lines. The limiting
case for impact between large and small grains is referred to as
the grazing collision trajectory in atmospheric science for droplets
(Pruppacher & Klett 2010; Wang 2013; Khain & Pinsky 2018) or
grazing impact in astrophysics (Paszun & Dominik 2009; Wada et al.
2009). The standard definition of the collision efficiency is (Paszun &
Dominik 2009; Wada et al. 2009; Pruppacher & Klett 2010)

pimpacl(sxa Sy)2
(51 + 5y)?

where s, and s, are the radius of the grains of masses x and y.
Dimpact(Sx, §) is the impact parameter and depends on the size of the
two colliding grains. For a collision event, the impact parameter is
defined as the projected distance between the centers of mass of the
grains in the perpendicular direction to the collision velocity (Wada
et al. 2009). By considering spherical grains, we can directly link
Econ(sy, sy) and Ecoi(x, y), as was done by Pinsky, Khain & Shapiro
(2001) by solving the equations of motion of small grains around
large grains. In Paszun & Dominik (2009) and Wada et al. (2009),
the impact parameter is evaluated as a percentage of the maximum
impact parameter Pimpact,max = Sx + §y. A value of Ec(x, y) close
to zero means that the small grain follows the gas stream lines.
This formalism has been adapted to study the collision between
planetesimals and small grains (Guillot, Ida & Ormel 2014; Visser &
Ormel 2016). However, for purposes of this study, we will consider
only head-on collisions, E.(x, y) = 1.

an

Ecoll(sx’ Sy) =

Dust fragmentation with high-order schemes 4413
The fragmentation probability Py, is usually defined as
1if Av > Avg,
P frag = . (12)
0if Av < Avy,,

where Av is the differential velocity between the two colliding grains
and Awy, is the threshold differential velocity for which fragmenta-
tion occurs. The value of the threshold velocity is determined from
experiments (Giittler et al. 2010; Blum 2018) or from theoretical
works (Jones, Tielens & Hollenbach 1996; Ormel et al. 2009). In
this study, because we only consider fragmentation, we set Py, = 1.

2.4 Distribution of fragments

The evolution of the number density f(x, 7) in equation (6) depends
on two physical parameters, the collision kernel C and the distri-
bution function of fragments b(x;y, z) resulting from a collision
between two grains of mass y and z (Gillespie & List 1978; Feingold
et al. 1988). The function b is symmetric in the mass variables of the
two colliding grains

b(x;y,z) = b(x;z,y). (13)

Because we do not consider sublimation, the fragmentation process
must satisfy the following two mass conservation constraints. First,
the mass of a fragment cannot exceed the total mass of the colliding
grains:

b(x;y,z2)=0ifx >y +z. (14)

Secondly, the total mass of the fragments must be equal to the total
mass of the colliding grains

y+z
/ xb(x;y,z)dx =y +z. (15)
0

Note that these constraints on the distribution of fragments still allows
for the mass transfer phenomenon to occur in equation (6). The
number of fragments produced for each collision is defined by

y+z
Nirag(y, 2) = / b(x;y, z)dx. (16)
0

By definition, a fragmentation event produces at least two fragments,
therefore Nj,, > 2. The extreme case of Nf,, =2 occurs when a
small grain breaks in two and one piece is absorbed by the larger
grain.

2.5 Alternative rate equation

In atmospheric science, the distribution of fragments from droplets
collisions is obtained by experiment (Low & List 1982). However,
the usual formulation of the distribution of fragment does not strictly
satisfy the local mass conservation constraint in equation (15) (Brown
1986; Feingold et al. 1988). To overcome this problem, an alternative
rate equation has been formalized by List & Gillespie (1976) and
Gillespie & List (1978) where the loss rate of droplets (or, in
astrophysics, dust grains) is written with the distribution function
of fragments. The loss term in equation (6) is derived by counting
all the collisions between droplets of mass [x, x + dx] and any other
droplet. In Gillespie & List (1978), the loss rate is defined as the
destruction rate of droplets of mass x by fragmentation. We consider
the fragmentation of a pair of droplets of masses (x, y). The total
mass of fragments created by the broken pair is given by

x+y

/ zb(z; x, y)dz. a7
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Therefore, the mass of fragments created by all the broken pairs of
droplets of masses (x, y) per unit time is obtained by multiplying
equation (17) with the mean number of collisions per unit time
and per unit volume between the droplets of mass [x, x + dx] and
[y, y + dy] in equation (1), i.e.

x+y

/ zb(z; x, y)dz. (18)
0

K, y) f(x, o) f(y, )dydx x

By the mass conservation, equation (18) equals the mass of all the
broken pairs of droplets per unit time. Then, dividing by the mass of
one pair x + y, we obtain the number of all broken pairs of masses
[x,x 4+ dx] and [y, y + dy] per unit time, i.e.

x+y
/zb(z;x,y)dz .19
0

K@, ) f(x, o) f(y, D)dydx x
x+y

Equivalently, equation (19) gives the number of droplets of mass
[x, x 4+ dx] which break per unit time. We obtain the total rate of
loss of droplets of mass [x, x + dx] by integrating over y,

x+y

0 1
/ K, ) fx, ) f(y, 7) /Zb(z;x,y)dzdy dx, (20)
0 X+y
0
and the alternative rate equation writes
of(x,1)
ot
1 [o e le o}
5//le+zsz(x;y,z)/C(y,z)f(y,r)f(zyf)dydz
00

o0 x+y
—f(xvl')/w/zb(z;x,y)dzdy. 1)
, X +y J

The mass conservation with the original equation equation (9) is
ensured by the local mass conservation equation (15). However, the
alternative rate equation is of particular interest because Feingold
et al. (1988) proved that the mass is conserved for any choice
of collision kernel K and distribution of fragments b, because the
function b appears in both term on the right-hand side of equation
(21). It means that the total mass is conserved even if locally the mass
is not strictly conserved for each breakup event (Hu & Srivastava
1995). Note that equation (9) and equation (21) are two different
models to describe the general non-linear fragmentation equation.
In the case where the distribution of fragments respects exactly the
local mass conservation, we obtain equation (9) from equation (21).

2.6 Conservative form

2.6.1 Original equation

The fragmentation process is mass conserving, meaning no mass
is lost during the process. In order to solve the general non-linear
fragmentation equation by using robust numerical schemes, such as
finite volume methods or DG methods, which conserve the total mass
at machine precision, it is required to derive the conservative form of
equation (9), as an hyperbolic conservation law. To our knowledge,
there have been no studies that have derived the conservative form
of the general non-linear fragmentation equation (equation 9), which
we do now. Note that the calculations are formal and the rigorous
justification is beyond the scope of this work.

MNRAS 533, 4410-4434 (2024)

The aim is to find the expression of a mass flux, Fy,g, such that

ag(x,r) aFfrag[g](xv T) _
—+ =
ot ox

where g(x, t) = xf(x, t) is the mass density of grains per unit
mass. The term Fi,e[g] (x, 7) describes a combined mass flux at
time 7 crossing mass x resulting from all collisions involving grain
pairs with a total mass greater than x and which fragment to produce
grains with mass lower than x. A relation for the mass flux follows
directly from integrating equation (22) with respect to x,

0, (22)

X

Ffrag[g](xv )= _/

0

og(x’, r)dx/7 23)

ot

where the constant Fi,e[£](0, 7) is equal to zero since the process of

grain nucleation from gas phase to small nano-particles is neglected.
Multiplying equation (9) by x and integrating over x € [0, co), the

mass flux is written as

Ffrag[g](-x’ f) =

X o0 o0

1 ) ) ,
) / / / ﬂmzxfx/b(x/;y,z)/C(y,z)wdydzdx
C e

¢ )

X

) 0
+///C(y,z>g(z,r)¥dydz. (24)
0 0

A non-zero mass flux across mass x only has physical meaning if
the mass of the colliding grains is greater than x. We can make this
explicit by introducing the operator 1, -, to the right-hand side of
equation (24),

Ffrag[g](x7 T) =

1 X o0 o0 ’ ,
—5///L.HZXx’b(x’;y,z)lC(y,Z)Wdydzdx’

0O 0 0
+ / / leﬂz)cic(y,z)g(z,f)ydydz, (25)
0 0

noting that the operator 1,,.., imposes 1,,.>, =1, since x’ €
[0, x]. Thus, the conservative form of equation (9) is equation (22)
with the flux given in equation (25). Inserting this expression for the
flux into equation (22) and applying the Leibniz integral rule correctly
reduces to equation (9), as we would expect. To our knowledge, this
is the first time that Fy,e[g](x, T) has been derived.

The first term on the right-hand side of equation (25) describes the
flux of mass density across the mass x by fragmentation of grains
of masses y and z with y 4+ z > x producing fragments of mass
lower than x, as illustrated in Fig. 2 with the term F;(x, ). The
second term describes the flux of mass through x by fragmentation
with mass transfer of grains of masses y < x and z with y +z > x
producing fragments of mass greater than x, as shown in Fig. 2 with
the term F,(x, 7). The fragmentation flux is a balance between (i) the
negative flux of fragments coming from the break-up of larger grains
and (ii) the positive flux of smaller grains gaining mass through mass
transfer. In the second term, the gain of mass, due to the mass transfer
can be interpreted as a form of coagulation. Indeed the flux of mass
in the coagulation process (Tanaka et al. 1996; Filbet & Laurengot
2004; Liu et al. 2019; Lombart & Laibe 2021) is mathematically
similar to the second term. The conservative form of the general
non-linear fragmentation equation, with the flux of mass equation
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Figure 2. Illustration of the fragmentation flux in equation (25). The flux
is a balance between two terms. The first term describes the production of
particles with mass x; < x from the collision of two particles with total mass
y + z > x. This first term is called Fi. The second term, F,, describes the
formation of particles with mass greater than x due to the mass transfer
process from the collision of two particles with total mass y 4+ z > x but with
one particle of mass y < x. The fragmentation flux is a balance between the
production of small grains and the production of larger grain due to the mass
transfer phenomenon.

(25), directly highlights the mass transfer phenomenon presented in
Section 2.1.

2.6.2 Alternative equation

The alternative rate equation in equation (21) can also be written in
a conservative form with an associated mass flux

ag(x, t) aFfrag,all [g] (-x7 ‘L’)
+ =
ot Ox
Ffrag,all[g](-x’ f) =

X 00 o0

1 I I
- 5///)6 b(x";y, D1y K(y, 2)
0O 0 0

y 8(y, 1)g(z, r)dydzdx/
yz
X 00 zty
+///]lz+y2xx/b(x/§z, )’)K(LY)
0O 0 0
8z, 1)g(y, 1)

y(z+y)

The method to derive the flux Fiyg o is similar to Section 2.6.1. The
alternative rate equation in equation (21) is only used for bench-
marking the DG method (Section 4) since an analytical solution is
derived for the constant collision kernel and a specific distribution of
fragments which does not strictly satisfy the local mass conservation
in equation (15).

0,

(26)

dx'dydz.

2.7 Analytical solution of equation (21)

The only analytical solution to the general non-linear fragmentation
equation that we could find in the literature comes from Feingold
et al. (1988) in the atmospheric community, who derived an exact
solution for equation (9) assuming a constant kernel, Ky, and the
following fragment distribution function:

b(m;m',m"y = p*(m’ 4+ m")e 7", 27
where K| is a constant with dimension [length]3[time]_l and 7 is

a positive parameter characterizing the physics of the fragmenta-
tion process. This distribution of fragments physically represents
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the case where the number of fragments depends on the mass
of the two colliding droplets m’ and m” and the shape of the
distribution decreases exponentially with m. It means that for
one collision a large number of small droplets will be gener-
ated. The decaying exponential term in equation (27) allows the
distribution of fragment to approximatively respect the physical
constraint Vm > m’ 4+ m”, b(m;m’'m") =~ 0. However, equation (27)
does not fully satisfy the local mass conservation condition in
equation (15)

m/+m”
/ mb(m;m', m"Ydm
0

— (m/+m//) l_e—}?(murm”)(l +)7(m/+m//))

e(y.m’.m")

<m' +m”, (28)

since here (7, m’, m") is small but non-zero. Feingold et al. (1988)
found that e(7, m’, m”) is a few orders of magnitude less than unity
whenever the number of fragments is greater than 10. This can
easily be shown for a given mass range and number of fragments
by evaluating the integral in equation (16), numerically solving for
7, and evaluating €. This discussion will be important later for a
numerical test that requires a value of 7 (see Section 4.3).

Let us now show the steps for the derivation of the analytical
solution. The dimensionless kernel and distribution of fragments
write

K=1, b(x;y,2)=y*(y +2)e ", (29)

where y = moj. As the local mass conservation is not exactly
respected, we substitute the distribution of fragments and constant
kernel into the alternative rate equation equation (21)

0f(x,7)
ot

2 o] %)
r / / (3 + 20" £y, 1) f (2. T)dydz
0 0

—flx, o)y’ / / (O, T)ze 3dzdy, (30)
0 0

where the operator 1, ;- is contained in the expression of b. Indeed,
the function b, approximatively respects the physical constraint Vx >
y+2z, b(x;y,2) = 0.
By continuing the development, we obtain
f (1) _
ot -

where

M= /OO xf(x,n)dx =1, N(1) = /00 f(x, T)dx, (32)
0 0

yYie " MN (1) — f(x, TN (1), 31

are the dimensionless total mass density and total number of particles.
Then, by integrating equation (31) over x, we obtain an evolution
equation for NV (z)

dN
df(’) =yN() = N (33)
The solution to equation (33) writes
ert
N(r) = Wv (34)

Y
where N'(0) = 1. We remark that, for a given time, AV(t) increases
with y, a positive integer that characterizes the production of
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fragments. Finally, by injecting equation (34) into equation (31)
and solving the differential equation, we obtain the exact solution of
equation (30):

_ fx 0O+ —De

f&x, 1) P
14+ =t

; (35)

where f(x,0) is the initial number density. Note that the exact

solution only retains a memory of the initial condition for a finite

time since, as t — 00, the solution converges to the distribution of

fragments

fan) =yl (36)
T

— 00

These characteristics of the exact solution suggest that the solutions
to the general non-linear fragmentation equation depend on the
initial condition and the evolution is controlled by the distribution of
fragments (Feingold et al. 1988). This evolution is also observed for
the multiplicative kernel and a power-law distribution of fragments
as shown in Section 4.4.

3 DG METHOD

The DG method (Cockburn & Shu 1989; Zhang & Shu 2010; Liu
et al. 2019) is an efficient numerical method to solve the non-linear
fragmentation equation (Lombart et al. 2022) and the Smoluchowski
coagulation equation (Lombart & Laibe 2021) with areduced number
of mass bins. This method is therefore well adapted to treat the
coagulation and the fragmentation processes in 3D hydrodynamic
simulations. Our objective is to extend the work from Lombart
et al. (2022) by applying the DG method to the general non-linear
fragmentation equation in equation (9). A complete description of
the DG method, in the astrophysical context, is given in Lombart &
Laibe (2021). Here, we outline only the principal steps for the general
non-linear fragmentation equation.

3.1 Summary

The unbounded mass interval in the fragmentation equation is
reduced to a physical mass range [Xyin > 0, Xpmax < 00] and divided
into N bins. Each bin is defined by I; = [x;_1/2, Xj41/2] for j €
[[1, N]. The size and the centre position of each bin j are given,
respectively, by ij = X110 — Xj_1p and x; = (X412 + Xj—1/2)/2.
In each bin j, the unknown mass density function g is approximated
by polynomials of order k defined as a linear combination of
Legendre polynomials ¢; with i € [0, k]|,

k
Vx el glx, 1) = g(x, 1) = Zg}(f)tﬁ:(EJ(X)), (37
i=0
where the function £ maps the bin interval /; into the reference
interval [—1, 1] where standard Legendre polynomials are defined.
Equation (22) is multiplied by the Legendre polynomials basis
function vector ¢(&;(x)) = [¢o(§;(x), ..., e (§; (x)]7, then integrated
over each bin /;. Therefore, the DG method determines the evolution

of the components gi- by solving the following equation

0g: 0 ;
/ %8 e (o / Flglr, 1) 2280 g,
I; T . 0x

1

integral of the flux, see Section 3.1.3
+ Firaglgl(X 1172, P& (X 41/2))
— Fraglgl(xj—12, DPEj(xj-12) =0,  (38)
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where the term ‘integral of the flux’ is obtained through integration
by parts.

3.1.1 Description of the flux

The fragmentation flux, given by equation (25), is truncated into the
physically relevant mass range [Xmin, Xmax] by replacing 0 and oo by
Xmin @nd Xmax, r€Spectively,

X Xmax Xmax

1
Ffrag,nc[g](xs 7:) =—= x/b(x/; Y, Z):u-y+22x

2

Xmin ¥min Xmin

WK (y, 78 D8E ) Ty)f @0 gydzdy

X Xmax

+/ /]lyHZX’C(Z,y)g(z, T)g(yT’r)dydz,

Xmin Xmin

(39)

which is a first proposition for the expression of the flux on the
physical mass range, but not satisfactory because the flux is not
conserved if mass flows out through x,,,x due to mass transfer, i.e.
Firagnc[€](Xmax, T) # 0. For that reason, this flux is denoted Fiag nc
for ‘non-conservative’ flux. Note that no mass flows out through x,,;,,
Firag,c[€](Xmin, T) = 0, meaning that no grains of mass lower than
Xmin are produced. Therefore, it is necessary to modify the flux in
order to conserve the mass for which Fiy nc[g](x, t)L:Xmimxmux =0.
The term Fi,, o stands for the ‘conservative’ flux. To prevent the
formation of particles of mass x > xy,x due to the phenomenon
of mass transfer, it is sufficient that the total mass of the two
colliding particles is lower than Xy, + Xmin. For instance, if y 4+ z =
Xmax 1+ Xmin, the possible values are y < xpax and z < xpax, with
the limiting cases being y = xp.x and z = Xy, Or vice versa.
Moreover, the operator 1., has to be changed into 1y >t xy,»
since the total mass of the colliding grains is always greater
than twice the minimum grain mass. In summary, the condition
X 4+ Xmin < Y + 2 < Xmax + Xmin must be verified when the range of
grain mass is limited to [Xmin, Xmax]- By applying these modifications
to equation (39), we obtain the conservative truncation of the
flux

Ffrag,c[g](xv T) =

X Xmax ¥max

1 ’ ’
- E X b('x 5 Y, Z)ﬂ}'+ZZ.’(+Xmin ﬂ-‘max+xlnin2y+z

Xmin X¥min Xmin

<K(y, 78 D8&T) Iy)f(z’ % dydzdy’

X Xmax

+ ]ly+ZZX+Xmin ]lxmax+xmin2y+z

Xmin ¥min

xK(z, ¥)g(z, ) dydz. (40)

8y, 1)
y
For numerical purpose, it is necessary to extend the operators 1
in the limits of integrals. The first term on the right-hand side of
equation (40) splits into two terms by comparing z to x. Then,
the operators 1 are applied on the variable y for all terms to
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give

Ffrag,c[g](x’ 7) =

X Xmax —Z+Xmin

=y

Xmin ¥min X —Z+Xmin

x'b(x"sy, DK, 2)

y gy, 1)g(z, t)dydzdx'

X Xmax ¥max —Z+Xmin

1
—5// / x'b(x';y, DKy, 2)

Xmin X Xmin

» 8(y, 1)g(z, 1)
yz

X Xmax —Z+Xmin

+ / / K(z, y)g(z, )

Xmin X —Z+Xmin

dydzdx’

gy, 1)

dydz. (41)

We directly observe that, this new expression of the flux ensures
mass conservation of the system evolving in a finite mass range.

3.1.2 Evaluation of the flux

The general non-linear fragmentation equation (equation 9) belongs
to the family of non-local partial differential equations. The evolution
of the number density function f depends on the evaluation of the
product of the number density function over all the mass range, sim-
ilar to the coagulation and non-linear fragmentation equations (Liu
etal. 2019; Lombart & Laibe 2021; Lombart et al. 2022). In equation
(41), the evaluation of the flux at the interface x;_i, depends
on the evaluation of g; in all bins, due to the double integral of
the mass density function g. The approximation of g is a non-
continuous function due to the DG method. However, the flux Fipg ¢,
in equation (41), is a continuous function of mass across interfaces.
This important characteristic of the flux differs from the usual DG
solvers applied on local partial differential equations for which
the flux is discontinuous and must be reconstructed at interfaces
(Cockburn & Shu 1989; Zhang & Shu 2010; Guillet et al. 2019).

We assume that the distribution of fragments and the collision
kernel are integrable, which is true for the analytical solution
in Section 2.7. The numerical flux, equation (41), is analytically
integrated over the mass variables by approximating g with g; in bin
I; (equation 37). The numerical flux at interface x;_;, is

Ffrag,c[g](xjfl/Zs T) =

S5/

Iy Iy xj—1/2—2+Xmin

Xmax —Z+Xmin

X'b(x";y, DK, 2)

8(y, T)gr(z, 1)
B T8z, T)

dydzdx’
yz
1 j—-1 N Xmax —Z+Xmin
R3S / / ¥bxs y, DKy, 2)
uslr=j Iy Iy Xmin
y 8(y, 1)gr(z, T)dydzdx/
yz
j—1 Xmax —Z+Xmin
, T
+ / K w0 Dy @)

—
r=1 Iy xj—1/2—2+Xmin

To be able to analytically calculate the integrals over y, it is necessary
to approximate the function g(y, ) over the entire mass range, with
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the following approximation:

Vy € [xminy xmax]a

gy~
N k )
DD H @G EONHY —xi1p) — Hy —xiap)]l,  (43)

I=1 i=0

where H is the Heaviside function. Therefore, equation (42) writes

Ffrzlg,c[g](xj—l/Z, T) =
1 -1 N k&
—32.2_0 2 &@e®
I'=1 I=1 i’=0 i=0

- o
XTfrag,l(xmaxv Xmins J» [ ) l,l i l)

PN Nk ko _
222222 s
I'=j I=1 =0 i=0

- o
XTfrag,Z(xmaxv Xmins J» [ ) l,l i l)

j—-1 N k k
DD e (8O Teone(Kmaxs Xewins 151,77, 1),

I'=1 I=1 i'=0 i=0
(44)

where the details of Tiyg 1, Tirag2, and Toose are given in Ap-
pendix A. These terms are calculated analytically with MATHEMATICA
before being translated into FORTRAN and C++-. The algorithm is
written in FORTRAN/C++ and tested against the MATHEMATICA
version for accuracy. Tirg 15 Tivag,2, and Teoqe are pre-computed once
at the beginning of the algorithm, since they only depend on the
chosen mass grid. This significantly improves the performance of
the time solver, similar to Lombart & Laibe (2021) and Lombart
et al. (2022). In practice, the three terms are stored in arrays with
dimensions corresponding to the number of indices they contain.
Then, the subarrays for index j are multiplied by g;',’(t)g;'(r) and
summed over all elements to obtain the three terms in the right-hand
side of equation (44). The process is repeated for all j to obtain
Ffrz\g,c[g](xj—l/Z, T) for all Xj—1/2-

The evaluation of the flux assumes that the collision kernel is
a 2D continuous function of mass, which is not always the case
for physical problems. For instance, the kernel might depend on
time through various physical quantities, such as gas temperature.
The implementation of the physical collision kernel in Section 2.3
requires the use of the differential velocities between grains given
by the 3D hydrodynamic code. The differential velocity term is a 2D
piecewise constant function. One approach to couple the DG scheme
with the hydrodynamic solver is to compute the integrals with the
continuous cross-section, and then multiply by the 2D array for the
differential velocity. This approximation of the physical kernel is
given by

K(x, )’) =mo(x, }’)AU(X, Y) ~ Kapprox(xa y)7
Kapprox(x’ y) =
N N
wo(x, y) Z Z Avl’.l]]-,\'1/,]/2<x<xl/+1/2 ]]-,\'1,1/2<y<x,+1/2- (45)

=1 I=1

In lieu of working with data obtained from 3D hydrodynamic
simulations, we can test the errors from the approximation above
by using the well-known differential velocity relation for Brownian
motion (Dullemond & Dominik 2005; Brauer et al. 2008), which in
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Figure 3. Left: Surface plot of the Brownian kernel using the differential velocity relation in equation (46) (blue). The orange patched surface is the approximation
of the Brownian kernel using equation (45). The red line indicates the location of the cross-sectional slice found in the right panel. Right: Cross-sectional slice
of the Brownian kernel (blue line), with approximations from equation (45) (orange line) and a 2D cubic spline interpolation (green dashed line) overplotted.

Vertical grey lines represent the boundaries of the bins.

dimensionless form is written as

1 1
Avp(x, y) = 4 T + 3

The Brownian collision kernel is Kg.(x, y) = o(x, y)Avg(x, y). To
quantify the errors, we define the continuous 2D absolute L' error

Z?ﬁi:l f[,» fI; ‘KHPPTOX(X! y) - KBr(X, )’)| dXdy
Z_I;{izl f,j fll- KBr(xv y)dXdy

where the continuous integrals are evaluated with the Gauss—
Legendre quadrature using 16 Gauss points. Fig. 3 shows the
performance of the kernel approximation in equation (45). The error
eyp c generated by this approximation is ~ 3 per cent.

While this approximation provides a simple way of coupling to
the differential velocities of hydrodynamic solvers, it is important
to remember that, in practice, the differential velocities will be
time dependent. Consequently, the physical kernel will also be time
dependent and the pre-computed terms in equations (A1)—(A3) have
to include the updated array Av; j, e.g. by multiplication with the
2D array Av; ;:

(46)

€m.c ) 47

Tfrag,l <~ Avl’,l X Tfrag,l(xmaXs Xmins j, l,, l, l'/, l) (48)

If we want to enhance the accuracy of the 2D approximation to better
preserve the high precision in the DG scheme, we can interpolate the
physical collision kernel, as illustrated in the right panel of Fig. 3.
The error of the 2D cubic spline interpolation (green dashed line) of
the discrete kernel array,

(i, j) € [1, NT?, K; j=mo(x;, xj)Ave(x;, X;), (49)

is only ~ 0.005 percent. The 2D interpolation gives this high
accuracy only in log-log space where the grid is regular. The
inconvenience of using the interpolation for the coupling is that
the approximation of the kernel has to be integrated to evaluate the
terms in equations (A1)—(A3) after each hydrodynamic time-step.
This would significantly reduce the global performance of the DG
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scheme, which relies heavily on pre-computed integrals or efficient
quadrature methods (see Section 5.3.1) to quickly generate the terms
in equations (A1)-(A3).

In addition to the differential velocities of grains given by the
hydrodynamic solver, sub-grid models for the differential velocities,
such as Brownian motion, can be added in the DG scheme like

AV %)) = 3 At . 1) + AvagiaCi. )2 (50)

If the sub-grid model is considered independent of time, such as the
Brownian motion in equation (46), the integral terms for the DG
scheme need only to be pre-computed once.

3.1.3 Integral of the flux

Now that we have a relation for the conservative flux, Fi,g [g](x, T),
we define Fiy,, . the term with the integral of the conservative flux,
in equations (38) and (41), which takes the form

]:frag,c(js k/s T) =

X X Xmax—Z+Xmin

1
_E / / / x/b(X/; Yy, Z)IC(y, Z)ax(pk’(%'j(x))
I

" Xmin Xmin X —Z+Xmin

g8(y,1)g(z, 1)
(8. T8k T)

yZ
1/
2 1

X Xmax ¥max —Z+Xmin
Xmin X Xmin

dydzdx'dx

X'b(x"s y, DK(y, 20 (§;(x))

gy, 1)gz, 7)
(8. T8 T)
yz

dydzdx'dx

X Xmax —Z+Xmin

.

Xmin X —Z+Xmin

K(z, y)0.¢w (§;(x))

8y, 1)

xg(z, r)Tdydzdx, 1)

20z Jequieoaq £ | U0 188nB Aq €0GG 1. L/0L bh/b/EES/PI0IE/SEIuW/WOo0"dNo"dIUSPEoE/:SAJlY WOI) PEPEOJUMOQ



where k' € [[0, k]|. For each term in the right-hand side of equa-
tion (51), the integrals over z are split into two integrals: z €
[Xmin, Xjfl/z] and z € [)ijl/z, x] for the first term; z € [x, .Xj+1/2]
and z € [X41/2, Xmax] for the second term; and z € [Xmin, Xj—1,2] and
z € [xj_1/2, x] for the third term. We apply the same method as in
Section 3.1.2 to obtain the numerical integral of the flux

]:frag,c(jf k/v T) =

~.

N k k
SN simsio
1’ =1 i'=0 i=0

;g o
XﬁraglA(xmaxaxmimJ KU LT D)

= ZZ Zg, (x)gi (@)

=1 i'=0 i=0

o .
X frag,L,B(xmax’ Xmins J» K L0000

1N Kk k 5 _
PP IO OIHC)

=1 i'=0 i=0

—

- IV
XﬂragZA(xmaszminv] k l L, )

-3 Z >33 g

U'=j+1 I=1 i'=0 i=0

’ ! .
Xﬂrag,ZA,B(xmax’ Xmins ]: kU, l» i, l)

-1 N k  k
D IPIPIFACGTHC
=1 I=1 i’=0 i=0

.o V.
X%oag,A(-xmaXs Xmins J» kUL l)

N &k k
PIPIPIACIHC
=1 i'=0 i=0
><7—coag,B(-xmaxv Xmin jy k/, l, l'/, l)v (52)

where the definition of the different terms and the method to compute
them are detailed in Appendix B. Importantly, since the integral terms
in Fig o and Fiy, ¢ are evaluated analytically, the accuracy depends
only on the order of polynomials to approximate g.

3.2 Scaling limiter

The DG scheme needs the use of a scaling limiter to preserve
the positivity of the numerical solutions (Zhang & Shu 2010; Liu
et al. 2019; Lombart et al. 2022). The scaling limiter is applied
by a reconstruction step based on cell averaging. The reconstructed
polynomials in each bin writes (Liu et al. 2019; Lombart et al. 2022)

Vj €Il NI pi(x. ) = ¥;(0) (g;(x, ©) — §,(D) +3,;(0)

7. 53
¥ () = min Lﬂ, , 43
m;(v) — g,;(v)
where m (1) = miIn gj(x, 7)and g, is the average of g; in bin /;
XE€lj
_ 1
g;i(n) = e gj(x, T)dx = gY(2). (54)
JJI;

Since g; is approximated by orthogonal polynomials, the scaling
limiter coefficient v; is applied to all components of p; except
the average value which writes p(}(r) = g?(t). In Lombart & Laibe
(2021) and Lombart et al. (2022), there is a mistake in the application
of the scaling limiter. We present here the correct implementation of
the scaling limiter for the DG scheme by following the description in
Guillet et al. (2019). For the initialization of the DG scheme, the L?
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projection of the initial mass distribution onto the Legendre basis can
result in negative values for the numerical mass density. At that step,
the use of the scaling limiter is required; therefore, the following
replacement is applied on the components of g;

Vj € [L NI, Vi = 1, gi(x) < v;g'(2). (55)

Then, after each evolution of the component of g ;, meaning after each
time-step in the SSPRK method (see Section 3.3), the replacement
in equation (55) has to be applied to ensure the positivity of the
numerical solution.

3.3 CFL criterion

The DG scheme is associated with the Strong Stability Preserving
Runge—Kutta third-order method (SSPRK) to ensure that the high-
order accuracy is preserved during time (Liu et al. 2019; Lombart &
Laibe 2021; Lombart et al. 2022). The SSPRK time solver is stable
under a suitable Courant—Friedrichs—Lewy (CFL) condition on the
time-step. A precise estimation of the CFL condition has been
investigated in several studies on coagulation and fragmentation
processes (Filbet & Laurencot 2004; Liu et al. 2019; Lombart &
Laibe 2021; Laibe & Lombart 2022; Lombart et al. 2022), but
none so far dedicated to the evaluation of the CFL condition for the
general non-linear fragmentation (probably due to the high degree of
complexity in the flux given in equation 41). The method based on the
Laplace transform used in Laibe & Lombart (2022) seems difficult
to be applied to the general non-linear fragmentation. The method to
determine the CFL criterion developed in Filbet & Laurengot (2004);
Lombart et al. (2022) does not provide an analytical expression to
evaluate the CFL criterion because of the non-linearity of the general
non-linear fragmentation. Therefore, we propose to numerically
evaluate the CFL condition. The DG scheme with SSPRK method
for order O corresponds to the forward Euler discretization, i.e.
g;) n+1 _

n Ar n n
(; + A [Ffrag[gj](ijrl/Z, T) — Firaglg}1(x 12, f)] , (56)
j

for the nth time-step. The CFL condition is evaluated to ensure the
positivity of the bin average at time-step n + 1, i.e. g”+1 g? ol >
0 (Liu et al. 2019; Lombart & Laibe 2021; Lombart et al. 2022). We

obtain the condition

Vjell, NI,
g? S
gO’"ij
= Atcp, < J
|Ffrag>[g1](x/+l/27 T) — Frraglg}1(x-1/2, T)}
(57)
In practice, we define
0.n
ATcpL = mm 8 A%
!Ftrag[g 1ej41725 T) — Flraglg710xj-12, )|
(58)

and the time solver is executed with the time-step dt = CcpL ATcpL,
where Ccpp € [0, 1] is the CFL coefficient to ensure stability,
typically Ccpr. = 0.3 for SSPRK order 3 (Gottlieb 2015).

4 NUMERICAL RESULTS

The DG scheme presented in Section 3 is tested against the analytical
solution outlined in Section 2.7. Tests are performed with a limited
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number of mass bins, i.e. N = 20, in order to reflect the constraints
from 3D hydrodynamical simulations. We also performed simula-
tions for a power-law mass distribution of fragments.

4.1 Evaluation of errors

Error measurements are performed to determine the experimental
order of convergence (EOC) and the efficiency of the DG algorithm,
similar to Liu et al. (2019) and Lombart et al. (2022). The continuous
L' norm used to evaluate the errors is

€, N(T) Z/!gj(x T) gexaut(x T)‘dx

Jl[

j=1 o

Mx

W | 87X, T) = Zexacr(x%, T)] (59)

1

where the integral is approximated by the Gauss-Legendre quadra-
ture method. The terms geyoec and g; are, respectively, the exact and
the numerical solutions. w, and x7 are the weights and the points in
bin /; for the Gauss-Legendre quadrature method. We use R = 16
Gauss1an points. The discrete L' error is evaluated at the geometric
mean value, which is the mass of the representative grain in each bin.
The L' norm is evaluated in logarithmic scale with the following
change of variable:

Xmax

||f||1_/|f<x)|dx—z/ £ )ldx

Xmin

log(xj4+1/2)

el feM)ldv,  (60)

N

o 2

og(xj—172)

where f is an arbitrary function. Then, we apply the mid-point rule
to evaluate the integral to obtain the discrete L' error,

ean(1) = Zlog ( ’“/2) 251837, 1) — 8. D, ©1)
where £; = | /X;11,2X; 1,2 is the geometric mean in bin j.
The EOC is defined as
en(7)

EOC = Enz’;())) (62)

where ey is the error for N bins and e,y for 2N bins. The error
can be the continuous or discrete L' error. To avoid time-stepping
errors, the errors are calculated after one time-step. The numerical
total mass density of the system is the first moment of g(x, ) and
writes

Xmax

N
[ e mae =3, ©3)
=1

Xmin

M n(T) =

Therefore, the mass conservation is analysed with the absolute error
of the total mass density given by

[My n(T) — M|

M, , (64)

ey, N(T) =

where M| is the first moment of the exact solution gexacr, Which is
constant in time.
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4.2 Implementation details

Simulations are performed for a mass range x € [Xmin, Xmax], With
Xmin = 1070 and xmax = 103, in order to follow the formation of small
grains from the fragmentation of larger grains. Numerical solutions
of the mass density are shown only for polynomial approximations
of order k € {0, 1, 2, 3}. Tests are performed with FORTRAN and the
errors are calculated with PYTHON. The initial components g} are
evaluated by the L? projection of the initial condition go(x) on
the Legendre polynomials basis in each bin (see equation 17 in
Lombart & Laibe 2021)

{ go(x) = xe™, ©65)

Vj €L NI. 8;(0) = 77 [}, 80(x)i(€;(x))dx.

where d; is the normalization coefficient of the Legendre polynomial
basis defined as

2
2i+1°

P = (66)
The integral is evaluated by a Gauss—Legendre quadrature method
with five points. To avoid numerical instabilities, a minimum physical
threshold is set to 10720. Therefore, during the simulations, any
polynomials g;(x, r) with mean value below the threshold are
changed into a constant polynomial with value 1072, This step is
applied after each update of the g;(r), i.e. for each sub time-step in
the SSPRK solver (section 3.3 and equation 38 in Lombart & Laibe
2021). We choose the CFL coefficient Ccpp, = 0.3 and the algorithm
is run sequentially on the Apple M1 Max chip. We use the GFORTRAN
v13.1.0 compiler.

4.3 Distribution of fragments from Feingold et al. (1988)

Numerical solutions for the constant kernel with the specific dis-
tribution of fragments, equation (29), are benchmarked against the
analytical solution presented in Section 2.7. Tests are performed
in quadruple precision, in order to maintain stability of the DG
scheme. Simulations are performed from t =0 to T =3 x 1073
with 100 constant time-steps AT =3 x 107>, The coefficient y
in equation (29) is set to 10, meaning that the majority of the
grains produced by fragmentation are of mass 107*. The evolution
of the numerical solutions with N = 20 bins and polynomials of
order k € {0, 1, 2, 3} are shown in Fig. 4. Initially, the majority of
the mass is represented by large particles of mass x = 1. Then,
the fragmentation process occurs and a large number of fragments
with mass x = 10™* are produced. At T = 8.107>, the number of
fragments with mass x = 10~ is so large that the majority of the
total mass starts to be represented by these fragments. We observe at
that time a double-humped curve. The number of the large grains of
mass x = 1 continue to decrease. At the final time, the analytical and
numerical solutions converge to the mass distribution of fragments.

4.3.1 Positivity and mass conservation

Fig. 4 shows the numerical results of the mass density (linear scale for
the first fourth rows and log scale for the last row) versus the mass x in
log scale. For all polynomial orders, the numerical solutions remain
positive thanks to the combination of the CFL-limited SSPRK time
solver (Section 3.3) and the scaling limiter (Section 3.2). Fig. 5(a)
shows the absolute error ey, , from T = 107> to t = 3 x 107>, The
mass is conserved for all orders k, as expected from the design of the
DG scheme with the conservative flux.
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of order ~ 0.1 per cent is achieved with ~ 4 bins/decade or ~ 1 per cent with ~ 2 bins/decade for k = 3.
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4.3.2 Accuracy

Fig. 4 shows the accuracy of the numerical solutions improves
with the order of the polynomials. The two plots in log—log
scale at T =8 x 107> and v =3 x 103 show that the numerical
diffusion is reduced (up to a factor of 10) in the decreasing parts
(exponential decays) as the order of polynomials increases. The
major part of the total mass is generally localized in the maximum
of the curve. However, at 7 = 8 x 107>, the curve exhibits two
maxima, indicating that a significant proportion of the total mass
is represented by both small and large grains. Near the peak at
lower mass, numerical solutions with order kK = 3 achieve absolute
errors of order ~ 0.1 per cent while errors of order ~ 1 per cent
are obtained with k € {0, 1,2}. Near the peak at higher mass,
numerical solutions with order k = 3 achieve absolute errors of order
~ 0.01 per cent while errors of order ~ 1 per cent is obtained with
k=0.

4.3.3 Stability of the DG scheme

Figs 5(c) and (d) show the time evolution of the continuous e,y
and discrete e; y L' errors. With only N = 20 bins, both errors for
each order remain bounded over the entire time interval. However,
notice an unusual behaviour of the curves around T ~ 1073, Looking
at the error analysis one time-step at a time, the increase in the
error comes from the fact that the numerical solution near the
lower peak is approximately polynomial in shape for r < 1073
but transitions to an exponential decay for 7 > 10~3. The sudden
introduction of a second exponential section in the solution ap-
proximated by polynomials leads to a short temporal increase in
the error that lasts until the initial size distribution is sufficiently
depleted.

4.3.4 Convergence of the DG scheme

The EOC is determined independently from the mass range by
plotting the continuous and discrete L' errors as a function of the
number of bins per decade Npin/aec. Figs 5(e) and (f) show the
numerical errors at time T = 10~° for several total bin numbers
N =5, 10, 20, 40, 80. In Fig. 5(e), the EOC for the continuous L!
error is of order k + 1. In Fig. 5(f), the EOC for the discrete L'
error is of order k + 2 for odd polynomials, and k + 1 for even
polynomials. With e, y, an accuracy of order ~ 0.1 per cent is
achieved with ~ 4 bins/decade with k = 3, ~ 5 bins/decade with
k =2, and more than 10 bins/decade for k = 0, 1. An accuracy
of order ~ 1 percent is achieved with ~ 2 bins/decade with
k =3, ~ 3 bins/decade with k =2, and ~ 8 bins/decade with
k € {0, 1}.

4.3.5 Analysis of the CFL condition

The evolution of the time-step dr under the CFL condition equation
(57) is shown in Fig. 5(b). The time-step increases during time until
a stable value ~ 3 x 1073, The green points around T ~ 10~ are
smaller than the CFL condition to obtain equally spaced global time-
steps At. The plateau observed from 7 = 5 x 10~ shows that the
CFL condition is greater than 3 x 1073; therefore, the time solver
runs at dt = Ar.
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4.4 Power-law distribution of fragments

4.4.1 Power-law mass distribution

In astrophysics, the mass distribution of fragments is traditionally
described by a power law:

n(m, t)dm o« m*dm, (67)

where the determination of o remains an open problem. Several
theoretical works obtained o = —11/6 ~ —1.8 (Dohnanyi 1969;
Williams & Wetherill 1994; Jones et al. 1996; Tanaka et al. 1996).
Experimental studies of grain—grain collision found that o takes
value from —2 to —1 (Blum & Miinch 1993; Giittler et al. 2010;
Deckers & Teiser 2014; Bukhari Syed et al. 2017). We present a
numerical analysis to constrain the value of «. Let us consider a
mass distribution of fragments defined as

b(x;y,2) = Ay, 2)x*. (68)

The normalization coefficient A(y, z) is obtained by applying local
mass conservation to our physical mass domain

y+z
/xb(x;y, )dx =y +z, (69)
giving
2 2
ALy 2) (@ +2)(y+2) (@ +2)(y+2) ’ (70)

min Xmin

(y + Z)a+2 _ x%# a2 [(&)a+2 B 1]

where « € R, (y + 2, Xmin) € [Ri and y + z > Xpin. The mass dis-
tribution of fragments is a positive function if o € (—oo0, —=2) U
(=2, 00). A singularity appears for « = —2 for the normalization
in equation (70). For that specific case, the coefficient A has to be
calculated from equation (68). The number of fragments produced
after each collision is given by equation (16) with 0 <> Xy,

(@ +2)(y+2) [(Hz)a+1 - 1]

Xmin

(o + DXmin {(i{:n)wz - 1}

The number of fragments is strictly positive for o € (—oo, —2) U
(=2, —1)U (-1, 00). Two singularities appear for« = —2 and o =
—1. For the value « = —1, equations (70)—(71) have to be calculated
from equation (68). The physical condition on Ny, is that at least
two fragments are produced per collision, Nfy,, > 2. This inequality
is difficult to solve in the general case with the variables y, z, Xyin,
and . But we can give an estimation of « for given values of x,;, and
the ratio (y 4 z)/Xmin, i.€. the ratio of mass between the total mass
of the colliding grains and the mass of the smallest grain considered.
Conversely, by choosing «, we can estimate Nf,g according to the
ratio (¥ + z)/Xmin. The left panel in Fig. 6 shows the range « values as
a function of mass ratio for which Ny, > 2. The physical condition
Niag > 2 is satisfied over a wide range of values for the ratio (y +
2)/Xmin, When @ € (—o0, —2) U (=2, —1) U (—1, 0). The important
result is that the model can handle the physical value « = —11/6 with
the condition that (y + z)/xmin > 3.64. A large number of fragments
require a large mass ratio (see the right panel in Fig. 6).

Nfrag(yv 7) = (71)

4.4.2 DG scheme with Gauss quadrature

Applying the method used in Section 3.1.2 to evaluate the flux
with the power-law distribution of fragments from equation (68),
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a = —1 (dashed black line) correspond to the singularities from equations (70) and (71). Shaded regions indicate values of « that respect the condition Nfy,g > 2
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the analytic integrals result in Gaussian hypergeometric functions
2 F1; however, the correct evaluation of this special function requires
high accuracy and is very computationally inefficient. We therefore
opt to evaluate the integrals numerically with a Gauss quadrature
method. Since the limits in the integral on the variable y in equations
(42) and (51) depend on the variable z, the accurate evaluation of the
integrals required a large number of Gauss points. For that reason, we
use the Gauss—Kronrod quadrature method. To ensure the stability
of the DG scheme, we require 15 Gauss points is 15 or 31 Gauss—
Kronrod points. We present here an approach that differs from Liu
etal. (2019) to evaluate the integral on y, for which the limits contain
variables, i.e.

Xmax —Z+Xmin

g(y, T)dy, (72)

Xj—1/2—2+Xmin

where g is approximated by a piecewise polynomial function. The
method used in Liu et al. (2019) is to find which bins contain
the values x;_i/» — 2+ Xmin and Xpax — 2 + Xmin and then split
the integral over the bins to approximate g by the corresponding
polynomials. Our approach is to sum the integral of g; over each bin
[/ with an automatic selection of the bins which intersect the range
[xj-1/2 — 2 + Xmin» Xmax — Z + Xmin]- Equation (72) is approximated
by

Xmax —Z+Xmin

g(y, o)dy

Xj—1/2—2+Xmin

~ E : ]1X171/2 <Xmax —Z+Xmin ]]‘Xj—]/2—z+xmin <X[41/2
=1

min(Xmax —2+Xmin-X1+1/2)
X / g1(y, T)dy. (73)

max()cj_1/gfz+xmin.xl—l/2)

The property [X1_|/2, x1+]/2] n [Xj—l/z — U + Xmin, Xmax — U + xmin]
is ensured by the use of the operator 1. The integral on y is evaluated
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with the Gauss—Kronrod quadrature with the following formula:

b
b—a 9 b+a b—a
/f(x)dx~ 5 lef< St sa>, (74)

where Q is the number of Gauss—Kronrod points and w, and s,
are the weights and node coefficients, respectively, of the Gauss—
Kronrod quadrature method. Then, the integral on z is evaluated
with the Gauss—Kronrod method to obtain the first double integral
for the flux in equation (42). The details on the evaluation of the flux
Firag,c[81(xj_1/2, T) and the integral of the flux Fie (j, k', ) are
given in Appendix C.

4.4.3 Results

We present here the benchmark results of the DG scheme with a
power-law mass distribution of fragments. We test our numerical
algorithm using a multiplicative kernel withe = —11/6and N = 20.
The numerical solutions for k =0, 1,2, 3 are benchmarked with
a reference solution obtained by using N = 160 bins with k = 3.
The simulations are performed from v = 0 to r = 1 with 100 time-
steps At of length 1072, The simulations are performed in double
precision. Fig. 7 shows the numerical results of the mass density
function versus the mass in linear-log for the first fourth rows and
log-log scale for the last row. Analyse of the performance, shown
in Fig. 8, shows similar results to those found in Section 4.3. High
accuracy of the numerical solutions is achieved with high order of
polynomials. The experimental order of convergence is not shown
since it is similar to the test in Fig. 5.

5 DISCUSSION

5.1 Conservative form

We have derived the first conservative form of the general non-
linear fragmentation equation (equation 9) as a hyperbolic law
equation (equation 22) with a fragmentation flux in mass space.
The fragmentation flux, equation (25), includes a ‘coagulation’ flux
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and 7 = 1 (right column). The mass density is in linear scale and the mass in logarithmic scale. The reference numerical solution g(x, t) is given by the blue
dashed line. Vertical grey lines represent the boundaries of the bins. The last row shows the same numerical solutions in log-log scale. The accuracy improves
with increasing values of k.
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Figure 8. Test for the multiplicative kernel and the power-law mass distribution of fragments in equation (70) with N = 20 bins. The power-law coefficient is
o = —11/6. The results are similar to the constant kernel test in Fig. 5. The mass is conserved for each order & in panel (a). Panel (b): evolution of the time-step
dt. For each order k, the time-step globally increases with time as more fragments are produced. The numerical errors decrease with the order of polynomials

k in panels (c) and (d).

that results from potential mass transfer events that take place when
one grain breaks against another. Our new expression for the flux
combines in a continuous way the gain and loss terms of equation
(9). The conservative form is of particular interest since it allows the
use of robust numerical schemes (e.g. finite-volume or DG schemes)
that naturally conserve the mass to machine precision.

5.2 Performance

The high-order DG scheme (see Section 3) efficiently solves the
general non-linear fragmentation equation with only N = 20 bins.
High-order polynomial approximations can drastically reduce the
numerical diffusion observed for low-order numerical schemes with
the same bin resolution. While this improvement was modest (one
order of magnitude) for the analytic test case, the accuracy increased
by four orders of magnitude for the power-law test. Moreover, the
improved accuracy is occurring near the peak of the mass density
curve where the majority of the mass of the system resides. In the test
illustrated in Fig. 4, we already achieve an accuracy of approximately
1 percent with order k =2 and N = 20 bins, an accuracy level
comparable to those reported by 3D hydrodynamic codes (Teyssier
2002; Price et al. 2018). Thus, for the first time, we could treat dust
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fragmentation in 3D hydrodynamic simulations together with gas
and dust dynamics. The details of how to couple the algorithm with
a 3D hydrodynamic code will presented in a future work.

5.3 Limitations

5.3.1 DG scheme architecture

The DG method, with the analytical evaluation of the integrals
presented in Section 3, requires the use of quadruple precision to
handle the arithmetic of large numbers for polynomials of high
order. Thus, in its current form, order k =3 is the maximum
limit of the algorithm to obtain a good balance between accuracy
and computational efficiency. This issue mainly comes from the
approximation of g(y,t) over the entire mass range with the
aid of Heaviside functions (see equation 43). To evaluate the
integrals in equations (A1)-(A3) and equations (B1)—(B6), the
difference of Heaviside functions is propagated through the integrals.
Therefore, the algorithm needs to evaluate the subtraction of two
integrals with potentially large values, as illustrated in Fig. 9. This
method of approximation over the entire mass range explains why
the accurate evaluation of the terms in equations (Al)—(A3) and

20z Jequieoaq £ | U0 188nB Aq €0GG 1. L/0L bh/b/EES/PI0IE/SEIuW/WOo0"dNo"dIUSPEoE/:SAJlY WOI) PEPEOJUMOQ



Tmax—2+Lmin

gy, T)H(y — x1-12)dy

Tj—1/2— % Tmin \

4 o4
9(y. 7) (A >
VNN
N
T2 VNENONONONC
! y, 7)ds NN
! f @y T)dy 070766204
i //// INONC
Tj_1/2 = Z + Tmin -2 Ti41)2

Figure 9. Illustration of the method used to analytically evaluate the integral
of g(y, 7) approximated on the entire mass range by g;(y, 7) in equation (43).
The integral over the range [x—1/2 — Z + Xmin, Xmax — Z + Xmin] is evaluated
by summing the integral of g;(y, t) (purple rectangle for a given /) over all
bins / € [1, N]. The integral of g;(y, t) is obtain by the difference of two
integrals (blue and orange area). This difference of integrals is propagated all
along the derivation to obtain terms in equations (A1)—(A3) and (B1)—(B6).
Therefore, high accuracy, such as quadruple precision, is required to correctly
evaluate the terms for the flux and the integral of the flux.

(B1)-(B6) requires quadruple precision, which is computationally
inefficient.

One solution to this problem would be to rewrite the approximation
of g over the entire mass range as

Vy € [xmins xmz\x]s
gy, D=

N k&
SN s @ EONH G — xi12)H (g2 — Y, (75)
=1 i=0

which instead uses the product of two Heaviside functions. In this
way, we avoid the difference of two large numbers. The details of
the derivation to obtain the analytical integrals will be presented
in a future work. However, as mentioned in Section 4.4.2, analytic
evaluation of the integrals for the power-law mass distribution of
fragments will probably still result in Gaussian hypergeometric
functions. We will explore whether there is an efficient way to rewrite
or simplify these solutions using MATHEMATICA.

The DG scheme with the Gauss quadrature (DGGQ) method in
Section 4.4.2 is an interesting alternative to the DG scheme with
analytical integrals. The DGGQ scheme has several advantages: (i)
any collision kernel and mass distribution of fragments can be used,
(ii) only double precision is needed, and (iii) it is relatively easy to
implement. However, in order to reach high accuracy for the power-
law mass distribution test in Section 4.4, we found we needed to
use the Gauss—Kronrod method with at least 31 points. This number
of points is determined experimentally. For instance, with 21 points
and order 3 polynomials, the simulation does not reach the final
time because the time-step under the CFL condition at some point
tends to zero. This behaviour can be explained by the fact that the
evaluation of the integrals is not sufficiently accurate with 21 points.
A good balance has been found by using 31 points. This requires
a significative amount of time to pre-compute the integrals used
in the evaluation of Fi,g . and Fygc in equations (42) and (51) —
particularly for orders k = 2 and k = 3. In practice, to reduce the
pre-computing time, the terms are generated with multithreading
processes by using OPENMP. The required large number of Gauss
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Table 1. Averaged elapsed wall time in seconds for a single time-step for
each order of polynomials k.

Order Analytic test Power-law test
of polynomials time (s) time (s)
k=0 1073 10~
k=1 1072 8 x 1074
k=2 2% 1072 2x 1073
k=3 6 x 1072 8 x 1073

points suggests that the Gauss quadrature is not well adapted to
evaluating integrals with a variable in the limits. It is possible that
other integration methods would better suit this application. For
example, the double exponential formula or Tanh—Sinh quadrature
(Takahasi & Mori 1974; Mori & Sugihara 2001; Muhammad &
Mori 2005) may be a suitable candidate for the DG fragmentation
scheme we present in this paper. Tanh—Sinh quadrature is an efficient
quadrature method to evaluate an integral on a finite interval with
exponential convergence. With this quadrature method, we are
likely to reach better accuracy with less points than the Gauss—
Kronrod quadrature method. This too will be explored in a future
work.

5.3.2 Time execution

Table 1 gives the averaged elapsed wall-clock time for a single time-
step for each order of polynomials k. We observe that the power-law
mass distribution test executes faster than the analytic test since
less terms are required to evaluate Fyy,y . and Fyg o for each time-
step (see Appendix C). A gain of a factor of 10 is reached with the
DGGQ scheme for k = 3. To couple the DG scheme to multifluid 3D
hydrodynamic codes, the DG time solver has to be highly efficient.
A first test to treat the general non-linear fragmentation equation in a
3D simulation of protoplanetary disc will be performed with the code
PHANTOM (Price et al. 2018). A typical gas/dust simulation of disc
uses 10 dust sizes (i.e. N = 10) with 10° SPH particles and 32 CPUs.
In this configuration, one hydrodynamic time-step takes ~ 1 s. By
coupling the DG scheme to PHANTOM, we aim to reach a one-to-
one ratio in running time, meaning that the elapsed time for the DG
scheme has to be ~ 1s. According to the CFL criterion in Section
3.3, the fragmentation process will probably impose a sub-cycling
compared to the hydrodynamic time-step. Therefore, for the value
of dt = 8 x 1073 for k = 3, the running time for one hydrodynamic
time-step would be at least 10° x 8 x 1073 = 8 x 10* s. There are
several strategies that can be explored in order to reach this one-to-
one ratio.

The first strategy is to use the matrix form of the general non-
linear fragmentation equation in order to take advantage of the
vast computational resources that have been developed for matrix
operations. A similar approach was used by Sandu (2006) for the
coagulation equation. The details of the matrix form is given in
Appendix D. Thus, efficient matrix operation algorithms, included in
the library BLAS, can be used to improve the time solver. Moreover,
the matrix form in equation (D1) allows for a simple form of the
Jacobian that can be paired with an implicit time solver (Sandu 2006),
eliminating the need for subcycling altogether. Unfortunately, the
implicit SSPRK order three method cannot be made unconditionally
stable and has to follow a time-step restriction with an SSP coefficient
C < 2 (Gottlieb, Ketcheson & Shu 2009; Ketcheson, Macdonald &
Gottlieb 2009; Gottlieb, Ketcheson & Shu 2011). Therefore, con-
sidering the time it takes to compute the Jacobian, this implicit
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method does not provide a significant improvement over the explicit
method. However, recently, Gottlieb et al. (2022) derived a high-order
unconditionally SSP implicit Runge—Kutta method by considering
restrictions on the second derivative of the variable g in the spatial
operator L for the DG scheme (see the definition of L in Lombart &
Laibe 2021). The linearized backward Euler scheme used in Sandu
(2006) and the implicit SSP two derivatives Runge—Kutta order 3
(Gottlieb et al. 2022) will be applied for the DG scheme and tested in
a future work in order to remove the need for any sub-cycling during
the evolution of a simulation.

The second strategy is to use GPU parallelization to run all 10°
calls to the fragmentation solver for all SPH particles in ~ 1s. A
future work will be concerned with the design of the DG scheme
adapted for GPU programming language (e.g. CUDA and SYCL).
Since the general non-linear fragmentation equation is a non-local
partial differential equation, the main difficulty will be to precisely
manage the memory access on the GPU device in order to obtain
the best performance. The implicit solver will be implemented with
the GPU version of the BLAS library. The GPU version of the DG
scheme will allow the treatment of fragmentation in future exascale
hydrodynamics codes, such as IDEFIX (Lesur et al. 2023b) and
DYABLO (Aubert & Durocher 2021).

5.4 Physical mass distribution of fragments

Laboratory experiments and theoretical studies in astrophysics indi-
cate that fragmentation results in small grains with a power-law mass
distribution, accompanied by one or two additional remnants with
non-power-law distributed masses (Giittler et al. 2010; Windmark
et al. 2012; Blum 2018; Hirashita & Aoyama 2019; Lebreuilly et al.
2022; Hasegawa et al. 2023). To take into account the production of
these outlying remnants, the mass distribution of fragments can be
modified (Hirashita et al. 2021) as

b(x;y,z) = Ax® +8(x — (y+z— mfmg))y (76)

where § is the Dirac delta function, my,e is the total mass of
fragments, and y + z — my,g is the mass of the remnant grain
(assuming there is only one). In general, my,, is defined as a
percentage of y + z, the mass of the two colliding grains. The
normalization constant A is determined by the following local mass
conservation equation:

Xmax

2 + a)my,
XAxYdx = Mg = A = ﬁ- (77)
Xmax — *min

Xmin

By giving the link between Xmin, Xmax, and mig,e, the number of
fragments per collision can be obtained. For instance, if we take the
values from Hirashita & Aoyama (2019),
6 11
Xmin = 10 Xmax, Xmax = 0-02mfraga a = _g
= Nirag ~ 10°. (78)

So under these conditions, each collision produces approximately
one million fragments and one remnant. To obtain two remnants,
like the N-body simulations of collisions in Hasegawa et al. (2023),
we can further modify equation (76) with another Dirac delta
function,

b(x;y,z) = Ax™ +8(x —my) + 8(x — (y + 2 — (M1 + Miag)),(79)
where m is the mass of the first remnant and m; + my,e is the

mass of the second remnant. The application of the DG scheme with
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the mass distributions of fragments equations (76) and (79) will be
investigated in a future work.

5.5 Coagulation and fragmentation

The coagulation/fragmentation equation used in astrophysics is the
combination of the Smoluchowski coagulation equation and the
general non-linear fragmentation equation equation (9) and writes
(Blum 2006; Banasiak et al. 2019; Barik & Giri 2020; Giri &
Laurengot 2021a)

0f(x,7)
or

X

1
5 / (1= Paag(x — v, y. A0)) KGx — 30 9)f(x — 3. 1) £ (v, D)y
0

1 oo o0
+§//]1},+zsz(x;y,Z)Pfrag(y,z,Av)
0 0
xK(y, 2) f(y, ©) f(z, T)dydz

) / K(x, )£, Ty, (80)
0

where Py, is the probability that two particles fragment. The first
term in the right-hand side of equation (80) describes the formation
of particles of mass x due to coagulation. The second term denotes
the formation of particles of mass x due to the fragmentation of two
colliding particles of masses y and z. The third term describes the
loss of particles of mass x due to collisions leading to coagulation or
fragmentation. Some mathematical papers proved the existence and
uniqueness of mass-conserving solutions to equation (80) for a large
class of collision kernels /C but only for fragmentation without mass
transfer (Barik & Giri 2020; Giri & Laurengot 2021a). Moreover,
Feingold et al. (1988) derived a steady-state solution to the coag-
ulation/fragmentation equation with the alternative fragmentation
rate equation in equation (21) using a constant collision kernel,
constant probability of fragmentation and the mass distribution of
fragments in equation (29). In a future work, the DG scheme will
be applied to the conservative form of the coagulation/fragmentation
equation and benchmarked with the analytical steady-state solution
given in Feingold et al. (1988).

5.6 Dust aggregates

The general non-linear fragmentation equation presented in Section
2 is a Smoluchowski-like equation, meaning that it respects the same
assumptions as the Smoluchowski coagulation equation. In partic-
ular, grains are considered to be spheres of the same material and,
consequently, so are the fragments. However, astrophysical grains
are aggregates with a non-spherical shape (Suttner & Yorke 2001;
Blum 2006; Okuzumi, Tanaka & Sakagami 2009; Blum 2018). To
account for this, the evolution of the number density of grains would
depend on two variables describing the properties of a grain, such as
the mass x and the porosity W. The evolution of this number density
f(x, W, 1) is governed by the bivariate coagulation/fragmentation
equation (Kostoglou & Konstandopoulos 2001; Ormel, Spaans &
Tielens 2007)

0f(x,¥,,7)  0f(x, ¥, 1) 0f(x, W, 1)
= +
ot ot ot

coag frag

)

(€29
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00 Winax
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0f(x, Wy, 7)
ot frag
1 00 00 Wmax Wmax
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0 0 Wmin Wmin
xK(y, Wy z, ) f(y, vy, ) f(z, ¥, 1)
X Prrag(y, Wy5 2, ¥, Av)dW,dV¥.dydz
00 Wax
rewn [ Keoway w09, 0avay,
0 Wnin
(83)

where I'(x, W,; y, W,) gives the porosity of the resulting aggregate
from collision of two grains of mass and porosity (x, W,) and (y, ¥y)
(Ormel et al. 2007). The expression of I depends on the collision
algorithm, such as particle—cluster aggregation (PCA) and cluster—
cluster aggregation (CCA). The function b(x, W, |y, ¥,; z, ) gives
the distribution in mass and porosity of the fragments from two
colliding grains. The mass of fragments generally follows a power
law, but the distribution in porosity is poorly understood. Some
recipes have been used to determine the porosity of the fragment,
for instance in Hirashita et al. (2021). It may be possible to derive a
conservative form of equation (81) by following Qamar & Warnecke
(2007) and Das et al. (2023) and then to apply the high-order
DG scheme to efficiently solve this 2D coagulation/fragmentation
equation with a few number of bins in mass and in porosity.

5.7 Accounting for shape, porosity, and chemistry

The general non-linear fragmentation model only considers spher-
ical grains with the same chemical composition. However, recent
observations of protoplanetary discs and diffuse ISM require more
complex grain models (Ysard 2019; Hensley & Draine 2023;
Siebenmorgen 2023; Ysard et al. 2024, and references therein),
since shape and composition strongly affect the optical proper-
ties of the dust. To match the complexity of these observations,
we need dust models that can account for different aggregate
shapes and/or chemical compositions. For the first time, the DG
scheme applied to the conservative form of the coagulation and the
fragmentation equations provide a robust numerical framework to
handle the complexity of grain models with greater dimensionality
(e.g. shape and porosity). For instance, following the evolution
of the mass density distribution of dust aggregates requires the
2D coagulation and fragmentation equations with variables mass
and porosity (Kostoglou & Konstandopoulos 2001; Okuzumi et al.

Dust fragmentation with high-order schemes

4429

2009; Hirashita et al. 2021). In addition, the chemical composition
can be treated by considering that each grain is composed of a
fraction of different chemical species (Pilinis 1990; Jacobson et al.
1994; Sandu 2006). Then, the dust coagulation and fragmentation
equation can be written in term of the mass density distribution for
each species to obtain a system of coagulation and fragmentation
equations which can be solved efficiently by the DG scheme. By
combining chemical composition and aggregate shape, the system
of multidimensional equations can be efficiently solved by the DG
scheme since the mass distribution functions are approximated by
polynomials with a few number of bins in each dimension, reducing
the computational cost. The efficiency will be improved with the
optimizations of the DG scheme mentioned in Section 5. In future
studies, the multidimensional dust evolution model, accounting for
the correct optical properties of grains, will be implemented in 3D
hydrodynamics simulations to match observations, thanks to this
high-order DG scheme.

6 CONCLUSION

The grain—grain collision outcomes leading to the formation of
fragments are important for understanding population levels of
small grains population in different astrophysical environments.
Several physical processes, such as thermal balance and gas—dust
dynamics, are strongly impacted by the evolution of the dust-size
distribution, highlighting the need to accurately treat dust coagulation
and fragmentation in 3D simulations.

We have presented the derivation of the conservative form of the
general non-linear fragmentation equation utilizing a mass flux (see
equations 22 and 25). The physical interpretation of the fragmen-
tation equation is enriched by the formulation of the fragmentation
flux, which contains a coagulation flux resulting from mass-transfer
in sufficiently high-velocity fragmenting collisions that allow some
grains to grow in mass (Blum 2018; Birnstiel 2024; Hasegawa et al.
2023). This conservative form enables the application of robust
numerical schemes, such as the finite volume method or the DG
scheme we presented in this work. The high-order DG scheme
accurately solves the general non-linear fragmentation equation on a
low-resolution mass grid of only ~ 20 bins, thus paving the way to
address poly-disperse dust fragmentation in 3D hydrodynamic codes.
The DG scheme meets all necessary requirements to be coupled to
3D codes: (i) a strictly positive mass density distribution ensured by
the SSPRK third-order time solver combined with a slope limiter,
(i) conservation of the mass at machine precision, (iii) accuracy of
~ 0.1 —1 per cent obtained by high-order discretization in mass
and time space, and (iv) a fast algorithm facilitated by pre-computed
analytic integrals or efficient numerical integration.

Accurately following the evolution of the dust-size distribution in
3D simulations due to fragmentation has long been an objective
in astrophysics (Haworth et al. 2016). The DG scheme, applied
on the conservative form of the fragmentation equation, provides
a numerical framework to treat dust coagulation/fragmentation in
3D simulations and allow for dust models that consider more than
just grain size (e.g. porosity and chemical composition).
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APPENDIX A: TERMS TO EVALUATE THE
FLUX

The terms Tirag 1, Ttrag,2> and Teoqg in equation (44) take the form

.o AN
Tfrag,l(xmax’ Xmin .]1l J,000) =

Xmax —Z+Xmin

j—1
Z// / x'b(x'sy, 2)

Ll Iy Xj—1/2—2+Xmin

¢i(E1(y)ir (61(2))
vz
x [H(y — xi—12) — H(y — Xi3172)] dydzdx’, (A1)

xK(y, z)

.o SN
Tfrag,2(xmax’ Xmins J» Ui, l) =

Xmax —Z+Xmin

j—1
Z/ x'b(x;y, 2)
u=1 Iy I[/ Xmin
K (3. 2) & (&) (Er(2))
yz
x [H(y = xi—12) — H(y — X141,2)] dydzdx’, (A2)

- o
Tcoag(xmax’ Xmin» J» U, Li'i)=

Xmax —Z+Xmin

Kz, )& (zn ZEDD (g’(y )

Iy xj—1/2—2+Xmin

x [H(y = xi-12) — H(y — x4172)] dydz. (A3)

APPENDIX B: TERMS TO EVALUATE THE
INTEGRAL OF THE FLUX

The terms in equation (52) are defined as

AR VAN
ﬁrag,l,A(xme\xv Xmins ]’k 71 7171 al) =

i

Xmin X—Z+Xmin

Xmax —Z+Xmin

x'b(x's y, K(y, 2)0x ¢ (§;(x))
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« §i(& ()i (61 (2))
vz
X [H(y = x1-12) — H(y — x14172)] dydzdx'dx, (BD
7;rag 1, B(xmaxy Xmins .ja k/, l1 i/7 l) =
Xmax —Z+Xmin
/ / / x'b(x"sy, DK, 2)0 (€ (x))
xmm Xj—1/2 X—=Z+Xmin
y Gi(& (V)i (§;(2))
vz
X [H(y = xi-12) = H(y = x1112)] dydzdx'dx, (B2)

ﬁragl,A(-xmax’ Xmin» j: k,, l, l',, l) =
X Xj+1/2 Xmax —Z+Xmin
[ ][] wewioronedee
I/ i X Xmin
vz
x [H(y = xi—12) — H(y — X141/2)] dydzdx'dx, (B3)

fragZB(xmaxsxmm».] k l [ l? i)=

Xmax —Z+Xmin

x'b(x"sy, DK(y, 2)0:i (§;(x))

L@ &) (§r(2))
yz
x [H(y — xi-12) — H(y — X14172)] dydzdx'dx,
(B4)
%oag,A(xmax’ Xmin j’ k/, l/, l, l',, l) =
Xmax —Z+Xmin
[/ Kz, )30 (65 ()
Al X—2+Xmin
(2 ))¢,(€z(y))
X [H(y - lel/z) —H@y - x1+1/2)] dydzdx, (BS)
ﬁoag,B(xmax, Xmin js k/v lv l'/, l) =
X Xmax—Z+Xmin
[/ Kz, 390,065 ()
i Xj—1/2 X—Z+Xmin
w8z ))¢,(€z(y))
x [H(y — xH/z) — H(y — Xx141/2)] dydzdx. (B6)

All the terms in equations (B1) to (B6) are analytically calculated
with MATHEMATICA and translated into FORTRAN/C++-. Then, Firag ¢
is evaluated similarly to the numerical flux in equation (44). Tgug 1,4,
ﬁrag,l,Bs 7;rag,2,A’ 7}rag,2,B’ 7zoag,A and 7::oag,B are Compllted once at the
beginning of the algorithm. Fj,g  is obtained by the sum of six terms
in equation (52). The first term is obtained by computing the product
of the subarray for index (/, k") Ticag, 1,4 Xmaxs Xmin> /> k', 1, 1,0, 0)
with g/, (7)g; (7) and summing over all elements. The same evaluation
is applied to the other terms. The process is repeated for all (j, k') to
obtain Fiyg . on all the mass range for the DG scheme.
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APPENDIX C: DG SCHEME WITH THE
GAUSS-KRONROD QUADRATURE

Here, we describe the implementation of the Gauss—Kronrod quadra-
ture method to evaluate the integrals in the term Fyrg c[g1(xj-1/2, T)
in equation (41) and the term Fiqeo(j, k', ) in equation

(51).

C1 Gauss—Kronrod quadrature for the flux

By using the evaluation of the integral on y in equation (73), the
numerical flux in equation (41) writes

Ffrag C[g](xj—1/27 T) =
-1 N k ) )
ZZ > eimgio)
=1 1i'=0 i=0

2

T GK,frag, l(xmax’ Xmin» js l/s ls i/, l)

1 N k k

- ZZ PRPBEACHC
'=j I=1 i'=0 i=0

/ o
XTGK,frag,2(xmax, Xmins L, l)

j-1 N k k
+ Z Z Z Z g;’ (T)g;(T)TGK,coag(xmam Xmin» j, l/, l, l.,v l)7

r=1 I=1 i'=0 i=0
(ChH

where GK stands for Gauss—Kronrod and the terms write

- N
TGK,frag.l(xmax’ Xmins J» U, Li%i) =

j—1

E ]]‘Xl—l/z <Xmax —Z+Xmin ]]-Xj71/2—1+Xmin <XI+1/2

u=lp I
min(Xmax —2+Xmin-X1+1/2)
x / x'b(x'sy, DK (y, 2)

max(x,'f 1/2 =2 +Xmin,X/—1 /2)

y &i(E ()i (61 (2))
vz

’ AN
TGK frag, Z(Xme\xv Xmin l s la L, l) =

/ / X[—1/2 <Xmax —Z+Xmin

U= 11 Iy

dydzdx’, (C2)

min(Xmax —2+Xmin-X141/2)
x / x'b(x"sy, KAy, 2)

max(Xmin, X1-1/2)

o i€ dirEr(2)
yz

- o
TGK,coag(-xmax’ Xmins J» U 1Li'i)=

dydzdx’, (C3)

/ ]]‘Xl—l/z <Xmax —Z+Xmin ]]‘Xj71/2_~+xmin <XI+1/2
Iy

min(Xmax —2+Xmin-X1+1/2)
X / K(y,2)

max(x,'f 1/2 =2+ Xmin,X/—1 /2)

i (Er(z ))tlh(éz(y)) (4
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The Gauss—Kronrod quadrature is then applied to evaluate the
integrals. The first term writes

- V.
TGKfrag 1(Xmax» Xmin» j,l,l,l i) =

|
JZ LA huhyhs, i
8

=

=1 y=1 a=I p=I

XLy o <rmax— \'1,+xmm]]-\',-_1/2—.’?ff+xmn<xl+l/2
v ay. paB ca ~a,f aa
X, wewgXY b (xu ST xl/) K (xfl‘j,l,v,, Xy

(3 (5D =) o 6 o)

a.p
xf] it

where Q is the number of Gauss—Kronrod points, s and w are the
node and the weight coefficients, respectively, and we define the
terms X7, hy, j 1., and fg”f;,l,,l as

hy
=x+ o S

N1
— Xy + Xmin, X1+1/2)

s
—max (Xj—l/z — Xpp + Xmin> xl—l/z) ,

hrl,j,m,a = min (Xmax

al,

|-
xfl = 2 [mm (xmax - xﬁ + Xmin, xl+l/2)

ht, jv i«
15J50,L, s

+max (xj_l/z — 57+ xmin)} + >

(Co)

The second term 7Gx frag,> Writes

/ o
TGK frag, Z(Xmaxv Xmin [ ’ l! r, l) ==

1
= XQ: huhihiy g a
1 =1 8

M

]l

Xl—l/2<xmax*)?ﬁ+xmin
xw, wawek?b (#7258 22) K (22F ), 22
y Pa@pry u >l 0 o', 1° I

0 (it ) e

a.p
N R

where

p— 1 oo
ht, 11« = min (xmax — Xp + Xmin» xl+1/2) — X[-1/2,

PN

I, .
Xeyra = E [mm (xmax — %) + Xmin, x1+1/2) +x171/2}

hf Il
2,058, s

5 (C8)

The last term TG, coag Writes

. VN
TGK,coag(xmaxv Xmin, J, U, 10, 0) =

ZQ: XQ: hl’hcz,l’,l,rx
a1 =1
x1

X1—1/2<Xmax—X]; +Xmin ]lxjfl/zﬂ?ﬁ +Xmin <X[41/2
K a,p
X Wy Wg c,,,,x,/

& (hl’ (ﬁf}ﬂ,,l - xl)) ®ir(Ser) (C9)

NN} ’
Xejlll

X

. NN _ s
where hc,j,l’,l.a = ht[,j,l"l,ot and xCYN,_, = xfl,j,,,yl.
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C2 Gauss-Kronrod quadrature for the term integral of the flux

By using equation (73), the term Fi,, . in equation (51) writes

-}—frag,c(js k,, )=
1 i N k k&
—32.2.2_2 88
I'=1 I=1 i'=0 i=0
X%K,frag,l(xmam Xmins js k,, l,, l, i/s l)
1 N N & k .
—32.2.2_2 88
I'=j I=1 i’=0 i=0
X%K,frag,Z(xmaxs Xmin js k,, l,a la i/s l)
i N k k
+2.2.0 D s
I'=1 I=1 i'=0 i=0

X%K,coag(xmaxa Xmin j,k,,l,,l,i/, l) (CIO)

where the terms write

AT, AN
%K,frag.l(xmaxyxmina .]ak L) =

i min(x,x,41/2)
/ 2 ]]-x“,l/2<x
l.

J u=1

]]"‘1/71/2@C
max(,vminvxu—l/Z)
min (X=X1’+1/2)
X / ﬂx,,l/z <Xmax —Z+Xmin
max (Xminvxl/_]/z)

X Lz 4 min <X141/2

min(Xmax —2+Xmin X/41/2)
« / x'b(x"sy, DKy, 2)0,¢p (§;(x))

mEIX()C*Z+Xmin--’(I—l/2)

yz

AR YN
7—GK,frag,2(xmax,xminv Js k 3 l 3 l7l 71) =

dydzdx'dx, (C1D

min(x,xwr]/z)

J
E jlxu,l/2<)c / jlx <Xp41p2
1

Ju=l max(Xmin. Xy—1/2)

min (xmax,x// )
]lx/, 1/2 <Xmax —Z+Xmin
s (sox112)
min(xmax —2-+Xmin X/+1/2)
x /‘ ¥'b(x'; ¥, DK, 2)0:e (& (X))

max(xmin SX1—1 /2)

O &GN (6r(2)
vz

dydzdx'dx, (C12)
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VA AN
7E‘1K,coag(xmax’ Xmins J» k 71 ) l? L, l) =
min(x.x,/H/z)

/ 11)51/71/2 <x / 1)6/—1/2 <Xmax—2+%min
I

i
max Xmin,)i]/fl/z)

X ]1x—z+xrmn <X/+1/2
min(Xmax —2-+Xmin . X/+1/2)
x / K3, 230,50 (6 (x)

max(x —z+Xmin.X/—1/2)

, L&y Er(2)
y

dydzdx'dx, (C13)

We then apply the Gauss—Kronrod quadrature method to evaluate the
integrals. The first term writes

s g .
7—GK‘frag,1(xmaxv Xmins ]5k 717171 s l) =

hjhy s hy ahey i ioe
Z Z Z : 16 .

X ]lxuf]/Z <f€'>

s
Xy 12 <8j

XLy 1/2<Xmax —£}; +Xmin ]]‘)?;‘ — 68 Xmin <X/11/2

A A ara, B A PN N
Y Y. o
X W, WXL b (xu S Xe 10 x,/) K (xf]V,,J, x,,)

d’i (h% (-fg:/?f,[ - xl)) ¢i’(sot)
x NN
xflv,,,,xl,

X 6x¢k/($j(x))‘x=)e§ )

(C14)

where we define the terms

X =xr 4+ — 54

— min (£*
hy,, = min (Xj , Xu+1/2) — Xu-1/2,
— in (£*
hy ; = min (Xj, X1/+1/2) —Xr-1/2,

— i sa
hf],j,l’,l.k,a = min (xmax — Xy + Xmin, x1+1/2>

AL N
—max (xj — X + Xmin, xl—l/Z) ,

NN 1 . A
Xerg = 5 [mln (-xmax - -xﬁ + Xmin, xl+l/2)

A

+ max ()?j —

£ 4 Xmins Xi—12) ]

hey e

L

(C15)
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The second term Tk frag,2 Writes

AT .
%Kfragl(xmaxvxmim],k»l717171):

S 224 hihyhy by jvie
ZZZZ e

=1 u=1 y=1 a=1 =1

x1 P PR

Xu—1/2 <x] <x1r+1/2 :H'Xl 1/2 <Xmax*Xl;+Xmm

oy av. 2B sa PN N
X W), W, WXl b (xu SR x,,) K (xfzylg,, Xy

o (2 (%50, %)) drtse)
x AB A
xfzil,,,xl,

x axm/(s,(x»hﬁ;, (C16)

where we define the terms

hy . = min (xmaxv XI'+1/2) — min ()?]A, Xl'—l/z) )

— 1 oo
hfz,j,l’,l,a = min (xmax — Xy + Xmin, xl+1/2)
—max (-xminv x1—1/2) s

PN

. aa
Aerg = E [mm (-xmax — X+ Xmin, xl+1/2)

hey 1o

+ max (Xmim Xz—l/z)] + >

(C17)
The last term TGk coag Writes

.o g o
7—GK,coag(-xmax» Xmins J» KU 000,01 =

EQ:EQ: g hhl/AhCJl’l)»a

=1 a=1 p=1
X]]'x,/ 1/2<x ]1Xl 1/2<Xmax—Xl/+Xmm]1;‘ )?’ “+Xmin <X[+1/2

X W, wawpkC (ﬁi}?’,ﬁ, )?f,‘)
sk,
d)i (h% (-xcyﬁlﬂ - xl)) ¢i’(sa)
X

Al
Aol

X 0, () s (C18)

sl
wherehclmw_hf”;/lwandxc,,l.

APPENDIX D: MATRIX FORM

Originally used by Sandu (2006) for the coagulation equation, the
matrix form of equation (38) writes
d g"(r)-B' - g(v)
A8 _
dr

: : (D1)
gT(f) . BNx(k+1) . g(.[)
where g = [gn]o<m<nx@+1) With the index m =i + j x (k + 1) for
which i € [0, k]l and j € [1, N]. The matrix A and the 3-tensor B
write
A = diag [@mlo<m<nxt1) s
= [b,

m H]O<m<N><(k+l) 0<n<Nx(k+1),0<s<Nx(k+1)’

(D2)

Where Vm e [1,N x (k+ D],i =m/N, j = m(modN), a,, =
O and b;, , gathers all the integrals for the flux and the integral
of %ﬁe Hux terms. The 3-tensorB is a sparse tensor with elements

Y(m,n,s) € [0, N x (k+ DI,
by, =

1 . o
E (]ll’gj%K,frag.l(-xmaXv Xmins J s k,, l,, i, l))

1
+§ (1j51’76K,frz\g.2(xmaxs Xmin» ja k/, l/, l, i,v l))

— (1< T6K cone Kmaxs Xmins o k', 11,0, D)
=D)L vy
X ([Lr<; Tirag.t (maxs Xmin» j + 1,1, 1,07, 0)
L1120 Tirag, 2 maxs Xmins J + L1, 137, 1)
— 1< Teong¥max: Xmmins J + L1 1,0',0))
+ée(—1)
X ([11 <1 Ttrag. 1 Cemaxs Xmins J ', L', 0)
1 <t Trrag. 2(Xmaxs Xmins J» s 1,0, 1)
—1pr<j—1 Teong (Xmaxs Xmins j- 1, 1,1, ))
K =s/N, j=s (modN),
i"=m/N, I'"=m (modN),
i =n/N, l=n(modN). (D3)

The presence of the operator 1 in b;, , implies that the components

of the 3-tensor B are sparse matrices.

This paper has been typeset from a TeX/I&TEX file prepared by the author.
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