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A B S T R A C T 

Dust grains play a significant role in several astrophysical processes, including gas/dust dynamics, chemical reactions, and 

radiative transfer. Replenishment of small-grain populations is mainly go v erned by fragmentation during pair-wise collisions 
between grains. The wide spectrum of fragmentation outcomes, from complete disruption to erosion and/or mass transfer, can be 
modelled by the general non-linear fragmentation equation. Efficiently solving this equation is crucial for an accurate treatment 
of the dust fragmentation in numerical modelling. Ho we ver, similar to dust coagulation, numerical errors in current fragmentation 

algorithms employed in astrophysics are dominated by the numerical o v erdiffusion problem – particularly in three-dimensional 
hydrodynamic simulations where the discrete resolution of the mass-density distribution tends to be highly limited. With this 
in mind, we hav e deriv ed the first conserv ati ve form of the general non-linear fragmentation with a mass flux highlighting the 
mass transfer phenomenon. Then, to address cases of limited mass density resolution, we applied a high-order discontinuous 
Galerkin scheme to efficiently solve the conserv ati ve fragmentation equation with a reduced number of dust bins. An accuracy 

of 0 . 1 –1 per cent is reached with 20 dust bins spanning a mass range of 9 orders of magnitude. 

Key words: methods: numerical – (ISM:) dust, extinction. 
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 I N T RO D U C T I O N  

ust grains play a fundamental role at all scales in astrophysics.
ust surfaces act as an efficient catalyst for the formation of H 2 

Cazaux & Tielens 2004 ), which impacts the star formation rate
n galaxies (Yamasawa et al. 2011 ; Chen et al. 2018 ). Dust grains
bsorb, scatter and reemit stellar light, thereby go v erning the thermal
alance between heating and cooling in star forming regions and
rotoplanetary discs (McKee & Ostriker 2007 ; Andrews 2020 ). Gas
nd dust dynamics are closely linked through drag forces (Testi
t al. 2014 ; Lesur et al. 2023a ). During star formation, large grains
ecouple dynamically from the gas and concentrate in regions of
igh gas density (Lebreuilly et al. 2020 ). In protoplanetary discs, the
ecoupling of large grains from the gas leads to momentum transfer
nd radial drift towards pressure maxima (Weidenschilling 1977 ;
esur et al. 2023a ). When dust becomes sufficiently concentrated in
iscs, it produces a ‘backreaction’ on the gas which is central for the
evelopment of the streaming instability and the eventual formation
f planetesimals (Youdin & Goodman 2005 ; Gonzalez, Laibe &
addison 2017 ; Squire & Hopkins 2020 ; Lesur et al. 2023a , and

eferences therein). Importantly, the efficiency of all these physical
rocesses depends on the grain-size distribution and how it evolves
n time. Thus, accurate dust modelling is a much needed feature of

odern astrophysical simulations. 
 E-mail: maxime.lombart@cea.fr 
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Published by Oxford University Press on behalf of Royal Astronomical Socie
Commons Attribution License ( http:// creativecommons.org/ licenses/ by/ 4.0/ ), whi
Because the grain-size distribution plays such a key role in the
bo v e phenomenon, man y studies hav e been devoted to understand-
ng how poly-disperse distrib utions ev olve in time. Evolutionary
hanges can be dynamical (e.g. advection and diffusion) or collisional
e.g. coagulation and fragmentation) in nature. For purposes of this
tudy, we will focus e xclusiv ely on fragmentation. Fragmentation is
ypically modelled in one of three ways: (i) spontaneous breaking
riven by an external force, such as radiative force (Hoang 2019 ;
irashita & Hoang 2020 ), modelled by the linear fragmentation

quation; (ii) collision between two grains where only one grain
ragments, modelled by the non-linear fragmentation equation (Kos-
oglou & Karabelas 2000 ; Banasiak, Lamb & Lauren c ¸ot 2019 ;
ombart, Hutchison & Lee 2022 ); (iii) collision between two grains
here both grains can fragment, modelled by the general non-linear

ragmentation equation (Safronov 1972 ; Blum 2006 ; Hirashita & Yan
009 ). Note the third model is a generalization of the second one,
hich produces a size distribution of solids that can be generically
arametrized from experiments. Two main outcomes observed in
aboratory experiments are the complete destruction of the two
rains or a partial destruction with mass transfer (G ̈uttler et al.
010 ; Bukhari Syed et al. 2017 ; Blum 2018 ). The phenomenon
f mass transfer is important since, during a fragmentation event,
 grain can increase in mass – even at high impact velocities.
 or e xample, sev eral studies hav e demonstrated that mass transfer
uring fragmentation can o v ercome the so-called bouncing and
ragmentation barriers (Windmark et al. 2012 ; Garaud et al. 2013 ).
nly the general non-linear fragmentation equation can ef fecti vely
odel fragmentation with mass transfer, making it essential for a
© 2024 The Author(s). 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 
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ull treatment of the problem. The general non-linear fragmentation 
quation is formalized within the framework of the Smoluchowski- 
ike equation by a mean-field approach (Safronov 1972 ; Gillespie & 

ist 1978 ; Feingold, Tzivion (Tzitzvashvili) & Leviv 1988 ; Blum
006 ; Hirashita & Yan 2009 ; Jacobson 2011 ; Banasiak et al. 2019 ).
he model considers spherical grains of the same composition. 
ecause the general non-linear fragmentation equation does not 
ave a generic analytical solution, astrophysical problems inevitably 
equire numerical solutions. 

Unfortunately, incorporating accurate numerical solutions to the 
ragmentation (and/or coagulation), together with tracking the dust- 
ize distribution in three-dimensional (3D) multiphysics hydrody- 
amics simulations, is currently out of reach. So far only 3D 

ydrodynamics simulations with a mono-disperse model of dust 
oagulation and fragmentation have been performed for proto- 
lanetary discs (Vericel et al. 2021 ). Meanwhile, poly-disperse 
odels of dust coagulation and fragmentation have been confined 

o one-dimensional (1D) or two-dimensional (2D) hydrodynamic 
imulations (Suttner & Yorke 2001 ; Brauer, Dullemond & Hen- 
ing 2008 ; Dr 

↪ 
a ̇zkowska et al. 2019 ; Kobayashi & Tanaka 2021 ;

ebreuilly et al. 2022 ; Stammler & Birnstiel 2022 ; Tu, Li &
am 2022 ; Robinson, Booth & Owen 2024 ) primarily due to the
ear ubiquitous use of piecewise constant functions to model the 
ust-size distribution. Piecewise constant functions are known to 
uffer from a numerical o v erdiffusion for insufficient mass grid 
esolution (Grabowski 2022 ; Birnstiel 2024 ). This o v erdiffusion 
tems from the difficulty to handle the complexity of the integro- 
ifferential and the non-linear properties of the coagulation and the 
ragmentation equations with only a low-order approximation of 
he continuous dust-size distribution. Moreo v er, these algorithms 
ccount for each pair-wise collision by redistributing the mass o v er
he mass grid to conserve the total mass. The combinatorics treatment 
f the collisions requires the need of a large number of mass bins
o keep high accuracy. Therefore, these algorithms need a high 
esolution of the mass grid (more than 100 mass bins) to accurately
ollo w the e volution of the dust-size distribution. Ho we ver, 3D
ydrodynamic codes, such as RAMSES (Teyssier 2002 ) or PHANTOM 

Price et al. 2018 ), can only handle a few tens of dust mass bins
or a multiphysics gas and dust simulation. Further generation 
f Exascale code will reach further performance, but the energy, 
he carbon impact and the computational costs of the simulation 
hould remain acceptable. Current algorithms for poly-disperse dust 
volution and 3D hydrodynamic codes are simply incompatible. In 
ontrast, numerical schemes using high-order approximations of 
he continuous dust-size distribution are able to efficiently solve 
he coagulation and the fragmentation equations with a reduced 
umber of mass bins. This study contains two main parts: (i)
he deri v ation of the flux of fragmentation in mass space, which
ncompasses all the combinatorics of the pair-wise collisions, in 
rder to obtain the general non-linear fragmentation equation in 
onserv ati ve form and (ii) the application of a high-order solver
ased on the discontinuous Galerkin (DG) method, inspired by the 
ecent works of Liu, Gr ̈opler & Warnecke ( 2019 ) and Lombart et al.
 2022 ). The DG method is shown to efficiently solve the general
on-linear fragmentation equation with a reduced number of mass 
ins while still maintaining high accuracy. 
The paper is structured as follows. Properties of the general non- 

inear fragmentation equation and deri v ation of its conserv ati ve
orm are presented in Section 2 . The DG method applied to the
onserv ati ve form is presented in Section 3 . In Section 4 , we
nalyse the numerical performance of our algorithm on some test 
ases, including how it copes with the numerical diffusion problem. 
ection 5 presents the applicability of the DG method to treat dust
ragmentation in astrophysics. 

 G E N E R A L  N O N - L I N E A R  FRAG MENTATIO N  

he fragmentation process resulting from the collision of two grains 
f arbitrary size is described by the general non-linear fragmentation 
quation, also known as the ‘collision-induced breakup’ or the 
stochastic breakage’ equation in atmospheric science and mathemat- 
cs communities (Safronov 1972 ; Gillespie & List 1978 ; Feingold
t al. 1988 ; Blum 2006 ; Giri & Lauren c ¸ot 2021a ). The general non-
inear fragmentation model is a natural extension of the non-linear 
ragmentation model that describes how a small grain fragments after 
ollision with a large grain (Cheng & Redner 1990 ; Kostoglou &
arabelas 2000 ; Ernst & Pagonabarraga 2007 ; Lombart et al. 2022 ).
his fragmentation model is described by a non-linear partial integro- 
ifferential hyperbolic equation that depends on two functions: (i) the 
ragmentation kernel, and (ii) the distribution function of fragments. 
his general non-linear fragmentation model was initially formalized 

n astrophysics by Safronov ( 1972 ) and in atmospheric science by
ist & Gillespie ( 1976 ) to study the evolution of the drop size
istribution in clouds. Currently in the literature, only one analytical 
olution exists for a constant fragmentation kernel and a specific 
orm of the distribution of fragments (Feingold et al. 1988 ). Several
ecent mathematical works have been dedicated to the study of 
he general non-linear fragmentation equation, including proving 
he existence and uniqueness of mass-conserving solutions for a 
arge class of collision kernels and fragment distribution functions 
Giri & Lauren c ¸ot 2021a , b ). Ho we v er, no e xact solutions exist
or the ballistic collision kernel studied in astrophysics (Safronov 
972 ; Tanaka, Inaba & Nakazawa 1996 ; Dullemond & Dominik
005 ; Kobayashi & Tanaka 2010 ; Stammler & Birnstiel 2022 )
nd in atmospheric science (Hu & Sri v astav a 1995 ; McFarquhar
004 ; Prat & Barros 2007 ; Jacobson 2011 ; Khain & Pinsky 2018 ;
rabowski 2022 ). Therefore, numerical solutions are required for 

he ballistic collision kernel. The detailed expression of the ballistic 
ernel is given in Section 2.3 . In this work, numerical results are
ompared to the exact solution obtained for the constant collision 
ernel and a distribution of fragments taken from Feingold et al.
 1988 , Section 4.3 ) or a multiplicative collision kernel with a power-
aw distribution of fragments (Section 4.4 ). 

.1 Collision outcomes for fragmentation 

n astrophysics, the outcome of two colliding dust grains leading to
he formation of fragments is described by one of three scenarios,
llustrated in Fig. 1 (G ̈uttler et al. 2010 ; Windmark et al. 2012 ; Blum
018 ; Birnstiel 2024 ). First, destructive fragmentation accounts for 
ases where both grains fragment totally or partially. The second 
cenario describes mass transfer events where the resulting fragments 
ome from only one body. This scenario has been observed in
xperiments when a small grain collides with a larger one (Bukhari
yed et al. 2017 ). During the collision, the smaller grain fragments
nd leaves a portion of its mass stuck to the larger (intact) grain,
ausing the mass of the larger grain to increase. The third scenario
s the same as the second, but now with cratering of the larger grain.
 or sufficiently high-v elocities, the small grain both transfers mass

o and excavates mass from the large grain. Since the non-linear
ragmentation equation (Kostoglou & Karabelas 2000 ; Banasiak 
t al. 2019 ; Lombart et al. 2022 ) cannot account for mass transfer
r the fragmentation of both grains, the abo v e scenarios can only be
odelled by the general non-linear fragmentation equation. This is of 
MNRAS 533, 4410–4434 (2024) 
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M

Destructive fragmentation Mass transfer Mass transfer + cratering

Figure 1. Illustration of the collision outcomes leading to the formation of 
fragments. Depending on the differential velocity of the two colliding grains, 
three outcomes are possible: destructive fragmentation, mass transfer, and 
mass transfer with cratering. 
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articular interest to the planetary science community because mass
ransfer may be an avenue to circumvent the fragmentation barrier
Windmark et al. 2012 ; Garaud et al. 2013 ) and provide larger seeds
or planetesimal formation. 

.2 Original rate equation 

e begin by formulating a rate equation for fragmentation that
escribes the gains and losses in number density as a function
f grain mass. An alternative form is given later in Section 2.5
hat has impro v ed mass conservation properties. Hereafter, we will
istinguish between these two formulations using the labels ‘original’
nd ‘alternative’, respectively. 

We consider a volume composed of a large number of uniformly
istributed grains undergoing fragmentation through collisions. The
umber of grains is considered sufficiently large to be treated in
 statistical sense, while the even spatial distribution of the grains
ermits the exclusion of their motion from consideration. Moreover,
olliding grains and fragments are considered to be spherical. 

We denote K( m 

′ , m 

′′ ) to be the fragmentation kernel that encodes
he collision frequency of grains leading to fragmentation with di-

ension [ length ] 3 [ time ] −1 . The function K is symmetric in variables
 and m 

′ . Therefore, the mean number of collisions per unit time and
nit volume between the grains of mass in the ranges [ m 

′ , m 

′ + d m 

′ ]
nd [ m 

′′ , m 

′′ + d m 

′′ ] is given by 

( m 

′ , m 

′′ ) n ( m 

′ , t ) n ( m 

′′ , t )d m 

′ d m 

′′ ( collision rate ) , (1) 

here m 

′ and m 

′′ are the initial masses of the colliding grains and
 ( m 

′ , t) and n ( m 

′′ , t) are the number densities function per unit
ass of grains in mass ranges [ m 

′ , m 

′ + d m 

′ ] and [ m 

′′ , m 

′′ + d m 

′′ ],
espectively. We denote by ˜ b ( m ; m 

′ , m 

′′ ) the distribution of fragments
f mass m produced by the collision of grains of mass m 

′ and
 

′′ . The only physical constraint on the function ˜ b is that the
ass of a fragment cannot exceed the total mass of the colliding

rains; therefore, one has b( m ; m 

′ , m 

′′ ) = 0 if m > m 

′ + m 

′′ . In the
eri v ations that follo w, this condition is represented by the operator
 , defined as 

 m 

′ + m 

′′ ≥m 

= 

{ 

1 if m 

′ + m 

′′ ≥ m, 

0 otherwise . 
(2) 

herefore, the distribution of fragments writes
 m 

′ + m 

′′ ≥m ̃

 b ( m ; m 

′ , m 

′′ ). The term 

˜ b ( m ; m 

′ , m 

′′ )d m is the mean
umber of fragments of mass whose masses reside in the range
 m, m + d m ] produced in a collision of one pair of grains of mass
 

′ and m 

′′ . The dimension of b is [ mass ] −1 . The formation rate of
rains of mass [ m, m + d m ] by fragmentation of larger grains of
NRAS 533, 4410–4434 (2024) 
asses [ m 

′ , m 

′ + d m 

′ ] and [ m 

′′ , m 

′′ + d m 

′′ ] is equal to the product
f the collision rate (equation 1 ) with the mean number of fragments
roduced by the collision, ˜ b ( m ; m 

′ , m 

′′ )d m . The formation rate of
rains within mass range [ m, m + d m ] is obtained by considering
ll collisions, and is expressed as ⎡ 

⎣ 

1 

2 

∞ ∫ 
0 

∞ ∫ 
0 

1 m 

′ + m 

′′ ≥m ̃

 b ( m ; m 

′ , m 

′′ ) K( m 

′ , m 

′′ ) 

× n ( m 

′ , t) n ( m 

′′ , t)d m 

′ d m 

′′ 

⎤ 

⎦ d m ( formation rate ) , (3) 

here the factor 1 / 2 prevents grain pairs from being double counted.
he loss rate of grains of mass [ m, m + d m ] by collision with all
ther grains is given by ⎡ 

⎣ 

∞ ∫ 
0 

K( m, m 

′ ) n ( m, t) n ( m 

′ , t)d m 

′ 

⎤ 

⎦ d m ( loss rate ) . (4) 

herefore, the rate equation for the number density of grains of mass
 m, m + d m ] at time t is obtained by balancing the formation and
oss rates 

∂ ( n ( m, t)d m ) 

∂ t 
= 

⎡ 

⎣ 

1 

2 

∞ ∫ 
0 

∞ ∫ 
0 

1 m 

′ + m 

′′ ≥m ̃

 b ( m ; m 

′ , m 

′′ ) K( m 

′ , m 

′′ ) 

× n ( m 

′ , t) n ( m 

′′ , t)d m 

′ d m 

′′ 

⎤ 

⎦ d m 

−
⎡ 

⎣ 

∞ ∫ 
0 

K( m, m 

′ ) n ( m, t) n ( m 

′ , t)d m 

′ 

⎤ 

⎦ d m. (5) 

y dividing by d m , we obtain the continuous general non-linear frag-
entation equation originally formalized in a mean-field approach

y List & Gillespie ( 1976 ) and Gillespie & List ( 1978 ): 

∂ n ( m, t) 

∂ t 
= 

1 

2 

∞ ∫ 
0 

∞ ∫ 
0 

1 m 

′ + m 

′′ ≥m ̃

 b ( m ; m 

′ , m 

′′ ) K( m 

′ , m 

′′ ) 

×n ( m 

′ , t) n ( m 

′′ , t)d m 

′ d m 

′′ 

−n ( m, t) 

∞ ∫ 
0 

K( m, m 

′ ) n ( m 

′ , t)d m 

′ . (6) 

o obtain a dimensionless general non-linear fragmentation equation,
e first define n 0 ( m ) = n ( m, 0) to be the initial number density per
ass unit. The total mass density M , the total number density of

articles N 0 and the mean mass of the initial distribution m 0 can then
e written as 

 ≡
∞ ∫ 

0 

mn 0 ( m )d m, N 0 ≡
∞ ∫ 

0 

n 0 ( m )d m, m 0 ≡ M 

N 0 
. (7) 

hen, we define the dimensionless variables and functions as follows:⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

x ≡ m 

m 0 
, y ≡ m 

′ 

m 0 
, z ≡ m 

′′ 

m 0 
, 

K( x , y ) = 

K( m, m 

′ ) 
K( m 0 , m 0 ) 

, τ = K( m 0 , m 0 ) N 0 t, 

f ( x, τ ) = 

m 0 

N 

n ( m, t) , b( x; y, z) = m 0 ̃  b ( m ; m 

′ , m 

′′ ) , 

(8) 
0 
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here K( m 0 , m 0 ) is a constant with dimensions of the kernel
 length ] 3 [ time ] −1 . To be consistent with the existing literature in
athematics (Banasiak et al. 2019 ; Giri & Lauren c ¸ot 2021a ), we

se the variables x, τ , and f for the dimensionless mass, time,
nd number density , respectively , to write the general non-linear 
ragmentation equation in the following dimensionless form: 

∂ f ( x, τ ) 

∂ τ
= 

1 

2 

∞ ∫ 
0 

∞ ∫ 
0 

1 y+ z≥x b( x ; y , z) K( y , z) f ( y , τ ) f ( z, τ )d yd z 

−f ( x, τ ) 

∞ ∫ 
0 

K( x, y) f ( y, τ )d y. (9) 

nless otherwise noted, we will use those dimensionless variables 
or the remainder of the paper. 

.3 Fragmentation kernels 

he fragmentation kernel describes the collision rate per unit volume 
f two grain masses. The expression of the kernel is determined by
he mechanism driving the collisions between grains (e.g. turbulence, 
adial drift, vertical settling). The kernel depends on the mass of
he grains, and on the properties of any surrounding gas, such as
emperature, pressure, and the characteristics of the flow field. In 
strophysics, the collision between grains is modelled by the ballistic 
ernel, 

( x , y ) = E coll ( x , y ) P frag ( x , y , �v) σ ( x , y ) �v( x , y ) , (10) 

here σ ( x , y ) is the geometric cross-section, �v is the mean relative
elocity between two grains of mass x and y, while P frag denotes
he probability that the two colliding grains fragment. The collision 
fficiency, E coll , describes the probability of two grains embedded 
n a flow field colliding. For instance, a large grain surrounded by
as in the Stokes regime has a small probability of collision with
 small grain dragged along the gas stream lines. The limiting 
ase for impact between large and small grains is referred to as
he grazing collision trajectory in atmospheric science for droplets 
Pruppacher & Klett 2010 ; Wang 2013 ; Khain & Pinsky 2018 ) or
razing impact in astrophysics (Paszun & Dominik 2009 ; Wada et al.
009 ). The standard definition of the collision efficiency is (Paszun &
ominik 2009 ; Wada et al. 2009 ; Pruppacher & Klett 2010 ) 

 coll ( s x , s y ) = 

p impact ( s x , s y ) 2 

( s x + s y ) 2 
, (11) 

here s x and s y are the radius of the grains of masses x and y.
 impact ( s x , s y ) is the impact parameter and depends on the size of the

wo colliding grains. For a collision event, the impact parameter is
efined as the projected distance between the centers of mass of the
rains in the perpendicular direction to the collision velocity (Wada 
t al. 2009 ). By considering spherical grains, we can directly link
 coll ( s x , s y ) and E coll ( x , y ), as was done by Pinsky, Khain & Shapiro

 2001 ) by solving the equations of motion of small grains around
arge grains. In Paszun & Dominik ( 2009 ) and Wada et al. ( 2009 ),
he impact parameter is e v aluated as a percentage of the maximum
mpact parameter p impact, max = s x + s y . A value of E coll ( x , y ) close
o zero means that the small grain follows the gas stream lines.
his formalism has been adapted to study the collision between 
lanetesimals and small grains (Guillot, Ida & Ormel 2014 ; Visser &
rmel 2016 ). Ho we ver, for purposes of this study, we will consider
nly head-on collisions, E coll ( x , y ) = 1. 
The fragmentation probability P frag is usually defined as 

 frag = 

{ 

1 if �v > �v th , 

0 if �v < �v th , 
(12) 

here �v is the differential velocity between the two colliding grains
nd �v th is the threshold differential velocity for which fragmenta- 
ion occurs. The value of the threshold velocity is determined from
xperiments (G ̈uttler et al. 2010 ; Blum 2018 ) or from theoretical
orks (Jones, Tielens & Hollenbach 1996 ; Ormel et al. 2009 ). In

his study, because we only consider fragmentation, we set P frag = 1.

.4 Distribution of fragments 

he evolution of the number density f ( x, τ ) in equation ( 6 ) depends
n two physical parameters, the collision kernel K and the distri-
ution function of fragments b( x ; y , z) resulting from a collision
etween two grains of mass y and z (Gillespie & List 1978 ; Feingold
t al. 1988 ). The function b is symmetric in the mass variables of the
wo colliding grains 

( x ; y , z) = b( x ; z, y ) . (13) 

ecause we do not consider sublimation, the fragmentation process 
ust satisfy the following two mass conservation constraints. First, 

he mass of a fragment cannot exceed the total mass of the colliding
rains: 

( x ; y , z) = 0 if x > y + z. (14) 

econdly, the total mass of the fragments must be equal to the total
ass of the colliding grains ∫ y+ z 

0 
x b( x ; y , z )d x = y + z . (15) 

ote that these constraints on the distribution of fragments still allows
or the mass transfer phenomenon to occur in equation ( 6 ). The
umber of fragments produced for each collision is defined by 

 frag ( y, z) ≡
∫ y+ z 

0 
b( x; y, z)d x. (16) 

y definition, a fragmentation event produces at least two fragments, 
herefore N frag ≥ 2. The extreme case of N frag = 2 occurs when a
mall grain breaks in two and one piece is absorbed by the larger
rain. 

.5 Alternati v e rate equation 

n atmospheric science, the distribution of fragments from droplets 
ollisions is obtained by experiment (Low & List 1982 ). Ho we ver,
he usual formulation of the distribution of fragment does not strictly
atisfy the local mass conservation constraint in equation ( 15 ) (Brown
986 ; Feingold et al. 1988 ). To o v ercome this problem, an alternative
ate equation has been formalized by List & Gillespie ( 1976 ) and
illespie & List ( 1978 ) where the loss rate of droplets (or, in

strophysics, dust grains) is written with the distribution function 
f fragments. The loss term in equation ( 6 ) is derived by counting
ll the collisions between droplets of mass [ x , x + d x ] and any other
roplet. In Gillespie & List ( 1978 ), the loss rate is defined as the
estruction rate of droplets of mass x by fragmentation. We consider
he fragmentation of a pair of droplets of masses ( x , y ). The total

ass of fragments created by the broken pair is given by 

x+ y ∫ 
0 

z b( z ; x, y)d z. (17) 
MNRAS 533, 4410–4434 (2024) 
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herefore, the mass of fragments created by all the broken pairs of
roplets of masses ( x , y ) per unit time is obtained by multiplying
quation ( 17 ) with the mean number of collisions per unit time
nd per unit volume between the droplets of mass [ x , x + d x ] and
 y , y + d y ] in equation ( 1 ), i.e. 

( x , y ) f ( x , τ ) f ( y , τ )d y d x ×
x+ y ∫ 
0 

z b( z ; x , y )d z. (18) 

y the mass conservation, equation ( 18 ) equals the mass of all the
roken pairs of droplets per unit time. Then, dividing by the mass of
ne pair x + y, we obtain the number of all broken pairs of masses
 x , x + d x ] and [ y , y + d y ] per unit time, i.e. 

1 

x + y 

⎡ 

⎣ K( x , y ) f ( x , τ ) f ( y , τ )d y d x ×
x+ y ∫ 
0 

z b( z ; x , y )d z 

⎤ 

⎦ . (19) 

qui v alently, equation ( 19 ) gives the number of droplets of mass
 x , x + d x ] which break per unit time. We obtain the total rate of
oss of droplets of mass [ x , x + d x ] by integrating over y, ⎡ 

⎣ 

∫ ∞ 

0 
K( x , y ) f ( x , τ ) f ( y , τ ) 

1 

x + y 

x+ y ∫ 
0 

z b( z ; x , y )d zd y 

⎤ 

⎦ d x, (20) 

and the alternative rate equation writes 

∂ f ( x, τ ) 

∂ t 
= 

1 

2 

∞ ∫ 
0 

∞ ∫ 
0 

1 y+ z≥x b( x ; y , z) K( y , z) f ( y , τ ) f ( z, τ )d yd z 

−f ( x, τ ) 

∞ ∫ 
0 

K( x, y) f ( y, τ ) 

x + y 

x+ y ∫ 
0 

z b( z ; x, y)d zd y. (21) 

he mass conservation with the original equation equation ( 9 ) is
nsured by the local mass conservation equation ( 15 ). However, the
lternative rate equation is of particular interest because Feingold
t al. ( 1988 ) pro v ed that the mass is conserved for any choice
f collision kernel K and distribution of fragments b, because the
unction b appears in both term on the right-hand side of equation
 21 ). It means that the total mass is conserved even if locally the mass
s not strictly conserved for each breakup event (Hu & Sri v astav a
995 ). Note that equation ( 9 ) and equation ( 21 ) are two different
odels to describe the general non-linear fragmentation equation.

n the case where the distribution of fragments respects exactly the
ocal mass conservation, we obtain equation ( 9 ) from equation ( 21 ).

.6 Conser v ati v e form 

.6.1 Original equation 

he fragmentation process is mass conserving, meaning no mass
s lost during the process. In order to solve the general non-linear
ragmentation equation by using robust numerical schemes, such as
nite volume methods or DG methods, which conserve the total mass
t machine precision, it is required to derive the conservative form of
quation ( 9 ), as an hyperbolic conservation law. To our knowledge,
here have been no studies that have derived the conserv ati ve form
f the general non-linear fragmentation equation (equation 9 ), which
e do now. Note that the calculations are formal and the rigorous

ustification is beyond the scope of this work. 
NRAS 533, 4410–4434 (2024) 
The aim is to find the expression of a mass flux, F frag , such that 

∂ g( x, τ ) 

∂ τ
+ 

∂ F frag [ g ] ( x, τ ) 

∂ x 
= 0 , (22) 

where g( x, τ ) ≡ xf ( x, τ ) is the mass density of grains per unit
ass. The term F frag [ g] ( x, τ ) describes a combined mass flux at

ime τ crossing mass x resulting from all collisions involving grain
airs with a total mass greater than x and which fragment to produce
rains with mass lower than x. A relation for the mass flux follows
irectly from integrating equation ( 22 ) with respect to x, 

 frag [ g]( x, τ ) = −
x ∫ 

0 

∂ g( x ′ , τ ) 

∂ τ
d x ′ , (23) 

here the constant F frag [ g](0 , τ ) is equal to zero since the process of
rain nucleation from gas phase to small nano-particles is neglected.
Multiplying equation ( 9 ) by x and inte grating o v er x ∈ [0 , ∞ ), the
ass flux is written as 

F frag [ g]( x, τ ) = 

−1 

2 

x ∫ 
0 

∞ ∫ 
0 

∞ ∫ 
0 

1 y + z≥x ′ x 
′ b( x ′ ; y, z) K( y, z) 

g( y, τ ) g( z, τ ) 

y z 
d y d zd x ′ 

+ 

x ∫ 
0 

∞ ∫ 
0 

K( y, z ) g( z , τ ) 
g( y, τ ) 

y 
d yd z. (24) 

A non-zero mass flux across mass x only has physical meaning if
he mass of the colliding grains is greater than x. We can make this
xplicit by introducing the operator 1 y+ z≥x to the right-hand side of
quation ( 24 ), 

F frag [ g]( x, τ ) = 

−1 

2 

x ∫ 
0 

∞ ∫ 
0 

∞ ∫ 
0 

1 y+ z≥x x 
′ b( x ′ ; y, z) K( y, z) 

g( y, τ ) g( z, τ ) 

y z 
d y d zd x ′ 

+ 

x ∫ 
0 

∞ ∫ 
0 

1 y+ z≥x K( y, z ) g( z , τ ) 
g( y, τ ) 

y 
d yd z, (25) 

oting that the operator 1 y+ z≥x imposes 1 y + z≥x ′ = 1, since x ′ ∈
0 , x]. Thus, the conserv ati ve form of equation ( 9 ) is equation ( 22 )
ith the flux given in equation ( 25 ). Inserting this expression for the
ux into equation ( 22 ) and applying the Leibniz integral rule correctly
educes to equation ( 9 ), as we would expect. To our knowledge, this
s the first time that F frag [ g]( x, τ ) has been derived. 

The first term on the right-hand side of equation ( 25 ) describes the
ux of mass density across the mass x by fragmentation of grains
f masses y and z with y + z ≥ x producing fragments of mass
ower than x, as illustrated in Fig. 2 with the term F 1 ( x, τ ). The
econd term describes the flux of mass through x by fragmentation
ith mass transfer of grains of masses y ≤ x and z with y + z ≥ x 

roducing fragments of mass greater than x, as shown in Fig. 2 with
he term F 2 ( x, τ ). The fragmentation flux is a balance between (i) the
e gativ e flux of fragments coming from the break-up of larger grains
nd (ii) the positive flux of smaller grains gaining mass through mass
ransfer. In the second term, the gain of mass, due to the mass transfer
an be interpreted as a form of coagulation. Indeed the flux of mass
n the coagulation process (Tanaka et al. 1996 ; Filbet & Lauren c ¸ot
004 ; Liu et al. 2019 ; Lombart & Laibe 2021 ) is mathematically
imilar to the second term. The conserv ati ve form of the general
on-linear fragmentation equation, with the flux of mass equation
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x

y + z ≥ x xi < x

F1(x, τ)

y + z ≥ x

F2(x, τ)

xi < y

> x

y ≤ x

Figure 2. Illustration of the fragmentation flux in equation ( 25 ). The flux 
is a balance between two terms. The first term describes the production of 
particles with mass x i < x from the collision of two particles with total mass 
y + z ≥ x. This first term is called F 1 . The second term, F 2 , describes the 
formation of particles with mass greater than x due to the mass transfer 
process from the collision of two particles with total mass y + z ≥ x but with 
one particle of mass y ≤ x. The fragmentation flux is a balance between the 
production of small grains and the production of larger grain due to the mass 
transfer phenomenon. 
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 25 ), directly highlights the mass transfer phenomenon presented in 
ection 2.1 . 

.6.2 Alternative equation 

he alternative rate equation in equation ( 21 ) can also be written in
 conserv ati ve form with an associated mass flux ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂ g( x, τ ) 

∂ τ
+ 

∂ F frag , alt [ g ] ( x, τ ) 

∂ x 
= 0 , 

F frag , alt [ g]( x, τ ) = 

− 1 

2 

x ∫ 
0 

∞ ∫ 
0 

∞ ∫ 
0 

x ′ b( x ′ ; y, z) 1 y+ z≥x K( y, z) 

× g ( y, τ ) g ( z, τ ) 

yz 
d y d zd x ′ 

+ 

x ∫ 
0 

∞ ∫ 
0 

z+ y ∫ 
0 

1 z+ y≥x x 
′ b( x ′ ; z, y) K( z, y) 

× g ( z, τ ) g ( y, τ ) 

y ( z + y ) 
d x ′ d yd z. 

(26) 

he method to derive the flux F frag , alt is similar to Section 2.6.1 . The
lternative rate equation in equation ( 21 ) is only used for bench-
arking the DG method (Section 4 ) since an analytical solution is

erived for the constant collision kernel and a specific distribution of
ragments which does not strictly satisfy the local mass conservation 
n equation ( 15 ). 

.7 Analytical solution of equation ( 21 ) 

he only analytical solution to the general non-linear fragmentation 
quation that we could find in the literature comes from Feingold 
t al. ( 1988 ) in the atmospheric community, who derived an exact
olution for equation ( 9 ) assuming a constant kernel, K 0 , and the
ollowing fragment distribution function: 

˜ 
 ( m ; m 

′ , m 

′′ ) = ˜ γ 2 ( m 

′ + m 

′′ ) e − ˜ γm , (27) 

here K 0 is a constant with dimension [ length ] 3 [ time ] −1 and ˜ γ is
 positive parameter characterizing the physics of the fragmenta- 
ion process. This distribution of fragments physically represents 
he case where the number of fragments depends on the mass
f the two colliding droplets m 

′ and m 

′′ and the shape of the
istribution decreases exponentially with m . It means that for 
ne collision a large number of small droplets will be gener-
ted. The decaying exponential term in equation ( 27 ) allows the
istribution of fragment to approximatively respect the physical 
onstraint ∀ m > m 

′ + m 

′′ , ˜ b ( m ; m 

′ m 

′′ ) ≈ 0. Ho we ver, equation ( 27 )
oes not fully satisfy the local mass conservation condition in 
quation ( 15 ) ∫ m 

′ + m 

′′ 

0 
m ̃

 b ( m ; m 

′ , m 

′′ )d m 

= ( m 

′ + m 

′′ ) 

⎡ 

⎢ ⎣ 

1 − e − ˜ γ ( m 

′ + m 

′′ ) (1 + ˜ γ ( m 

′ + m 

′′ )) ︸ ︷︷ ︸ 
ε( ̃ γ ,m 

′ ,m 

′′ ) 

⎤ 

⎥ ⎦ 

< m 

′ + m 

′′ , (28) 

ince here ε( ̃  γ , m 

′ , m 

′′ ) is small but non-zero. Feingold et al. ( 1988 )
ound that ε( ̃  γ , m 

′ , m 

′′ ) is a few orders of magnitude less than unity
henever the number of fragments is greater than 10. This can

asily be shown for a given mass range and number of fragments
y e v aluating the integral in equation ( 16 ), numerically solving for

˜ , and e v aluating ε. This discussion will be important later for a
umerical test that requires a value of ˜ γ (see Section 4.3 ). 
Let us no w sho w the steps for the deri v ation of the analytical

olution. The dimensionless kernel and distribution of fragments 
rite 

 = 1 , b( x ; y , z) = γ 2 ( y + z) e −γ x , (29) 

here γ ≡ m 0 ̃  γ . As the local mass conservation is not exactly
espected, we substitute the distribution of fragments and constant 
ernel into the alternative rate equation equation ( 21 ) 

∂ f ( x, τ ) 

∂ τ
= 

γ 2 

2 

∫ ∞ 

0 

∫ ∞ 

0 
( y + z) e −γ x f ( y, τ ) f ( z, τ )d yd z 

−f ( x, τ ) γ 2 
∫ ∞ 

0 

∫ ∞ 

0 
f ( y, τ ) z e −γ z d z d y, (30) 

here the operator 1 y+ z≥x is contained in the expression of b. Indeed,
he function b, approximatively respects the physical constraint ∀ x >

 + z, b( x ; y , z) ≈ 0. 
By continuing the development, we obtain 

∂ f ( x, τ ) 

∂ τ
= γ 2 e −γ x MN ( τ ) − f ( x, τ ) N ( τ ) , (31) 

here 

 ≡
∫ ∞ 

0 
xf ( x, τ )d x = 1 , N ( τ ) ≡

∫ ∞ 

0 
f ( x , τ )d x , (32) 

re the dimensionless total mass density and total number of particles. 
hen, by integrating equation ( 31 ) over x, we obtain an evolution
quation for N ( τ ) 

d N ( τ ) 

d τ
= γN ( τ ) − N ( τ ) 2 . (33) 

he solution to equation ( 33 ) writes 

 ( τ ) = 

e γ τ

1 + 

e γ τ −1 
γ

, (34) 

here N (0) = 1. We remark that, for a given time, N ( τ ) increases
ith γ , a positive integer that characterizes the production of 
MNRAS 533, 4410–4434 (2024) 
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ragments. Finally, by injecting equation ( 34 ) into equation ( 31 )
nd solving the differential equation, we obtain the exact solution of
quation ( 30 ): 

 ( x, τ ) = 

f ( x, 0) + γ (e γ τ − 1)e −γ x 

1 + 

e γ τ −1 
γ

, (35) 

here f ( x, 0) is the initial number density. Note that the exact
olution only retains a memory of the initial condition for a finite
ime since, as t → ∞ , the solution converges to the distribution of
ragments 

 ( x, τ ) = 

τ→∞ 

γ 2 e −γ x . (36) 

hese characteristics of the exact solution suggest that the solutions
o the general non-linear fragmentation equation depend on the
nitial condition and the evolution is controlled by the distribution of
ragments (Feingold et al. 1988 ). This evolution is also observed for
he multiplicative kernel and a power -law distrib ution of fragments
s shown in Section 4.4 . 

 D G  M E T H O D  

he DG method (Cockburn & Shu 1989 ; Zhang & Shu 2010 ; Liu
t al. 2019 ) is an efficient numerical method to solve the non-linear
ragmentation equation (Lombart et al. 2022 ) and the Smoluchowski
oagulation equation (Lombart & Laibe 2021 ) with a reduced number
f mass bins. This method is therefore well adapted to treat the
oagulation and the fragmentation processes in 3D hydrodynamic
imulations. Our objective is to extend the work from Lombart
t al. ( 2022 ) by applying the DG method to the general non-linear
ragmentation equation in equation ( 9 ). A complete description of
he DG method, in the astrophysical context, is given in Lombart &
aibe ( 2021 ). Here, we outline only the principal steps for the general
on-linear fragmentation equation. 

.1 Summary 

he unbounded mass interval in the fragmentation equation is
educed to a physical mass range [ x min > 0 , x max < ∞ ] and divided
nto N bins. Each bin is defined by I j = [ x j−1 / 2 , x j+ 1 / 2 ] for j ∈
 [1 , N ] ]. The size and the centre position of each bin j are given,
espectively, by h j = x j+ 1 / 2 − x j−1 / 2 and x j = ( x j+ 1 / 2 + x j−1 / 2 ) / 2.
n each bin j , the unknown mass density function g is approximated
y polynomials of order k defined as a linear combination of
egendre polynomials φi with i ∈ [ [0 , k] ], 

 x ∈ I j , g( x, τ ) ≈ g j ( x, τ ) = 

k ∑ 

i= 0 

g i j ( τ ) φi ( ξj ( x)) , (37) 

here the function ξ maps the bin interval I j into the reference
nterval [ −1 , 1] where standard Legendre polynomials are defined.
quation ( 22 ) is multiplied by the Legendre polynomials basis

unction vector φ( ξj ( x)) = [ φ0 ( ξj ( x) , ..., φk ( ξj ( x)] � , then integrated
 v er each bin I j . Therefore, the DG method determines the evolution
f the components g i j by solving the following equation ∫ 
I j 

∂ g j 

∂ τ
φ( ξj ( x))d x −

∫ 
I j 

F frag [ g]( x , τ ) 
∂ φ( ξj ( x )) 

∂ x 
d x ︸ ︷︷ ︸ 

integral of the flux, see Section 3.1.3 

+ F frag [ g]( x j+ 1 / 2 , τ ) φ( ξj ( x j+ 1 / 2 )) 

− F frag [ g]( x j−1 / 2 , τ ) φ( ξj ( x j−1 / 2 )) = 0 , (38) 
NRAS 533, 4410–4434 (2024) 
here the term ‘integral of the flux’ is obtained through integration
y parts. 

.1.1 Description of the flux 

he fragmentation flux, given by equation ( 25 ), is truncated into the
hysically rele v ant mass range [ x min , x max ] by replacing 0 and ∞ by
 min and x max , respectively, 

 frag , nc [ g]( x, τ ) = −1 

2 

x ∫ 
x min 

x max ∫ 
x min 

x max ∫ 
x min 

x ′ b( x ′ ; y, z) 1 y+ z≥x 

×K( y , z) 
g( y , τ ) g( z, τ ) 

y z 
d y d zd x ′ 

+ 

x ∫ 
x min 

x max ∫ 
x min 

1 y+ z≥x K( z , y) g( z , τ ) 
g( y, τ ) 

y 
d yd z, 

(39) 

hich is a first proposition for the expression of the flux on the
hysical mass range, but not satisfactory because the flux is not
onserved if mass flows out through x max due to mass transfer, i.e.
 frag , nc [ g]( x max , τ ) �= 0. For that reason, this flux is denoted F frag , nc 

or ‘non-conserv ati ve’ flux. Note that no mass flows out through x min ,
 frag , c [ g]( x min , τ ) = 0, meaning that no grains of mass lower than
 min are produced. Therefore, it is necessary to modify the flux in
rder to conserve the mass for which F frag , nc [ g]( x, τ ) 

∣∣
x= x min ,x max 

= 0.
he term F frag , c stands for the ‘conserv ati ve’ flux. To prevent the

ormation of particles of mass x ≥ x max due to the phenomenon
f mass transfer, it is sufficient that the total mass of the two
olliding particles is lower than x max + x min . For instance, if y + z =
 max + x min , the possible values are y ≤ x max and z ≤ x max , with
he limiting cases being y = x max and z = x min , or vice versa.

oreo v er, the operator 1 y+ z≥x has to be changed into 1 y + z≥x + x min ,
ince the total mass of the colliding grains is al w ays greater
han twice the minimum grain mass. In summary, the condition
 + x min ≤ y + z ≤ x max + x min must be verified when the range of
rain mass is limited to [ x min , x max ]. By applying these modifications
o equation ( 39 ), we obtain the conserv ati ve truncation of the 
ux 

 frag , c [ g]( x, τ ) = 

−1 

2 

x ∫ 
x min 

x max ∫ 
x min 

x max ∫ 
x min 

x ′ b( x ′ ; y, z) 1 y + z≥x + x min 1 x max + x min ≥y+ z

×K( y , z) 
g( y , τ ) g( z, τ ) 

y z 
d y d zd x ′ 

+ 

x ∫ 
x min 

x max ∫ 
x min 

1 y + z≥x + x min 1 x max + x min ≥y+ z 

×K( z , y) g( z , τ ) 
g( y, τ ) 

y 
d yd z. (40)

or numerical purpose, it is necessary to extend the operators 1
n the limits of integrals. The first term on the right-hand side of
quation ( 40 ) splits into two terms by comparing z to x. Then,
he operators 1 are applied on the variable y for all terms to 
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ive 

 frag , c [ g]( x, τ ) = 

−1 

2 

x ∫ 
x min 

x ∫ 
x min 

x max −z+ x min ∫ 
x−z+ x min 

x ′ b( x ′ ; y, z) K( y, z) 

×g ( y, τ ) g ( z, τ ) 

yz 
d y d zd x ′ 

−1 

2 

x ∫ 
x min 

x max ∫ 
x 

x max −z+ x min ∫ 
x min 

x ′ b( x ′ ; y, z) K( y, z) 

×g ( y, τ ) g ( z, τ ) 

yz 
d y d zd x ′ 

+ 

x ∫ 
x min 

x max −z+ x min ∫ 
x−z+ x min 

K( z , y) g( z , τ ) 
g( y, τ ) 

y 
d yd z. (41) 

e directly observe that, this new expression of the flux ensures
ass conservation of the system evolving in a finite mass range. 

.1.2 Evaluation of the flux 

he general non-linear fragmentation equation (equation 9 ) belongs 
o the family of non-local partial differential equations. The evolution 
f the number density function f depends on the e v aluation of the
roduct of the number density function o v er all the mass range, sim-
lar to the coagulation and non-linear fragmentation equations (Liu 
t al. 2019 ; Lombart & Laibe 2021 ; Lombart et al. 2022 ). In equation
 41 ), the e v aluation of the flux at the interface x j−1 / 2 depends
n the e v aluation of g j in all bins, due to the double integral of
he mass density function g. The approximation of g is a non-
ontinuous function due to the DG method. Ho we ver, the flux F frag , c ,
n equation ( 41 ), is a continuous function of mass across interfaces.
his important characteristic of the flux differs from the usual DG 

olvers applied on local partial differential equations for which 
he flux is discontinuous and must be reconstructed at interfaces 
Cockburn & Shu 1989 ; Zhang & Shu 2010 ; Guillet et al. 2019 ). 

We assume that the distribution of fragments and the collision 
ernel are integrable, which is true for the analytical solution 
n Section 2.7 . The numerical flux, equation ( 41 ), is analytically
nte grated o v er the mass variables by approximating g with g j in bin
 j (equation 37 ). The numerical flux at interface x j−1 / 2 is 

F frag , c [ g]( x j−1 / 2 , τ ) = 

−1 

2 

j−1 ∑ 

u = 1 

j−1 ∑ 

l ′ = 1 

∫ 
I u 

∫ 
I l ′ 

x max −z+ x min ∫ 
x j−1 / 2 −z+ x min 

x ′ b( x ′ ; y, z) K( y, z) 

×g( y, τ ) g l ′ ( z, τ ) 

yz 
d y d zd x ′ 

−1 

2 

j−1 ∑ 

u = 1 

N ∑ 

l ′ = j 

∫ 
I u 

∫ 
I l ′ 

x max −z+ x min ∫ 
x min 

x ′ b( x ′ ; y, z) K( y, z) 

×g( y, τ ) g l ′ ( z, τ ) 

yz 
d y d zd x ′ 

+ 

j−1 ∑ 

l ′ = 1 

∫ 
I l ′ 

x max −z+ x min ∫ 
x j−1 / 2 −z+ x min 

K( z , y) g l ′ ( z , τ ) 
g( y, τ ) 

y 
d yd z. (42) 

o be able to analytically calculate the integrals over y, it is necessary
o approximate the function g( y, τ ) o v er the entire mass range, with
he following approximation: 

∀ y ∈ [ x min , x max ] , 

g ( y, τ ) ≈
N ∑ 

l= 1 

k ∑ 

i= 0 

g i l ( τ ) φi ( ξl ( y))[ H ( y − x l−1 / 2 ) − H ( y − x l+ 1 / 2 )] , (43) 

here H is the Heaviside function. Therefore, equation ( 42 ) writes 

F frag , c [ g]( x j−1 / 2 , τ ) = 

−1 

2 

j−1 ∑ 

l ′ = 1 

N ∑ 

l= 1 

k ∑ 

i ′ = 0 

k ∑ 

i= 0 

g i 
′ 

l ′ ( τ ) g i l ( τ ) 

×T frag , 1 ( x max , x min , j, l ′ , l, i ′ , i) 

−1 

2 

N ∑ 

l ′ = j 

N ∑ 

l= 1 

k ∑ 

i ′ = 0 

k ∑ 

i= 0 

g i 
′ 

l ′ ( τ ) g i l ( τ ) 

×T frag , 2 ( x max , x min , j, l ′ , l, i ′ , i) 

+ 

j−1 ∑ 

l ′ = 1 

N ∑ 

l= 1 

k ∑ 

i ′ = 0 

k ∑ 

i= 0 

g i 
′ 

l ′ ( τ ) g i l ( τ ) T coag ( x max , x min , j, l ′ , l, i ′ , i) , 

(44) 

where the details of T frag , 1 , T frag , 2 , and T coag are given in Ap-
endix A . These terms are calculated analytically with MA THEMA TICA

efore being translated into FORTRAN and C ++ . The algorithm is
ritten in FORTRAN/C ++ and tested against the MA THEMA TICA

ersion for accuracy. T frag , 1 , T frag , 2 , and T coag are pre-computed once
t the beginning of the algorithm, since they only depend on the
hosen mass grid. This significantly impro v es the performance of
he time solver, similar to Lombart & Laibe ( 2021 ) and Lombart
t al. ( 2022 ). In practice, the three terms are stored in arrays with
imensions corresponding to the number of indices they contain. 
hen, the subarrays for index j are multiplied by g i 

′ 
l ′ ( τ ) g i l ( τ ) and

ummed o v er all elements to obtain the three terms in the right-hand
ide of equation ( 44 ). The process is repeated for all j to obtain
 frag , c [ g]( x j−1 / 2 , τ ) for all x j−1 / 2 . 
The e v aluation of the flux assumes that the collision kernel is

 2D continuous function of mass, which is not al w ays the case
or physical problems. For instance, the kernel might depend on 
ime through various physical quantities, such as gas temperature. 
he implementation of the physical collision kernel in Section 2.3 

equires the use of the differential velocities between grains given 
y the 3D hydrodynamic code. The differential velocity term is a 2D
iecewise constant function. One approach to couple the DG scheme 
ith the hydrodynamic solver is to compute the integrals with the

ontinuous cross-section, and then multiply by the 2D array for the
ifferential velocity. This approximation of the physical kernel is 
iven by 

K( x , y ) = πσ ( x , y ) �v( x , y ) ≈ K approx ( x , y ) , 

K approx ( x , y ) ≡

πσ ( x , y ) 
N ∑ 

l ′ = 1 

N ∑ 

l= 1 

�v l ′ ,l 1 x l ′ −1 / 2 <x<x l ′ + 1 / 2 1 x l−1 / 2 <y<x l+ 1 / 2 . (45) 

n lieu of working with data obtained from 3D hydrodynamic 
imulations, we can test the errors from the approximation abo v e
y using the well-kno wn dif ferential velocity relation for Brownian
otion (Dullemond & Dominik 2005 ; Brauer et al. 2008 ), which in
MNRAS 533, 4410–4434 (2024) 
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M

Figure 3. Left: Surface plot of the Brownian kernel using the differential velocity relation in equation ( 46 ) (blue). The orange patched surface is the approximation 
of the Brownian kernel using equation ( 45 ). The red line indicates the location of the cross-sectional slice found in the right panel. Right: Cross-sectional slice 
of the Brownian kernel (blue line), with approximations from equation ( 45 ) (orange line) and a 2D cubic spline interpolation (green dashed line) o v erplotted. 
Vertical grey lines represent the boundaries of the bins. 

d

�

T  

q

e

w
L  

p  

e

 

t  

t  

t  

d  

t  

2

T

I  

p  

p  

T  

t

∀
i  

a  

i  

t  

t  

T  

s  

q  

i
 

h  

s

�

I  

B  

s

3

N  

w  

i

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/533/4/4410/7745503 by guest on 17 D
ecem

ber 2024
imensionless form is written as 

v Br ( x , y ) ≡
√ 

1 

x 
+ 

1 

y 
. (46) 

he Brownian collision kernel is K Br ( x , y ) = σ ( x , y ) �v Br ( x , y ). To
uantify the errors, we define the continuous 2D absolute L 

1 error 

 2D , c ≡
∑ N 

j,i= 1 

∫ 
I j 

∫ 
I i 

∣∣K approx ( x , y ) − K Br ( x , y ) 
∣∣d xd y ∑ N 

j,i= 1 

∫ 
I j 

∫ 
I i 

K Br ( x , y )d x d y 
, (47) 

here the continuous integrals are e v aluated with the Gauss–
egendre quadrature using 16 Gauss points. Fig. 3 shows the
erformance of the kernel approximation in equation ( 45 ). The error
 2D , c generated by this approximation is ∼ 3 per cent . 

While this approximation provides a simple way of coupling to
he differential velocities of hydrodynamic solvers, it is important
o remember that, in practice, the differential velocities will be
ime dependent. Consequently, the physical kernel will also be time
ependent and the pre-computed terms in equations ( A1 )–( A3 ) have
o include the updated array �v i,j , e.g. by multiplication with the
D array �v i,j : 

 frag , 1 ← �v l ′ ,l × T frag , 1 ( x max , x min , j, l ′ , l, i ′ , i) . (48) 

f we want to enhance the accuracy of the 2D approximation to better
reserve the high precision in the DG scheme, we can interpolate the
hysical collision kernel, as illustrated in the right panel of Fig. 3 .
he error of the 2D cubic spline interpolation (green dashed line) of

he discrete kernel array, 

 ( i, j ) ∈ [ [1 , N ] ] 2 , K i,j = πσ ( x i , x j ) �v Br ( x i , x j ) , (49) 

s only ∼ 0 . 005 per cent . The 2D interpolation gives this high
ccuracy only in log–log space where the grid is regular. The
nconvenience of using the interpolation for the coupling is that
he approximation of the kernel has to be integrated to e v aluate the
erms in equations ( A1 )–( A3 ) after each hydrodynamic time-step.
his would significantly reduce the global performance of the DG
NRAS 533, 4410–4434 (2024) 
cheme, which relies heavily on pre-computed integrals or efficient
uadrature methods (see Section 5.3.1 ) to quickly generate the terms
n equations ( A1 )–( A3 ). 

In addition to the differential velocities of grains given by the
ydrodynamic solver, sub-grid models for the differential velocities,
uch as Brownian motion, can be added in the DG scheme like 

v( x i , x j ) = 

√ 

�v hydro ( x i , x j ) 2 + �v subgrid ( x i , x j ) 2 . (50) 

f the sub-grid model is considered independent of time, such as the
rownian motion in equation ( 46 ), the integral terms for the DG

cheme need only to be pre-computed once. 

.1.3 Integral of the flux 

ow that we have a relation for the conserv ati ve flux, F frag , c [ g]( x, τ ),
e define F frag ,c the term with the integral of the conserv ati ve flux,

n equations ( 38 ) and ( 41 ), which takes the form 

F frag , c ( j, k ′ , τ ) ≡

−1 

2 

∫ 
I j 

x ∫ 
x min 

x ∫ 
x min 

x max −z+ x min ∫ 
x−z+ x min 

x ′ b( x ′ ; y, z) K( y, z) ∂ x φk ′ ( ξj ( x)) 

×g ( y, τ ) g ( z, τ ) 

yz 
d y d zd x ′ d x 

−1 

2 

∫ 
I j 

x ∫ 
x min 

x max ∫ 
x 

x max −z+ x min ∫ 
x min 

x ′ b( x ′ ; y, z) K( y, z) ∂ x φk ′ ( ξj ( x)) 

×g ( y, τ ) g ( z, τ ) 

yz 
d y d zd x ′ d x 

+ 

∫ 
I j 

x ∫ 
x min 

x max −z+ x min ∫ 
x−z+ x min 

K( z, y ) ∂ x φk ′ ( ξj ( x )) 

×g ( z, τ ) 
g ( y, τ ) 

y 
d y d zd x , (51) 
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here k ′ ∈ [ [0 , k] ]. For each term in the right-hand side of equa-
ion ( 51 ), the inte grals o v er z are split into two integrals: z ∈
 x min , x j−1 / 2 ] and z ∈ [ x j−1 / 2 , x] for the first term; z ∈ [ x, x j+ 1 / 2 ]
nd z ∈ [ x j+ 1 / 2 , x max ] for the second term; and z ∈ [ x min , x j−1 / 2 ] and
 ∈ [ x j−1 / 2 , x] for the third term. We apply the same method as in
ection 3.1.2 to obtain the numerical integral of the flux 

 frag , c ( j, k ′ , τ ) = 

−1 

2 

j−1 ∑ 

l ′ = 1 

N ∑ 

l= 1 

k ∑ 

i ′ = 0 

k ∑ 

i= 0 

g i 
′ 

l ′ ( τ ) g i l ( τ ) 

×T frag , 1 ,A ( x max , x min , j, k ′ , l ′ , l, i ′ , i) 

−1 

2 

N ∑ 

l= 1 

k ∑ 

i ′ = 0 

k ∑ 

i= 0 

g i 
′ 

j ( τ ) g i l ( τ ) 

×T frag , 1 ,B ( x max , x min , j, k ′ , l, i ′ , i) 

−1 

2 

N ∑ 

l= 1 

k ∑ 

i ′ = 0 

k ∑ 

i= 0 

g i 
′ 

j ( τ ) g i l ( τ ) 

×T frag , 2 ,A ( x max , x min , j, k ′ , l, i ′ , i) 

−1 

2 

N ∑ 

l ′ = j+ 1 

N ∑ 

l= 1 

k ∑ 

i ′ = 0 

k ∑ 

i= 0 

g i 
′ 

l ′ ( τ ) g i l ( τ ) 

×T frag , 2 ,B ( x max , x min , j, k ′ , l ′ , l, i ′ , i) 

+ 

j−1 ∑ 

l ′ = 1 

N ∑ 

l= 1 

k ∑ 

i ′ = 0 

k ∑ 

i= 0 

g i 
′ 

l ′ ( τ ) g i l ( τ ) 

×T coag ,A ( x max , x min , j, k ′ , l ′ , l, i ′ , i) 

+ 

N ∑ 

l= 1 

k ∑ 

i ′ = 0 

k ∑ 

i= 0 

g i 
′ 

j ( τ ) g i l ( τ ) 

×T coag ,B ( x max , x min , j, k ′ , l, i ′ , i) , (52) 

here the definition of the different terms and the method to compute
hem are detailed in Appendix B . Importantly, since the integral terms 
n F frag , c and F frag , c are e v aluated analytically, the accuracy depends
nly on the order of polynomials to approximate g. 

.2 Scaling limiter 

he DG scheme needs the use of a scaling limiter to preserve
he positivity of the numerical solutions (Zhang & Shu 2010 ; Liu
t al. 2019 ; Lombart et al. 2022 ). The scaling limiter is applied
y a reconstruction step based on cell averaging. The reconstructed 
olynomials in each bin writes (Liu et al. 2019 ; Lombart et al. 2022 ) ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

∀ j ∈ [ [1 , N ] ] , p j ( x, τ ) ≡ ψ j ( τ ) 
(
g j ( x, τ ) − g j ( τ ) 

)+ g j ( τ ) 

ψ j ( τ ) ≡ min 

{ 

1 , 

∣∣∣∣∣ g j ( τ ) 

m j ( τ ) − g j ( τ ) 

∣∣∣∣∣
} 

, 
(53) 

here m j ( τ ) ≡ min 
x∈ I j 

g j ( x, τ ) and g j is the average of g j in bin I j 

 j ( τ ) ≡ 1 

h j 

∫ 
I j 

g j ( x, τ )d x = g 0 j ( τ ) . (54) 

ince g j is approximated by orthogonal polynomials, the scaling 
imiter coefficient ψ j is applied to all components of p j except 
he average value which writes p 

0 
j ( τ ) = g 0 j ( τ ). In Lombart & Laibe

 2021 ) and Lombart et al. ( 2022 ), there is a mistake in the application
f the scaling limiter. We present here the correct implementation of
he scaling limiter for the DG scheme by following the description in
uillet et al. ( 2019 ). For the initialization of the DG scheme, the L 

2 
rojection of the initial mass distribution onto the Legendre basis can
esult in ne gativ e values for the numerical mass density. At that step,
he use of the scaling limiter is required; therefore, the following
eplacement is applied on the components of g j 

 j ∈ [ [1 , N ] ] , ∀ i ≥ 1 , g i j ( τ ) ← ψ j g 
i 
j ( τ ) . (55) 

hen, after each evolution of the component of g j , meaning after each
ime-step in the SSPRK method (see Section 3.3 ), the replacement 
n equation ( 55 ) has to be applied to ensure the positivity of the
umerical solution. 

.3 CFL criterion 

he DG scheme is associated with the Strong Stability Preserving 
unge–Kutta third-order method (SSPRK) to ensure that the high- 
rder accuracy is preserved during time (Liu et al. 2019 ; Lombart &
aibe 2021 ; Lombart et al. 2022 ). The SSPRK time solver is stable
nder a suitable Courant–Friedrichs–Lewy (CFL) condition on the 
ime-step. A precise estimation of the CFL condition has been 
nvestigated in several studies on coagulation and fragmentation 
rocesses (Filbet & Lauren c ¸ot 2004 ; Liu et al. 2019 ; Lombart &
aibe 2021 ; Laibe & Lombart 2022 ; Lombart et al. 2022 ), but
one so far dedicated to the e v aluation of the CFL condition for the
eneral non-linear fragmentation (probably due to the high degree of 
omplexity in the flux given in equation 41 ). The method based on the
aplace transform used in Laibe & Lombart ( 2022 ) seems difficult

o be applied to the general non-linear fragmentation. The method to
etermine the CFL criterion developed in Filbet & Lauren c ¸ot ( 2004 );
ombart et al. ( 2022 ) does not provide an analytical expression to
 v aluate the CFL criterion because of the non-linearity of the general
on-linear fragmentation. Therefore, we propose to numerically 
 v aluate the CFL condition. The DG scheme with SSPRK method
or order 0 corresponds to the forward Euler discretization, i.e. 

g 
0 ,n + 1 
j = 

g 
0 ,n 
j + 

�τ

�x j 

[
F frag [ g 

n 
j ]( x j+ 1 / 2 , τ ) − F frag [ g 

n 
j ]( x j−1 / 2 , τ ) 

]
, (56) 

or the n th time-step. The CFL condition is e v aluated to ensure the
ositivity of the bin average at time-step n + 1, i.e. g n + 1 

j = g 
0 ,n + 1 
j ≥

 (Liu et al. 2019 ; Lombart & Laibe 2021 ; Lombart et al. 2022 ). We
btain the condition 

∀ j ∈ [ [1 , N ] ] , 

g 
0 ,n + 1 
j ≥ 0 

⇒ �τCFL ≤
g 

0 ,n 
j �x j ∣∣F frag [ g n j ]( x j+ 1 / 2 , τ ) − F frag [ g n j ]( x j−1 / 2 , τ ) 

∣∣ . 
(57) 

In practice, we define 

τCFL ≡ min 
j 

[ 
g 

0 ,n 
j �x j ∣∣F frag [ g n j ]( x j+ 1 / 2 , τ ) − F frag [ g n j ]( x j−1 / 2 , τ ) 

∣∣
] 

, 

(58) 

nd the time solver is executed with the time-step d τ = C CFL �τCFL ,
here C CFL ∈ [0 , 1] is the CFL coefficient to ensure stability,

ypically C CFL = 0 . 3 for SSPRK order 3 (Gottlieb 2015 ). 

 N U M E R I C A L  RESULTS  

he DG scheme presented in Section 3 is tested against the analytical
olution outlined in Section 2.7 . Tests are performed with a limited
MNRAS 533, 4410–4434 (2024) 
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umber of mass bins, i.e. N = 20, in order to reflect the constraints
rom 3D hydrodynamical simulations. We also performed simula-
ions for a power-law mass distribution of fragments. 

.1 Evaluation of errors 

rror measurements are performed to determine the experimental
rder of convergence (EOC) and the efficiency of the DG algorithm,
imilar to Liu et al. ( 2019 ) and Lombart et al. ( 2022 ). The continuous
 

1 norm used to e v aluate the errors is 

 c ,N ( τ ) ≡
N ∑ 

j= 1 

∫ 
I j 

∣∣g j ( x, τ ) − g exact ( x, τ ) 
∣∣d x, 

≈
N ∑ 

j= 1 

h j 

2 

R ∑ 

α= 1 

ω α

∣∣g j ( x αj , τ ) − g exact ( x 
α
j , τ ) 

∣∣ , (59) 

here the integral is approximated by the Gauss–Legendre quadra-
ure method. The terms g exact and g j are, respectively, the exact and
he numerical solutions. ω α and x αj are the weights and the points in
in I j for the Gauss-Legendre quadrature method. We use R = 16
aussian points. The discrete L 

1 error is e v aluated at the geometric
ean value, which is the mass of the representative grain in each bin.
he L 

1 norm is e v aluated in logarithmic scale with the following
hange of variable: 

| f || 1 ≡
x max ∫ 

x min 

| f ( x) | d x = 

N ∑ 

j= 1 

∫ 
I j 

| f ( x) | d x 

≈
v← log ( x) 

N ∑ 

j= 1 

log ( x j+ 1 / 2 ) ∫ 
log ( x j−1 / 2 ) 

e v | f ( e v ) | d v, (60) 

here f is an arbitrary function. Then, we apply the mid-point rule
o e v aluate the integral to obtain the discrete L 

1 error, 

 d ,N ( τ ) ≡
N ∑ 

j= 1 

log 

(
x j+ 1 / 2 

x j−1 / 2 

)
ˆ x j | g j ( ̂  x j , τ ) − g( ̂  x j , τ ) | , (61) 

here ˆ x j = 

√ 

x j+ 1 / 2 x j−1 / 2 is the geometric mean in bin j . 
The EOC is defined as 

OC ≡
ln 
(

e N ( τ ) 
e 2 N ( τ ) 

)
ln (2) 

, (62) 

here e N is the error for N bins and e 2 N for 2 N bins. The error
an be the continuous or discrete L 

1 error. To a v oid time-stepping
rrors, the errors are calculated after one time-step. The numerical
otal mass density of the system is the first moment of g( x, τ ) and
rites 

 1 ,N ( τ ) ≡
x max ∫ 

x min 

g( x, τ )d x = 

N ∑ 

j= 1 

h j g 
0 
j ( τ ) . (63) 

herefore, the mass conservation is analysed with the absolute error
f the total mass density given by 

 M 1 ,N ( τ ) ≡ | M 1 ,N ( τ ) − M 1 | 
M 1 

, (64) 

here M 1 is the first moment of the exact solution g exact , which is
onstant in time. 
NRAS 533, 4410–4434 (2024) 
.2 Implementation details 

imulations are performed for a mass range x ∈ [ x min , x max ], with
 min = 10 −6 and x max = 10 3 , in order to follow the formation of small
rains from the fragmentation of larger grains. Numerical solutions
f the mass density are shown only for polynomial approximations
f order k ∈ { 0 , 1 , 2 , 3 } . Tests are performed with FORTRAN and the
rrors are calculated with PYTHON . The initial components g i j are
 v aluated by the L 

2 projection of the initial condition g 0 ( x) on
he Legendre polynomials basis in each bin (see equation 17 in
ombart & Laibe 2021 ) { 

g 0 ( x) ≡ xe −x , 

∀ j ∈ [ [1 , N ] ] , g i j (0) = 

2 
h j d i 

∫ 
I j 

g 0 ( x) φi ( ξj ( x))d x. 
(65) 

here d i is the normalization coefficient of the Legendre polynomial
asis defined as 

 i ≡ 2 

2 i + 1 
. (66) 

he integral is e v aluated by a Gauss–Legendre quadrature method
ith five points. To a v oid numerical instabilities, a minimum physical

hreshold is set to 10 −20 . Therefore, during the simulations, any
olynomials g j ( x, τ ) with mean value below the threshold are
hanged into a constant polynomial with value 10 −20 . This step is
pplied after each update of the g i j ( τ ), i.e. for each sub time-step in
he SSPRK solver (section 3.3 and equation 38 in Lombart & Laibe
021 ). We choose the CFL coefficient C CFL = 0 . 3 and the algorithm
s run sequentially on the Apple M1 Max chip. We use the GFORTRAN

13.1.0 compiler. 

.3 Distribution of fragments from Feingold et al. ( 1988 ) 

umerical solutions for the constant kernel with the specific dis-
ribution of fragments, equation ( 29 ), are benchmarked against the
nalytical solution presented in Section 2.7 . Tests are performed
n quadruple precision, in order to maintain stability of the DG
cheme. Simulations are performed from τ = 0 to τ = 3 × 10 −3 

ith 100 constant time-steps �τ = 3 × 10 −5 . The coefficient γ
n equation ( 29 ) is set to 10 4 , meaning that the majority of the
rains produced by fragmentation are of mass 10 −4 . The evolution
f the numerical solutions with N = 20 bins and polynomials of
rder k ∈ { 0 , 1 , 2 , 3 } are shown in Fig. 4 . Initially, the majority of
he mass is represented by large particles of mass x = 1. Then,
he fragmentation process occurs and a large number of fragments
ith mass x = 10 −4 are produced. At τ = 8 . 10 −5 , the number of

ragments with mass x = 10 −4 is so large that the majority of the
otal mass starts to be represented by these fragments. We observe at
hat time a double-humped curve. The number of the large grains of

ass x = 1 continue to decrease. At the final time, the analytical and
umerical solutions converge to the mass distribution of fragments. 

.3.1 Positivity and mass conservation 

ig. 4 shows the numerical results of the mass density (linear scale for
he first fourth rows and log scale for the last row) versus the mass x in
og scale. For all polynomial orders, the numerical solutions remain
ositive thanks to the combination of the CFL-limited SSPRK time
olver (Section 3.3 ) and the scaling limiter (Section 3.2 ). Fig. 5 (a)
hows the absolute error e M 1 ,N from τ = 10 −5 to τ = 3 × 10 −3 . The
ass is conserved for all orders k, as expected from the design of the
G scheme with the conserv ati ve flux. 
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Figure 4. Test for the constant kernel and the distribution of fragments given in equation ( 29 ). The first four rows show the numerical solution (solid lines) for 
N = 20 bins and the listed value of k ∈ { 0 , 1 , 2 , 3 } at time τ = 0 (left column), τ = 9 × 10 −5 (middle column), and τ = 3 × 10 −3 (right column). In these rows, 
the mass density is in linear scale and the mass in logarithmic scale. The exact solution g( x, τ ) is given by the blue dashed line. Vertical grey lines represent the 
boundaries of the bins. The last row shows the same numerical solutions in log–log scale. The accuracy improves with increasing values of k. Order 3 recovers 
the two peaks at τ = 3 × 10 −3 with an accuracy of order ∼ 0 . 1 per cent for masses below the cusp, and ∼ 0 . 01 per cent abo v e. 
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Test for the constant kernel and the distribution of fragments given in equation ( 29 ) with N = 20 bins. Panel (a): Evolution of the absolute error 
e M 1 ,N of the total mass. The mass is conserved for each order k. Panel (b): Evolution of the time-step d τ . The time-step steadily increases with time as more 
fragments are produced until reaching the global time-step value �τ = 3 × 10 −5 . The plateau shows that from τ = 10 −4 , the CFL condition is greater than 
3 × 10 −5 . Panels (c),(d): Time evolution of the L 

1 continuous and discrete errors, showing they remain bounded at large times. The variation of errors observed 
at τ = 10 −3 is explained in Section 4.3.3 . Panels (e),(f): The errors e c,N and e d,N are plotted versus the number of bins per decade. The experimental order of 
convergence is EOC = k + 1 for e c,N and for e d,N , EOC = k + 1 for polynomials of odd orders and EOC = k + 2 for polynomials of even orders. An accuracy 
of order ∼ 0 . 1 per cent is achieved with ∼ 4 bins/decade or ∼ 1 per cent with ∼ 2 bins/decade for k = 3. 
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.3.2 Accuracy 

ig. 4 shows the accuracy of the numerical solutions impro v es
ith the order of the polynomials. The two plots in log–log 

cale at τ = 8 × 10 −5 and τ = 3 × 10 −3 show that the numerical
iffusion is reduced (up to a factor of 10) in the decreasing parts
exponential decays) as the order of polynomials increases. The 
ajor part of the total mass is generally localized in the maximum

f the curve. Ho we ver, at τ = 8 × 10 −5 , the curv e e xhibits two
axima, indicating that a significant proportion of the total mass 

s represented by both small and large grains. Near the peak at
ower mass, numerical solutions with order k = 3 achieve absolute 
rrors of order ∼ 0 . 1 per cent while errors of order ∼ 1 per cent
re obtained with k ∈ { 0 , 1 , 2 } . Near the peak at higher mass,
umerical solutions with order k = 3 achieve absolute errors of order

0 . 01 per cent while errors of order ∼ 1 per cent is obtained with 
 = 0. 

.3.3 Stability of the DG scheme 

igs 5 (c) and (d) show the time evolution of the continuous e c,N 
nd discrete e d,N L 

1 errors. With only N = 20 bins, both errors for
ach order remain bounded o v er the entire time interv al. Ho we ver,
otice an unusual behaviour of the curves around τ ∼ 10 −3 . Looking 
t the error analysis one time-step at a time, the increase in the
rror comes from the fact that the numerical solution near the 
ower peak is approximately polynomial in shape for τ < 10 −3 

ut transitions to an exponential decay for τ > 10 −3 . The sudden
ntroduction of a second exponential section in the solution ap- 
roximated by polynomials leads to a short temporal increase in 
he error that lasts until the initial size distribution is sufficiently 
epleted. 

.3.4 Convergence of the DG scheme 

he EOC is determined independently from the mass range by 
lotting the continuous and discrete L 

1 errors as a function of the
umber of bins per decade N bin / dec . Figs 5 (e) and (f) show the
umerical errors at time τ = 10 −9 for several total bin numbers 
 = 5 , 10 , 20 , 40 , 80. In Fig. 5 (e), the EOC for the continuous L 

1 

rror is of order k + 1. In Fig. 5 (f), the EOC for the discrete L 

1 

rror is of order k + 2 for odd polynomials, and k + 1 for even
olynomials. With e d,N , an accuracy of order ∼ 0 . 1 per cent is
chieved with ∼ 4 bins/decade with k = 3, ∼ 5 bins/decade with 
 = 2, and more than 10 bins/decade for k = 0 , 1. An accuracy
f order ∼ 1 per cent is achieved with ∼ 2 bins/decade with 
 = 3, ∼ 3 bins/decade with k = 2, and ∼ 8 bins/decade with
 ∈ { 0 , 1 } . 

.3.5 Analysis of the CFL condition 

he evolution of the time-step d τ under the CFL condition equation 
 57 ) is shown in Fig. 5 (b). The time-step increases during time until
 stable value ∼ 3 × 10 −5 . The green points around τ ≈ 10 −4 are
maller than the CFL condition to obtain equally spaced global time- 
teps �τ . The plateau observed from τ = 5 × 10 −4 shows that the
FL condition is greater than 3 × 10 −5 ; therefore, the time solver

uns at d τ = �τ . 
.4 P ower-law distrib ution of fragments 

.4.1 Power-law mass distribution 

n astrophysics, the mass distribution of fragments is traditionally 
escribed by a power law: 

 ( m, t)d m ∝ m 

αd m, (67) 

here the determination of α remains an open problem. Several 
heoretical works obtained α = −11 / 6 ≈ −1 . 8 (Dohnanyi 1969 ;

illiams & Wetherill 1994 ; Jones et al. 1996 ; Tanaka et al. 1996 ).
xperimental studies of grain–grain collision found that α takes 
alue from −2 to −1 (Blum & M ̈unch 1993 ; G ̈uttler et al. 2010 ;
eckers & Teiser 2014 ; Bukhari Syed et al. 2017 ). We present a
umerical analysis to constrain the value of α. Let us consider a
ass distribution of fragments defined as 

( x ; y , z) ≡ A ( y , z) x α. (68) 

he normalization coefficient A ( y, z) is obtained by applying local
ass conservation to our physical mass domain 

y+ z ∫ 
 min 

x b( x ; y , z )d x = y + z , (69) 

iving 

 ( y , z) = 

( α + 2)( y + z) 

( y + z) α+ 2 − x α+ 2 
min 

= 

( α + 2)( y + z) 

x α+ 2 
min 

[(
y+ z 

x min 

)α+ 2 
− 1 

] , (70) 

here α ∈ R , ( y + z, x min ) ∈ R 

2 
+ 

and y + z > x min . The mass dis-
ribution of fragments is a positive function if α ∈ ( −∞ , −2) ∪
 −2 , ∞ ). A singularity appears for α = −2 for the normalization
n equation ( 70 ). For that specific case, the coefficient A has to be
alculated from equation ( 68 ). The number of fragments produced
fter each collision is given by equation ( 16 ) with 0 ↔ x min , 

 frag ( y, z) = 

( α + 2)( y + z) 

[(
y+ z 

x min 

)α+ 1 
− 1 

]
( α + 1) x min 

[(
y+ z 

x min 

)α+ 2 
− 1 

] . (71) 

he number of fragments is strictly positive for α ∈ ( −∞ , −2) ∪
 −2 , −1) ∪ ( −1 , ∞ ). Two singularities appear for α = −2 and α =
1. For the value α = −1, equations ( 70 ) −( 71 ) have to be calculated

rom equation ( 68 ). The physical condition on N frag is that at least
wo fragments are produced per collision, N frag ≥ 2. This inequality 
s difficult to solve in the general case with the variables y, z, x min ,
nd α. But we can give an estimation of α for given values of x min and
he ratio ( y + z) /x min , i.e. the ratio of mass between the total mass
f the colliding grains and the mass of the smallest grain considered.
onversely, by choosing α, we can estimate N frag according to the

atio ( y + z) /x min . The left panel in Fig. 6 shows the range α values as
 function of mass ratio for which N frag ≥ 2. The physical condition
 frag ≥ 2 is satisfied o v er a wide range of values for the ratio ( y +

) /x min , when α ∈ ( −∞ , −2) ∪ ( −2 , −1) ∪ ( −1 , 0). The important
esult is that the model can handle the physical value α = −11 / 6 with
he condition that ( y + z) /x min ≥ 3 . 64. A large number of fragments
equire a large mass ratio (see the right panel in Fig. 6 ). 

.4.2 DG scheme with Gauss quadrature 

pplying the method used in Section 3.1.2 to e v aluate the flux
ith the power-law distribution of fragments from equation ( 68 ),
MNRAS 533, 4410–4434 (2024) 
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Figure 6. Left: The range in values for α, respecting the condition N frag ≥ 2, is plotted versus mass ratio ( y + z) /x min . We observe that the values α = −2 and 
α = −1 (dashed black line) correspond to the singularities from equations ( 70 ) and ( 71 ). Shaded regions indicate values of α that respect the condition N frag ≥ 2 
for a given mass ratio. For α = −11 / 6, the condition is respected only if the mass ratio is greater than 3.64. Right: For a given number of fragments N frag ∈ N , 
the mass ratio is calculated with α = −11 / 6. A large number of fragments requires correspondingly high mass ratios (e.g. more than a 1000 for N frag = 100 
when α = −11 / 6). 
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he analytic integrals result in Gaussian hypergeometric functions
 

F 1 ; ho we ver, the correct e v aluation of this special function requires
igh accuracy and is very computationally inefficient. We therefore
pt to e v aluate the integrals numerically with a Gauss quadrature
ethod. Since the limits in the integral on the variable y in equations

 42 ) and ( 51 ) depend on the variable z, the accurate evaluation of the
ntegrals required a large number of Gauss points. For that reason, we
se the Gauss–Kronrod quadrature method. To ensure the stability
f the DG scheme, we require 15 Gauss points is 15 or 31 Gauss–
ronrod points. We present here an approach that differs from Liu

t al. ( 2019 ) to e v aluate the integral on y, for which the limits contain
ariables, i.e. 

x max −z+ x min ∫ 
 j−1 / 2 −z+ x min 

g( y , τ )d y , (72) 

here g is approximated by a piecewise polynomial function. The
ethod used in Liu et al. ( 2019 ) is to find which bins contain

he values x j−1 / 2 − z + x min and x max − z + x min and then split
he integral over the bins to approximate g by the corresponding
olynomials. Our approach is to sum the integral of g l o v er each bin
 with an automatic selection of the bins which intersect the range
 x j−1 / 2 − z + x min , x max − z + x min ]. Equation ( 72 ) is approximated
y 

x max −z+ x min ∫ 
x j−1 / 2 −z+ x min 

g( y, τ )d y 

≈
N ∑ 

l= 1 

1 x l−1 / 2 <x max −z+ x min 1 x j−1 / 2 −z+ x min <x l+ 1 / 2 

×
min ( x max −z+ x min ,x l+ 1 / 2 ) ∫ 

max ( x j−1 / 2 −z+ x min ,x l−1 / 2 ) 

g l ( y , τ )d y . (73) 

he property [ x l−1 / 2 , x l+ 1 / 2 ] ∩ [ x j−1 / 2 − u + x min , x max − u + x min ]
s ensured by the use of the operator 1 . The integral on y is e v aluated
NRAS 533, 4410–4434 (2024) 
ith the Gauss–Kronrod quadrature with the following formula: 

b ∫ 
a 

f ( x)d x ≈ b − a 

2 

Q ∑ 

α= 1 

ω αf 

(
b + a 

2 
+ 

b − a 

2 
s α

)
, (74) 

here Q is the number of Gauss–Kronrod points and ω α and s α
re the weights and node coef ficients, respecti vely, of the Gauss–
ronrod quadrature method. Then, the integral on z is e v aluated
ith the Gauss–Kronrod method to obtain the first double integral

or the flux in equation ( 42 ). The details on the e v aluation of the flux
 frag , c [ g]( x j−1 / 2 , τ ) and the integral of the flux F frag , c ( j, k ′ , τ ) are
iven in Appendix C . 

.4.3 Results 

e present here the benchmark results of the DG scheme with a
ower-law mass distribution of fragments. We test our numerical
lgorithm using a multiplicative kernel with α = −11 / 6 and N = 20.
he numerical solutions for k = 0 , 1 , 2 , 3 are benchmarked with
 reference solution obtained by using N = 160 bins with k = 3.
he simulations are performed from τ = 0 to τ = 1 with 100 time-
teps �τ of length 10 −2 . The simulations are performed in double
recision. Fig. 7 shows the numerical results of the mass density
unction versus the mass in linear-log for the first fourth rows and
og-log scale for the last row. Analyse of the performance, shown
n Fig. 8 , shows similar results to those found in Section 4.3 . High
ccuracy of the numerical solutions is achieved with high order of
olynomials. The experimental order of convergence is not shown
ince it is similar to the test in Fig. 5 . 

 DI SCUSSI ON  

.1 Conser v ati v e form 

e have derived the first conserv ati ve form of the general non-
inear fragmentation equation (equation 9 ) as a hyperbolic law
quation (equation 22 ) with a fragmentation flux in mass space.
he fragmentation flux, equation ( 25 ), includes a ‘coagulation’ flux
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Figure 7. Test for the multiplicative kernel and the power-law distribution of fragments in equation ( 70 ) with power-law index α = −11 / 6. The first four rows 
show the numerical solution (solid lines) for N = 20 bins and the indicated value k ∈ 0 , 1 , 2 , 3 at time τ = 0 (left column), τ = 1 . 8 × 10 −5 (middle column) 
and τ = 1 (right column). The mass density is in linear scale and the mass in logarithmic scale. The reference numerical solution g( x, τ ) is given by the blue 
dashed line. Vertical grey lines represent the boundaries of the bins. The last row shows the same numerical solutions in log–log scale. The accuracy improves 
with increasing values of k. 
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(a) (b)

(c) (d)

Figure 8. Test for the multiplicative kernel and the power-law mass distribution of fragments in equation ( 70 ) with N = 20 bins. The po wer-law coef ficient is 
α = −11 / 6. The results are similar to the constant kernel test in Fig. 5 . The mass is conserved for each order k in panel (a). Panel (b): evolution of the time-step 
dτ . For each order k, the time-step globally increases with time as more fragments are produced. The numerical errors decrease with the order of polynomials 
k in panels (c) and (d). 
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hat results from potential mass transfer events that take place when
ne grain breaks against another. Our new expression for the flux
ombines in a continuous way the gain and loss terms of equation
 9 ). The conserv ati ve form is of particular interest since it allo ws the
se of robust numerical schemes (e.g. finite-volume or DG schemes)
hat naturally conserve the mass to machine precision. 

.2 Performance 

he high-order DG scheme (see Section 3 ) efficiently solves the
eneral non-linear fragmentation equation with only N = 20 bins.
igh-order polynomial approximations can drastically reduce the
umerical diffusion observed for low-order numerical schemes with
he same bin resolution. While this impro v ement was modest (one
rder of magnitude) for the analytic test case, the accuracy increased
y four orders of magnitude for the power-law test. Moreover, the
mpro v ed accurac y is occurring near the peak of the mass density
urve where the majority of the mass of the system resides. In the test
llustrated in Fig. 4 , we already achieve an accuracy of approximately
 per cent with order k = 2 and N = 20 bins, an accuracy level
omparable to those reported by 3D hydrodynamic codes (Teyssier
002 ; Price et al. 2018 ). Thus, for the first time, we could treat dust
NRAS 533, 4410–4434 (2024) 
ragmentation in 3D hydrodynamic simulations together with gas
nd dust dynamics. The details of how to couple the algorithm with
 3D hydrodynamic code will presented in a future work. 

.3 Limitations 

.3.1 DG scheme ar chitectur e 

he DG method, with the analytical e v aluation of the integrals
resented in Section 3 , requires the use of quadruple precision to
andle the arithmetic of large numbers for polynomials of high
rder. Thus, in its current form, order k = 3 is the maximum
imit of the algorithm to obtain a good balance between accuracy
nd computational efficiency. This issue mainly comes from the
pproximation of g( y, τ ) o v er the entire mass range with the
id of Heaviside functions (see equation 43 ). To e v aluate the
ntegrals in equations ( A1 )–( A3 ) and equations ( B1 )–( B6 ), the
ifference of Heaviside functions is propagated through the integrals.
herefore, the algorithm needs to e v aluate the subtraction of two

ntegrals with potentially large values, as illustrated in Fig. 9 . This
ethod of approximation o v er the entire mass range explains why

he accurate e v aluation of the terms in equations ( A1 )–( A3 ) and
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Figure 9. Illustration of the method used to analytically e v aluate the integral 
of g( y, τ ) approximated on the entire mass range by g l ( y, τ ) in equation ( 43 ). 
The inte gral o v er the range [ x j−1 / 2 − z + x min , x max − z + x min ] is e v aluated 
by summing the integral of g l ( y, τ ) (purple rectangle for a given l) over all 
bins l ∈ [ [1 , N ] ]. The integral of g l ( y, τ ) is obtain by the difference of two 
integrals (blue and orange area). This difference of integrals is propagated all 
along the deri v ation to obtain terms in equations ( A1 )–( A3 ) and ( B1 )–( B6 ). 
Therefore, high accuracy, such as quadruple precision, is required to correctly 
e v aluate the terms for the flux and the integral of the flux. 
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Table 1. Averaged elapsed wall time in seconds for a single time-step for 
each order of polynomials k. 

Order Analytic test Power-law test 
of polynomials time (s) time (s) 

k = 0 10 −3 10 −4 

k = 1 10 −2 8 × 10 −4 

k = 2 2 × 10 −2 2 × 10 −3 

k = 3 6 × 10 −2 8 × 10 −3 
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 B1 )–( B6 ) requires quadruple precision, which is computationally 
nefficient. 

One solution to this problem would be to rewrite the approximation 
f g o v er the entire mass range as 

∀ y ∈ [ x min , x max ] , 

g ( y, τ ) ≈
N ∑ 

l= 1 

k ∑ 

i= 0 

g i l ( τ ) φi ( ξl ( y)) H ( y − x l−1 / 2 ) H ( x l+ 1 / 2 − y)] , (75) 

hich instead uses the product of two Heaviside functions. In this
ay, we a v oid the difference of two large numbers. The details of

he deri v ation to obtain the analytical integrals will be presented
n a future work. Ho we ver, as mentioned in Section 4.4.2 , analytic
 v aluation of the integrals for the power-law mass distribution of
ragments will probably still result in Gaussian hypergeometric 
unctions. We will explore whether there is an efficient way to rewrite
r simplify these solutions using MA THEMA TICA . 
The DG scheme with the Gauss quadrature (DGGQ) method in 

ection 4.4.2 is an interesting alternative to the DG scheme with 
nalytical integrals. The DGGQ scheme has se veral adv antages: (i)
ny collision kernel and mass distribution of fragments can be used, 
ii) only double precision is needed, and (iii) it is relatively easy to
mplement. Ho we ver, in order to reach high accuracy for the power-
aw mass distribution test in Section 4.4 , we found we needed to
se the Gauss–Kronrod method with at least 31 points. This number 
f points is determined e xperimentally. F or instance, with 21 points
nd order 3 polynomials, the simulation does not reach the final 
ime because the time-step under the CFL condition at some point 
ends to zero. This behaviour can be explained by the fact that the
 v aluation of the integrals is not sufficiently accurate with 21 points.
 good balance has been found by using 31 points. This requires
 significative amount of time to pre-compute the integrals used 
n the e v aluation of F frag , c and F frag , c in equations ( 42 ) and ( 51 ) –
articularly for orders k = 2 and k = 3. In practice, to reduce the
re-computing time, the terms are generated with multithreading 
rocesses by using OPENMP . The required large number of Gauss
oints suggests that the Gauss quadrature is not well adapted to
 v aluating integrals with a variable in the limits. It is possible that
ther integration methods would better suit this application. For 
xample, the double exponential formula or Tanh–Sinh quadrature 
Takahasi & Mori 1974 ; Mori & Sugihara 2001 ; Muhammad &

ori 2005 ) may be a suitable candidate for the DG fragmentation
cheme we present in this paper. Tanh–Sinh quadrature is an efficient
uadrature method to e v aluate an integral on a finite interval with
 xponential conv ergence. With this quadrature method, we are 
ikely to reach better accuracy with less points than the Gauss–
ronrod quadrature method. This too will be explored in a future
ork. 

.3.2 Time execution 

able 1 gives the averaged elapsed wall-clock time for a single time-
tep for each order of polynomials k. We observe that the power-law
ass distribution test e x ecutes faster than the analytic test since

ess terms are required to e v aluate F frag , c and F frag , c for each time-
tep (see Appendix C ). A gain of a factor of 10 is reached with the
GGQ scheme for k = 3. To couple the DG scheme to multifluid 3D
ydrodynamic codes, the DG time solver has to be highly efficient.
 first test to treat the general non-linear fragmentation equation in a
D simulation of protoplanetary disc will be performed with the code
HANTOM (Price et al. 2018 ). A typical gas/dust simulation of disc
ses 10 dust sizes (i.e. N = 10) with 10 6 SPH particles and 32 CPUs.
n this configuration, one hydrodynamic time-step takes ∼ 1 s. By 
oupling the DG scheme to PHANTOM , we aim to reach a one-to-
ne ratio in running time, meaning that the elapsed time for the DG
cheme has to be ∼ 1 s. According to the CFL criterion in Section
.3 , the fragmentation process will probably impose a sub-cycling 
ompared to the hydrodynamic time-step. Therefore, for the value 
f d τ = 8 × 10 −3 for k = 3, the running time for one hydrodynamic
ime-step would be at least 10 6 × 8 × 10 −3 = 8 × 10 3 s. There are
ev eral strate gies that can be explored in order to reach this one-to-
ne ratio. 
The first strategy is to use the matrix form of the general non-

inear fragmentation equation in order to take advantage of the 
ast computational resources that have been developed for matrix 
perations. A similar approach was used by Sandu ( 2006 ) for the
oagulation equation. The details of the matrix form is given in
ppendix D . Thus, efficient matrix operation algorithms, included in 

he library BLAS , can be used to impro v e the time solv er. Moreo v er,
he matrix form in equation ( D1 ) allows for a simple form of the
acobian that can be paired with an implicit time solver (Sandu 2006 ),
liminating the need for subcycling altogether. Unfortunately, the 
mplicit SSPRK order three method cannot be made unconditionally 
table and has to follow a time-step restriction with an SSP coefficient
 ≤ 2 (Gottlieb, Ketcheson & Shu 2009 ; Ketcheson, Macdonald &
ottlieb 2009 ; Gottlieb, Ketcheson & Shu 2011 ). Therefore, con-

idering the time it takes to compute the Jacobian, this implicit
MNRAS 533, 4410–4434 (2024) 
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ethod does not provide a significant improvement over the explicit
ethod. Ho we ver, recently, Gottlieb et al. ( 2022 ) derived a high-order

nconditionally SSP implicit Runge–Kutta method by considering
estrictions on the second deri v ati ve of the variable g in the spatial
perator L for the DG scheme (see the definition of L in Lombart &
aibe 2021 ). The linearized backward Euler scheme used in Sandu
 2006 ) and the implicit SSP two deri v ati v es Runge–K utta order 3
Gottlieb et al. 2022 ) will be applied for the DG scheme and tested in
 future work in order to remo v e the need for any sub-cycling during
he evolution of a simulation. 

The second strategy is to use GPU parallelization to run all 10 6 

alls to the fragmentation solver for all SPH particles in ∼ 1s. A
uture work will be concerned with the design of the DG scheme
dapted for GPU programming language (e.g. CUDA and SYCL ).
ince the general non-linear fragmentation equation is a non-local
artial differential equation, the main difficulty will be to precisely
anage the memory access on the GPU device in order to obtain

he best performance. The implicit solver will be implemented with
he GPU version of the BLAS library. The GPU version of the DG
cheme will allow the treatment of fragmentation in future exascale
ydrodynamics codes, such as IDEFIX (Lesur et al. 2023b ) and
YABLO (Aubert & Durocher 2021 ). 

.4 Physical mass distribution of fragments 

aboratory experiments and theoretical studies in astrophysics indi-
ate that fragmentation results in small grains with a power-law mass
istribution, accompanied by one or two additional remnants with
on-power -law distrib uted masses (G ̈uttler et al. 2010 ; Windmark
t al. 2012 ; Blum 2018 ; Hirashita & Aoyama 2019 ; Lebreuilly et al.
022 ; Hase ga w a et al. 2023 ). To tak e into account the production of
hese outlying remnants, the mass distribution of fragments can be
odified (Hirashita et al. 2021 ) as 

( x ; y , z) ≡ Ax α + δ( x − ( y + z − m frag )) , (76) 

here δ is the Dirac delta function, m frag is the total mass of
ragments, and y + z − m frag is the mass of the remnant grain
assuming there is only one). In general, m frag is defined as a
ercentage of y + z, the mass of the two colliding grains. The
ormalization constant A is determined by the following local mass
onservation equation: 

x max ∫ 
 min 

x Ax αd x = m frag ⇒ A = 

(2 + α) m frag 

x 2 + α
max − x 2 + α

min 

. (77) 

y giving the link between x min , x max , and m frag , the number of
ragments per collision can be obtained. For instance, if we take the
alues from Hirashita & Aoyama ( 2019 ), 

x min = 10 −6 x max , x max = 0 . 02 m frag , α = −11 

6 
⇒ N frag ≈ 10 6 . (78) 

o under these conditions, each collision produces approximately
ne million fragments and one remnant. To obtain two remnants,
ike the N -body simulations of collisions in Hase ga wa et al. ( 2023 ),
e can further modify equation ( 76 ) with another Dirac delta 

unction, 

( x ; y , z) ≡ Ax α + δ( x − m 1 ) + δ( x − ( y + z − ( m 1 + m frag )) , (79) 

here m 1 is the mass of the first remnant and m 1 + m frag is the
ass of the second remnant. The application of the DG scheme with
NRAS 533, 4410–4434 (2024) 
he mass distributions of fragments equations ( 76 ) and ( 79 ) will be
nvestigated in a future work. 

.5 Coagulation and fragmentation 

he coagulation/fragmentation equation used in astrophysics is the
ombination of the Smoluchowski coagulation equation and the
eneral non-linear fragmentation equation equation ( 9 ) and writes
Blum 2006 ; Banasiak et al. 2019 ; Barik & Giri 2020 ; Giri &
auren c ¸ot 2021a ) 

∂ f ( x, τ ) 

∂ t 
= 

1 

2 

x ∫ 
0 

(
1 − P frag ( x − y , y , �v) 

)
K( x − y , y ) f ( x − y , τ ) f ( y , τ )d y 

+ 

1 

2 

∞ ∫ 
0 

∞ ∫ 
0 

1 y+ z≥x b( x ; y , z) P frag ( y , z, �v) 

×K( y , z) f ( y , τ ) f ( z, τ )d yd z 

−f ( x, τ ) 

∞ ∫ 
0 

K( x, y) f ( y, τ )d y, (80) 

here P frag is the probability that two particles fragment. The first
erm in the right-hand side of equation ( 80 ) describes the formation
f particles of mass x due to coagulation. The second term denotes
he formation of particles of mass x due to the fragmentation of two
olliding particles of masses y and z. The third term describes the
oss of particles of mass x due to collisions leading to coagulation or
ragmentation. Some mathematical papers pro v ed the e xistence and
niqueness of mass-conserving solutions to equation ( 80 ) for a large
lass of collision kernels K but only for fragmentation without mass
ransfer (Barik & Giri 2020 ; Giri & Lauren c ¸ot 2021a ). Moreo v er,
eingold et al. ( 1988 ) derived a steady-state solution to the coag-
lation/fragmentation equation with the alternative fragmentation
ate equation in equation ( 21 ) using a constant collision kernel,
onstant probability of fragmentation and the mass distribution of
ragments in equation ( 29 ). In a future work, the DG scheme will
e applied to the conserv ati ve form of the coagulation/fragmentation
quation and benchmarked with the analytical steady-state solution
iven in Feingold et al. ( 1988 ). 

.6 Dust aggregates 

he general non-linear fragmentation equation presented in Section
 is a Smoluchowski-like equation, meaning that it respects the same
ssumptions as the Smoluchowski coagulation equation. In partic-
lar, grains are considered to be spheres of the same material and,
onsequently, so are the fragments. Ho we ver, astrophysical grains
re aggregates with a non-spherical shape (Suttner & Yorke 2001 ;
lum 2006 ; Okuzumi, Tanaka & Sakagami 2009 ; Blum 2018 ). To
ccount for this, the evolution of the number density of grains would
epend on two variables describing the properties of a grain, such as
he mass x and the porosity �. The evolution of this number density
 ( x, �, τ ) is go v erned by the bi v ariate coagulation/fragmentation
quation (Kostoglou & Konstandopoulos 2001 ; Ormel, Spaans &
ielens 2007 ) 

∂ f ( x, � x , τ ) 

∂ τ
= 

∂ f ( x, � x , τ ) 

∂ τ

∣∣∣∣
coag 

+ 

∂ f ( x, � x , τ ) 

∂ τ

∣∣∣∣
frag 

, 

(81) 
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ith 

∂ f ( x, �, τ ) 

∂ τ

∣∣∣∣
coag 

≡

1 

2 

x ∫ 
0 

� max ∫ 
� min 

� max ∫ 
� min 

(
1 − P frag ( x − y, � x−y ; y, � y ; �v) 

)
×K( x − y, � x−y ; y, � y ) f ( y, � y , τ ) f ( x − y, � x−y , τ ) 

×δ( � x − � ( x − y, � x−y ; y, � y ))d � x−y d � y d y 

−f ( x, � x , τ ) 

∞ ∫ 
0 

� max ∫ 
� min 

K( x, � x ; y, � y ) f ( y, � y , τ )d � y d y, 

(82) 

nd 

∂ f ( x, � x , τ ) 

∂ τ

∣∣∣∣
frag 

≡

1 

2 

∞ ∫ 
0 

∞ ∫ 
0 

� max ∫ 
� min 

� max ∫ 
� min 

1 y+ z≥x b( x , � x | y , � y ; z, ψ z ) 

×K( y, � y ; z, � z ) f ( y, � y , τ ) f ( z, � z , τ ) 

×P frag ( y, � y ; z, � z , �v)d � y d � z d yd z 

−f ( x, � x , τ ) 

∞ ∫ 
0 

� max ∫ 
� min 

K( x, � x ; y, � y ) f ( y, � y , τ )d � y d y, 

(83) 

here �( x, � x ; y, � y ) gives the porosity of the resulting aggregate
rom collision of two grains of mass and porosity ( x, � x ) and ( y, � y )
Ormel et al. 2007 ). The expression of � depends on the collision
lgorithm, such as particle–cluster aggregation (PCA) and cluster–
luster aggregation (CCA). The function b( x , � x | y , � y ; z, ψ z ) gives
he distribution in mass and porosity of the fragments from two 
olliding grains. The mass of fragments generally follows a power 
aw, but the distribution in porosity is poorly understood. Some 
ecipes have been used to determine the porosity of the fragment, 
or instance in Hirashita et al. ( 2021 ). It may be possible to derive a
onserv ati ve form of equation ( 81 ) by following Qamar & Warnecke
 2007 ) and Das et al. ( 2023 ) and then to apply the high-order
G scheme to efficiently solve this 2D coagulation/fragmentation 

quation with a few number of bins in mass and in porosity. 

.7 Accounting for shape, porosity, and chemistry 

he general non-linear fragmentation model only considers spher- 
cal grains with the same chemical composition. Ho we ver, recent 
bservations of protoplanetary discs and diffuse ISM require more 
omplex grain models (Ysard 2019 ; Hensley & Draine 2023 ; 
iebenmorgen 2023 ; Ysard et al. 2024 , and references therein), 
ince shape and composition strongly affect the optical proper- 
ies of the dust. To match the complexity of these observations, 
e need dust models that can account for different aggregate 

hapes and/or chemical compositions. For the first time, the DG 

cheme applied to the conserv ati ve form of the coagulation and the
ragmentation equations provide a robust numerical framework to 
andle the complexity of grain models with greater dimensionality 
e.g. shape and porosity). For instance, follo wing the e volution 
f the mass density distribution of dust aggregates requires the 
D coagulation and fragmentation equations with variables mass 
nd porosity (Kostoglou & Konstandopoulos 2001 ; Okuzumi et al. 
009 ; Hirashita et al. 2021 ). In addition, the chemical composition
an be treated by considering that each grain is composed of a
raction of different chemical species (Pilinis 1990 ; Jacobson et al.
994 ; Sandu 2006 ). Then, the dust coagulation and fragmentation
quation can be written in term of the mass density distribution for
ach species to obtain a system of coagulation and fragmentation 
quations which can be solved efficiently by the DG scheme. By
ombining chemical composition and aggregate shape, the system 

f multidimensional equations can be efficiently solved by the DG 

cheme since the mass distribution functions are approximated by 
olynomials with a few number of bins in each dimension, reducing
he computational cost. The efficienc y will be impro v ed with the
ptimizations of the DG scheme mentioned in Section 5 . In future
tudies, the multidimensional dust evolution model, accounting for 
he correct optical properties of grains, will be implemented in 3D
ydrodynamics simulations to match observations, thanks to this 
igh-order DG scheme. 

 C O N C L U S I O N  

he grain–grain collision outcomes leading to the formation of 
ragments are important for understanding population levels of 
mall grains population in different astrophysical environments. 
everal physical processes, such as thermal balance and gas–dust 
ynamics, are strongly impacted by the evolution of the dust-size 
istribution, highlighting the need to accurately treat dust coagulation 
nd fragmentation in 3D simulations. 

We have presented the deri v ation of the conserv ati ve form of the
eneral non-linear fragmentation equation utilizing a mass flux (see 
quations 22 and 25 ). The physical interpretation of the fragmen-
ation equation is enriched by the formulation of the fragmentation 
ux, which contains a coagulation flux resulting from mass-transfer 

n sufficiently high-velocity fragmenting collisions that allow some 
rains to grow in mass (Blum 2018 ; Birnstiel 2024 ; Hase ga wa et al.
023 ). This conserv ati ve form enables the application of robust
umerical schemes, such as the finite volume method or the DG
cheme we presented in this work. The high-order DG scheme 
ccurately solves the general non-linear fragmentation equation on a 
ow-resolution mass grid of only ∼ 20 bins, thus paving the way to
ddress poly-disperse dust fragmentation in 3D hydrodynamic codes. 
he DG scheme meets all necessary requirements to be coupled to
D codes: (i) a strictly positive mass density distribution ensured by
he SSPRK third-order time solver combined with a slope limiter, 
ii) conservation of the mass at machine precision, (iii) accuracy of

0 . 1 − 1 per cent obtained by high-order discretization in mass 
nd time space, and (iv) a fast algorithm facilitated by pre-computed
nalytic integrals or efficient numerical integration. 

Accurately following the evolution of the dust-size distribution in 
D simulations due to fragmentation has long been an objective 
n astrophysics (Haworth et al. 2016 ). The DG scheme, applied
n the conserv ati ve form of the fragmentation equation, provides
 numerical framework to treat dust coagulation/fragmentation in 
D simulations and allow for dust models that consider more than
ust grain size (e.g. porosity and chemical composition). 
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PPEN D IX  A :  TERMS  TO  EVALUATE  T H E  

LUX  

he terms T frag , 1 , T frag , 2 , and T coag in equation ( 44 ) take the form 

T frag , 1 ( x max , x min , j, l ′ , l, i ′ , i) ≡
j−1 ∑ 

u = 1 

∫ 
I u 

∫ 
I l ′ 

x max −z+ x min ∫ 
x j−1 / 2 −z+ x min 

x ′ b( x ′ ; y, z) 

×K( y , z) 
φi ( ξl ( y )) φi ′ ( ξl ′ ( z)) 

y z 

× [H ( y − x l−1 / 2 ) − H ( y − x l+ 1 / 2 ) 
]

d y d zd x ′ , (A1) 

T frag , 2 ( x max , x min , j, l ′ , l, i ′ , i) ≡
j−1 ∑ 

u = 1 

∫ 
I u 

∫ 
I l ′ 

x max −z+ x min ∫ 
x min 

x ′ b( x ′ ; y, z) 

×K( y , z) 
φi ( ξl ( y )) φi ′ ( ξl ′ ( z)) 

y z 

× [H ( y − x l−1 / 2 ) − H ( y − x l+ 1 / 2 ) 
]

d y d zd x ′ , (A2) 

T coag ( x max , x min , j, l ′ , l, i ′ , i) ≡∫ 
I l ′ 

x max −z+ x min ∫ 
x j−1 / 2 −z+ x min 

K( z , y) φi ′ ( ξl ′ ( z )) 
φi ( ξl ( y)) 

y 

× [H ( y − x l−1 / 2 ) − H ( y − x l+ 1 / 2 ) 
]

d yd z. (A3) 

PPEN D IX  B:  TERMS  TO  EVALUATE  T H E  

N T E G R A L  O F  T H E  FLUX  

he terms in equation ( 52 ) are defined as 

T frag , 1 ,A ( x max , x min , j, k ′ , l ′ , l, i ′ , i) ≡∫ 
I j 

x ∫ 
x min 

∫ 
I l ′ 

x max −z+ x min ∫ 
x−z+ x min 

x ′ b( x ′ ; y, z) K( y, z) ∂ x φk ′ ( ξj ( x)) 
×φi ( ξl ( y)) φi ′ ( ξl ′ ( z)) 

yz 

× [H ( y − x l−1 / 2 ) − H ( y − x l+ 1 / 2 ) 
]

d y d zd x ′ d x , (B1) 

T frag , 1 ,B ( x max , x min , j, k ′ , l, i ′ , i) ≡∫ 
I j 

x ∫ 
x min 

x ∫ 
x j−1 / 2 

x max −z+ x min ∫ 
x−z+ x min 

x ′ b( x ′ ; y, z) K( y, z) ∂ x φk ′ ( ξj ( x)) 

×φi ( ξl ( y)) φi ′ ( ξj ( z)) 

yz 

× [H ( y − x l−1 / 2 ) − H ( y − x l+ 1 / 2 ) 
]

d y d zd x ′ d x , (B2) 

T frag , 2 ,A ( x max , x min , j, k ′ , l, i ′ , i) ≡∫ 
I j 

x ∫ 
x min 

x j+ 1 / 2 ∫ 
x 

x max −z+ x min ∫ 
x min 

x ′ b( x ′ ; y, z) K( y, z) ∂ x φk ′ ( ξj ( x)) 

×φi ( ξl ( y)) φi ′ ( ξj ( z)) 

yz 

× [H ( y − x l−1 / 2 ) − H ( y − x l+ 1 / 2 ) 
]

d y d zd x ′ d x , (B3) 

T frag , 2 ,B ( x max , x min , j, k ′ , l ′ , l, i ′ , i) ≡∫ 
I j 

x ∫ 
x min 

∫ 
I l ′ 

x max −z+ x min ∫ 
x min 

x ′ b( x ′ ; y, z) K( y, z) ∂ x φk ′ ( ξj ( x)) 

×φi ( ξl ( y)) φi ′ ( ξl ′ ( z)) 

yz 

× [H ( y − x l−1 / 2 ) − H ( y − x l+ 1 / 2 ) 
]

d y d zd x ′ d x , 

(B4) 

T coag ,A ( x max , x min , j, k ′ , l ′ , l, i ′ , i) ≡∫ 
I j 

∫ 
I l ′ 

x max −z+ x min ∫ 
x−z+ x min 

K( z, y ) ∂ x φk ′ ( ξj ( x )) 

×φi ′ ( ξl ′ ( z)) 
φi ( ξl ( y)) 

y 

× [H ( y − x l−1 / 2 ) − H ( y − x l+ 1 / 2 ) 
]

d y d zd x , (B5) 

T coag ,B ( x max , x min , j, k ′ , l, i ′ , i) ≡∫ 
I j 

x ∫ 
x j−1 / 2 

x max −z+ x min ∫ 
x−z+ x min 

K( z, y ) ∂ x φk ′ ( ξj ( x )) 

×φi ′ ( ξj ( z)) 
φi ( ξl ( y)) 

y 

× [H ( y − x l−1 / 2 ) − H ( y − x l+ 1 / 2 ) 
]

d y d zd x . (B6) 

All the terms in equations ( B1 ) to ( B6 ) are analytically calculated
ith MA THEMA TICA and translated into FORTRAN/C ++ . Then, F frag , c 

s e v aluated similarly to the numerical flux in equation ( 44 ). T frag , 1 ,A ,
 frag , 1 ,B , T frag , 2 ,A , T frag , 2 ,B , T coag ,A and T coag ,B are computed once at the
eginning of the algorithm. F frag , c is obtained by the sum of six terms
n equation ( 52 ). The first term is obtained by computing the product
f the subarray for index ( j, k ′ ) T frag , 1 ,A ( x max , x min , j, k ′ , l ′ , l, i ′ , i)
ith g i 

′ 
l ′ ( τ ) g i l ( τ ) and summing o v er all elements. The same e v aluation

s applied to the other terms. The process is repeated for all ( j, k ′ ) to
btain F frag , c on all the mass range for the DG scheme. 
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PPENDIX  C :  D G  SCHEME  WITH  T H E  

AU S S – K R  O N R  O D  QUA D R AT U R E  

ere, we describe the implementation of the Gauss–Kronrod quadra-
ure method to e v aluate the integrals in the term F frag , c [ g]( x j−1 / 2 , τ )
n equation ( 41 ) and the term F frag , c ( j, k ′ , τ ) in equation
 51 ). 

1 Gauss–Kr onr od quadratur e for the flux 

y using the e v aluation of the integral on y in equation ( 73 ), the
umerical flux in equation ( 41 ) writes 

F frag , c [ g]( x j−1 / 2 , τ ) = 

−1 

2 

j−1 ∑ 

l ′ = 1 

N ∑ 

l= 1 

k ∑ 

i ′ = 0 

k ∑ 

i= 0 

g i 
′ 

l ′ ( τ ) g i l ( τ ) 

×T GK, frag , 1 ( x max , x min , j, l ′ , l, i ′ , i) 

−1 

2 

N ∑ 

l ′ = j 

N ∑ 

l= 1 

k ∑ 

i ′ = 0 

k ∑ 

i= 0 

g i 
′ 

l ′ ( τ ) g i l ( τ ) 

×T GK, frag , 2 ( x max , x min , l 
′ , l, i ′ , i) 

+ 

j−1 ∑ 

l ′ = 1 

N ∑ 

l= 1 

k ∑ 

i ′ = 0 

k ∑ 

i= 0 

g i 
′ 

l ′ ( τ ) g i l ( τ ) T GK, coag ( x max , x min , j, l ′ , l, i ′ , i)

(C1

here GK stands for Gauss–Kronrod and the terms write 

T GK, frag , 1 ( x max , x min , j, l ′ , l, i ′ , i) ≡
j−1 ∑ 

u = 1 

∫ 
I u 

∫ 
I l ′ 

1 x l−1 / 2 <x max −z+ x min 1 x j−1 / 2 −z+ x min <x l+ 1 / 2 

×
min ( x max −z+ x min ,x l+ 1 / 2 ) ∫ 

max ( x j−1 / 2 −z+ x min ,x l−1 / 2 ) 

x ′ b( x ′ ; y, z) K( y, z) 

×φi ( ξl ( y)) φi ′ ( ξl ′ ( z)) 

yz 
d y d zd x ′ , (C2) 

T GK, frag , 2 ( x max , x min , l 
′ , l, i ′ , i) ≡

j−1 ∑ 

u = 1 

∫ 
I u 

∫ 
I l ′ 

1 x l−1 / 2 <x max −z+ x min 

×
min ( x max −z+ x min ,x l+ 1 / 2 ) ∫ 

max ( x min ,x l−1 / 2 ) 

x ′ b( x ′ ; y, z) K( y, z) 

×φi ( ξl ( y)) φi ′ ( ξl ′ ( z)) 

yz 
d y d zd x ′ , (C3) 

T GK, coag ( x max , x min , j, l ′ , l, i ′ , i) ≡∫ 
I l ′ 

1 x l−1 / 2 <x max −z+ x min 1 x j−1 / 2 −z+ x min <x l+ 1 / 2 

×
min ( x max −z+ x min ,x l+ 1 / 2 ) ∫ 

max ( x j−1 / 2 −z+ x min ,x l−1 / 2 ) 

K( y, z) 

×φi ′ ( ξl ′ ( z )) 
φi ( ξl ( y)) 

y 
d yd z . (C4) 
NRAS 533, 4410–4434 (2024) 
he Gauss–Kronrod quadrature is then applied to e v aluate the
ntegrals. The first term writes 

T GK, frag , 1 ( x max , x min , j, l ′ , l, i ′ , i) = 

j−1 ∑ 

u = 1 

Q ∑ 

γ= 1 

Q ∑ 

α= 1 

Q ∑ 

β= 1 

h u h l ′ h f 1 ,j ,l ′ ,l,α

8 

×1 x l−1 / 2 <x max − ˆ x α
l ′ + x min 1 x j−1 / 2 − ˆ x α

l ′ + x min <x l+ 1 / 2 

×ω γ ω αω β ˆ x γu b 
(

ˆ x γu ; ̂  x 
α,β

f 1 ,j ,l ′ ,l , ̂  x αl ′ 
)
K 

(
ˆ x α,β

f 1 ,j ,l ′ ,l , ̂  x αl ′ 
)

×
φi 

(
2 
h l 

(
ˆ x α,β

f 1 ,j ,l ′ ,l − x l 

))
φi ′ ( s α) 

ˆ x α,β

f 1 ,j ,l ′ ,l ̂  x 
α
l ′ 

, (C5) 

here Q is the number of Gauss–Kronrod points, s and ω are the
ode and the weight coef ficients, respecti vely, and we define the
erms ˆ x αl ′ , h f 1 ,j ,l ′ ,l,α , and ˆ x α,β

f 1 ,j ,l ′ ,l as 

ˆ x αl ′ ≡ x l ′ + 

h l ′ 

2 
s α, 

h f 1 ,j ,l ′ ,l,α ≡ min 
(
x max − ˆ x αl ′ + x min , x l+ 1 / 2 

)
−max 

(
x j−1 / 2 − ˆ x αl ′ + x min , x l−1 / 2 

)
, 

ˆ x α,β

f 1 ,j ,l ′ ,l ≡
1 

2 

[
min 

(
x max − ˆ x αl ′ + x min , x l+ 1 / 2 

)
+ max 

(
x j−1 / 2 − ˆ x αl ′ + x min 

)]+ 

h f 1 ,j ,l ′ ,l,α

2 
s β . 

(C6) 

he second term T GK, frag , 2 writes 

T GK, frag , 2 ( x max , x min , l 
′ , l, i ′ , i) = 

j−1 ∑ 

u = 1 

Q ∑ 

γ= 1 

Q ∑ 

α= 1 

Q ∑ 

β= 1 

h u h l ′ h f 2 ,l ′ ,l,α

8 

×1 x l−1 / 2 <x max − ˆ x α
l ′ + x min 

×ω γ ω αω β ˆ x γu b 
(

ˆ x γu ; ̂  x 
α,β

f 2 ,l ′ ,l , ̂  x αl ′ 
)
K 

(
ˆ x α,β

f 2 l ′ ,l , ̂  x αl ′ 
)

×
φi 

(
2 
h l 

(
ˆ x α,β

f 2 l ′ ,l − x l 

))
φi ′ ( s α) 

ˆ x α,β

f 2 l ′ ,l ̂  x 
α
l ′ 

, (C7) 

here 

h f 2 ,l ′ ,l,α ≡ min 
(
x max − ˆ x αl ′ + x min , x l+ 1 / 2 

)− x l−1 / 2 , 

ˆ x α,β

f 2 ,l ′ ,l ≡
1 

2 

[
min 

(
x max − ˆ x αl ′ + x min , x l+ 1 / 2 

)+ x l−1 / 2 

]
+ 

h f 2 ,l ′ ,l,α

2 
s β . (C8) 

he last term T GK, coag writes 

T GK, coag ( x max , x min , j, l ′ , l, i ′ , i) = 

Q ∑ 

α= 1 

Q ∑ 

β= 1 

h l ′ h c ,j ,l ′ ,l,α

4 

×1 x l−1 / 2 <x max − ˆ x α
l ′ + x min 1 x j−1 / 2 − ˆ x α

l ′ + x min <x l+ 1 / 2 

×ω αω βK 

(
ˆ x α,β

c ,l ′ ,l , ̂  x αl ′ 
)

×
φi 

(
2 
h l 

(
ˆ x α,β

c ,j ,l ′ ,l − x l 

))
φi ′ ( s α) 

ˆ x α,β

c ,j ,l ′ ,l 
, (C9) 

here h c ,j ,l ′ ,l,α = h f 1 ,j ,l ′ ,l,α and ˆ x α,β

c ,j ,l ′ ,l = ˆ x α,β

f ,j ,l ′ ,l . 
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2 Gauss–Kr onr od quadratur e for the term integral of the flux 

y using equation ( 73 ), the term F frag ,c in equation ( 51 ) writes 

F frag , c ( j, k ′ , τ ) = 

−1 

2 

j ∑ 

l ′ = 1 

N ∑ 

l= 1 

k ∑ 

i ′ = 0 

k ∑ 

i= 0 

g i 
′ 

l ′ ( τ ) g i l ( τ ) 

×T GK, frag , 1 ( x max , x min , j, k ′ , l ′ , l, i ′ , i) 

−1 

2 

N ∑ 

l ′ = j 

N ∑ 

l= 1 

k ∑ 

i ′ = 0 

k ∑ 

i= 0 

g i 
′ 

l ′ ( τ ) g i l ( τ ) 

×T GK, frag , 2 ( x max , x min , j, k ′ , l ′ , l, i ′ , i) 

+ 

j ∑ 

l ′ = 1 

N ∑ 

l= 1 

k ∑ 

i ′ = 0 

k ∑ 

i= 0 

g i 
′ 

l ′ ( τ ) g i l ( τ ) 

×T GK, coag ( x max , x min , j, k ′ , l ′ , l, i ′ , i) (C10) 

here the terms write 

T GK, frag , 1 ( x max , x min , j, k ′ , l ′ , l, i ′ , i) ≡
∫ 

I j 

j ∑ 

u = 1 

1 x u −1 / 2 <x 

min ( x,x u + 1 / 2 ) ∫ 
max ( x min ,x u −1 / 2 ) 

1 x l ′ −1 / 2 <x 

×
min 

(
x,x l ′ + 1 / 2 

)∫ 
max 

(
x min ,x l ′ −1 / 2 

)
1 x l−1 / 2 <x max −z+ x min 

×1 x−z+ x min <x l+ 1 / 2 

×
min ( x max −z+ x min ,x l+ 1 / 2 ) ∫ 
max ( x−z+ x min ,x l−1 / 2 ) 

x ′ b( x ′ ; y, z) K( y, z) ∂ x φk ′ ( ξj ( x)) 

×φi ( ξl ( y)) φi ′ ( ξl ′ ( z)) 

yz 
d y d zd x ′ d x , (C11) 

T GK, frag , 2 ( x max , x min , j, k ′ , l ′ , l, i ′ , i) ≡
∫ 

I j 

j ∑ 

u = 1 

1 x u −1 / 2 <x 

min ( x,x u + 1 / 2 ) ∫ 
max ( x min ,x u −1 / 2 ) 

1 x<x l ′ + 1 / 2 

×
min 

(
x max ,x l ′ + 1 / 2 

)∫ 
max 

(
x,x l ′ −1 / 2 

)
1 x l−1 / 2 <x max −z+ x min 

×
min ( x max −z+ x min ,x l+ 1 / 2 ) ∫ 

max ( x min ,x l−1 / 2 ) 

x ′ b( x ′ ; y, z) K( y, z) ∂ x φk ′ ( ξj ( x)) 

×φi ( ξl ( y)) φi ′ ( ξl ′ ( z)) 

yz 
d y d zd x ′ d x , (C12) 
T GK, coag ( x max , x min , j, k ′ , l ′ , l, i ′ , i) ≡

∫ 
I j 

1 x l ′ −1 / 2 <x 

min 
(

x,x l ′ + 1 / 2 
)∫ 

max 
(

x min ,x l ′ −1 / 2 

)
1 x l−1 / 2 <x max −z+ x min 

×1 x−z+ x min <x l+ 1 / 2 

×
min ( x max −z+ x min ,x l+ 1 / 2 ) ∫ 
max ( x−z+ x min ,x l−1 / 2 ) 

K( y , z) ∂ x φk ′ ( ξj ( x )) 

×φi ( ξl ( y)) φi ′ ( ξl ′ ( z)) 

y 
d y d zd x ′ d x , (C13) 

e then apply the Gauss–Kronrod quadrature method to e v aluate the
ntegrals. The first term writes 

T GK, frag , 1 ( x max , x min , j, k ′ , l ′ , l, i ′ , i) = 

Q ∑ 

λ= 1 

j ∑ 

u = 1 

Q ∑ 

γ= 1 

Q ∑ 

α= 1 

Q ∑ 

β= 1 

h j h u,λh l ′ ,λh f 1 ,j ,l ′ ,l,λ,α

16 

×1 x u −1 / 2 < ̂ x λ
j 
1 x l ′ −1 / 2 < ̂ x λ

j 

×1 x l−1 / 2 <x max − ˆ x α
l ′ + x min 1 ˆ x λ

j 
− ˆ x α

l ′ + x min <x l+ 1 / 2 

×ω λω γ ω αω β ˆ x γu b 
(

ˆ x γu ; ̂  x 
λ,α,β

f 1 ,l ′ ,l , ̂  x αl ′ 
)
K 

(
ˆ x λ,α,β

f 1 ,l ′ ,l , ̂  x αl ′ 
)

×
φi 

(
2 
h l 

(
ˆ x α,β

f 1 ,l ′ ,l − x l 

))
φi ′ ( s α) 

ˆ x α,β

f 1 ,l ′ ,l ̂  x 
α
l ′ 

× ∂ x φk ′ ( ξj ( x)) 
∣∣
x = ̂ x λ

j 

, (C14) 

here we define the terms 

ˆ x λj ≡ x j + 

h j 

2 
s λ, 

ˆ x γu ≡ x u + 

h u 

2 
s γ , 

ˆ x αl ′ ≡ x l ′ + 

h l ′ 

2 
s α, 

h u,λ ≡ min 
(

ˆ x λj , x u + 1 / 2 

)− x u −1 / 2 , 

h l ′ ,λ ≡ min 
(

ˆ x λj , x l ′ + 1 / 2 

)− x l ′ −1 / 2 , 

h f 1 ,j ,l ′ ,l,λ,α ≡ min 
(
x max − ˆ x αl ′ + x min , x l+ 1 / 2 

)
−max 

(
ˆ x λj − ˆ x αl ′ + x min , x l−1 / 2 

)
, 

ˆ x λ,α,β

f 1 ,l ′ ,l ≡
1 

2 

[
min 

(
x max − ˆ x αl ′ + x min , x l+ 1 / 2 

)
+ max 

(
ˆ x λj − ˆ x αl ′ + x min , x l−1 / 2 

)]
+ 

h f 1 ,j ,l ′ ,l,λ,α
s β . (C15) 
MNRAS 533, 4410–4434 (2024) 
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he second term T GK, frag , 2 writes 

T GK, frag , 1 ( x max , x min , j, k ′ , l ′ , l, i ′ , i) = 

Q ∑ 

λ= 1 

j ∑ 

u = 1 

Q ∑ 

γ= 1 

Q ∑ 

α= 1 

Q ∑ 

β= 1 

h j h u,λh l ′ ,λh f 2 ,j ,l ′ ,l,α

16 

×1 x u −1 / 2 < ̂ x λ
j 
1 ˆ x λ

j 
<x l ′ + 1 / 2 1 x l−1 / 2 <x max − ˆ x α

l ′ + x min 

×ω λω γ ω αω β ˆ x γu b 
(

ˆ x γu ; ̂  x 
α,β

f 1 ,l ′ ,l , ̂  x αl ′ 
)
K 

(
ˆ x α,β

f 2 ,l ′ ,l , ̂  x αl ′ 
)

×
φi 

(
2 
h l 

(
ˆ x α,β

f 2 ,l ′ ,l − x l 

))
φi ′ ( s α) 

ˆ x α,β

f 2 ,l ′ ,l ̂  x 
α
l ′ 

× ∂ x φk ′ ( ξj ( x)) 
∣∣
x = ̂ x λ

j 

, (C16) 

here we define the terms 

h l ′ ,λ ≡ min 
(
x max , x l ′ + 1 / 2 

)− min 
(

ˆ x λj , x l ′ −1 / 2 

)
, 

h f 2 ,j ,l ′ ,l,α ≡ min 
(
x max − ˆ x αl ′ + x min , x l+ 1 / 2 

)
−max 

(
x min , x l−1 / 2 

)
, 

ˆ x α,β

f 1 ,l ′ ,l ≡
1 

2 

[
min 

(
x max − ˆ x αl ′ + x min , x l+ 1 / 2 

)
+ max 

(
x min , x l−1 / 2 

)]+ 

h f 1 ,j ,l ′ ,l,λ,α

2 
s β . 

(C17) 

he last term T GK, coag writes 

T GK, coag ( x max , x min , j, k ′ , l ′ , l, i ′ , i) = 

Q ∑ 

λ= 1 

Q ∑ 

α= 1 

Q ∑ 

β= 1 

h j h l ′ ,λh c ,j ,l ′ ,l,λ,α

8 

×1 x l ′ −1 / 2 < ̂ x λ
j 
1 x l−1 / 2 <x max − ˆ x α

l ′ + x min 1 ˆ x λ
j 
− ˆ x α

l ′ + x min <x l+ 1 / 2 

×ω λω αω βK 

(
ˆ x λ,α,β

c ,l ′ ,l , ̂  x αl ′ 
)

×
φi 

(
2 
h l 

(
ˆ x λ,α,β

c ,l ′ ,l − x l 

))
φi ′ ( s α) 

ˆ x λ,α,β

c ,l ′ ,l 

× ∂ x φk ′ ( ξj ( x)) 
∣∣
x = ̂ x λ

j 

, (C18) 

here h c ,j ,l ′ ,l,λ,α = h f ,j ,l ′ ,l,λ,α and ˆ x λ,α,β
′ . 
NRAS 533, 4410–4434 (2024) 
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riginally used by Sandu ( 2006 ) for the coagulation equation, the
atrix form of equation ( 38 ) writes 

 

d g ( τ ) 

d τ
= 

⎡ 

⎢ ⎣ 

g T ( τ ) · B 

1 · g ( τ ) 
. . . 

g T ( τ ) · B 

N×( k+ 1) · g ( τ ) 

⎤ 

⎥ ⎦ 

, (D1) 

here g = [ g m 

] 0 ≤m ≤N×( k+ 1) with the index m = i + j × ( k + 1) for
hich i ∈ [ [0 , k] ] and j ∈ [ [1 , N ] ]. The matrix A and the 3-tensor B 

rite 

A = diag [ a m 

] 0 ≤m ≤N×( k+ 1) , 

B = 

[
b s m,n 

]
0 ≤m ≤N ×( k+ 1) , 0 ≤n ≤N ×( k+ 1) , 0 ≤s≤N ×( k+ 1) 

, (D2) 

here ∀ m ∈ [[1 , N × ( k + 1)]] , i = m/N, j = m ( mod N ) , a m 

=
2 

h j (2 i+ 1) and b s m,n gathers all the integrals for the flux and the integral
f the flux terms. The 3-tensor B is a sparse tensor with elements 

∀ ( m, n, s) ∈ [[0 , N × ( k + 1)]] 3 , 

b s m,n ≡
1 

2 

(
1 l ′ ≤j T GK, frag , 1 ( x max , x min , j, k ′ , l ′ , l, i ′ , i) 

)
+ 

1 

2 

(
1 j≤l ′ T GK, frag , 2 ( x max , x min , j, k ′ , l ′ , l, i ′ , i) 

)
− (1 l ′ ≤j T GK, coag ( x max , x min , j, k ′ , l ′ , l, i ′ , i) 

−φk (1) 1 j≤N−1 

× ([1 l ′ ≤j T frag , 1 ( x max , x min , j + 1 , l ′ , l, i ′ , i) 

+ 1 j+ 1 ≤l ′ T frag , 2 ( x max , x min , j + 1 , l ′ , l, i ′ , i) 
]

−1 l ′ ≤j T coag ( x max , x min , j + 1 , l ′ , l, i ′ , i) 
)
, 

+ φk ( −1) 

× ([1 l ′ ≤j−1 T frag , 1 ( x max , x min , j, l ′ , l, i ′ , i) 

+ 1 j≤l ′ T frag , 2 ( x max , x min , j, l ′ , l, i ′ , i) 
]

−1 l ′ ≤j−1 T coag ( x max , x min , j, l ′ , l, i ′ , i) 
)
, 

k ′ = s/N, j = s ( mod N ) , 

i ′ = m/N, l ′ = m ( mod N ) , 

i = n/N, l = n ( mod N ) . (D3) 

The presence of the operator 1 in b s m,n implies that the components
f the 3-tensor B are sparse matrices. 
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