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Abstract

Accurate temperature prediction is crucial for optimizing the performance of borehole heat exchanger 
(BHE) fields. This study introduces an efficient Bayesian approach for improving the forecast of 
temperature changes in the ground caused by the operation of BHEs. The framework addresses the 
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complexities of multi-layer subsurface structures and groundwater flow. Utilizing an affine invariant 
ensemble sampler, the framework estimates the distribution of key parameters, including heat 
extraction rate, thermal conductivity, and groundwater velocity. Validation of the proposed 
methodology is conducted through a synthetic case involving four active and one inactive BHE over 
five years, using monthly temperature changes around BHEs from a detailed numerical model as a 
reference. The moving finite line source model with anisotropy (MFLSA) is employed as the forward 
model for efficient temperature approximations. Applying the proposed methodology at a monthly 
resolution for less than three years reduces uncertainty in long-term predictions by over 90%. 
Additionally, it enhances the applicability of the employed analytical forward model in real field 
conditions. Thus, this advancement offers a robust tool for stochastic prediction of thermal behavior 
and decision-making in BHE systems, particularly in scenarios with complex subsurface conditions 
and limited prior knowledge.

Keywords: Stochastic modeling, Closed-loop geothermal systems, Data assimilation, Bayesian 
inference, Heat transfer

Highlights: 

• Stochastic modeling of temperature changes in a BHE field over 5 operational years. 
• Development of a Bayesian framework to infer nine correlated subsurface parameters.
• Heat transport modeling in a multi-layer subsurface with groundwater flow.
• Reduction of max RMSE in temperature simulations from 1.17 K to 0.05 K in 32 months.
• Improved moving finite line source model with anisotropy using a data-driven approach.

Graphical abstract:
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Nomenclature

𝐆𝐫𝐞𝐞𝐤 𝐬𝐲𝐦𝐛𝐨𝐥𝐬

𝑎   Thermal diffusivity (m2s―1) 𝛼𝑙   Longitudinal thermal dispersion coefficient (m2s―1)

𝒶   Affine invariant step size 𝛼𝑡   Transversal thermal dispersion coefficient (m2s―1)

𝑐   Specific heat capacity (J kg―1K―1)   ΔT   Temperature change (K) 

𝑑   Data   𝜃   Parameters of interest

erfc   Error function   𝜆   Thermal conductivity (W m―1K―1)
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ℱ   Forward model   𝜌   Density (kg m3)

𝐻   Borehole length (m)   𝜎   Standard deviation

𝐿   Characteristic length (m)   𝜙   Porosity

𝑁   Number of measurements

Pé   Péclet number 𝐒𝐮𝐛𝐬𝐜𝐫𝐢𝐩𝐭𝐬

𝑞   Heat exchange rate (Wm―1)  1, 2, 3   Layer number

𝑟   Radial distance of observation point (m)𝑐   Composite

𝑡   Time (s)   𝐼   Imaginary segment

𝑢   Darcy velocity (ms―1)   𝑚   Medium

U   Uniform probability distribution   𝑚𝑒𝑎𝑠   Measured

𝑣   Heat transfer velocity (ms―1)   𝑅   Real segment

𝑥,𝑦,𝑧   Coordinates 𝑠   Solid

𝓏   Affine invariant stretch move 𝑤   Water
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1 Introduction

 As part of the ongoing transition to more sustainable and renewable energy sources, shallow 
geothermal systems present an attractive solution for heating and cooling buildings [1]. These systems 
use the relatively stable temperatures found at depths ranging from a few tens to hundreds of meters 
in the subsurface. At the core of these systems are borehole heat exchangers (BHEs), which typically 
consist of high-density polyethylene (HDPE) pipes arranged in U-pipe, coaxial, or double U-pipe 
configurations [2]. A heat transfer fluid circulates through these pipes, absorbing heat from the ground 
in the cold season to supply buildings with heat, and returning excess heat from buildings to the 
subsurface in the warm season [3]. Although BHEs are established technologies, their efficiency, and 
ability to meet energy demands heavily rely on precise planning. This is because these systems are 
influenced by variable factors such as seasonal variations and time-dependent, coupled physical 
processes in the subsurface. Therefore, simulating these systems for a reliable prediction of 
underground thermal behavior is crucial. Accurate predictions can help avoid issues like thermal 
imbalance, where excessive heat extraction or injection deteriorates the system’s efficiency over time. 
Additionally, models can assist in assessing the environmental impact and ensure that a BHE system 
operates sustainably throughout its intended lifespan. For example, Chen et al. [4] examined the 
underperformance of a 56-BHE field implemented in Leicester, UK. They concluded that thermal 
anomalies in the center of the field prevented the system from operating efficiently for more than two 
decades.

Aside from technical issues, the thermally imbalanced operation of a BHE field could violate 
regulations. Haehnlein et al. [5] and Tsagarakis et al. [6] surveyed the legal frameworks for shallow 
geothermal applications in different countries. Existing frameworks and guidelines are diverse, and 
they delineate acceptable application windows constrained for example by temperature thresholds 
[7,8]. Blum et al. [9] warned that unplanned, continuous thermal exploitation of the shallow 
subsurface could lead to heat or cold being deemed as a pollutant. Therefore, reliable long-term 
predictions are needed to comply with precautionary regulations while ensuring safe and cost-
efficient operation.

A wide variety of modeling tools has been developed to predict the thermal state, both inside and 
outside of BHEs. These tools range from analytical and semi-analytical to fully numerical methods. 
(Semi-)analytical solutions, such as those based on the so-called g-functions, offer simplified, closed-
form procedures that allow for a quick approximation of the subsurface thermal response [10]. While 
these models efficiently reflect overall system thermal performance, they have their limitations when 
applied to complex subsurface structures with heterogeneous material properties or multi-physical 
heat transport interactions. Although efforts have been made to extend the applicability of 
(semi-)analytical models to account for multi-layer subsurface [11], advective heat transport e.g., due 
to groundwater flow [12], land use effects and surface ground conditions [13,14], and heterogeneous-
discontinuous thermal loads [15], all available models have conceptual strengths and weaknesses. 
Alternatively, numerical models facilitate detailed simulations by solving complex heat transfer 
equations under realistic boundary conditions [16–23]. Numerical methods are especially useful for 
the design phase and initial planning, but it remains a challenge to choose a flexible and 
computationally efficient predictive model for real-time optimization and control of BHE fields 
[24,25]. 
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To simulate BHEs’ performance analytically or numerically, ground properties must be characterized 
as a prerequisite. For this purpose, thermal response tests (TRTs) are usually performed at the 
beginning of the operation to determine the thermal properties of the subsurface, such as thermal 
conductivity, heat capacity, and thermal resistivity [26,27]. However, these early-phase experiments 
often provide only a snapshot of subsurface conditions and cannot fully capture the complex, dynamic 
nature of subsurface heat transfer over time. Factors such as seasonal temperature fluctuations, 
transient groundwater movement, and long-term thermal interactions between BHEs within a field 
can significantly alter the thermal conditions in the subsurface, which initial TRT results are not able 
to resolve. Ideally, regular monitoring and continuous updating of subsurface models of BHE fields 
would be needed to account for uncertainties in model parameters or model simplifications [28]. 

Inferring subsurface thermal parameters or g-functions from TRTs, parameter identification typically 
involves defining a mathematical minimization problem or realizing the statistical distributions of 
parameters to assess the associated uncertainty. Among model calibration strategies, for example, 
Dion et al. [29–31], suggest a deconvolution-based framework. This approach directly infers the 
transfer function from TRT data, eliminating the need for a predefined thermal model. It uses a multi-
objective optimization to reconstruct the derivatives of the temperature, allowing for a data-driven 
construction of g-functions. Aside from this, different types of optimization techniques, such as 
particle swarm optimization with pattern search [32], or trust region [33] have been explored to 
calibrate model parameters and improve model predictability. However, these procedures are 
commonly not applied in the long term, or they do not fully account for the complex conditions of 
the underground environment.

While model calibration techniques are computationally efficient, capturing the full complexity of 
subsurface conditions is challenging. This is particularly true when dealing with advective heat 
transport in heterogeneous ground or when numerous model parameters need to be characterized. 
Then, ill-posedness of the formulated calibration problem may yield non-unique solutions as well as 
insensitive and correlated parameters. Alternatively, probabilistic methods such as Kalman filters can 
be employed to enhance the accuracy of simulations by dynamically adjusting model parameters 
based on monitoring data [34,35]. While Kalman filter methods are efficient and capable of real-time 
updates, they rely on Gaussian assumptions. These can lead to inaccuracies when exploring correlated 
and non-Gaussian parameter spaces. Moreover, Kalman filters can encounter difficulties in dealing 
with highly nonlinear systems or when there is significant model misspecification, resulting in 
suboptimal performance in complex subsurface environments.

Bayesian inference, as another probabilistic approach, represents a promising alternative, especially 
through methods like Markov Chain Monte Carlo (MCMC). Unlike classic calibration methods, 
Bayesian inference does not merely seek to identify optimal parameter values or assume a specific 
distribution for the model parameters. Instead, it samples from the posterior distribution to explore a 
wide range of probable parameter sets.

In different studies, Bayesian frameworks have been employed to estimate subsurface thermal 
conductivity and borehole thermal resistance, along with the associated uncertainties [36,37]. Their 
findings highlighted the importance of test duration in enhancing the accuracy of the estimates. In 
other attempts, Bayesian methods have also been used to distinguish between errors arising from the 
TRT experiments and those stemming from the model structure itself to explicitly quantify the model 
bias [38,39]. To further improve computational efficiency in Bayesian inference, Pasquier and 
Marcotte [40] developed a new closed-form likelihood formulation combined with neural networks 
which also addresses temporal correlations in TRTs for inference of five parameters.

As recently demonstrated by Shin et al. [41] through a global sensitivity analysis, the contribution of 
parameters in uncertainty assessment changes temporally during BHE operation, underscoring the 
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need for dynamic uncertainty assessments in BHE systems. However, previous studies on the long-
term thermal evolution of BHE fields have concentrated on developing sophisticated modeling tools 
rather than utilizing data assimilation techniques. With advancements in measurement technologies, 
such as distributed temperature sensing (DTS), an opportunity remains to better harness high-
resolution subsurface data. This can be used to enhance model predictability and reduce input 
parameter uncertainty over the long term, particularly in cases involving complex subsurface 
structures and coupled processes [42,43].

To address this scientific gap, this work introduces a new Bayesian inference-based framework that 
learns during operation and models the thermal evolution of BHE fields in a stochastic manner. In 
particular, this work focuses on conditions with stratified subsurface heterogeneity in the presence of 
groundwater over five years of operation. This framework integrates temperature measurements taken 
from the synthetic BHE field at defined time intervals to infer the statistical distributions of key model 
parameters, such as heat extraction rates, groundwater velocity, and thermal conductivity for each 
layer.

By characterizing these statistical distributions, a robust method is achieved for assessing 
uncertainties in the model’s predictions based on the most likely input parameter sets. The 
incorporation of temperature measurements serves as empirical and true evidence that refines the 
predictive model, thereby reducing uncertainties and improving predictive accuracy. This continuous 
updating process is a core strength of the Bayesian approach, allowing dynamic adaptation of model 
parameters in response to new information.

The presented framework employs the moving finite line source model with anisotropy (MFLSA) as 
the forward model [44]. This model is particularly well-suited for BHE systems due to its 
computational efficiency, enabling the rapid evaluation of different parameter proposals during the 
Bayesian inference process. The MFLSA simulates the thermal state at the monitoring location in an 
operating field, considering the layered structure of the subsurface and the influence of groundwater 
flow. This accounts for variability and uncertainty in boundary conditions, changes in operational 
settings, and other unforeseen fluctuations in the system. A conceptual illustration of the proposed 
framework is presented in Figure 1. 
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Figure 1. Conceptual framework of the proposed Bayesian method for stochastic predictions of 
temperature changes in the BHE field based on temperature measurements and using the MFLSA 

as the forward model.

The proposed methodology introduces several important advancements in modeling and analysis of 
the thermal behavior in closed-loop geothermal systems. Its primary contribution is an extension of 
probabilistic modeling to simulate temperature changes in the subsurface surrounding a BHE field 
over multiple years of operation. Additionally, the Bayesian framework is designed to effectively 
manage the highly correlated, high-dimensional parameter space associated with conductive-
advective heat transport in a multi-layered subsurface, focusing on operational thermal simulation 
rather than using the inversion procedures for site characterization. Furthermore, this work broadens 
the applicability of analytical finite line source models by relaxing the assumption of a constant heat 
extraction rate across the layers, thus enhancing the realism of thermal predictions in heterogeneous 
geological settings.

Building on these advancements, the primary objective of this study is to employ statistical inference 
to enhance the understanding of thermal state evolution within BHE fields, utilizing high-resolution 
operational data over time. A secondary objective is to explore the capability of Bayesian inversion 
to dynamically update model parameters, enabling the model to adaptively reflect observed thermal 
states rather than developing a new modeling tool with additional constraints.

The structure of this paper is as follows: Section 2 provides an overview of the methodology, 
including the derivation of the forward model, the details of the Bayesian inference approach, the 
development of a synthetic case study, and the inversion implementation. The results of this study 
are presented and discussed in Section 3, followed by conclusions in Section 4.

2 Methodology

2.1 Forward modeling

To assess and reduce uncertainties in predicting temperature changes in a BHE field through a 
Bayesian framework, a forward model needs to be set up. This model should reproduce the true 
temperature distribution, enabling the comparison with observed data and iterative refinement of 
predictions. In this study, a line-source model for BHEs is employed that considers advection and 
dispersion mechanisms in a multilayer porous medium. In particular, anisotropy is added to the 
moving finite line source (MFLS) model. Furthermore, a composite computational approach is 
applied, and layers are segregated into segments to calculate the temperature difference at a point of 
interest located in one of the layers. Groundwater flow is separately considered in the layers. The 
composite method segregates the layers and their thermal properties and adds the calculated 
temperature differences from each layer. For instance, if the observation point is situated in the first 
layer, this layer at which the point of interest is located is designated as the first segment, and other 
layers are assigned to the second segment (Figure 2). The temperature difference is computed as 
follows:

Δ𝑇1(𝑥, 𝑦, 𝑧, 𝑡) =
𝑞𝐿

2𝜋𝜆𝑦1
exp

𝑥𝑣𝑇1

2𝑎𝑥1

𝑧1

0

𝑓(𝑥,𝑦,𝑧,𝑡)𝑑𝑧′ ―

0

―𝑧1

𝑓(𝑥,𝑦,𝑧,𝑡)𝑑𝑧′ (1)



Manuscript for submission to Applied Thermal Engineering

9

𝑞𝐿 is the heat exchange rate. The subscript 1 denotes the first layer and the 𝑓(𝑥, 𝑦, 𝑧, 𝑡) function is:

 

𝑓(𝑥, 𝑦, 𝑧, 𝑡) =
1

4𝑟𝐴
exp ―

𝑣𝑇1𝑟𝐴

2𝑎𝑥1
erfc

𝑟𝐴 ― 𝑣𝑇1𝑡
2 𝑎𝑥1𝑡

+ exp
𝑣𝑇1𝑟𝐴

2𝑎𝑥1
erfc

𝑟𝐴 + 𝑣𝑇1𝑡
2 𝑎𝑥1𝑡

(2)

in which 𝑣𝑇 is the thermal transport velocity that is calculated as:

 

𝑣𝑇1 =
Pé 𝑎𝑥1

𝐿 = 𝑢𝑥
𝜌𝑤𝑐𝑤

𝜌𝑚𝑐𝑚
(3)

where 𝑎𝑥1 is the thermal diffusivity in the first segment 𝜆𝑥/𝜌𝑚𝑐𝑚, 𝐿 is the thickness of the 
corresponding layer, and Pé is the Péclet number:

Pé =
𝑢𝑥𝜌𝑤𝑐𝑤𝐿

𝜆𝑚
(4)

Here, 𝑢𝑥 is Darcy’s velocity in the 𝑥-direction, and 𝜌𝑚𝑐𝑚 is the volumetric heat capacity of the 
medium, which can be calculated concerning the porosity 𝜙 as the weighted arithmetic mean of the 
solids 𝜌𝑠𝑐𝑠 and volumetric heat capacity of water 𝜌𝑤𝑐𝑤:

𝜌𝑚𝑐𝑚 = (1 ― 𝜙)𝜌𝑠𝑐𝑠 + 𝜙𝜌𝑤𝑐𝑤 (5)

The components of effective longitudinal and transverse thermal conductivities are defined in the 
directions of 𝑥, 𝑦, and 𝑧 as follows:

𝜆𝑥 = 𝜆𝑚 + 𝛼𝑙𝜌𝑤𝑐𝑤𝑢𝑥 (6)
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𝜆𝑦 = 𝜆𝑧 = 𝜆𝑚 + 𝛼𝑡𝜌𝑤𝑐𝑤𝑢𝑥 (7)

where 𝜆𝑚 is the bulk thermal conductivity of the porous medium in the absence of groundwater flow, 
𝛼𝑙 and 𝛼𝑡 are the longitudinal and transverse dispersivities, respectively. The thermal dispersion is a 
linear function of groundwater flow and relates to the anisotropy of the velocity field.

If groundwater does not exist in a layer, the heat transport velocity 𝑣𝑇1 becomes zero, and the thermal 
diffusivity and conductivity values take on isotropic values. The integration limits ([0 𝑧1] in this case) 
correspond to the depth coordinates of the BHE in the considered first segment layer with its 
imaginary part. Two additional layers (i.e., layers 2 and 3) are paired by the second segment. The 
subsequent layer (layer 2) is calculated as:

Δ𝑇2(𝑥, 𝑦, 𝑧, 𝑡) =
𝑞𝐿

2𝜋

𝑧2

𝑧1

𝑓𝑅2(𝑥,𝑦,𝑧,𝑡)𝑑𝑧′ ―

―𝑧1

―𝑧2

𝑓𝐼2(𝑥,𝑦,𝑧,𝑡)𝑑𝑧′ (8)

𝑓𝑅2(𝑥, 𝑦, 𝑧, 𝑡)

=
1

4𝜆𝑐𝑅2𝑟𝐴
exp

𝑥𝑣𝑇2

2𝑎𝑐𝑅2
exp ―

𝑣𝑇2𝑟𝐴

2𝑎𝑐𝑅2
erfc

𝑟𝐴 ― 𝑣𝑇2𝑡
2 𝑎𝑐𝑅2𝑡

+ exp
𝑣𝑇2𝑟𝐴

2𝑎𝑐𝑅2
erfc

𝑟𝐴 + 𝑣𝑇2𝑡
2 𝑎𝑐𝑅2𝑡

(9)

The real and the imaginary parts of this mathematical solution are based on the method of images, 
which is a particular use of Green’s functions. When the distribution has a geometric center, such as 
the point-line source, and the boundary is a flat surface, as shown in Figure 2, the method of images 
enables the distribution to be reflected in a straightforward mirror-like manner to fulfill several 
boundary conditions. For instance, let us scrutinize the heat distribution as a function of z and a single 
boundary at 𝑧𝑏. In this case, the real domain is 𝑧 ≥ 𝑧𝑏, while the imaginary domain is 𝑧 < 𝑧𝑏. 
The subscript 𝑐 represents the composite, and 𝑅 is the real part of the geometry. 

𝑓𝐼2(𝑥, 𝑦, 𝑧, 𝑡)

=
1

4𝜆𝑐𝐼2𝑟𝐴
exp

𝑥𝑣𝑇2

2𝑎𝑐𝐼2
exp ―

𝑣𝑇2𝑟𝐴

2𝑎𝑐𝐼2
erfc

𝑟𝐴 ― 𝑣𝑇2𝑡
2 𝑎𝑐𝐼2𝑡

+ exp
𝑣𝑇2𝑟𝐴

2𝑎𝑐𝐼2
erfc

𝑟𝐴 + 𝑣𝑇2𝑡
2 𝑎𝑐𝐼2𝑡

(10)

where 𝐼 denotes the imaginary part.

The computation of layer 3 in the second segment is:
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Δ𝑇3(𝑥, 𝑦, 𝑧, 𝑡) =
𝑞𝐿

2𝜋

𝐻

𝑧2

𝑓𝑅3(𝑥,𝑦,𝑧,𝑡)𝑑𝑧′ ―

―𝑧2

―𝐻

𝑓𝐼3(𝑥,𝑦,𝑧,𝑡)𝑑𝑧′ (11)

where the real part of this function is:
 

𝑓𝑅3(𝑥, 𝑦, 𝑧, 𝑡)

=
1

4𝜆𝑐𝑅3𝑟𝐴
exp

𝑥𝑣𝑇3

2𝑎𝑐𝑅3
exp ―

𝑣𝑇3𝑟𝐴

2𝑎𝑐𝑅3
erfc

𝑟𝐴 ― 𝑣𝑇3𝑡
2 𝑎𝑐𝑅3𝑡

+ exp
𝑣𝑇3𝑟𝐴

2𝑎𝑐𝑅3
erfc

𝑟𝐴 + 𝑣𝑇3𝑡
2 𝑎𝑐𝑅3𝑡

(12)

and its imaginary part is: 

𝑓𝐼3(𝑥, 𝑦, 𝑧, 𝑡)

=
1

4𝜆𝑐𝐼3𝑟𝐴
exp

𝑥𝑣𝑇3

2𝑎𝑐𝐼3
exp ―

𝑣𝑇3𝑟𝐴

2𝑎𝑐𝐼3
erfc

𝑟𝐴 ― 𝑣𝑇3𝑡
2 𝑎𝑐𝐼3𝑡

+ exp
𝑣𝑇3𝑟𝐴

2𝑎𝑐𝐼3
erfc

𝑟𝐴 + 𝑣𝑇3𝑡
2 𝑎𝑐𝐼3𝑡

(13)

The detailed derivation of the model, the composite calculation equations of the thermal properties 
of layers, and the verification of the analytical solution for different hydraulic and thermal properties 
by comparison with a numerical solution can be found in [45]. Finally, the temperature difference at 
the observation point A located in layer 1 is summed up as:

Δ𝑇𝐴(𝑥, 𝑦, 𝑧, 𝑡) = Δ𝑇1 + Δ𝑇2 + Δ𝑇3 (14)

If the observation points are moved to layer 2, then layer 1, and layer 3 can be regarded as being in 
the second segment computation, by which layer 1 becomes the first segment (Figure 2d). The same 
methodology can be used to assess the observation points placed in layer 3 by shifting the segments 
between layers (Figure 2e).

The long-term temperature responses of this model over depth and time are validated for the same 
(hydro)geological scenario investigated in this study using data from [45]. Details are given in 
Appendices.
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Figure 2. The illustration of the composite model approach for a single BHE with a finite length 
of 𝐻 and its imaginary part passing through multi-layers.

2.2 Inverse modeling

A framework is proposed that leverages Bayes' rule to invert the unknown input model parameters of 
the MFLSA using monthly temperature changes observed in a BHE field. Specifically, the aim is to 
quantify the posterior probability distributions of the model parameters 𝑝(𝜃|𝑑𝑚𝑒𝑎𝑠) by using the 
measured temperature change data, as expressed by the following relation:

𝑝(𝜃|𝑑𝑚𝑒𝑎𝑠) ∝ 𝑝(𝑑𝑚𝑒𝑎𝑠|𝜃)𝑝(𝜃) (15)

Here, 𝜃 represents the unknown thermal and hydraulic properties of the subsurface, which are treated 
as random variables characterized by a probability density function 𝑝(𝜃|𝑑𝑚𝑒𝑎𝑠). The likelihood 
quantifies how well the forward model, which simulates temperature changes, agrees with the 
observed data. The likelihood is assumed to follow a Gaussian distribution, making the log-likelihood 
function proportional to the sum of squared errors between the simulated and observed temperature 
changes across all measurement points:
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log 𝑝(𝑑𝑚𝑒𝑎𝑠|𝜃1, …,𝑛) ∝ ―
1

2𝜎2𝑁𝑑𝑚𝑒𝑎𝑠

𝑁𝑑𝑚𝑒𝑎𝑠

𝑖=1
(𝑑𝑚𝑒𝑎𝑠𝑖 ― ℱ(𝜃1,…,𝑛)𝑖)2 (16)

where ℱ(𝜃1,…,𝑛) represents the simulated temperature changes computed by the forward model, given 
a set of 𝑛 input parameters 𝜃1,…,𝑛. The prior probability distribution function 𝑝(𝜃) can encapsulate 
any prior knowledge, assumptions, or conceptual understanding of the model parameters. The prior 
can be informative, based on previous studies or expert knowledge, or non-informative, such as a 
uniform distribution, when limited or no prior information is available. 

A commonly used method for exploring the target distribution, i.e., the posterior distribution, within 
the parameter space is MCMC sampling [46]. MCMC generates samples that converge towards the 
target distribution and thus provide a numerical approximation to the posterior value. Numerous 
strategies have been developed in the literature to efficiently sample [47]. However, MCMC 
algorithms can face challenges when the posterior distribution contains sharp correlations in the 
parameter space and/or when dealing with a highly parameterized space. In these settings, 
convergence is often intractable, therefore requiring extensive tuning to improve the performance. To 
tackle this issue, Goodman and Weare [48] introduced the affine invariant ensemble sampler (AIES), 
an efficient algorithm that performs well under these conditions. AIES initializes an ensemble of 𝐿 
Markov Chains, known as “walkers”, denoted as 𝜃 = {𝜃1,…,𝜃𝐿}, to collectively explore the parameter 
space. The walkers are set up at distinct starting positions within the parameter space. Subsequently, 
each walker in the ensemble proposes new candidate parameter values (positions) by perturbing its 
current value (position) through a “stretch move” mechanism that is invariant to affine 
transformations of the parameter space. This means that the sampling algorithm’s performance is 
consistent regardless of scaling, rotation, or translation of the target distribution. The proposal for 
each walker (𝜃𝑖) is generated based on a random linear combination of the current positions of the 
walker (𝜃𝑖), another randomly chosen complementary walker (𝜃𝑗), and an affine invariant stretch 
move (𝓏), ensuring that the exploration of the parameter space is robust to different scales and 
correlations by using:

𝜃𝑖 = 𝜃𝑗 + 𝓏 ∙ 𝜃𝑖 ― 𝜃𝑗 (17)

where the “stretch move” is randomly drawn from the following distribution:

𝑔(𝓏) ∝
1
𝓏

,         𝑍 ∈
1
𝒶 ,𝒶

0,         otherwise

(18)

The acceptance of the proposed position is determined by comparing the log probabilities of the 
proposed and current values. The Metropolis-Hastings acceptance criterion is used as:
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log
𝑝 𝑑𝑚𝑒𝑎𝑠|𝜃𝑖
𝑝(𝑑𝑚𝑒𝑎𝑠|𝜃𝑖)

> log 𝑢 (19)

where 𝑝 denotes the posterior probability density, and 𝑢~U(0,1).

Figure 3. Schematic illustration of the affine invariant ensemble MCMC sampler strategy for 
proposing new model samples.

2.3 Model setup for the demonstration case

This study explores a synthetic BHE field to demonstrate the uncertainty quantification. It comprises 
four active BHEs and one inactive BHE, as illustrated in Figure 4. The active BHEs operate only in 
heating mode to meet thermal demands, while the inactive BHE functions as a DTS monitoring site, 
collecting data on subsurface temperature changes caused by the heating operation of the active 
BHEs, following the setup in [43]. Throughout this study, temperature prediction using Bayesian 
inference focuses on the temperature evolution in the subsurface at the location of inactive BHE over 
five years, resulting from the operation of the four active BHEs. Temperatures are measured monthly 
with a spatial resolution of 1 m, up to a depth of 60 m. As this study focuses primarily on the 
investigation of temperature dynamics in the field, temperature changes are considered rather than 
absolute values. The subsurface of the field is characterized by its heterogeneity, consisting of three 
distinct layers, each with unique thermal properties. For the purpose of this analysis, each layer is 
assumed to be 20 m thick, and each BHE reaches a depth of 50 m. 



Manuscript for submission to Applied Thermal Engineering

15

Figure 4. Three-dimensional view of the numerical model with three layers and groundwater flow 
in COMSOL (left) and the configuration of BHEs in the field showing the thermal plume due to 

operation after five years (right).

The arrangement of the BHEs in the field is carefully designed to mitigate potential thermal impacts 
on the surrounding environment. Therefore, the BHEs are spaced 10 m apart, adhering to 
recommendations from [49]. This spacing is particularly important in managing the thermal plume 
distribution, which is influenced by both conductive heat transfer and advective mechanisms driven 
by groundwater flow.

Additionally, the variability in groundwater flow velocities among the different layers is considered, 
as it significantly affects the thermal conditions in the subsurface. As a result, the thermal state of 
each layer is closely tied to the prevailing hydrogeological conditions, with variations in groundwater 
velocity across the layers influencing the distribution and intensity of the thermal plume generated 
around the active BHEs.

To achieve realistic thermal dynamics within this BHE field, temperatures and heat extraction rates 
in the layers are simulated using a numerical model developed in COMSOL Multiphysics® software. 
This numerical model represents the BHEs as double U-pipes, utilizing the Pipe Flow Module to 
simulate heat and fluid transfer within the pipes. The inactive BHE, which does not extract or inject 
heat, is solely dedicated to monitoring temperature variations through strategically placed sensors.

For the simulation, the inlet temperature and flow rates of the heat carrier fluid need to be specified. 
Each BHE is assigned a constant flow rate of 0.25 m s―1, with an inlet fluid temperature set to 4 °C. 
The surface and the entire model domain are maintained at an undisturbed temperature of 12 °C, with 
all remaining model boundaries thermally insulated. The simulation domain encompasses an area of 
400 m × 200 m × 100 m, divided into three subdomains to represent the geological layers. The model 
is sufficiently sized to avoid unwanted effects from the model boundaries. A fine mesh of 1,073,656 
elements ensures adequate resolution and accuracy.

The Heat Transfer in the Porous Media module is employed to account for advective heat transfer, 
incorporating the material properties detailed in Table 1 and taken from [45]. The horizontal 
component of groundwater velocity in each layer is considered in the simulation. The study spans a 
simulation period of five years, with monthly monitoring of temperature changes along the 
observation points (inactive BHE) and the averaged heat extraction rates (active BHEs) from each 
geological layer for each month. This simulation period allows for a thorough analysis of the long-
term thermal performance and the interaction between the BHEs and the surrounding subsurface.
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Table 1. Reference model parameters for different layers

Parameters Layer 1 Layer 2 Layer 3

𝝀𝒎 (𝐖 𝐦―𝟏𝐊―𝟏) 1.5 2 2.5

𝒖𝒙 (𝐦 𝐬―𝟏) 1 × 10―7 1 × 10―6 3 × 10―6

𝝆𝒎 𝐤𝐠 𝐦―𝟑 1600 2000 2000

𝒄𝒎 (𝐉 𝐤𝐠―𝟏𝐊―𝟏) 1200 1300 1500

𝝓 0.26 0.26 0.26

Figure 5 shows the simulated temperature changes along the depth profile over the entire time. These 
values are derived from the numerical model and serve as a reference for temperature changes in the 
inversion process.
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Figure 5. Reference monthly temperature changes along the depth, simulated by the numerical 
model.

The average heat extraction rate from all BHEs in each layer over the entire duration is also presented 
in Figure 6. These values, obtained from the numerical model, will be used exclusively to assess the 
efficiency of the inversion process of heat extraction rate parameters.

As illustrated in Figure 6, the heat exchange rate in the BHE field is primarily influenced by the 
subsurface properties and hydrogeological conditions of the first two geological layers, as the BHEs 
are only 50 meters deep.

In layer 1 (0–20 meters), heat transfer is dominated by conduction due to the very low groundwater 
velocity and moderate thermal conductivity. As a result, the thermal anomaly forms around the BHEs 
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and gradually spreads outward over time. This slower heat dissipation means the heat exchange and 
thermal evolution will take longer to reach steady-state conditions in this layer. 

In layer 2 (20–40 meters), heat exchange is more efficient because of higher thermal conductivity and 
a moderate groundwater flow rate, which facilitates both conduction and convection. The increased 
groundwater flow carries heat away more effectively, allowing the system to reach steady-state 
conditions faster in this layer compared to layer 1. 

Layer 3 (40–60 meters), beyond the full reach of the BHEs, has minimal impact on heat transfer, 
although heat diffuses into it over time. Layer 3 has the highest groundwater velocity and thermal 
conductivity and it does not fully interact with the BHEs, limiting its effect on heat exchange. As a 
result, steady-state conditions in this layer are reached faster compared to the others, but it has little 
influence on the overall heat exchange performance.

Figure 6. Reference average heat extraction rate of BHEs for different layers, simulated by the 
numerical model.

In the following sections, the synthetic operational scenario simulated by the numerical model 
discussed earlier will be used to showcase the application of the proposed Bayesian procedure. It is 
important to note that the numerical model and its results are not part of the proposed Bayesian 
framework; they are solely used to demonstrate how the procedure works. In practice, the COMSOL 
model results should be replaced with field data measurements. The effectiveness of the Bayesian 
inversion procedure in modeling and predicting the subsurface temperature changes depends on the 
suitability of the forward model in accurately describing the underlying physical processes.

To model temperature changes around the BHEs in a multi-layered subsurface with groundwater 
flow, the well-established, computationally efficient moving finite line source model with anisotropy 
(MFLSA) is employed, as discussed in Section 2.1. This analytical model captures the key physics 
involved, ensuring the reliability of the Bayesian inversion results. Although the numerical setup 
developed in this section serves only as a synthetic case for measured temperatures in the field to 
demonstrate the proposed approach and does not require validation, it is useful to ensure that 
associated uncertainties in the inversion procedure are not caused by unexplained variability in 
temperature changes due to the modeling tools. To address this, the numerical setup is validated 
against the MFLSA using reference model parameter values at selected time steps, as shown in Figure 
7. The MFLSA analytically simulates temperature changes at these steps, assuming that temperature 
changes from previous time steps are measured and known. The results indicate that the MFLSA 
predictions closely align with the numerical model, confirming two key points: first, the forward 
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model can accurately represent the numerical setup in this case, and second, the uncertainties of 
interest, which will be discussed in later sections, are not due to the inherent reliability of either the 
numerical or analytical model.

Figure 7. Validation of the numerical results against the forward model at five time steps, using 
reference input values and assuming known temperature changes from previous time steps.
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2.4 Implementation of the inversion procedure

This section details the specific setting of the inversion problem for the introduced BHE field. The 
goal of the inversion process is to determine the distribution of three unknown parameters — heat 
extraction rate (𝑞), thermal conductivity (𝜆), and groundwater velocity (𝑢) — across three layers, 
resulting in an inverse problem with nine parameters over 60 time steps.

For each unknown parameter, a uniform prior distribution within a specified range [𝛼,𝛽] is assumed, 
reflecting the absence of strong prior information:

𝑝(𝜃) =
1

𝛽 ― 𝛼 ,         if 𝛼 ≤ 𝜃 ≤ 𝛽
0,         otherwise

(20)

The choice of this prior ensures that all values within the range [𝛼,𝛽] are equally likely before 
considering the observed data, thereby allowing the data to primarily drive the inversion process.

 Specifically, the range for parameters is as follows: heat extraction rate ranges from 5 to 40 W m―1, 
thermal conductivity ranges from 0.5 to 4 W m―1K―1, and groundwater velocity can vary from 6 ×
10―8 to 6 × 10―6 m s―1.

The variance of the likelihood function in each time step is derived from the error between simulated 
and observed temperature changes in the previous time step.

For the implementation of AIES, similar to the “walk move” formulation in [50], this density function 
is simulated using a transformed uniform distribution. However, unlike the “walk move” which is not 
affine invariant, the “stretch move” applied by the AIES formulation ensures affine invariance [51]:

𝓏 = ((𝒶 ― 1) ∙ U(0,1) + 1)2/𝒶 (21)

Here 𝒶 is the step size and is set to 2 in our study and U is a uniform distribution between 0 and 1.

In this study, the MATLAB implementation by [51] is used. In each time step 50,000 iterations and 
180 walkers are employed to generate 5,040 samples for each unknown parameter.

The temperature changes shown in Figure 5 are assumed to be the actual measurements, with MFLSA 
being used in the forward solver for predicting temperature changes. At the end of each time step, the 
median of all samples for each parameter is considered as the inferred model parameter for the 
simulation of the upcoming months. Additionally, simulated temperature change values of the current 
month are replaced by measured data as they become available. The process involves superimposing 
the current measured temperatures onto the predictions for future time steps. 
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3 Results and discussion

3.1 Statistical analysis of MCMC sampling

In this section, the performance of MCMC sampling with the Affine Invariant Ensemble Sampler 
(AIES) algorithm is evaluated. The purpose of this analysis is to determine whether the sampling 
process effectively explores the target distribution and has reached convergence—a state where the 
sampled values stabilize around the intended distribution.

To assess convergence and sampling efficiency, trace plots are used, which display the progression 
of the parameter estimation. Trace plots help to reveal whether the “walkers” (or model samples) are 
thoroughly exploring the range of possible parameter values or, conversely, are becoming confined 
to certain areas. Effective sampling should ideally result in a trace plot where the walkers exhibit a 
random, well-distributed pattern, covering the parameter space without showing a clear trend. In this 
analysis, trace plots are examined at five selected time steps for nine unknown model parameters, 
including heat extraction rate (𝑞), thermal conductivity (𝜆), and groundwater velocity (𝑢) across three 
different layers. For clarity, only every tenth sample is shown in Figure 8. The mean of all samples is 
also analyzed, and an overall trend is identified using linear regression to capture any underlying 
patterns. The trace plots reveal an erratic pattern, indicating that the walkers are “well-mixed”, i.e., 
they move freely across the parameter space without becoming confined to specific regions. This 
pattern suggests effective exploration of the target distribution [47].
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Figure 8. Trace plots of model samples for nine parameters (heat extraction rate (𝑞), thermal 
conductivity (𝜆), and groundwater velocity (𝑢) for three layers) at five different time steps. 

 

Most parameters in the trace plots exhibit stable, consistent patterns over time, with no discernible 
trends, suggesting that the samples have reached convergence, meaning they center around the target 
distribution. However, two exceptions occur: in the sixth month, thermal conductivity in the first 
layer displays a slight decreasing trend, while groundwater velocity in the third layer shows an 
increasing trend. These trends do not persist in later time steps, further supporting the finding that the 
walkers have reached the target distribution. Over time, the parameter values fluctuate around a 
consistent mean, indicating that the samples are in a stationary state with stabilized sampling 
behavior. It is also observed that the amplitude (range) of fluctuations, in the trace plots increases 
slightly over time, i.e., in the earlier time steps, the samples exhibit a tighter range of values for the 
model parameters. This is because, in the early months, larger temperature changes better constrain 
the parameter estimation, narrowing the search radius within the plausible exploration space. In 
summary, this analysis shows that the sampling has achieved stationarity, consistently exploring the 
parameter space without exploration bias, in a well-mixed manner.In the next step, to assess whether 
the generation of each sample is independent of previous samples, autocorrelation plots are employed 
(Figure 9). Autocorrelation measures the similarity between the samples as a function of “lag”, or the 
number of iterations between samples. Constant high autocorrelation indicates that samples are too 
similar, suggesting poor mixing of the sampling methodology. Effective MCMC sampling should 
display decreasing autocorrelation with increasing lag, showing that samples become more 
independent as the gap between them grows [52].
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Figure 9. Autocorrelation of the nine model parameters (heat extraction rate (𝑞), thermal 
conductivity (𝜆), and groundwater velocity (𝑢) for three layers) at five different time steps, up to 

a lag of 50.

In Figure 9, autocorrelation is calculated for the samples of each model parameter at various time 
steps, with a thinning factor of 100 and a maximum lag of 50. For most parameters, autocorrelation 
decreases as the lag increases, indicating that realized samples are relatively independent and that the 
walkers mix well. However, an exception is found in the groundwater velocity of the first layer (𝑢1), 
where repetitive spikes in autocorrelation appear at later time steps, indicating higher correlations 
between nearby samples. This pattern suggests that 𝑢1 may have converged to its target distribution 
earlier, resulting in less variability in subsequent samples. This could indicate that the early 
temperature data strongly constrains this parameter, producing samples that consistently reflect the 
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already determined target value. This implies a so-called high information content of the temperature 
data during early time steps for the first layer.

3.2 Evaluation of the posterior samples

To gain a deeper understanding of the results from the MCMC sampling, violin plots are used to 
visualize the distributional characteristics of the generated model parameter samples (Figure 10). 
These plots are particularly useful in this context, as they reveal the density and variability of the 
generated model samples. Figure 10illustrates this information for all parameters, using the same 
selected time steps shown in the previous figures, providing a more comprehensive view of how the 
uncertainty in the model samples evolves.. As shown in Figure 10, the parameters in the first layer 
are more tightly concentrated when compared to those in the other layers.
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Figure 10. Violin plots of the nine model parameters (heat extraction rate (𝑞), thermal 
conductivity (𝜆), and groundwater velocity (𝑢) for three layers) at five different time steps.

The dashed line represents the reference value for each parameter.

This narrower distribution in the first layer corresponds to earlier findings, which suggested that the 
thermal state in this layer, influenced by lower advection, leads to more significant temperature 
changes. These changes indicate high parameter sensitivity, which in turn helps to constrain the 
parameter space more strictly.

In the first layer, the samples for both thermal conductivity (𝜆₁) and groundwater velocity (𝑢₁) are 
clustered around a single mode, indicating high certainty in the parameter estimates. This is 
particularly evident for groundwater velocity (𝑢₁), where the statistical distribution is especially tight. 
This aligns with the autocorrelation analysis from Figure 9, which showed that after a few months, 
the inference of groundwater flow in the first layer has stabilized. Therefore, further Bayesian 
investigations for this parameter would not be necessary and could be treated as a minimization 
problem instead. However, the strong correlations between parameters and interactions across layers 
still necessitate the use of the Bayesian framework to understand the relationships in the parameter 
space.

In contrast, the distributions of groundwater velocity samples in the second (𝑢₂) and third (𝑢₃) layers 
show greater variability. This can be attributed to the heat transfer dynamics in these layers, where 
slower thermal changes in later time steps lead to less pronounced temperature shifts. As a result, a 
wider range of groundwater flow values can explain the observed temperatures, leading to greater 
uncertainty in the parameters for these layers. The consistent findings that the parameters in the first 
layer exhibit the strongest correlations indicate that they are the most influential factors in 
determining temperature changes in the field. To further explore the relationships between pairs of 
model parameters, an analysis of the correlation between the heat extraction rate (𝑞1), thermal 
conductivity (𝜆1), and groundwater velocity (𝑢1) in the first layer in the sixth month is performed. 
This analysis is illustrated in Figure 11, where the lower left triangle of the figure displays contour 
plots, while the upper right triangle features hexbin plots. Each hexagon represents a minimum of 15 
samples at that position in the parameter space, with darker colors indicating higher frequencies of 
samples. The diagonal shows histograms of sample distributions, along with the estimated kernel 
density distributions.
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Figure 11. Pair plots of heat extraction rate (𝑞1), thermal conductivity (𝜆1), and groundwater 
velocity (𝑢1) within the first layer at month 6.

 The histogram of correlations reveals a multimodal distribution for both the heat extraction rate and 
thermal conductivity, while an unimodal distribution is observed for groundwater flow. Although all 
parameters are correlated at this time step, the strongest correlation is between groundwater velocity 
and the heat extraction rate. For a more comprehensive analysis, the pair plots of all nine parameters 
at five different time steps are presented in the Appendices. Notably, correlations are observed not 
only within individual layers but also between different layers over time. This observation aligns with 
the governing heat transfer in the domain. Initially, a significant temperature difference between the 
inlet fluid in the pipe and the surrounding environment can be assumed, leading to a higher expected 
heat extraction rate in the first layer at early times. Due to the higher temperature differences in the 
first layer, the fluid inside the pipe extracts a relatively large amount of energy from the ground. As 
a result, the warmed fluid entering the second and third layers has a higher inlet temperature, causing 
a decrease in the heat extraction rate in the first layer over time. However, higher advection in the 
second and third layers mitigates the cooling effect, maintaining a relatively constant heat extraction 
rate in those layers. This interaction between the layers can also be identified statistically in the pair 
plots of Figure 11.
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3.3 Simulated temperature changes

So far, the generated samples using various statistical analyses have been discussed. However, the 
primary goal of this work is not merely to infer parameters, but to improve the prediction of thermal 
states in the field. Therefore, this section focuses on predicting temperature changes around the BHE 
in a stochastic manner, utilizing the measured temperatures from the inactive BHE over the operation 
time. As a first scenario, five time steps at 6, 12, 24, 36, and 48 months are selected and at the end of 
each time step, the measured temperatures are used within the Bayesian framework to infer a set of 
proposed model parameters. These inferred parameters are then directly applied to predict 
temperature changes in the field across the layers after 5 years of operation. The results of these 
predictions, with a thinning factor of ten applied to the samples, are shown in Figure 12. 

Figure 12. Comparison of simulated temperature changes and observed temperature change at 
month 60 over the depth, using inferred parameters from months 6, 12, 24, 36, and 48.

It is revealed that over time, as more information is gathered, the uncertainty in the predictions is 
significantly reduced. Initially, most of the generated samples for the parameters in the first layer tend 
to underestimate the temperature, but as time progresses, the proposals are chosen more efficiently. 
To better quantify the results shown in Figure 12, the root mean square error (RMSE) for temperature 
change predictions at month 60 is plotted in Figure 13. All sampled parameters from months 6, 12, 
24, 36, and 48 are included in this analysis to predict the temperature change at the end of month 60 
along the entire depth.
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Figure 13. Comparison of the root mean square error (RMSE) and the range of temperature 
change predictions at month 60, based on the samples from months 6, 12, 24, 36, and 48.

It is observed that the maximum RMSE for predictions using samples from month 6 is 1.17 K, which 
decreases to 0.05 K with the consideration of samples from month 48. Similarly, the maximum range 
of temperature change predictions reduces from 1.91 K to 0.16 K as the month progresses from 6 to 
48. This indicates that uncertainty in the temperature predictions for the final time step reduces to 8% 
when inferred samples from month 48 are used. It should be noted that the faster dynamics of 
temperature change in the early months make capturing the correct behavior of temperature variation 
more challenging. However, if certain subsurface parameters, such as groundwater flow, or 
operational parameters, like the flow rate of the heat carrier fluid, change over time, fast temperature 
changes may also occur even in the later time steps.

As expected from the statistical analysis, the first layer, due to low groundwater velocity and local 
cooling, is the main source of uncertainty for predicting temperatures. It was observed that predictions 
from layers 2 and 3 are more accurate, as they can more rapidly approach the true thermal state. This 
is because temperature signals in these layers reach a steady state more quickly, leading to smaller 
variations between time steps. In the first case, the spatial predictability of the proposals across the 
entire depth is analyzed. For the second case, an examination of temperature changes within the first 
layer over continuous time steps is conducted. Therefore, the same five time steps (month 6, 12, 24, 
36, and 48) are selected, and based on the inferred parameters at each time step, the simulated 
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temperature change until the end of the operation is compared. Here, the temperature change at a 
depth of 10 m is presented in Figure 14.

Figure 14. Comparison of the 95% confidence interval, mean, and median of predicted 
temperature changes with observed temperature changes at a depth of 10 m, using inferred 

parameters from months 6, 12, 24, 36, and 48 until the end of the operation.

This result clearly shows a reduction in temperature uncertainty over time. Similar to the previous 
case, predictions based on early inferred parameters cannot accurately reproduce the transient 
temperature evolution and tend to predict an earlier steady state for the subsurface system. For 
instance, by comparing the mean and median of predicted temperatures based on parameters from 
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months 6 and 12, it is evident that predictions based on parameters from month 12 better follow the 
nonlinear transition from the transient phase to a quasi-steady state condition.

4 Conclusions 

This study presents a probabilistic modeling framework for predicting long-term temperature changes 
in the subsurface surrounding borehole heat exchanger (BHE) fields, accounting for multi-layer 
subsurface heterogeneity and groundwater flow. Leveraging a Bayesian approach, the newly 
developed framework infers the high-dimensional, correlated parameter space essential for accurately 
modeling heat transport in the subsurface caused by the operation of BHEs in fields with complex 
geological settings. To achieve this, an efficient affine invariant ensemble sampler (AIES) within a 
stochastic Bayesian method characterizes nine correlated parameters—such as heat extraction rate, 
thermal conductivity, and groundwater velocity—across three distinct subsurface layers. An efficient 
analytical forward solver, the moving finite line source model with anisotropy (MFLSA) further 
enhances the framework’s capacity to incorporate anisotropic conditions and groundwater flow.

To demonstrate the framework’s applicability, a synthetic five-year case study is conducted in 
COMSOL Multiphysics®, involving four active BHEs and one inactive BHE. Monthly simulated 
temperatures obtained at the inactive BHE by the numerical model are used as reference data for 
parameter estimation and to evaluate the framework’s temperature change predictions. A 
comprehensive statistical analysis confirms the successful characterization of the parameter space, 
therefore, achieving reliable spatial and temporal temperature predictions. Sequential application of 
the framework over 32 months shows a reduction in prediction uncertainty to 8% by the end of the 
five-year operation, underscoring the framework’s effectiveness in managing long-term temperature 
predictions. However, the reduction in uncertainty may be less pronounced if operational conditions 
vary significantly over time.

Additionally, this framework extends the applicability of the MFLSA analytical model for realistic, 
heterogeneous subsurface scenarios by eliminating the need for a constant heat extraction rate across 
layers.

Future work will focus on applying this framework to real field data with extended, high-resolution 
measurements and exploring transient boundary conditions and variable operational parameters. 
Incorporating machine learning methods to further improve sampling efficiency, along with 
complementary data sources such as hydrogeological measurements and geophysical investigations, 
could refine the inversion process and enhance the reliability of inferred parameters.

.
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Appendices

Validation of the forward solver over depth and time (30 years), using data and results from [45] for 
the (hydro)geological settings provided in Table 1.

Figure A 1. Validation of the forward solver (MFLSA) with numerical results over depth
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Figure A 2. Validation of the forward solver (MFLSA) with numerical results over time
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Pair plots for all nine parameters at different time steps:

Figure A 3. Pair plots of all nine parameters at month 6
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Figure A 4. Pair plots of all nine parameters at month 12
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Figure A 5. Pair plots of all nine parameters at month 24
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Figure A 6. Pair plots of all nine parameters at month 36
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Figure A 7. Pair plots of all nine parameters at month 48
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Highlights: 

• Stochastic modeling of temperature changes in a BHE field over 5 operational years. 

• Development of a Bayesian framework to infer nine correlated subsurface parameters.

• Heat transport modeling in a multi-layer subsurface with groundwater flow.

• Reduction of max RMSE in temperature simulations from 1.17 K to 0.05 K in 32 months.

• Improved moving finite line source model with anisotropy using a data-driven approach.
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