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b Laboratoire de Spectroscopie Atomique, Moléculaire et Applications (LSAMA), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia 
c Laboratoire de l’atmosphère et des cyclones (LACy), CNRS, UMR 8105, Université de la Réunion, France   
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A B S T R A C T   

Multiple filamentation is a major problem for laser pulse propagation in the atmosphere. In this article, we study 
the influence of a turbulent atmosphere on the growth of the modulational instability which is the cause of 
multiple filamentation. It is shown that the growth rate of this instability decreases when it is considered that the 
index of refraction has a stochastic behavior. A good qualitative agreement between the analytical and numerical 
results is obtained.   

1. Introduction 

A better understanding of the propagation of very powerful short 
laser pulses is a crucial issue for its wide range of applications in the 
remote sensing of chemical and biological agents as well as in directed 
energy applications, induced electrical discharges, lightning protection, 
long-range propagation of light bullets [1–9] … For instance, the LIDAR 
(light detection and ranging) technique is an effective tool to investigate 
the atmosphere pollutants. 

At high laser power, where laser power exceeds the critical power 
P≫Pcr, the input beam, due to unavoidable beam irregularities, breaks 
up into N filaments, with N ∼ P /Pcr, each of them carrying about the 
critical power [10,11], Chaotic bundles of filaments are formed, and an 
erratic backscattering signal is observed. This multiple filamentation can 
play a positive or negative role depending on what we want to measure 
or the application we are targeting. Lightning discharge control requires 
long homogeneous plasma channels which are produced by the filament 
[12–15]. The detected backscattered nitrogen fluorescence from inside 
the filaments yields irregular changes from shot to shot which cannot be 
explained by fluctuation resulting from the initial laser pulse itself [16]. 
This irregularity is not only because of the difference in signal profiles 
[16–18]. Multiple filamentation was also studied to explain the fading of 

the backscattering signal during periodically pulsed probing the atmo-
sphere [17]. Thus, for many applications, filamentation control is an 
important issue and there exists a challenge in controlling the modula-
tional instability which gives rise to multiple filamentation. 

Focusing on low laser intensities, we show that the growth rate of the 
Bespalov and Talanov instability [19] can be reduced by turbulence. In 
this article, turbulence is outlined by introducing a stochastic refractive 
index in the nonlinear Schrödinger equation. A stochastic differential 
equation is solved considering refractive index fluctuations. A rough 
approximation used to average the Green’s function of the set of equa-
tions is legitimized by deriving, in one case, the same result without 
using this approximation (Appendix A). 

In this way, we show that the growth rate of the Bespalov and 
Talanov instability can be minimized by turbulence. This will prevent 
the buildup of multiple filamentation. Our assumption is that at the start 
of the beam, there are certain maxima of energy density (Fig. 1). These 
irregularities can be amplified by the modulational instability. Due to 
Kerr law, that is to say to the nonlinear part n2I of the index of refraction 
[1], the light rays are confined along the positive refractive index gra-
dients and some filaments are created [8,20,21]. 

The purpose of this article is to emphasize that multiple fila-
mentation can be minimized when the atmosphere is turbulent through 
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an analytical approach. This leads to a beam of light being more uni-
form, meaning it is almost free from intensity discontinuities. 

2. Model equations 

We consider an electromagnetic field propagating in the atmosphere. 
Its electric field has the following form 

E[r =(x, y, z), t] = ψ(r, t)expi(k0z − ω0t)
êx

2
+ cc, (1)  

where ψ(r,t)varies slowly in time and z and with k0 = n0(ω0/c), where n0 
is the space average of the linear refractive index and r = (x, y, z) the 
spatial dependence. We have n = n0 + 2n2〈E 2(r, t)〉 + δn(r) where the 
angular brackets represent a time average and δn(r) is a random function 
which characterizes the atmosphere turbulence, the nonlinear index 
which quantifies Kerr effect is considered here, n2 is the second-order 
index of refraction [1,22–24]. The refractive index is assumed to 
depend on space only as a ray goes through the atmosphere so quickly 
that it does not change significantly during the crossing. 

Fourier transforming the wave equation gives 

∂2

∂z2 E(r,ω) + Δ⊥E(r,ω) +
ε(ω)

ε0

ω2

c2 E(r,ω) = 0, (2)  

the quantityε is the atmosphere dielectric constant and ε0 the permit-
tivity of free space. As the amplitude of the wave is assumed to vary 
slowly in time, ψ contains no high-frequency components and we 
consider that E(r, ω) ≈ (1 /2)ψ(r, ω − ω0)eik0z. Moreover, the slowly 
varying amplitude in space approximation is made and ∂2ψ /∂z2 can be 
dropped [22]. The wave equation, in terms of ψ, is 

2ik0
∂
∂z

ψ + Δ⊥ψ +
(
k2 − k2

0

)
ψ = 0, (3)  

where ψ = ψ(r, ω − ω0)and k(ω) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ε(ω)/ε0

√
ω/c. As 〈E 2(r, t)〉 =

(1 /2)ψψ∗ = (1 /2)|ψ |2, we have now n = n0 + n2|ψ |
2
+ δn(r). 

Then, the equation of propagation is reformulated in the time 
domain by using the inverse Fourier transform. Next, a retarded time is 
introduced. Assuming that the group velocity dispersion can be 
neglected, the equation for the propagation of the pulse in a turbulent 
atmosphere reads [22,25–27] 

2ik0ψz[r=(x, y, z)] + Δ⊥ψ(r) + 2k2
0
n2

n0
|ψ |2ψ(r) = − 2

k2
0

n0
δnψ(r). (4) 

To predict the amplification of irregularities initially present on the 
laser wavefront, a radial perturbation of ψ is introduced [19,22] 

ψ(r) = ψ0(z) + a1(z)e
ik⊥ .r

+ a− 1(z)e
− ik⊥ .r

, (5)  

where a1(z) and a− 1(z) are first-order quantities and ±k⊥are the trans-

verse components of the wavevector of the off-axis modes. We begin by 
assuming that fluctuations in the refractive index are in the form 

δn(z) = δn0eiφ(z), (6)  

where δn0 is a first-order quantity and φ a stochastic quantity. 
To find a solution to the wave equation [Eq. (4)], we first assume that 

ψ0 satisfies 

dψ0(z)
dz

− i
ω0

c
ψ0

(
n2|ψ0|

2
+ δn0eiφ

)
= 0, (7) 

The solution is ψ0(z) = ψexp
[

i
(

γz+ω0
c δn0

∫z

0

eiφdz

⎞

⎠

⎤

⎦ where γ =

ω0
c n2ψ2 and ψ is a real constant which is a zero-order quantity. We 
consider ξ = δn0 /(n2ψ2) is small and neglect the stochastic integral. 

Always with the aim of satisfying the wave equation, the expansion 
for ψ(r) is considered. The propagation equation is satisfied by setting to 
zero the terms in eik⊥ .r and in e− ik⊥ .r 

2ik0
∂a1

∂z
− k2

⊥a1 = − k2
0
2n2

n0
ψ2( 2a1 + a∗

− 1e2iγz) −
2k2

0

n0
δn0eiφeiγza1,

2ik0
∂a− 1

∂z
− k2

⊥a− 1 = − k2
0
2n2

n0
ψ2( 2a− 1 + a∗

1e2iγz) −
2k2

0

n0
δn0eiφeiγza− 1.

(8) 

Letting a±1 = ã±1eiγz, β = k2
⊥/2k0, δñ0 = δn0eiγz, and χ = k0δñ0/n0, the 

following form can be used to write this set of equations 

d
dz

(
ã1

ã∗

− 1

)

= Mφ

(
ã1

ã∗

− 1

)

, (9)  

with 

Mφ =

[
i
(
γ − β + χeiφ) iγ

− iγ − i(γ − β + χe− iφ)

]

. (10) 

At low intensity γ is small and δñ0 does not vary significantly with z. 
In this case, χ may be supposed to be a constant. The stochastic phase φ is 
assumed to undergo the Kubo-Anderson process [28,29] which is set as a 
stepwise constant random function that jumps at randomly chosen dis-
tances between random step-values (Fig. 2). 

The jumping positions of the stepwise constant random function φ(z)
are uniformly and independently Poisson distributed with mean rate Δκ. 
We have 〈eiφ(z)〉 = 0 and e[iφ(z)− iφ(z′)] = e(− Δκ|z− z′|)

3. Calculation of the growth rate 

It is convenient to introduce the Green’s function G satisfying the 
matrix equation [28,29] 

Fig. 1. Multiple filamentation is initiated by the modulational instability.  

Fig. 2. Evolution of the phase φ versus the propagation distance.  
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dG(z, z′)

dz
= Mφ(z)G(z, z′), (11)  

with G(z′,z′) = I, where I is the identity matrix. Then, in terms of G, the 
solution of Eq. (9) reads 

A(z) = G(z, 0)A(0), (12)  

with 

A(z) =

(
ã1

ã∗

− 1

)

. (13) 

Based upon the Green’s function equation we have dG(z, 0) /dz =
Mφ(z)G(z,0). Then, we calculate the mean Green’s function 〈G(z,0)〉on 
the different jumping positions zi and phases φi. Remembering that 〈
A(z)〉 = 〈G(z,0)〉A(0), we look for a master equation for this function. It 
can be written as the sum of two components: the first representing the 
part containing no jump between (0, z) and the second one integrating 
jumps occurring between (0, z). 

Considering a Poisson distribution, the probability of having no jump 
between 0 and z is exp(− Δκz). Then, the contribution to 〈G(z,0)〉 may be 
written: 〈G(z,0)〉nojump = exp( − Δκz)〈G0(z, 0)〉, where G0(z,0) =

exp[Mφz] is obtained by solving Eq. (11) when φ is assumed to be a 
constant and 〈G0(z,0)〉 = 〈G0(z,0)〉φ is obtained by averaging over φ. 

In the case when we have jumps, the jumping positions between 
0 and z take place at the points z1 < z2 < ..... < zn and the semigroup 
property of the Green’s function leads to 

G(z, 0) = G0(z, zn)G0(zn, zn− 1).......G0(z1, 0), (14)  

for a single realization. If z’ is the last jump position before z, it can be 
written 

G(z, 0) = G0(z, z′)G(z′, 0), (15)  

the probability for this last jump to occur between z’ and z’+δz’ is 
Δκexp[ − Δκ(z − z′)]dz′. Thus, the contribution of all the jumps to 〈
G(z,0)〉 is given by 

〈G(z, 0)〉jump =
∫z

0
Δκdz′exp( − Δκ(z − z′))〈G0(z, z′)G(z′, 0)〉z′

=
∫z

0
Δκdz′exp( − Δκ(z − z′))〈G0(z, z′)〉〈G(z′, 0)〉z′,

(16)  

as G0(z, z′) and G(z′, 0) are independent. The symbol 〈.〉z′ in Eq. (16) 
represents the conditional average of A as a last jump occurred at z’. 
Moreover, as we consider a stationary problem, we haveG(z,z′) = G(z −

z′,0) = G(z − z′). Thus, the average total Green’s function is given by 

〈G(z, 0)〉 = exp(− Δκz)〈G0(z, 0)〉 +
∫z

0

Δκdz′exp(

− Δκ(z − z′))〈G0(z − z′)〉〈G(z′, 0)〉z′. (17)  

We have 〈G(z′, 0)〉z′ = 〈G(z′,0)〉 as the process is independent on future 
jumps. 

This equation is solved by performing a Laplace transform: G(p) =
∫z

0 

dze− pz〈G(z,0)〉. When considering the first term in the right-hand side of 
(17) which corresponds to the no jump case, we have 

G0(p) =
∫z

0

dze− pz〈G(z, 0)〉nojump =

∫z

0

dze− pz 1
2π

∫2π

0

dφexp(Mφ)z. (18) 

Note that when we take the Laplace transform of a matrix equation of 
the form Ġ0(z,0) = MφG0(z,0), we obtain pG̃0(p,0) − G0(0,0) = MG̃0(p,

0), thus G̃0(p,0) = (pI − Mφ)
− 1. Therefore, Eq. (18) reads 

G0(p) = 〈G̃0(p, 0)〉 =
〈
(pI − Mφ)

− 1〉
. (19) 

The Laplace transform of Eq. (17) gives 

G(p) = [I − ΔκG0(p + Δκ)]− 1G0(p + Δκ)
=

[
I − Δκ

〈
((p + Δκ)I − Mφ)

− 1〉]− 1〈
((p + Δκ)I − Mφ)

− 1〉

= N1N2,

(20)  

with N1 = [I − Δκ〈((p + Δκ)I − Mφ)
− 1
〉]
− 1 and N2 =

〈((p + Δκ)I − Mφ)
− 1
〉. 

Finally, the growth rate of the perturbation will be derived by taking 
the inverse Laplace transformation of G(p): 〈G(z, 0)〉 =

1
2πi

∫Γ+i∞

Γ− i∞

G(p)epzdp. 

3.1. Turbulence is not considered 

It is assumed here that δn0 = 0, then 

Mφ = M0 =

[
i(γ − β) iγ
− iγ − i(γ − β)

]

. (21) 

Considering K =

(
a b
c d

)

, then K− 1 = 1
ad− bc

(
d − b
− c a

)

, 

consequently 

G0(p) = (pI − M0)
− 1

=
1

D0

[
p + i(γ − β) iγ

− iγ p − i(γ − β)

]

, (22)  

with D0 = p2 + (γ − β)2
− γ2. The poles of G(p) are the zeros of D0 

p = ±p0 = ±
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
β(2γ − β)

√
. (23) 

The growth rate of the perturbation is derived by taking the inverse 
Laplace transformation of G0(p), 〈G0(z, 0)〉 = G0(z, 0) =

1
2πi

∫Γ+i∞

Γ− i∞

G0(p)epzdp. Applying the residue theorem: G0(z,0) = Res(p0) +

Res(− p0) where Res(p0)is the residue of G0(p) at p0, only one pole gives a 
growth of the perturbation with z, for 

z≫1, we obtain 

G0(z, 0) ∼ exp(p0z), (24a)  

thus 

A(z) = (expp0z)A(0). (24b) 

We have found again the result previously derived by Bespalov and 
Talanov [19]. Appendix B provides other ways to obtain this result. 

3.2. Conclusions for the non-turbulent situation 

The positive gain of the modulational instability is p0 as far as 2γ −
β > 0, the value already derived by Bespalov and Talanov [19]. When 
2γ − β < 0, p0 becomes imaginary which means that the energy transfer 
from the pump to the signals a1(z)e

ik⊥ .r and a− 1(z)e
− ik⊥ .r is completely 

inhibited. 
Figs. (4–8) show the good agreement between the numerical inte-

gration of Eq. (9) and the analytical result; the blue dashed line and the 
blue solid line one have the same slope. 

This modulational instability can be studied in the framework of the 
four-wave mixing [22,30,31]. Introducing Δk = 2(γ − β) the phase 
mismatch between the two signals and the cross-coupled polarization 
[22,31,32], the growth rate can be put in the following form p0 =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
γ2 − Δk2/4

√
[Appendix C]. When the mismatch Δk is large enough the 
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growth rate becomes imaginary, and the instability is suppressed. When 
Δk = 0, the growth rate is maximum, the four-wave mixing-process is 
phase matched [31]. Considering a stochastic index implies that the 
different wave vectors are stochastic, it can be considered that this sit-
uation is the superposition of several realizations which implies that the 
matching condition is not satisfied in many cases. As a result, the growth 
rate should be reduced. 

3.3. Turbulence is considered 

Let us verify that the growth rate of the instability is really affected 
by the stochastic index. We have 

(p′I − Mφ)
− 1

=
1
D

[
p′ + i

(
γ − β + χe− iφ) iγ
− iγ p′ − i

(
γ − β + χeiφ)

]

, (25)  

with p′ = p + Δκ and D = p′2 + ip′χ(e− iφ − eiφ)+ (γ − β)2
+ (γ −

β)χ(e− iφ + eiφ)+ χ2 − γ2. 
Then, we have used the following rough approximation,〈xi /yi〉

= [N〈xi〉+
∑N

i=1δxi] /[N〈yi〉+
∑N

i=1δyi] ≈ 〈xi〉 /〈yi〉 where N is the number 
of terms to average, δxi and δyi are fluctuations around the average. It is 
shown in Appendix A that when considering another form for refractive 
index fluctuation δn, the results obtained by using this approximation 
and the one given by an exact calculation are the same showing that this 
approximation is valid. It leads to 

N2 =
〈
(p′I − Mφ)

− 1〉

=
1

〈D〉 =
(
p′2 + (γ − β)2

+ χ2 − γ2
)

[
p′ + i(γ − β) iγ

− iγ p′ − i(γ − β)

]

,

(26)  

and 

N1 =
[
I − Δκ

〈
(p′I − Mφ)

− 1〉]− 1

=
1
R

⎡

⎣

1 − [p′ − i(γ − β)]
Δκ
〈D〉

iγ
Δκ
〈D〉

− iγ
Δκ
〈D〉

1 − [p′ + i(γ − β)]
Δκ
〈D〉

⎤

⎦, (27)  

with R =
[
1 − [p′ − i(γ − β)] Δκ

〈D〉
][

1 − [p′ + i(γ − β)] Δκ
〈D〉
]
−
(
γ Δκ
〈D〉
)2. 

Thus, considering a small value of Δκ and a large enough value of 〈D〉
so that Δκ/〈D〉can be assumed to be a small quantity, then, when p ≈ p0, 
we have R ≈ 1 − 2p′(Δκ/〈D〉). If 〈D〉 is very small, then R∝1/〈D〉. The 
simple poles of G(p) = N1.N2 [Eq. (20)] are the zeros of 〈D〉. If p is 
frankly different from p0, the poles no longer exist and the growth rate 
fades. Finally, the growth rate modified by turbulence reads 

p = p0

(

1 −
1
2

χ2

p2
0

)

− Δκ. (28) 

The growth rate of the modulational instability is lessened by tur-
bulence. It is significantly attenuated when χ ≃ p0 and when Δκ ≃ p0. 

Eqs. (9) were also integrated numerically in some physical circum-
stances considering that the evolution of the phase φ versus the propa-
gation is close to the one of the theoretical part (Fig. 1). 

It is assumed that between two jumps phase value φ is constant. The 
phase variations are described in Fig. 3. The values of φ is determined by 
a random number and is supposed in a first step, to jump every constant 
distance azk = 1 /Δκ. 

For the sake of simplicity, the phase versus z was first assumed to be a 
staircase function y multiplied by 2π, φ is defined as follows: y = − 1 
when − azk < z < 0 and y = 1 when 0 < z < azk. 

The Fourier series for this function is 

φ(z) = 8
[

sin(Δκπz)+
1
3

sin(3Δκπz)+
1
5

sin(5Δκπz)

+ .....
1

2n + 1
sin[(2n+ 1)Δκπz] + ....

]

.

(29) 

A first step was to approach the actual phase variations by consid-
ering many terms of Fourier’s expansion. 

Then the phase φ was assumed to be a stochastic function. A sto-
chastic fix to the Runge Kutta was implemented. Here, the phase φ was 
given by r × 2π where r is a random number which should be drawn 
from the distribution N(0, h) with zero mean and a variance of h the 
integration step. The deterministic dynamics was updated every inte-
gration step while the stochastic terms are updated using the square root 
of h [33–36]. We have N(0, h) =

̅̅̅
h

√
N(0, 1), the fix was therefore ob-

tained by multiplying the stochastic phase by the square root of the 
space step. 

To validate the good agreement between the analytical and the nu-
merical results different parameters were considered. First, the case of a 
CO2 laser propagating in the atmosphere was considered. In these 
simulations, we took, λ = 10.6μm, β = γ and n2 = 1.43 × 10− 26m2/V2 

[37]. Then, the case of a long pulse neodymium laser (λ = 1.06μm) was 
considered with I = 2 × 1010W /cm2 [38] and n2 = 1.035 × 10− 25m2/

V2 [8,39,40]. 
Figs. (4–8) show the evolution of the dimensionless quantity ̂I = |ã1|

as a function of z calculated in different ways. The gains p and p0 are our 
two analytical results, exp(p0z) is represented by a blue dashed line 
which shows the growth rates of the instability when no turbulence is 
considered, when turbulence is taken into account, a red dashed line is 
used to represent the quantity exp(pz). The normalized amplitude of the 
instability |ã1| is also obtained by integrating numerically Eq. (9) with a 
simple fourth order Runge Kutta. The stochastic fix is used in the sto-
chastic case, the results are represented by a solid red line. In the 
nonturbulent case they are represented by a solid blue line. Different 
runs with different phase φ-distributions were considered, the results 
obtained are always similar to those displayed in these figures. The black 
solid lines are obtained with different number of terms in the Fourier 
expansion [Eq. (29)]. 

Fig. (4a) shows the results obtained when χ is a function of z, while 
Fig. 4b shows the results obtained under the assumption that it is con-
stant. We began to suppose that the distance azk between two jumps is 
constant. 

It is apparent that considering χ is a constant makes sense, at least, 
over a distance close to the half-period of cosγz. In these cases, the 
growth obtained for the instability cannot be compared to the analytical 
result [Eq. (28)] as Δκ is too large. 

These last results show that in a certain domain, the growth rate of 
the modulational instability is indeed reduced by the turbulence of the 
atmosphere. We will now ensure that our numerical results are relevant 
by comparing them to an analytical result in the following. 

From this point, χ is a constant, the values of the various parameters 
examined do not strictly match the frame we defined in our hypotheses. 

Fig. 3. Evolution of the phase φ versus the propagation distance.  
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Fig. 4. λ = 10.6μm, I = 1.5 × 1011W /cm2, δn0 /n0 = 7 × 10− 10 and azk = 20, γ 
= 9.5× 10− 3, ξ = 4.36× 10− 2. 
The blue dashed line is the analytic result when no turbulence is considered 
[exp(p0z)]. 
The black solid lines are obtained with different number of terms in the Fourier 
expansion. 
The blue solid line is obtained by integrating numerically Eq. (9) when there is no 
turbulence (|ã1|). The red solid line is obtained when there is turbulence with a simple 
fourth order Runge Kutta by using a stochastic fix (|ã1|

T
Fix). 

Fig. 5. λ = 10.6μm, I = 1.5× 1012W /cm2, δn0 /n0 = 3.3× 10− 9, azk = 30. 
γ = 9.58× 10− 2 ξ = 2× 10− 2. 

Fig. 6. λ = 10.6μm I = 1.5× 1012W /cm2, δn0 /n0 = 3× 10− 9, azk = 40. 
γ = 9.58× 10− 2 ξ = 1.85× 10− 2. 
The brown curve is obtained with a simple fourth order Runge Kutta by using a 
stochastic fix (|ã1|

T
Fix) and a constant azk (azk=40). The red solid line is obtained in 

the same way but with a random azk (|ã1|
T
Fix,1/azkrandom). 

Fig. 7. λ = 1.06μm I = 2× 1010W /cm2, δn0 /n0 = 3.5× 10− 10, azk = 40. 
γ = 9.8× 10− 2, ξ = 2.24× 10− 2. 

Fig. 8. λ = 1.06μm I = 2× 1010W /cm2, δn0 /n0 = 3.5× 10− 10, azk = 25. 
γ = 1.13× 10− 1, ξ = 1.9× 10− 2. 
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Our goal is to ensure that the analytical and numerical solutions for our 
set of equations are consistent [Eq. (9)]. 

In Fig. 5, results corresponding to high values of z and high values of 
|ã1| are shown. 

A case when the distance between two jumps of the phase is constant 
is compared to a case when it is stochastic is shown in Fig. 6. The sto-
chastic distance azk is obtained by multiplying the constant value by a 
random number between 0 and 1. The integrations of the stochastic 
equation in the two cases give similar results. 

For λ = 10.6μm, in these cases, the different numerical integrations 
of Eq. (9) confirm that the growth of the instability is reduced by tur-
bulence. Our overall results indicate that there is good qualitative 
agreement between the analytical approach and the numerical 
approach. 

Let us now move on to a value of the wavelength more accessible to 
an experiment: λ = 1.06μm. Fig. 7 shows results when turbulence is 
considered and when azk is a constant 

A case when the distance between two jumps of the phase is constant 
was also compared to one when it is stochastic. The results are similar to 
those shown in Fig. 6. 

Thus, in the cases when λ = 1.06μm, our results still show a good 
qualitative agreement between the analytical approach and the nu-
merical one which was obtained using the same fix as before. We find 
that the growth of the instability is still reduced by turbulence. 

It was also assumed that the refractive index is in the form 

δn(z) = δn0cosφ(z), (30)  

contrary to a previous situation, the refractive index has no imaginary 
part. 

To find a solution to the wave equation [Eq. (4)], we first assume that 
ψ0 satisfies 

dψ0(z)
dz

− i
ω0

c
ψ0

(
n2|ψ0|

2
+ δn0cosφ

)
= 0. (31) 

The solution is ψ0(z) = ψexp
[

i
(

γz + ω0
c δn0

∫z

0

cosφdz

⎞

⎠

⎤

⎦. We have 

also considered ξ = δn0 /n2ψ2 is small and neglected the stochastic 
integral. 

The expansion for ψ(r) is considered again assuming that χvaries 
slowly with z, the propagation equation is satisfied by setting to zero the 
terms in eik⊥ .r and in e− ik⊥.r. Then, introducing the same parameters and 
variables as before, the wave equation for the off - axis modes is obtained 
and reads 

d
dz

(
ã1

ã∗

− 1

)

= Mφ

(
ã1

ã∗

− 1

)

, (32)  

with 

Mφ =

[
i(γ − β + χcosφ) iγ

− iγ − i(γ − β + χcosφ)

]

. (33) 

As δñ0 does not vary significantly with z, χ still may be supposed to be 
a constant. The stochastic phase φ is still assumed to undergo the Kubo- 
Anderson process. 

The following growth can be found by carrying out the same 
analytical work as before 

p = p0

(

1 −
1
4

χ2

p2
0

)

− Δκ, (34)  

thus, the growth rate of modulational instability is indeed reduced by 
turbulence. Now moving to the numerical approach, considering λ =

1.06μm, I = 2 × 1010W /cm2 and n2 = 1.2 × 10− 25m2/V2 a numerical 
integration of Eq. (32) was achieved. Fig. 8 shows results when turbu-
lence is considered and when the distance between two jumps, azk, is a 
constant. It also shows that with real refractive index fluctuations, the 
effect of the turbulence is still to decrease the growth of the modula-
tional instability. 

To summarize, the results presented above exhibit some consistency 
between our analytical and numerical results. For low intensities, they 
show that the modulational instability originally described by V.I. 
Bespalov and V.I. Talanov [19] is attenuated by turbulence, which is 
consistent with other studies [20]. 

4. Conclusions 

The impact of turbulence on the propagation of a laser pulse in the 
atmosphere, multiple filamentation have already been studied exten-
sively [9,20,25,41–43]. Here, we have studied its influence of turbu-
lence on the multiple filamentation process when a laser beam moves 
through the atmosphere. Its action on the modulational instability of a 
plane wave was investigated within the framework of the nonlinear 
Schrödinger equation. First, we have established the wave propagation 
equation when considering a stochastic refractive index perturbation to 
simulate turbulence. Our focus was on low laser intensities. The sto-
chastic index was expressed by using the Kubo-Anderson process. The 
Green’s function of the wave equation was introduced. An equation for 
the average Green’s function was determined using its semigroup 
property. Thus, the growth rate of the instability which begets the laser 
beam filamentation was calculated considering different forms for the 
stochastic part of the refractive index, one of them allowing a rigorous 
method. This was used to justify the rough approximation made to 
determine the average Green’s function and its poles. 

The stochastic wave equation has been solved numerically in a very 
close way first by replacing the stochastic part of the equation by a 
function giving a similar evolution Then, a fix to the Runge Kutta 
method to solve the stochastic set of equations which describe the 
instability is implemented. This fix was obtained by multiplying the 
stochastic phase by the square root of the space step. 

To test our numerical results, we have used the analytical solution. 
A global agreement between analytical and numerical results was 

reached. We have shown analytically and numerically a trend: turbu-
lence decreases the growth rate of the Bespalov and Talanov instability. 
Therefore, if we extrapolate the conclusion derived from our model and 
apply it to high powers, turbulence should cancel out most of the mul-
tiple filamentation phenomenon. 
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Appendix A 

The fluctuations of the refractive index are defined in a different way 

The refractive index fluctuations are assumed to be in the form 

δn(r) = δn0
[
ei(k⊥ .r+φ(z)) + e− i(k⊥ .r+φ(z))]. (A1) 

This form was chosen to find an analytical solution in two different manners, one using the rough approximation and the other not. The first goal 
was to legitimate the rough approximation. The second objective was to continue examining the numerical resolution of our stochastic differential 
equations. 

The calculations are conducted using the nonlinear Schrödinger equation with this expression for δn(r) exactly as in paragraph 2. 
The same expansion for ψ(r) as in paragraph 2 is considered. The following equation must be verified 

ψ0(z) = ψexp(iγz). (A2)  

We consider that n2ψ2a±1 ∼ δn0ψ≫δn0a±1 which means that δn0 is supposed to be very small. Then, the propagation equation is satisfied by setting to 
zero the terms in eik⊥.r and in e− ik⊥ .r. We obtain 

2ik0
∂a1

∂z
− k2

⊥a1 = − k2
0
2n2

n0
ψ2( 2a1 + a∗

− 1e2iγz) −
2k2

0

n0
ψδn0eiγzeiφa1,

2ik0
∂a− 1

∂z
− k2

⊥a− 1 = − k2
0
2n2

n0
ψ2( 2a− 1 + a∗

1e2iγz) −
2k2

0

n0
ψδn0eiγze− iφa− 1.

(A3) 

Introducing the same parameters and variables as before, the matrix Mφ becomes 

Mφ =

[
i
(
γ − β + χeiφ) iγ

− iγ − i(γ − β + χeiφ)

]

, (A4)  

with here χ = k0ψδñ0 /n0  

1) The rough approximation is used 

We find 

(p′I − Mφ)
− 1

=
1
D

[
p′ + i

(
γ − β + χeiφ) iγ
− iγ p′ − i

(
γ − β + χeiφ)

]

(A5) 

Let us calculate G(p) = N1.N2, thus 

N2 =
〈
(p′I − Mφ)

− 1〉
=

1
(
p′2 + (γ − β)2

− γ2
)

[
p′ + i(γ − β) iγ

− iγ p′ − i(γ − β)

]

, (A6)  

and 

N1 =
[
I − Δκ

〈
(p′I − Mφ)

− 1〉]− 1
=

1
R

⎡

⎣

1 + [p′ − i(γ − β)]
Δκ
〈D〉

iγ
Δκ
〈D〉

− iγ
Δκ
〈D〉

1 − [p′ + i(γ − β)]
Δκ
〈D〉

⎤

⎦, (A7)  

with R =
[
1+[p′ − i(γ − β)] Δκ

〈D〉
][

1 − [p′+i(γ − β)] Δκ
〈D〉
]
+
(
γ Δκ
〈D〉
)2 and 〈D〉 = p′2 + (γ − β)2

− γ2. 
As previously, it can be shown that the zeros of 〈D〉 are poles of G(p). Thus, the growth rate modified by turbulence is given by 

p ≈ p0 − Δκ. (A8) 

We still find that the growth rate of the modulational instability is attenuated by turbulence.  

2) The growth rate is calculated again without using the rough approximation. 

To discuss the validity of the rough approximation we must calculate the pole of 〈G(p)〉 and consequently the growth rate. Here, we shall calculate 
it in another way thanks to this form for the index perturbation. We start with Eq. (20), we express the two terms which when multiplied gives G(p). 
First, we have 
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N2 =
〈
(p′I − Mφ)

− 1〉
= p− 1〈( I + p′− 1Mφ + p′− 2M2

φ + ...+ p′− nMn
φ + ...

)〉
, (A9) 

with 

〈Mφ〉 = M0 =

[
i(γ − β) iγ
− iγ − i(γ − β)

]

, (A10)  

M2
φ =

[
γ2 −

(
γ − β + χeiφ)2

]
I, (A11)  

and 

M3
φ =

[
γ2 −

(
γ − β + χeiφ)2

]
Mφ. (A12) 

Consequently 
〈
M2

φ

〉
=
[
γ2 − (γ − β)2]I, (A13)  

and 
〈
M3

φ

〉
=
[
γ2 − (γ − β)2]M0, (A14)  

we also have 〈M4
φ〉 = [γ2 − (γ − β)2

]
2I and 〈M5

φ〉 = [γ2 − (γ − β)2
]
2M0. Finally, we find 

N2 =
〈
(p′I − Mφ)

− 1〉
= p′− 1[I + p′− 1M0 + p′− 2( γ2 − (γ − β)2)I + p′− 3[γ2 − (γ − β)2]M0 + ...

]

= p′− 1I
[
1 + p′− 2( γ2 − (γ − β)2)

+ p′− 4( γ2 − (γ − β)2)2
+ p′− 6( γ2 − (γ − β)2)3

+ ...
]

+p′− 2M0

[
1 + p′− 2( γ2 − (γ − β)2)

+ p′− 4( γ2 − (γ − β)2)2
+ p′− 7( γ2 − (γ − β)2)3

+ ...
]

=

[
p′− 1

1 − p′− 2[γ2 − (γ − β)2]

]
(
p′− 1I + p′− 2M0

)
.

(A15) 

The second term necessary for the expression of G(p) is 

N1 =
[
I − Δκ

〈
(p′I − Mφ)

− 1〉]− 1

= I + Δκ
〈
(p′I − Mφ)

− 1〉
+
[
Δκ
〈
(p′I − Mφ)

− 1〉]2
+ ....+

[
Δκ
〈
(p′I − Mφ)

− 1〉]n
+ ....

(A16) 

If Δκ is small enough only the term I can be considered. As G(p) = N2.N1, p′
0 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
β(2γ − β)

√
which is a pole of 〈(p′I − Mφ)

− 1
〉 is also pole of G(p). It 

gives the growth rate of the instability 

p′
0 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
β(2γ − β)

√
, (A17)  

that is to say 

p ≈ p0 − Δκ, (A18)  

which is the previous result [Eq. (A8)]. It means that the rough approximation that we made previously to calculate the poles of 〈G(p)〉 leads to a good 
result. 

Once again, we have compared our analytical results to the numerical results in the case of a λ = 10.6μm wavelength laser pulse and in the case of a 
λ = 1.06μmlaser pulse. Here, we don’t pay attention to the fact the different parameters fall outside or inside the framework defined by our as-
sumptions. Our goal is just to emphasize the agreement between the analytical and numerical solutions of our equations. 

The following results were obtained for λ = 10.6μm, δn0 /n0 = 1 × 10− 16, n2 = 1.43 × 10− 26m2/V2, I = 5 × 1012W /cm2 and azk = 10 when 
constant (Fig. A1) 

The red solid line is obtained with a fourth order Runge Kutta by using a stochastic fix (|ã1|
T
Fix,1/Δkrandom) and a random azk. The brown solid one is 

obtained using a constant azk(|ã1|
T
Fix). 

In the case when λ = 1.06μm, δn0 /n0 = 1 × 10− 16, n2 = 1.035 × 10− 25m2/V2, I = 1 × 1011W /cm2 and azk = 10 we obtained (Fig. A2) 
Figs. (A1 and A2) show that, in these cases, there is a good qualitative agreement between the analytical result and the numerical integration using 

the same fix as before. We find that the growth of the instability is still reduced by turbulence. 
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Fig. A1. λ = 10.6μm, I = 5× 1012W /cm2, δn0 /n0 = 1× 10− 16, azk = 10, n2 = 1.43× 10− 26m2/V2.  

Fig. A2. λ = 1.06μm
̅̅̅
2

√
, I = 1× 1011W /cm2, δn0 /n0 = 1× 10− 16, azk = 10, n2 = 1.035× 10− 25m2/V2. The red solid line is obtained by using a stochastic fix 

(|ã1|
T
Fix,1/Δkrandom) and a random azk. The brown solid one is obtained using a constant azk(|ã1|

T
Fix). 

Appendix B 

Other ways to calculate the growth rate of the instability in the non-turbulent case 

In the non-turbulent case, we can expand G0(p) in the following way 

G0(p) = (pI − M0)
− 1

= p− 1( I + p− 1M0 + p− 2M2
0 + ...+ p− nMn

0 + ...
)
, (B1)  

with 

M0 =

[
i(γ − β) iγ
− iγ − i(γ − β)

]

. (B2)  

We have 

M2
0 =

[
γ2 − (γ − β)2]I, (B3)  

and 

M3
0 =

[
γ2 − (γ − β)2]M0, (B4)  

thus 
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G0(p) = p− 1

{
∑∞

n=0

[
(
p− 2[γ2 − (γ − β)2])n

I + p− 1
∑∞

n=0

(
p− 2[γ2 − (γ − β)2])n

M0

]}

=

[
p− 1

1 − p− 2[γ2 − (γ − β)2]

]
(
I + p− 1M0

)
.

(B5) 

We have three poles: p = 0 and p = ±p0 = ±
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
β(2γ − β)

√
. Taking the inverse Laplace transformation, we obtain for z≫1 

G0(z, 0) ∼ exp ± (p0z) (B6) 

Thus, the previous result obtained in the nonturbulent case in paragraph 3.1 has been derived again. The spirit of this method is important as it is 
applied in Appendix A. 

Let us give another way to find this result. It can be easily shown that 

|ã1|
2
−
⃒
⃒ã∗

− 1

⃒
⃒2 = q, (B7)  

where q is a constant. Then, we let ã1 = q1/2eiφ1 sinhθ and ã∗

− 1 = q1/2eiφ2 coshθ. Here, φ1 and φ2 are two real constants. Assuming θ≫1, considering the 
real part of Eq. (9) for ã1, we find 

dθ
dz

= − γsin(φ2 − φ1), (B8)  

and the imaginary part leads to 

γ − β = − γcos(φ2 − φ1). (B9) 

Combining (B8) and (B9) gives 

θ = ±p0z, (B10)  

which means that the same result for the growth rate of the instability is found. 

Appendix C 

Influence of the phase mismatch on the growth rate of the modulational instability 

The form of the laser electric field is assumed to be as follows 

E(r, t) = E(r)exp(− iω0t) (C1) 

The spatial dependance is the sum of three terms 

E(r) = E0(r) + E1(r) + E− 1(r)
= [A0(z) + a1(z)exp(ik⊥r) + a− 1(z)exp( − ik⊥r)]exp(ik0z). (C2) 

The wave equation reads 
(

Δ −
1
c2

∂2

∂t2

)

E(r, t) = μ0
∂2

∂t2 (PL +PNL), (C3)  

where PNL is the nonlinear polarization. We have: PNL = ε0χ(3)|E|2E where χ(3) is the nonlinear susceptibility. One part of the polarization is phase 
matched to the high intensity part of the field, it is given by [22,30] 

P0NL = ε0χ(3)|E0|
2E0, (C4)  

and the part that is phase matched to the sidemodes is 

P±NL = ε0χ(3)
[
2|E0|

2E±1 +E2
0E∗

∓1

]
. (C5) 

We consider the pump wave, and the two signals are in the following form 

E0 = A0exp(ik0T z − iωt),
E± = a±exp(ik±z − iωt). (C6) 

When turbulence is not considered, Eqs (9) have a solution in the form. 

ã1 = â1exp[i(γ − β)z],
ã∗

− 1 = â − 1exp[i(γ − β)z],
(C7)  

which must satisfy the following equations 
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d2

dz2 â− 1 + iΔk
d
dz

â − 1 − γ2 â − 1 = 0,

d
dz

â1 = iγâ− 1.

(C8) 

The solution for the original variable is 

a±1 ∼ exp

⎡

⎣

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(

γ2 −
(Δk)2

4

)√
√
√
√ z

⎤

⎦exp
[

i
(

Δk
2

+ 2γ − β
)

z
]

, (C9)  

thus, we have: k0T = k0 + ΔkNL = k0 + γ and k± = k0 +
Δk
2 − β+ 2γ. 

The cross-coupled polarizations E2
0E∗

− 1 and E2
0E∗

+1 must be phase matched to E∓. Thus, the mismatch must be 

Δκ̃ = 2k0T − 2k± = − 2Δk. (C10) 

We find again that the growth rate is maximum is maximum when Δk = 0. 
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