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ABSTRACT:

The sequence stratigraphic framework of initiation and growth of carbonates in environments

impacted by siliciclastic inputs is highly variable because of the biogenic nature of the sedimentary production and its
sensitivity to environmental conditions. Using panorama interpretations, logging, and characterization of benthic communities,
the mixed carbonate-siliciclastic sedimentary succession of the Neogene Lorca Basin (SE Spain) has been studied to decipher
the role of local and global controlling parameters on the sequence stratigraphic framework of carbonate production. Three
different carbonate depositional models are distinguished: 1) retrogradational homoclinal ramps (type 1) dominated by
heterozoan communities that developed lateral to alluvial fans, 2) progradational flat-topped coral platforms (type 2) with
Porites and Tarbellastraea coral carpets with a coeval retrogradational pattern on basin margins, and 3) retrogradational
narrow siliciclastic-rich coral platforms (type 3) with Tarbellastraea buildups intercalated with deltaic deposits. Onset of
carbonate production systematically occurred during transgressions controlled by eustasy and was locally enhanced by
extensional tectonics. In steep margins located in the vicinity of major marginal faults, transgressions were characterized by
high terrigenous inputs, and only heterozoan-dominated ramps (type 1) developed. The flooding of these steep and tectonically
active margins characterized by small drainage basins and immature, locally sourced alluvial systems led to lower terrigenous
fluxes and the growth of coral flat-topped platforms (type 2) during subsequent highstands. Away from main marginal faults,
deltaic environments were sourced by large drainage basins. They were characterized by a flat topography that permitted the
occurrence of a shallow photic zone subject to low and irregular terrigenous inputs up to the distal part of the depositional
profile during transgressions. In this deltaic configuration, the growth of narrow siliciclastic-rich coral platforms (type 3) were
favored. On these platforms, coral buildups were regularly buried by terrigenous inputs during highstands. In the Lorca Basin,
the dimensions of siliciclastic systems and the size of their drainage basins also directly impacted the sequence stratigraphic
framework of carbonates intercalated in terrigenous units. This study illustrates the marked variability in: 1) the different
types of carbonate depositional profiles and 2) the timing of these carbonates in a mixed carbonate-siliciclastic system because
of the size, maturity, and location of siliciclastic systems, local tectonics, inherited topography, and global sea-level fluctuations.

INTRODUCTION universal sequence stratigraphic model impossible ...”. Indeed,

carbonate production due to its biogenic origin is largely dependent on

Numerous studies have been published about the sequence stratigraphic ) ¢ -
environmental parameters, and therefore its controlling factors are

framework of carbonate deposits in mixed siliciclastic—carbonate systems
(Coffey and Read 2004; Bassant et al. 2005; Garcia-Garcia et al. 2006; multiple and complex (Kiessling et al. 2003; Pomar et al. 2004;
Reuter and Brachert 2007; Bauch et al. 2011; Corrochano et al. 2012;  Schlager 2005; Wright and Burgess 2005; Pomar and Hallock 2008;
Tomassetti and Brandano 2013; D’ Agostini et al. 2015; Zeller et al. 2015; Michel et al. 2018; Reijmer 2021). Variations in one or more
Zecchin and Catuneanu 2017; Schwarz et al. 2018; Daniell et al. 2020). All ~ environmental parameters can lead to modifications in benthic
these studies demonstrate that the sequence stratigraphic framework for the associations, and in the volume of carbonate production (Isern et al.
initiation and expansion of carbonate production is highly variable and as ~ 1996; Riegl 2001; Mutti and Hallock 2003; Lukasik and James 2006;
stated by Zecchin and Catuneanu (2017) “The marked variability of mixed ~Chazottes et al. 2008; Schiifer et al. 2011; Paul et al. 2012) that can
siliciclastic—carbonate sequences makes the definition of a induce changes in the geometry of carbonate systems (Pomar 2001;
Schlager 2003; Betzler et al. 2012; Pomar et al. 2012). Drastic
environmental changes can result in a
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critical decrease in carbonate production or even to the demise of the
carbonate systems (Hallock and Schlager 1986; Philip and Airnaud-
Crumiére 1991; Isern et al. 1996; Carpentier et al. 2010; Bauch et al.
2011; Rosleff-Soerensen et al. 2012; Masse and Fenerci-Masse 2013).
At basin scale, tectonics, eustasy, and climate are the main factors
controlling environmental changes such as water depth, light,
terrigenous and nutrient inputs, temperature, pCO,, basin physiography,
salinity, oxygenation, and substrate (Martin-Chivelet 1995; Wilson and
Lokier; 2002; Olivier et al. 2004, 2015; Vecsei 2004; Webster et al.
2004; Bosence 2005; Schlager and Warrlich 2009; Bauch et al. 2011;
Martin-Garin et al. 2012; Navarrete et al. 2013; Martin-Garin and
Montaggioni 2023). Local processes such as lateral shifts of areas of
terrigenous input may also impact the benthic communities and
therefore carbonate production (Pratt and James 1986; Heap et al. 2002;
Schwarz et al. 2018). As a consequence, a direct application of
Walther’s law during an entire transgression—regression cycle is not
realistic in mixed systems (Homewood 1996; Wright and Burgess
2005). Then, deciphering the impact of these different factors on the
production of carbonates and development of benthic communities in a
basin prone to important terrigenous inputs is a challenge and
contributes to our understanding of the sequence stratigraphy in mixed
carbonate—siliciclastic depositional systems.

The Neogene basins of the Betic Cordillera were tectonically active
during the Tortonian and the Messinian, and recorded alternations of
carbonate and siliciclastic units (Sanz de Galdeano and Vera 1992,
Montenat et al. 1996; Bourillot et al. 2009, 2010; Rodriguez-Fernandez
et al. 2012). Thus, the nature and evolution of carbonate deposits of the
Betics have been widely studied in the majority of these intramountain and
marginal basins (Braga and Martin 1988, 1996; Saint-Martin and Rouchy
1990; Franseen and Mankiewicz 1991; Martin et al. 1996; Betzler et al.
1997; Brachert et al. 2001, 2002; Braga and Aguirre 2001; Braga et al.
2001, 2006; Vennin et al. 2004; Johnson et al. 2005; Warrlich et al. 2005;
Garcia-Garcia et al. 2006; Puga-Bernabéu et al. 2007, 2014; Bourillot
et al. 2010). However, the Lorca Basin, characterized by a complex
sedimentary infill with rapid lateral shifts of facies and thickness
variations, has been poorly studied. Apart from paleoecological and
sedimentological studies focused on local outcrops (Vennin et al. 2004;
Thrana and Talbot 2006; Selen et al. 2016) or on the Messinian series
(Rouchy et al. 1998; Wrobel and Michalzik 1999; Carpentier et al. 2020),
the modalities of the onset, development, and demise of carbonate
systems, and their spatial and temporal relationships with terrigenous
sedimentation, have never been clearly described.

By means of detailed geological mapping, panorama interpretations,
sedimentary logging, facies analysis, study of biotic assemblages, and
sequence stratigraphy, this paper aims to: 1) characterize carbonate
depositional models in a basin impacted by significant terrigenous input,
2) determine the sequence stratigraphic framework of the carbonate
production for each model, and 3) decipher the role of controlling factors
including local tectonics, topography, size of the drainage basins, and
eustasy on the biotic assemblages, the volume and the location of entry
points of siliciclastic sediments in the basin, and the sequence
stratigraphic framework of carbonate production.

GEOLOGICAL FRAMEWORK

The Betic Cordillera, located in southeastern Spain, is oriented ENE—
WSW (Fig. 1A). This orogenic complex, along with the Rif Mountains in
Morocco, is part of the Gibraltar arc and was created by the convergence
of the Iberian and African plates (Dercourt et al. 1986). The Guadalquivir
Basin, located to the northwest, corresponds to the foreland basin between
the external Betics, characterized by folded and thrusted Mesozoic and
Neogene sediments, and the Iberian platform (Frizon de Lamotte et al.
1989; Cloetingh et al. 1992; Sanz de Galdeano and Vera 1992; Galindo-

Zaldivar et al. 1993; Riaza and Martinez del Olmo 1996; Iribarren et al.
2007) (Fig. 1B). The widest expanse of the Alboran crustal domain is
located offshore between Spain and Morocco, and the internal Betics
represent its terrestrial continuation (Comas et al. 1992; Sanz de Galdeano
and Vera 1992; Iribarren et al. 2007; Platt 2007) (Fig. 1B). The internal
Betics consist of sierras of metamorphic rocks separated by narrow basins
filled by Neogene sediments (Sanz de Galdeano 1990; Montenat 1996;
Meijninger and Vissers 2006) (Fig. 1C). The Lorca Basin is one such
basin, bounded to the southeast by the strike-slip Alhama de Murcia Fault
(AMF) and the Sierra de la Tercia, while its northwestern margin goes
beyond the Internal-External Zone boundary (Guillen Mondejar et al.
1995; Montenat and Ott d’Estevou 1996, 1999; Booth-Rea et al. 2002;
Martinez-Diaz 2002; Meijninger and Vissers 2006) (Fig. 1C). The
existence of a major NE-SW fault in the center of the basin, named the
Falta Central de la Cuenca de Lorca (FCCL, Fig. 1D), has been inferred
by several authors (Guillen Mondejar et al. 1995; Meijninger and Vissers
2006). The outcrops on which this study is based are located on the
southwestern margin of the basin, where Tortonian—-Messinian formations
are well exposed. They are crosscut by faults, such as the NW-SE Batanes
Fault, which bounds carbonate units to the east (Guillen Mondejar et al.
1995; Montenat and Ott d’Estevou 1999; Vennin et al. 2004) (Fig. 1D).

The origin and geodynamic evolution of the Neogene basins of the
Betics are still debated. Most of them were firstly interpreted as pull-apart
or “groove-shaped synclines” formed in a compressional context from the
early or middle Miocene until present because of the occurrence of strike-
slip faults at their edges (Cloetingh et al. 1992; Montenat and Ott
d’Estevou 1996, 1999). More recently, some authors proposed that most
of the Neogene basins were formed during the collapse of the Alboran
domain and the exhumation of metamorphic complexes (Booth-Rea et al.
2004; Augier et al. 2005; 2013; Do Couto et al. 2014, 2016). In such a
context, these basins were controlled by high-angle normal faults in the
brittle domain above detachment planes (Chalouan et al. 1997; Booth-Rea
et al. 2004; Augier et al. 2005, 2013; Rodriguez-Fernandez et al. 2012; Do
Couto et al. 2014, 2016; Giaconia et al. 2014). These authors consider that
the main NE-SW strike-slip faults (Carboneras, Palomares, and Alhama
de Murcia faults, Fig. 1C) first acted as normal or transfer faults
(Martinez-Martinez et al. 2006; Meijninger and Vissers 2006; Rodriguez-
Fernandez et al. 2012; Giaconia et al. 2014) and that strike-slip movement
began only during the late Tortonian or the early Messinian (Booth-Rea
et al. 2003; Giaconia et al. 2012; Augier et al. 2013). In the Lorca Basin, a
synsedimentary Serravalian to late Tortonian NE-directed extensional
activity was evidenced by Meijninger and Vissers (2006), while the strike-
slip motion along the Alhama de Murcia Fault that generated the uplift of
the Sierra de la Tercia is supposed to have started during the early
Messinian.

STRATIGRAPHIC FRAMEWORK

The Tortonian and Messinian formations on the southwestern margin of
the Lorca Basin consist of an alternation of carbonate and siliciclastic
deposits. Because of rapid lateral changes in facies, the stratigraphic
framework can be subdivided in two stratigraphic columns for the Los
Arcos—Las Canteras and Los Cautivos areas (Fig. 2 and location in
Fig. 1D).

Los Arcos—Las Canteras Area

The earliest Tortonian sediments consist of marine marls, sandstones,
and limestones of the lower part of the Parilla Formation (Fm) (Szlen
et al. 2016; Vennin et al. 2004) (Fig. 2). The studied stratigraphic interval
concerns the Enamorados Limestones Member (Mbr) corresponding to the
upper part of the Parilla Fm. The lower part of the Enamorados
Limestones Mbr consists of calcarenites rich in foraminifers (mainly
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Heterostegina), and the upper part is composed of Porites- or
Tarbellastraea-rich carbonates. The basal surface of the Enamorados
Limestones Mbr corresponds to an angular unconformity (D2 unconformity).
The study of nannofossils in the Upper Crassostrea Marls Mbr located below
the D2 unconformity revealed the occurrence of Amaurolithus primus,
suggesting a late Tortonian age (Carpentier et al. 2020). The Enamorados
Limestones grade laterally to marine siliciclastics of the Yellow Conglomerates
Mbr. The Red Conglomerates Mbr overlies a surface of subaerial exposure (S1)
on the top of the Enamorados Limestones (Vennin et al. 2004) (Fig. 2). These
conglomerates are overlain by carbonates of the Hondo Mbr that are topped by
a surface of subaerial exposure S1’ (Vennin et al. 2004). Based on Sr isotopes,
Salen et al. (2016) placed the Tortonian—Messinian boundary between the
Enamorados Limestones and Hondo mbrs.

Los Cautivos Area

The studied stratigraphic interval includes upper Tortonian and
Messinian deposits that predate the Messinian Salinity Crisis (MSC,
Fig. 2) and the deposition of evaporites in the central part of the basin
(Wrobel and Michalzik 1999; Carpentier et al. 2020). The studied deposits
correspond to the upper part of the Parilla Fm (Enamorados Limestones
Mbr) and the Los Cautivos Fm. It consists of an alternation of
conglomeratic and sandy units and calcarenitic carbonates rich in
Tarbellastraea and Porites corals. Siliciclastic deposits correspond to the
Lower and Upper Sandstones, and Los Cautivos Conglomerates Mbrs
(Carpentier et al. 2020). Carbonates correspond to the Enamorados
Limestones and the Lower and Upper Ruzafas Limestones Mbrs. The
Enamorados Limestones are topped by the erosional surface of subaerial
exposure S1. Despite the lack of continuous outcrop between localities,
stratigraphic successions suggest that the Lower Ruzafas Limestones

correspond to the lateral equivalent of the Hondo Mbr in the Los Arcos
area (locations in Fig. 1D). A Messinian age was proposed for the Los
Cautivos Fm by Wrobel and Michalzik (1999) based on foraminifera
assemblages (Upper pre-evaporitic unit of Wrobel and Michalzik 1999).
Nannofossils indicate a Messinian age for the Terminal Limestones Mbr
that are capped by the incision surface S2 (Carpentier et al. 2020). The
upper part of the Messinian interval corresponds to the Monteros Fm,
which is characterized by alternations of marls, sandstones, and
conglomerates crosscut by the incision surface S3 related to the Messinian
Salinity Crisis.

MATERIAL AND METHODS

Detailed geological mapping was performed to describe the lateral
variations of facies. Panoramas were interpreted to identify sedimentary
geometries, unconformities, and the chronology of faults. Laterally
continuous outcrops made it possible to follow the lateral evolution of
benthic communities along depositional profiles. Facies were interpreted
in terms of depositional environments based on sedimentary structures,
geometries of sedimentary bodies, biotic assemblages, and petrography.
The petrography and depositional environments were complemented by
the study of microfacies using optical microscopy on thin sections with
an Olympus BXS51 microscope equipped with a Zeiss AxioCam ICc 1
camera. Amounts of siliciclastics in carbonate facies were estimated
optically on the field for the coarser fraction (gravels to pebbles) and on
thin sections by using an optical chart for the fine-grained fraction. The
study of panoramas was systematically coupled with the logging of
several sedimentary successions to characterize the vertical and lateral
evolution of facies and to refine the sequence stratigraphic interpretation.
Sedimentary geometries were interpreted in terms of progradation,



aggradation, and retrogradation due to the interplay between accommodation
and flux of sediments (Emery and Myers 1996; Posamentier and Allen
1999). The terms sigmoid progradation and oblique progradation (sensu
Catuneanu et al. 2009) are used to distinguish progradation with aggradation
(positive accommodation) and progradation without aggradation (low or null
accommodation), respectively.

RESULTS

Stratigraphic Architecture and Facies
Enamorados Limestones and Hondo Mbrs

Los Arcos.—The edges of the NE-SW-oriented valley south of Los
Arcos (location in Fig. 1D and Supplemental File S6) expose the
geometries and the stratigraphic organization of the Enamorados
Limestones, Red Conglomerates, and Hondo Mbrs. The Enamorados
Limestones onlap the D2 angular unconformity (Fig. 3A). The
stratigraphic architecture in this area has been studied by Thrana and
Talbot (2006). They propose a lateral transition between the Red
Conglomerates and the Enamorados Limestones. However, detailed
mapping of the area shows that carbonates grade laterally into yellow
marine sandstones and conglomerates of the Yellow Conglomerates Mbr
and not into the Red Conglomerates (Fig. 3A, B). Because of the angular
unconformity (D2) and the onlap geometry, the thickness of marine
sandstones and conglomerates decreases gradually towards the basin
margin to reach less than 3 m in the southwest (Fig. 3A, B). Basinward,
the lateral transition between the yellow marine siliciclastics and the
Enamorados Limestones is abrupt, and occurs over 50 to 150 m.
Geometries at the outcrop scale (Fig. 3A) indicate a retrogradation of this
carbonate—siliciclastic transition.

Facies in the lower part of the Enamorados Limestones are organized
into metric stacked sequences (Fig. 4A) made of fine-grained calcarenites
with planktonic foraminifera and rare coralline algae (Mr facies, Table 1)
covered by medium- to coarse-grained calcarenites rich in Heterostegina
and coralline algae (Ir facies, Table 1, Supplemental Fig. SIE). Corals are
rare and appear only locally as small Porites buildups on top of sequences
(Fig. 4A). The upper part of the Enamorados Limestones is also organized
into metric stacked sequences (Fig. 4B). From base to top they are
characterized by a fine-grained calcarenite (Ts facies, Table 1, Fig. S2J, K)
grading upward into coral carpets of thin branching Porites embedded in a
fine-grained calcarenite with reworked Ostrea edulis and thin Porites
clasts (Ls facies, Table 1) (Fig. 4C). The top of sequences is made of
deposits rich in closely spaced and thick robust branching Porites
accompanied by disseminated massive forms (Fig. 4B) (Us, Pe facies,
Table 1). Toward the basin margin, this facies grades laterally into a
coarse-grained, rhodolith and siliciclastic-rich calcarenite with in situ
buildups of massive domal Tarbellatraea and Porites locally (Op facies,
Table 1). In the transition zone with Yellow Conglomerates, unsorted
conglomeratic beds with bored pebbles (Ip facies, Table 1) are intercalated
between coarse-grained calcarenites of the facies Op or basement pebble-
rich calcarenites of the facies Ip (Table 1, Fig. S2A) (Fig. 3C). Yellow
marine sandstones and conglomerates become dominant in the most
proximal part. A sharp transition to coarse-grained calcarenites rich in
siliciclastic gravels (Ip facies) occurs in the upper part of the Enamorados
Limestones (Fig. 4A, D, Fig. S2B). In addition, the Enamorados
Limestones are capped by the S1 surface of subaerial exposure showing
karstic features (Vennin et al. 2004; Salen et al. 2016) and directly
overlain by unsorted conglomerates of the Red Conglomerates Mbr (Af
facies, Table 1, Fig. S5A) (Fig. 3A). Clasts of these red conglomerates
consist exclusively of Triassic metapelites and schists that constitute the
neighboring substratum of the southern basin margin.

Carbonates of the Hondo Mbr rich in closely spaced Tarbellastraea
buildups (Fig. 4E) cover the Red Conglomerates Mbr through a marine

transgression surface, and conglomerates pinch out northeastward in a
basinal direction (Fig. 3A). The geometries of the Hondo Mbr can be
observed at the tops of several hills to the southeast of the Los Arcos
Valley (Fig. 5, location in Fig. 1D). Deposits are characterized by
northwestward-prograding geometries (Fig. 5A). On the formation-wide
scale, offlap geometries represent an oblique progradation without
aggradation in proximal parts of the profile.

Facies in the Hondo Mbr resemble those observed in the Enamorados
Limestones Mbr. The marine transgression surface on top of the Red
Conglomerates is covered by conglomerates embedded in a calcarenitic
matrix rich in clasts of coralline algae (Ir facies, Fig. 5B). The content
of siliciclastics decreases vertically, and the overlying fine-grained
calcarenites are rich in Crassostrea gryphoides buildups, and are crosscut
by erosional surfaces overlain by shell accumulations (Mr facies, Fig. 5C).
This facies is lacking in most proximal parts of the profile toward the
southeast, where calcarenites rich in coralline algae are directly covered by
Tarbellastraea and Porites patches in a coarse-grained calcarenite
(Section 3 in Fig. 5B). The prograding units record a vertical stacking of
thin branching Porites in a fine-grained matrix (Ls facies) overlain by
thick branching and domal Porites buildups (Us and Pe facies, Fig. 5B,
C). Thin branching Porites appear in the distal part of flat foresets to the
northwest (Fig. 5C). Conversely, Tarbellastraea are more abundant in the
upper part of the prograding units, which are also characterized by
siliciclastic sediments in a coarse-grained calcarenite rich in rhodoliths
(Op facies). A surface of subaerial exposure (S1’) characterized by karstic
features occurs at the top of the Hondo Mbr (Fig. 5C).

Las Canteras.—In the Las Canteras area (location in Fig. 1D), the
Lower Crassostrea Marls Mbr, a lateral equivalent of the Estrecho
Limestones Mbr, covers the Campico Sandstones through a first
unconformity (D1). The Enamorados Limestones Mbr covers a second
unconformity (D2) truncating the Upper Crassostrea Marls (Fig. 6A).
These limestones are characterized by sigmoids 7—10m-high prograding to
the NE (Fig. 6B).

The facies in prograding clinoforms are similar to those described in the
Los Arcos area. Clinoforms show a vertical and lateral transition from
fine-grained calcarenites (Ts facies, Fig. S2I)), through thin branching
Porites carpets with rare Acanthastraea (Ls facies, Fig. S2G, H), thick
robust branching Porites buildups (Us facies, Fig. S2E, F), domal and
branching Porites buildups (Pe facies, Fig. S2D), to a coarse-grained
calcarenites with siliciclastic gravels and Tarbellastraea buildups (Op
facies) (Fig. 6B, C, Fig. S2C). Carbonates observed in the Las Canteras
area are relatively poor in siliciclastics, with only scattered gravel-size
terrigenous grains at the top of sigmoids and silt-size siliciclastic grains
present in fine-grained calcarenites at the distal end. As in Los Arcos, a
surface of subaerial exposure (S1 in this study) on top of the Enamorados
Limestones was described by Vennin et al. (2004).

Los Cautivos.—In the Los Cautivos area, the Enamorados Limestones
are exposed along the eastern side of the Guadalentine valley (Fig. 7A).
They cover the Coroneles Conglomerates Mbr, which grades laterally
southward to the Upper Crassostrea Marls (Fig. 2). Conglomerates show a
north-to-south transition from clast-supported channelized and unsorted
matrix-supported conglomerates to sheets of coarse-grained sandstones
(Fig. 7A) (Mf facies, Table 1, Fig. S5B-D). This trend indicates a N-S to
NW=SE direction of siliciclastic inputs in this area perpendicular to the
progradation direction of carbonates. As in the overlying Enamorados
Limestones Mbr, the terrigenous material is polygenic and contains clasts
of basement, oolitic limestone, dolomite, sandstone, and calcarenite. It
contrasts with basement-derived conglomerates of the Los Arcos—Las
Canteras area. The Enamorados Limestones cover the conglomerates
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Fic. 3.—Stratigraphical and sedimentological features of the Enamorados Limestones Mbr on the southeastern side of the Los Arcos valley. A) Panorama of the
southeastern side showing the geometrical relationships between carbonate units, siliciclastics, and D2 unconformity. B) Yellow marine sandstones and conglomerates
covering the D2 unconformity in proximal parts of the depositional profile. They grade basinward to the Enamorados Limestones Mbr, topped by S1 karstified surface and
are overlain by red conglomerates deposited in an alluvial fan environment. C) Facies stacking in inner-platform environment made of an alternation of marine
conglomerates (Uc), coarse-grained calcarenites (Cc), and Tarbellastraea buildups (Tb) organized in shallowing-upward sequences bounded by flooding surfaces (Fs).

through a sharp surface (D2), but the angular unconformity is not well
marked in this area.

First, carbonate deposits consist of the stacking of calcarenites with
conglomeratic ribbons covered by fine-grained calcarenites rich in
coralline algae (Ir facies) (Fig. 7B). Bioerosion is important in polygenic
conglomerates, and the fauna is dominated by in situ suspension-feeding
organisms such as barnacles and encrusting oysters (Fig. 7C). The
Enamorados Limestones Mbr is characterized by the vertical stacking of high-

frequency sequences (Fig. 7D). The lower part of the member is dominated by
alternations of the Ls facies and Porites-rich deposits of the Us, Pe, and Op
facies (Fig. 7D) and by an enlargement of the carbonate sedimentation zone to
the north, where it grades laterally into marine conglomerate deposits (Ip
facies) (Fig. 7A). The upper part of the member shows a gradual enrichment
in conglomerates (Ip facies) and the disappearance of fine-grained calcarenites
(Ls facies) (Fig. 7D). The top of the carbonates is truncated by an incision
surface (S1). The incision is filled by cross-stratified, nonmarine, clast-
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FiG. 4.—Log and sedimentological features of the Enamorados Limestones Mbr on the northern side of the Los Arcos valley. A) General log of the northern side of the
Los Arcos valley with the interpretation of depositional environments and deduced sequence-stratigraphic evolution. B) Shallowing-upward high-frequency sequence in the
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Fig. 5—Geometries and sedimentological features of the Hondo Mbr in the Los Arcos area. A) Flat northwestward-prograding geometry covering a marine
transgression surface in the area of the section 3 (Fig. 4A). B) Vertical stacking of facies in sections 1, 2, and 3. The thickness of the units and outer-platform facies
increases northwestward. C) Prograding architecture of facies in the Hondo Mbr between sections 1, 2, and 3.
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Fig. 6—Geometries of the Enamorados Limestones Mbr in the Las Canteras area. A) Panorama of the western side of the Las Canteras outcrop. The prograding
Enamorados Limestones Mbr covers the D2 angular unconformity. B) Panorama of the northern side of the Las Canteras valley showing the prograding geometry of the
Enamorados Limestones with the transition from outer-platform to lower-slope facies along sigmoidal units. C) Vertical shallowing-upward evolution of facies in a
sigmoidal unit. Fine-grained calcarenites of toeslope environment (Ts) are overlain by coral carpets (Ls) and then by thick branching and massive Porites (Us). The top of
sigmoidal units consists of massive Tarbellastraea and Porites (Pe) covered by coarse-grained calcarenites (Op).

supported, polygenic conglomerates belonging to the Los Cautivos Fm (Bd
facies, Table 1, Fig. SSE).

Interpretations: In the Coroneles Conglomerates, channelized conglomerates
with crude oblique stratifications and sandstone sheets intercalated in red
silty shales with paleosoils of the Mf facies are interpreted as braided
alluvial-fan deposits with stream channels, sheetfloods, and alluvial-
plain deposits, respectively (F1 and P facies of Miall 2006, Table 1). Ir
facies correspond to an inner-ramp environment impacted by debris

flows, and the coarse-grained matrix indicates an environment impacted
by wave action above the storm-wave base (Table 1). This facies grades
distally to Heterostegina shoal facies in the distal part of the inner ramp.
Grainstone texture and grain size of this calcarenite indicate an agitated
environment above the fair-weather wave base (Burchette and Wright
1992). The inner-ramp environment was dominated by heterozoan
communities, and only small and disseminated Porites buildups are
present. The absence of phototrophic organisms and the fine-grained
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deposits of the Mr facies suggest that this facies was deposited in a calm,
open mesophotic environment. The shell accumulations above erosional
surfaces are interpreted as storm deposits in a middle-ramp environment,
located above the storm-wave base. The Ip facies is dominated by
heterozoan communities and was impacted by episodic supplies of
basement-derived siliciclastics. These siliciclastic inputs and the coarse-
grained matrix suggest an inner-platform environment close to alluvial
systems, above the storm-wave base (Franseen et al. 1997; Thrana and
Talbot 2006). In the Op facies, the local occurrence of large rhodoliths,
and Tarbellastraea buildups, and the dominance of clasts mainly derived
from mechanical erosion of coral buildups are consistent with an agitated
outer-platform environment moderately affected by terrigenous input
(Bosence 1983; Vennin et al. 2004; Montaggioni and Braithwaite 2009;
Salen et al. 2016). Thick branching and domal Porites with coarse-
grained calcarenite of the Pe facies developed in a high-energy
environment permanently impacted by waves at the platform edge
(Pomar 1996; Pomar and Ward 1999; Pomar et al. 2004, 2012; Reuter
and Brachert 2007; Montaggioni and Braithwaite 2009; Palmer et al.
2010; Brandano et al. 2016; Martin-Garin and Montaggioni 2023). The
Us facies is made of frame-supported and closely spaced thick robust
branching Porites adapted to environments with high fair-weather wave
energy (Montaggioni and Braithwaite 2009; Pomar et al. 2004). It is
interpreted as an upper-slope environment above the storm-wave base. In
the Ls facies, the benthic fauna is dominated by thin branching Porites
and rare Acanthastraea embedded in a fine grained calcarenite. The
slender morphology of branching Porites and the alternation with fine-
grained carbonates suggest a relatively low and intermittent
hydrodynamic conditions above the storm-wave base in the lower slope
(Reuter and Brachert 2007), which is consistent with the local
occurrence of reworked Porites branches and reworked Ostrea edulis.
The Ts environment is made of a fine-grained calcarenite with planktonic
foraminifers, branching coralline algae, and small Crassostrea
gryphoides buildups. In the Tortonian of the Betics, and unlike modern
specimens living in brackish environments, Crassostrea gryphoides
grew on soft substrates below the storm-wave base in a basinal setting
under normal marine conditions (Jimenez et al. 1991). All the features of
this Ts facies suggest a calm distal toeslope environment below the
storm-wave base (Bosence 1983; Perrin et al. 1995; Puga-Bernabeu et al.
2007; Ruchonnet and Kindler 2010).

The Af facies of the Red Conglomerates is characterized by non-
channelized, unsorted, clast-supported or matrix-supported continental
conglomerates made of basement-derived material. These deposits are
interpreted as deposits of a debris-flow-dominated alluvial-fan provided by
neighboring basin margins (Gmm facies of Miall 2006). Filling the
incisions on top of the Enamorados Limestones in Los Cautivos, the
conglomeratic Bd facies with pebble imbrications, and trough cross-bedding
implies a high-energy steady flow. The sedimentary characteristics of the Bd
facies are consistent with braided-river deposits (Gh, Gt facies of Miall
2006).

Lower and Upper Ruzafas Limestones Mbrs.—Along the northern
side of the Guadalentine valley in the Los Cautivos area (Fig. 8, location
in Fig. 1D), Messinian Lower and Upper Ruzafas Limestones mbrs are
intercalated with conglomerates and sandstones of the Los Cautivos Fm
(Fig. 2). The Lower and Upper Ruzafas Limestones mbrs have similar
internal stratigraphical and facies architectures, but due to their better
outcrop conditions only the Upper Ruzafas Limestones are detailed here
(Fig. 8). The Upper Ruzafas Limestones are intercalated between two
siliciclastic units prograding to the east: the Upper Sandstones and Los
Cautivos Conglomerates mbrs (Fig. 8). The Upper Sandstones Mbr
consists of exotic polygenic sandstones and conglomerates (Wrobel and
Michalzik 1999; Carpentier et al. 2020). The lower part of this member is

characterized by an oblique progradation and the basinward lateral
transition from: 1) polygenic conglomerates pinching basinward with low-
angle internal progradations (Mbg facies, Table 1, Fig. S4A), 2) polygenic
matrix or clast-supported conglomerates with slightly erosional basal
surfaces, internal progradational geometries with dip between 20 and 30°,
coarse-grained sandstones with layers of aligned isolated pebbles and
cobbles, and locally oblique stratification prograding upslope over a
concave-upward truncation surface with an upslope decrease of dip angles
(Uf facies, Table 1, Fig. S4B-E), 3) coarse-grained sandstones and
conglomerate layers with dip between 5 and 15°, normal vertical grading
in conglomerates overlain by coarse sandstones and gravels with planar
laminae and sometimes by medium sands with scarce current ripples. The
fauna consists of barnacles and Ostrea edulis disseminated or forming
small lenticular buildups (Lf, facies, Table 1, Fig. S4E-G), and 4)
alternations of 5-15-cm-thick and 5° dipping beds of fine-grained
sandstones with beds characterized by planar laminae, currents ripples,
and 1-5-cm-thick mudstone layers containing planktonic foraminifera (Bs
facies, Table 1).

A sigmoid progradation is observed in the upper part of the Upper
Sandstones (Fig. 8). It should be noted that the sedimentary slope
becomes gentler in the upper part of the Upper Sandstone Mbr, where the
depositional profile tends to flatten out (Fig. 8). The basinward transition
of facies is characterized by: 1) meter-thick conglomerates and sandstones
with low-angle internal progradation and landward imbrication of flat
pebbles on top (Mbw facies, Tablel, Fig. S4H), 2) medium- to fine-
grained sandstones with symmetrical wave ripples, Ophiomorpha
burrows, and unsorted conglomerate beds with a lateral extension of
several tens of meters (Df facies, Table 1, Fig. S41-K), and 3) heterolithic
alternations of mudstones and 5-20-cm-thick medium-grained sandstone
beds with crude normal grading, and undulating HCS-like laminae draped
by current ripples (Uo facies, Table 1, Fig. S4L). A first Porites buildup is
embedded within the Lower Sandstones (Fig. 8). Colonies of Porites
appear at the top of conglomeratic submarine deposits of the Mbw facies.
This colonization by photozoan communities coincides with the maximum
landward enlargement of this first carbonate episode (Fig. 8). The
uppermost deposits of the Upper Sandstones Mbr are impacted by a
synsedimentary sliding surface (Figs. 8, 9A).

The Upper Ruzafas Limestones are subdivided into two main
carbonate units (1 and 2 in Fig. 9A), separated by conglomeratic
deposits that pinch out basinward. Both carbonate units show a
gradual enlargement and shoreward-sloping depositional geometries
(Fig. 9A, D). They indicate a progressive landward migration of
carbonates. The Upper Ruzafas Limestones overlie clast-supported
conglomeratic deposits of the Mbw facies. They consist of frame-
supported and poorly diversified buildups made of domal and
branching Tarbellastraea and Porites with rare platy to dish-shaped
Porites (Vennin et al. 2004) in a coarse-grained calcarenite (Npe
facies, Table 1, Fig. 9B, C, Fig. S3D). They constitute the thickest part
of the Upper Ruzafas Limestones Mbr. In the proximal NW area, the
siliciclastic content increases while domal and branching corals are
replaced by lamellar and encrusting forms (Fig. S3C). These deposits
alternate with coarse-grained and siliciclastic-rich calcarenites
containing reworked Tarballastraea and Porites (Inp facies, Table 1,
Fig. 9A, Fig. S3A, B). Basinward, a truncation surface crosscuts
carbonate unit 1 and the top of the Upper Sandstone Mbr (Figs. 8A,
10A). Eastward, the surface is sharp and crosscuts underlying
sediments at a low angle (Fig. 10A). It is covered by conglomerates
mixed with coral boulders probably reworked from unit 1 (Fig. 10A,
B). The conglomeratic infill above the truncation surface contains
locally large 1-2-m-high landward-prograding oblique stratification
(Fig. 10A). Upslope, conglomerates are gradually replaced by
carbonates rich in basement pebbles and containing coral buildups
dominated by Porites (Fig. 10C). Conglomerates are covered by
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Fig. 9.—Close-up view of the Upper Ruzafas Limestones Mbr in the northwestern part of the outcrop. A) Interpretive panorama. The shoal-water delta is
characterized by a flat geometry with a lateral transition from conglomeratic and sandy mouth bars to foreshore and shoreface sandstones. The reefs show landward
retrogradation and a transition to encrusting forms in the proximal direction. Note the intercalation of debris flows between reef units 1 and 2. B) Detail of the
vertical transition from shoal-water deposits with beach deposits on top of a conglomeratic mouth bar to coral buildups. This transition is accompanied by a
significant decrease in siliciclastic content. C) Close-up view of the Upper Ruzafas Mbr showing the intercalation of conglomeratic debris-flow deposits between

retrograding reefal units 1 and 2.

carbonate unit 2 (Fig. 10A), which is characterized by the lack of
significant basinward progradation and also by a dominant landward
migration as for unit 1. Unit 2 grades laterally basinward into Porites-
dominated buildups and bioturbated sand-rich carbonates over a short
distance of about 10 m (Fig. 10A). These deposits contain planktonic
foraminifera and a heterozoan benthic association dominated by
ectoprocts (bryozoan), echinoderms, bivalves, and scarce coralline
algae (Enp facies, Table 1, Fig. S3E). Unit 2 is overlain by prograding
sandstones and conglomerates of the Los Cautivos Conglomerates
Mbr (Fig. 8). They show the same facies organization as the Upper
Sandstones conglomerates.

Interpretations: The Mbg, Uf, Lf, and Bs facies of the lower part of the
Upper Sandstones Mbr are interpreted as Gilbert-delta sandstones and
conglomerates showing a lateral transition between mouth bars, foresets
with backsets, and bottomsets facies (Table 1). Topset deposits are not
visible. The upper part of the Upper Sandstones with a sigmoid
progradation geometry corresponds to shoal-water delta deposits
impacted by waves without a marked slope break (Fig. 8A, Table 1). In a
basinward direction, flat conglomeratic mouth bars reworked by waves
grade laterally to delta-front sandstones with scour-filling conglomerates
and Ophiomorpha burrows, and finally to upper offshore heterolithic
facies (Mbw, Df, Uo facies).
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Fig. 10.—Close-up view of the Upper Ruzafas Limestones Mbr in the south-eastern part of the Los Cautivos outcrop. A) Interpretive panorama of the lateral transition
from platform carbonates to slided and chute-fill deposits with backsets. The landslide and the deposition of coarse-grained debris flows occurred before the recolonization
of the platform by corals of the reefal unit 2. B) Reworked coral boulders (C) mixed with conglomerates above the slide surface. C) In situ coral buildups (CPB)
intercalated with a pebble-rich matrix (C) in the last stages of the chute fill. They are covered by Porites-dominated buildups (PB).

Coarse-grained deposits, characterized by unsorted conglomerates
and reworked corals of the Inp facies, indicate a proximal inner narrow
platform shallow-marine environment that was impacted by siliciclastic
inputs provided by alluvial fans (Postma 1990b). These deposits are
intercalated in calcarenites resulting from the mechanical erosion of the
reef. In the Npe facies, the landward-oriented oblique stratification in
coral buildups indicates that they formed a relief above the seafloor.
Compared to Quaternary coral reefs, the prevalence of massive domal
morphologies, along with robust branching forms and coarse-grained
calcarenite, suggests relatively high hydrodynamic conditions above
the fair-weather wave base on a narrow platform edge (Montaggioni
and Braithwaite 2009; Perrin et al. 1995; Reuter and Brachert 2007;
Brandano et al. 2016). In the Enp facies, coral buildups are replaced by
bioturbated medium- to fine-grained calcarenites with terrigenous
grains and planktonic foraminifers. This facies indicates a calm distal
mesophotic environment dominated by heterozoan benthic associations
below the storm-wave base (Johnson et al. 2005; Braga et al. 2006).

The low angle of the truncation surface, which crosscuts the first reef
unit, is overlain by conglomerates and reworked coral boulders. It
suggests that the surface was generated by a large subaqueous
landslide. The landward prograding stratification in the conglomerates
is interpreted as backsets in chute-fill deposits. They are coeval with
debris-flow deposits observed between carbonate units 1 and 2 in the
western part of the outcrop (Fig. 9A). The landward transition from
conglomerates to coral buildups dominated by Porites (Fig. 10C)
marks the initial coral-recolonization phase after the landslide, likely
facilitated by the presence of a hard substrate formed by conglomeratic
pebbles.

Depositional Models

For carbonate deposits, as explained above, lateral transitions of
carbonate facies and variations of depositional profiles along proximal—
distal transects have been observed in outcrops of the Lorca Basin. On the

basis on these observations, three depositional models are proposed: 1)
homoclinal heterozoan ramp, 2) flat-topped coral platform, and 3) narrow
siliciclastic-rich coral platform (Fig. 11).

Depositional Model 1: Homoclinal Heterozoan Ramp.—This first
depositional model corresponds to the lower parts of the Enamorados
Limestones and Hondo mbrs. Most proximal inner-ramp facies (Ir), rich in
siliciclastics, contain an average siliciclastic content of 85% (Fig. 11D). In
the distal part of the inner ramp, this Ir facies grades to coarse-grained
shoal deposits rich in Heterostegina and disseminated rhodoliths. These
inner-ramp deposits grade laterally basinward to middle-ramp facies (Mr
facies), which are relatively rich in terrigenous silts (6%, Fig. 11D).

Depositional Model 2: Flat-Topped Coral Platform.—This second
depositional model is proposed for deposits observed in the upper parts of the
Enamorados Limestones and Hondo mbrs. The lateral distribution of facies is
supported by observations along clinoforms in the Las Canteras outcrop for
the Enamorados Limestones and in the Los Arcos area for the Hondo Mbr
(Figs. 5, 6). The benthic communities are dominated by photozoan
organisms. The coral buildups did not form any relief. The colonies formed
coral-carpet beds organized in sigmoid rather than a true reefal architecture.
These sigmoids with coral carpets constitute the platform edge at the margin
of a flat-topped platform profile (Fig. 11B).

Inner-platform facies contain about 27% gravels, pebbles, and sand (Ip
facies) (Fig. 11B). They pass laterally to open-platform facies (Op facies).
The siliciclastic content decreases to 5% of the sediment volume. The
upper part of clinoforms is represented by the platform-edge facies (Pe
facies). It grades laterally basinward to upper-slope deposits (Us facies).
The lower part of the slope is represented by the Ls facies, grading
laterally basinward to toeslope deposits (Ts facies). The siliciclastics
content never exceeds 4% from platform-edge to toeslope environments
(Fig. 11D).
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Fic. 11.—Depositional-environment models of the three types of carbonate profiles in the late Tortonian and early Messinian of the Lorca Basin and average siliciclastic
contents of facies.

Depositional Model 3: Narrow Siliciclastic-Rich Coral Platform.—  carbonate-matrix-supported conglomeratic sediments (Inp facies)
A narrow siliciclastic-rich coral platform is proposed for the Lower (Fig. 11C). The gravels, pebbles, and sand-size siliciclastic grains
and Upper Ruzafas Limestones. This platform is intercalated in deltaic ~ constitute about 78% of the sediment volume (Fig. 11D). The platform
deposits and is only few tens of meters in lateral extent. The most edge encompassed frame-supported corals with a siliciclastic content
proximal facies consist of unsorted clast-supported conglomerates or  of about 10% (Npe facies). The proportion of encrusting corals and



siliciclastics in the matrix increases landward. In contrast, the
proportion of branching Porites increases slightly basinward, but the
number of corals decreases rapidly in the external platform and the
siliciclastic content decreases to 8% (Enp facies).

DISCUSSION

Sequence Stratigraphic Framework of Carbonates and Benthic
Communities

Enamorados Limestones and Hondo Mbrs (Las Canterras—Los
Arcos).—The sequence-stratigraphic framework and variations in the A/S
ratio were interpreted on the basis of both geometries observed at outcrop
scale (sigmoid or oblique progradations, forced regression, retrogradation)
and the vertical stacking of facies. The depositional sequences of the
Enamorados Limestones and Hondo mbrs exhibit similarities in the
composition and stacking pattern geometry, and their benthic associations,
albeit with some specificities.

Transgressive System Tract (TST): The earliest deposits of the
Enamorados Limestones and Hondo mbrs correspond to a homoclinal
heterozoan ramp (depositional model 1). They are transgressive and cover
the D2 unconformity (Enamorados Limestones Mbr) or a marine
transgression surface (Hondo Mbr) (Fig. 12A, D). A retrogradation of
depositional environments, marked by the vertical transition from inner-
ramp to middle-ramp environments, is accompanied by a vertical decrease
in the amount and grain size of siliciclastic sediments in inner-ramp facies
(Fig. 4B). During the transgression, heterozoan benthic associations with
large oysters dominated in the middle-ramp environment and coralline
algae, occurring either alone or associated with Heterostegina, were
abundant in the proximal inner-ramp environment.

Highstand System Tract (HST): The transgressive-ramp geometry
(depositional model 1) evolved into a prograding flat-topped platform
geometry (depositional model 2) during the highstand (Fig. 12B). Crassostrea
gryphoides patches provided a hard substrate for the installation of the first
coral colonies (Vennin et al. 2004). The vertical stacking of carbonate deposits,
up to a thickness of 30 m for the Enamorados Limestones, indicates that
positive accommodation developed during carbonate sedimentation. The
sigmoid progradation observed in Las Canteras and the general shallowing of
depositional environments indicates that the A/S ratio was positive but the
sedimentation rate exceeded accommodation. At the same time, shallow
carbonate facies retrograded onto siliciclastic deposits in the proximal parts of
the profile (Fig. 12B). This also suggests that accommodation was high
enough to generate a retreat of siliciclastics but was compensated in real time
by the high in-situ carbonate production. Both the Enamorados Limestones
and the Hondo mbrs exhibit a similar overall sequence stratigraphic pattern.
However, unlike the Enamorados Limestones, the early highstand phase in the
Hondo Mbr was marked by a rapid decline to zero in the accommodation rate,
as evidenced by the oblique progradation directly above the transgressive
deposits (Fig. 12E).

Lowstand System Tract (LST): Base-level drop at the top of the
Enamorados Limestones led to an exposure and incision of the southern
basin margin (S1 surface), marking the first signs of basin restriction
during the Messinian (Carpentier et al. 2020) (Fig. 12C). Accommodation
became negative, and this exposure can be interpreted as a forced
regression (Hunt and Tucker 1992; Plint and Nummedal 2000; Catuneanu
et al. 2009). After the S1 surface, a renewal in accommodation led to the
deposition of debris-flow-dominated alluvial-fan deposits of the Red
Conglomerates in Los Arcos and Las Canteras. The subaerial exposure
(S1’ surface) on top of the Hondo Mbr also suggests that accommodation
became negative and base level dropped after carbonate deposition
(Fig. 12C, F).

Lower and Upper Ruzafas Limestones Mbrs (Los Cautivos).—
HST: During the early stages of the Lower and Upper Sandstones mbrs,
the oblique progradation indicates that the accommodation was low or
null, and no vertical stacking of sediment occurred on the delta top
(Fig. 13A). Carbonates were absent, and benthic communities were
dominated by heterotrophic filter-feeding organisms such as Ostrea edulis
and barnacles. In the upper parts of Lower and Upper Sandstones mbrs,
small Porites buildups appeared on mouth bars in front of the delta
(Fig. 13B). In the Neogene deltaic deposits of Borneo, Wilson and Lokier
(2002) proposed that coral buildups located on mouth bars in the delta
front developed in a water depth less than 10 m. Likewise, within the
nutrient-rich waters of the Gulf of California, monospecific Porites
buildups are found at depths ranging from 5 to 10 m (Halfar et al. 2005,
2006). A similar shallow paleodepth can be inferred for the low-diversity
assemblage of Porites buildups on mouth bars in the Lorca Basin. These
small buildups, dominated by photozoan communities, developed only
when accommodation became positive and aggradation occurred on the
delta top. However, the sigmoid progradation in the upper part of
the Upper Sandstones indicates that the sedimentation rate exceeded the
accommodation. These periods of positive accommodation at the end of
highstands coincide with the flattening of sedimentary profiles and the
transition from Gilbert-delta to shoal-water-delta systems (Fig. 13B),
preceding the installation of the Lower and Upper Ruzafas Limestones.

TST: The first constructions of the Lower and Upper Ruzafas
Limestones were established on flat surfaces above beaches and delta-
mouth bars (Fig. 13C). They show a landward migration of carbonate
buildups indicated by shoreward-sloping depositional geometries. In
contrast to the Lower Ruzafas Limestones, the Upper Ruzafas Limestones
are organized in two carbonate units (1 and 2 in Figs. 9, 10). They are
separated by a subaqueous landslide that temporarily interrupted carbonate
sedimentation (Fig. 13D). Following this event, coral growth restarted, as
illustrated by the development of constructions in a pebble-rich matrix.
This suggests that the base level did not change between the two reef units
and that carbonate production was only interrupted by the temporary input
of coarse-grained siliciclastic material. The recolonization by corals
terminated with the deposition of coral unit 2 (Fig. 13D). Similar
alternations between carbonates and siliciclastics were described by Reuter
and Brachert (2007) in the Tortonian of Crete, where massive colonies of
Tarbellastraea, Porites, and Acanthastraea colonized the top of Gilbert-
delta deposits. These authors proposed that massive colonies developed in
a water depth of about 20 m. Garcia-Garcia et al. (2006) considered that
buildups intercalated between Gilbert-delta deposits during flooding
events in the Tortonian of the Tabernas Basin were deposited in only a few
meters depth. These authors interpreted coral facies as early transgressive
deposits and considered that the maximum water depth was reached
during the deposition of overlying calcarenites rich in coralline algae. In
the Lorca Basin, Tarbellastraea and Porites buildups are directly covered
by prograding Gilbert-delta foresets. This suggests that the maximum
water depth was reached here during the growth of coral colonies.
Considering the vertical thickness of the overlying Gilbert-delta foresets, a
water depth of at least 10 m can be estimated for the deposition of
carbonates.

LST: The Tarbellastraea and Porites buildups of unit 2 were gradually
covered by prograding Gilbert-delta deposits during a new highstand of
the relative sea-level (Fig. 13E). This return to high siliciclastic input was
associated with the reappearance of heterotrophic-dominated assemblages.

Paleogeographical Evolution

Facies distribution and interpretations of depositional environments are
the basis of new paleogeographical maps for the southwestern part of the
Lorca Basin (Fig. 14). During the early stages of the Enamorados
Limestones, an alluvial fan was backed onto the basin margin in the Los
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Arcos area (Fig. 14A). It constituted a short alluvial system carrying only
basement-derived clasts provided by the neighboring hinterland and acted
as a local entry waypoint of coarse siliciclastic material. According to a
basic calculation based on the surface area and the thickness of deposits, a
volume of about 30 to 40 million m® of siliciclastics can be estimated.

Northwest of Los Cautivos, a more mature and larger alluvial fan system
arrived from the northwest and carried both local basement clasts and
exotic material from Mesozoic cover of the external Betics (e.g., oolitic
limestones) (Carpentier at al. 2020) (Fig. 14A). The volume of siliciclastic
material transported by this mature system was probably at least three
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times more important than for the Los Arcos area (94 to 112 million m®).
A homoclinal carbonate ramp developed laterally and between entryway
points of siliciclastics. This carbonate system gradually flooded alluvial
fans that retreated landward (Fig. 14A).

During the late stages of the Enamorados Limestones, the homoclinal
ramp was replaced by a prograding flat-topped coral platform (Fig. 14B).
During the transgression and the highstand, carbonates gradually encroached
on basin margins and covered part of the sources of siliciclastics. Siliciclastic

Highstand Shallowing

e

] 100% 0 100%

sedimentation types, and benthic communities for the Lower and Upper Ruzafas

sediments reentered the southern and northern parts of the basin only during
the final stages of the progradation when accommodation decreased before
the exposure of the platform (S1 surface).

Between Los Arcos and Las Canteras, coarse basement-derived alluvial-
fan deposits of the Red Conglomerates covered the S1 surface (Fig. 15C).
The alluvial-fan was debris-flow dominated and carried mainly pebble- to
cobble-size clasts from the neighboring basin margin. The deposition of
these conglomerates on the surface of subaerial exposure S1 indicates a
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Enamorados Limestones

Fi6. 15.—Examples of synsedimentary faults in the Lorca Basin. A) Synsedimentary extensional faults impacting the Enamorados Limestones Mbr in the Las Canteras
area. B) Pure normal striae on the fault plane. C) Synsedimentary faults sealed by the upper part of the Hondo Mbr in the Los Arcos area.

renewal in accommodation. The conglomerates pinch out in the vicinity of
the Batanes Fault (Figs. 3A, 14C) and their thickness increase southward in
the direction of marginal faults. At the same time, the Red Conglomerates
pinched out gradually to the southeast on the top of the Cejo de los
Enamorados (Fig. 14C) as observable on the geological map in Figure 1C.
As a consequence, and even if paleoflow directions cannot be measured in

debris-flow deposits of the Red Conglomerates, the occurrence of highs to
the NE and SE probably diverted the transport direction to the north or
northwest. The volume of preserved sediments in the Red Conglomerates
can be estimated to about 70 or 80 million m>. In the Los Cautivos area, an
extended deltaic system (Lower Sandstones) certainly fed by a large alluvial
system prograded from the west (Fig. 14C). It carried local basement clasts



and exotic material from the Subbetic (Carpentier et al. 2020; Wrobel and
Michalzik 1999). The grain size of the transported material ranged from
shales, deposited in alluvial-plain deposits and deltaic bottomsets, to sands
and pebbles accumulated in alluvial channels and deltaic foresets. The
volume of siliciclastics deposited in this large alluvial and deltaic system
can be estimated to more than 900 million m®.

The early marine transgressive stages of the Hondo Mbr flooded the
southern margin in the Los Arcos area but they pinched out to the
southeast on the Cejo de los Enamorados (Fig. 14D). They are
characterized by homoclinal heterozoan ramp facies covering the Red
Conglomerates. In the Los Cautivos area, the Lower Ruzafas Limestones,
corresponding to the lateral equivalent of the Hondo Fm, colonized the
delta top and a narrow siliciclastic-rich coral platform retreated gradually
landward as well as siliciclastic deposits. During the highstand, the coral
platform of the upper part of the Hondo Mbr prograded northwestward in
the Los Arcos area (Fig. 14E). In the Los Cautivos area, located in the axis
of the deltaic system, carbonates disappeared during the highstand and
were replaced by prograding deltaic siliciclastics.

Factors Controlling the Sequence Stratigraphic Framework of
Carbonates

A global tectonic, climatic, and eustatic control on the sequence-
stratigraphic framework of carbonate production in mixed carbonate—
siliciclastic systems has been proposed in several studies (e.g., Rankey
et al. 1999; Bassant et al. 2005; Embry et al. 2010). Other authors favor
predominantly local controls (e.g., Zecchin and Catuneanu 2017; Schwarz
et al. 2018). For the Neogene basins of the Betics, the influence of climate
and eustasy versus local parameters on carbonate—siliciclastic alternations
and changes in benthic associations was also debated (Franseen and
Mankiewicz 1991; Brachert et al. 2001, 2002; Braga et al. 2006). In the
Lorca Basin, results of this study show that the sequence stratigraphic
pattern of carbonate production varies between localities and with time. In
addition, several carbonate depositional profiles have developed in
different localities and sequence stratigraphic frameworks during the late
Tortonian and the early Messinian. Therefore, several local or global
factors may have controlled the initiation, persistence, or decline of
carbonate production and the types of depositional profiles. They are
discussed below.

Tectonics.—A feature common to all the studied outcrops is that the
initiation of carbonate sedimentation occurred during transgressions coeval with
periods of renewal in accommodation. The positive accommodation results from
either local tectonics or eustasy. In other Neogene basins of the Betics, such as
the Sorbas and Nijar basins, several angular unconformities between carbonate
units on basin margins were recorded during the early Messinian before the
onset of the evaporitic sedimentation (Martin and Braga 1994; Riding et al.
1998; Wartlich et al. 2005). Warrlich et al. (2005) interpreted these
unconformities and the variations in the sequence numbers observed in these
basins in comparison to the Las Negras outcrop as resulting from local tectonic
control. Montgomery et al. (2001) also proposed a local tectonic control on early
Messinian sedimentary cycles in the Cabo de Gata area. In addition, tectonically
active zones with a stepped margin and an abrupt transition from shallow or
subaerial environments to deep basin are favorable for the development of
Gilbert deltas as in Los Cautivos (Postma 1990a, 1990b; Garcia-Garcia et al.
2006; Algicek 2007; Breda et al. 2007; Backert et al. 2010).

In the Lorca Basin, synsedimentary activity of basinal faults have been
observed in several outcrops (Fig. 15). The paleogeographic maps also
illuminate the possible impact of synsedimentary activities on facies
distributions (Fig. 14). The D2 angular unconformity is not observed in the
Los Cautivos area but is visible in the Los Arcos area near the basin margin
(Fig. 16). These observations suggest that the D2 unconformity was linked
to the activity of marginal faults. In the Las Canteras area, evidence of

synsedimentary activity of normal faults near the Batanes Fault is apparent,
as these faults cut across the Enamorados Limestones but are sealed by the
Lower Sandstones (Fig. 15A, B). The Batanes Fault remained active during
the highstand of the Enamorados Limestones and probably influenced the
location of the platform edge during progradation (Fig. 14B).

A southward synsedimentary tilting of the substratum and the existence
of a subsiding corridor between the Batanes and marginal normal faults
could explain the local pinch-out of the Red Conglomerates toward the
basin (Fig. 14C). Also, in the northwest of the Los Arcos valley, normal
faults, corresponding to subsidiaries of the major Los Batanes Fault are
sealed by deposits of the upper part of the Hondo Mbr (Fig. 15C). At the
same time, the uplift of the southeastern part of the basin is attested to by
the gradual disappearance and pinch-out of the Red Conglomerates on the
top of the Cejo de los Enamorados. This uplift induced a decrease in
accommodation that can explain the northwestward direction and reduced
sigmoid progradation in the Hondo Mbr during the highstand.

However, the accommodation produced or removed by all this
synsedimentary tectonics only generated local variations in thicknesses.
Transgressions, highstands and lowstands are coeval in Los Arcos—Las
Canteras and Los Cautivos areas (Fig. 16). It indicates that local variations
in accommodation due to tectonics were not important enough to generate
variations in the sequence stratigraphic evolution between different parts
of the basin. This suggests, on the contrary, that a more global factor
controlled transgressions and the initiation of carbonate sedimentation in
the Lorca Basin.

Eustasy.—By comparison with the eustatic curve of Miller et al.
(2011), the transgression of the Enamorados Limestones can be correlated
with the eustatic rise at the Tortonian—Messinian boundary (Fig. 16). The
extensive distribution of the Enamorados Limestones, their consistent
sequence stratigraphy and facies evolutions in different parts of the basin
on either side of the Batanes Fault, and the subaerial exposure (S1 surface)
evident in all outcrops (Fig. 16) indicate that variations in accommodation
in the Lorca Basin during the late Tortonian—early Messinian transition
were likely controlled by eustasy.

During the early Messinian, the alternations between deltaic deposits
(Lower and Upper Sandstone mbrs) and the Lower and Upper Ruzafas
Limestones do not clearly match with the eustatic curve of Miller et al.
(2011) (Fig. 16). As proposed by Wrobel and Michalzik (1999), this
succession between siliciclastic and carbonate units could result from
higher frequency (fourth-order) orbital cycles above the resolution of the
eustatic curve, even if these authors noticed that “... an extrabasinal
(eustatic) background control for ‘4th-order’ cycles can only be assumed
but cannot be proven by our own studies.” The extensive transgression
observed in the southwestern part of the Lorca Basin (Lower Ruzafas
Limestones and Hondo mbrs; Fig. 16), occurring in areas with diverse
tectonic evolution on either side of the Batanes Fault, and the flooding of
basin margins by the Hondo Mbr (Figs. 15, 16) are rather consistent with
an eustatic control on high-frequency transgressions.

Topography versus Terrigenous Inputs and Carbonate Production.—
Obtained paleogeographic maps demonstrate that the tectonics of marginal
faults favored the development of short, immature alluvial fans backed on
the southern Lorca Basin margin or generated a steep topography marked
by the D2 angular unconformity (Fig. 14). On this margin, during
transgressions, the carbonate retrogradation occurred on the sloping
surface formed by the unconformity (Enamorados Limestones) or by the
topography formed by alluvial fans (Hondo) (Figs. 15A, 17A). Near major
marginal faults, the presence of steep margins prevented the edges of the
basin and sources of terrigenous material from being drowned during the
initial stage of transgression (Fig. 17A). As a consequence, in such a
coastal setting, siliciclastic input can remain significant during
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transgressions (Ghinassi 2007). This is supported by the significant
amount of siliciclastics (about 85%) in inner-ramp facies. In addition, in the
absence of benthic communities able to trap sediment at shallow depth (e.g.,
corals), wave action on the sea floor on the inner ramp would have
remobilized the sediments, placing the fine-grained particles back in
suspension and reducing depth of light penetration. Resulting deposits are thin
and dominated by heterotrophic filter-feeding benthic communities composed
of Heterostegina foraminifers, Crassostrea gryphoides, barnacles, and
coralline algae adapted to low light levels and nutrient-rich environments
(depositional model 1) (Hallock 2001; Halfar et al. 2006). The moderate rate
of carbonate production generated by this kind of benthic association
(Schlager 2003; Pedley and Carannante 2006; Schéfer et al. 2011; Pomar et al.
2012) was not sufficient to compensate for the eustatic increase in
accommodation, and a transgression occurred. During the transgression, the
progressive flooding of the small drainage basins of local immature alluvial
systems led to reduction of the amount of terrigenous inputs towards the center
of the basin (Fig. 17C).

At the end of the transgression, coarse siliciclastic inputs were limited,
with gravel-size siliciclastic material reaching only the inner platform. In
this proximal environment, the amount of siliciclastics decreased to 27%,
and it diminished to less than 4% in areas ranging from the platform edge to
the toe of the slope. As a consequence, at shallow depth, light conditions on
the sea-floor became favorable for the installation of coral buildups.

During highstand, the trapping of carbonate sediments by constructions:
1) limited their remobilization by waves and a moderate level of turbidity
certainly occurred in the platform front, and 2) favored the transition to a

flat-topped geometry (Pomar et al. 2012, 2017). A classical coral zonation
(depositional model 2) appeared during the basinward progradation as
observed in other late Neogene settings (Perrin et al. 1995; Esteban 1996;
Pomar 1996; Pomar et al. 2017). Despite a period of positive
accommodation, the significant carbonate production provided by
photozoan benthic associations filled the available space, as indicated by
the long-term shallowing-upward trend and the sigmoid progradation in
the Enamorados Limestones in the Los Arcos area (Fig. 5). In this context,
a sigmoid platform progradation and coeval retrogradation on basin
margin can start before the maximum accommodation rate was reached
(Razin et al. 2010). The flooding of drainage basins and the resulting
diminution in siliciclastic inputs continued during the highstand. Along
this depositional profile type 2, light penetration at depth favored the
development of coral associations, but with a limited diversity (Vennin
et al. 2004). This relatively low diversity was interpreted by Selen et al.
(2016) as being the result of unstable local environmental conditions
characterized by salinity and temperature fluctuations. During the late
Neogene, the Betics occupied a subtropical position. This, combined with
a cooling climate following the Burdigalian climax of coral development
(during the late Tortonian and the Messinian in the Mediterranean area), as
well as an intensification of oceanic circulation during the late Miocene,
certainly impacted the diversity of coral communities (Pomar 2001,
Kiessling et al. 2003; Bruch et al. 2007; Pomar and Hallock; 2008;
Bosellini and Perrin 2012; Kontakiotis et al. 2019; Targhi et al. 2021).

In tectonically calm margins with large and mature drainage basins,
such as in the Los Cautivos area, mature deltaic systems developed. Small
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FiG. 17.—General model of the interaction between the main factors controlling the carbonate—siliciclastic alternations in the Lorca Basin.

Porites buildups formed on mouth bars at the top of a shoal-water delta.
They constitute the first attempts of coral colonization before the
deposition of the Lower and Upper Ruzafas Limestones. Despite the
siliciclastic supplies, delta-front environments can favor the development
of coral communities because of the renewal of marine water under high
hydrodynamic conditions (Wilson and Lokier 2002; Wilson 2005). In Los
Cautivos, these small coral buildups appeared during late highstands when
accommodation was positive and aggradation occurred on the delta top
rather than during periods of oblique progradation (Fig. 13B). The
decrease in inputs of coarse siliciclastics during the initial growth of
buildups suggests that part of the siliciclastic material was stored in more
proximal areas of the depositional profile when accommodation increased.
In addition, like in today’s deltaic environments, autocyclic processes as
lateral migration of distributaries probably controlled the distribution of
siliciclastic sediments on the delta-front and allowed the local appearance
of short-lived environmental windows for the growth of corals (Wilson
and Lokier 2002; Vieira et al. 2019).

These tectonically calm margins are characterized by a relatively more
important carbonate production during transgressions. Indeed, narrow
siliciclastic-rich platforms (type 3) developed on the flat topography at the
top of shoal-water deltas (Fig. 17B). In transgressive contexts, the retreat
of terrigenous deposits is rapid on a flat topography during periods of high
accommodation (Hardy 2019), and a moderate flooding can generate a
significant landward shift of terrigenous sedimentation (Ghinassi 2007).
The persistence of exotic coarse-grained terrigenous inputs shows that the
large drainage basin was not submerged during the deposition of the
Lower and Upper Ruzafas Limestones (Fig. 17F). Even if fine-grained
siliciclastic inputs were still present, coarse-grained material reached the
distal parts of the depositional profile only during episodic catastrophic
events, as attested by the intercalation of conglomeratic debris flows
within Tarbellastraea buildups. As a result, a shallow photic zone,
affected only by fine-grained terrigenous material in suspension, can exist
in the distal part of the flat inherited delta-top topography, making it
suitable to the growth of specific corals (Fig. 17B). In most carbonate
settings the rate of carbonate production is not uniform along the depositional



profile (Wright and Burgess 2005). For the Lower and Upper Ruzafas
Limestones, the loci of the greatest carbonate production were certainly in the
coral constructions of the platform edge, while production was lower in the
inner-platform, which was more impacted by terrigenous inputs and probably
by temperature variations induced by freshwater input (Szlen et al. 2016). The
available space, which was not compensated by the low sedimentation rate in
the inner-platform, was gradually filled by Tarbellastraea constructions during
the landward migration of depositional environments.

Compared to modern tropical reefs, several features of the Upper Ruzafas
Limestones suggest a low-light environment and a reduced thickness of the
photic zone, as commonly observed in high-latitude settings (Halfar et al.
2005): 1) an inner platform with a significant amount of siliciclastics (78%),
which diminishes to about 10% on the platform edge), 2) a dominance of
encrusting forms in a siliciclastics-rich calcarenite in the internal shallow part
of the depositional profile (Montaggioni and Braithwaite 2009), 3) a strong
predominance of Merulinidae corals (Yamano et al. 2001, 2012), and 4) a
rapid lateral transition from a coral-dominated environment at shallow depth
to deposits dominated by heterozoan assemblages in a basinward direction
(unit 2, Fig. 9A). The migration of photozoan communities towards shallow
depth is an adaptation already observed in turbid and nutrient-rich
environments (Wilson and Lokier 2002; Bauch et al. 2011), and is
particularly true for deltaic environments (Wilson 2005). The sediments
trapped by the corals were certainly not strongly remobilized by waves, and
the low degree of light penetration was rather caused by the fine-grained
siliciclastic sediments held in suspension supplied by the delta (Fig. 17B).

In the Lorca Basin, episodes of carbonate production alternated with
significant accumulations of siliciclastic material. These two types of
sedimentation also coexisted in different geographic areas, as suggested by the
paleogeographic maps generated in this study. In the axis of the deltaic system
high volumes of siliciclastic material entered the basin when the rate of
accommodation decreased (Fig. 17D). The reduction in the surface area of
carbonate production during progradation of siliciclastic deposits has been
documented for numerous ancient and modern examples (Wilson and Lokier
2002; Bassant et al. 2005; Palmer et al. 2010; Bauch et al. 2011). This return
of siliciclastic inputs, mostly during highstand periods, could be explained by:
1) the important size of the drainage basin of the deltaic system out of the
Lorca Basin (as attested by exotic clasts in conglomerates), which was
permanently exposed even after transgressions and that allowed important
continuous inputs of siliciclastics, 2) an uplift of the drainage basin that
generated a rejuvenation of siliciclastic sources, 3) a climatic increase in
rainfall that favored erosion in the drainage basin and an efficient transport of
siliciclastics to the delta front. However, the coeval persistence of carbonates
during the highstand in other parts of the basin (i.e., Hondo Mbr, Los Arcos
area) suggests that the return of siliciclastics in Los Cautivos area was due to a
local control rather than to a global change in climate. In addition, no clear
evidence of an uplift in the drainage basin of the deltaic system can be
provided. As a consequence, the size of the drainage basin likely to be flooded
or not during transgressions certainly constituted the main controlling
parameter on the return of siliciclastics during highstands. In such a context,
the sediments stored at the delta front gradually covered and buried the
carbonates. While most of the siliciclastics bypassed the topsets and
accumulated on the delta front, turbidity prevented the installation of
autotrophic-dominated benthic communities. This is evidenced by the return
of heterotrophic suspension-feeder associations such as Ostrea edulis and
barnacles, and the absence of corals.

CONCLUSIONS

1) Based on facies analysis and stratigraphic architecture, three different
carbonate depositional models were identified in the mixed carbonate—
siliciclastic sedimentary succession of the Neogene Lorca Basin (SE

Spain). These models represent a heterotrophic homoclinal ramp, a flat-
topped coral platform, and a narrow siliciclastics-rich coral platform.

2) Local tectonics influenced basin physiography, which controlled the
entryway points, the distribution, and the volume of siliciclastic mate-
rial within the basin. In addition, the preexisting local tectonic- or
sedimentary-inherited topography impacted the amount of siliciclas-
tics in the photic zone at the onset of transgressions.

3) Each depositional model preferentially developed during either trans-
gressions or highstands, making a basic application of Walther’s Law
difficult in this mixed carbonate-siliciclastic system. The carbonate
production systematically started during transgressions. The global
distribution of the transgressive carbonates at the basin scale shows
that eustatic control governed variations in accommodation.

4) Carbonate production was modulated according to specific phases of the
relative sea-level cycle and inherited topography. During the transgression,
maximum carbonate production occurred through either: a) a heterotrophic
community developing on a ramp over a steep substratum with overall
moderate terrigenous input, or b) low-diversity coral buildups in
siliciclastics-rich environments on a flat deltaic topography. During high-
stands, steep margins were subject to low terrigenous flow because of the
submersion of local siliciclastic sources during previous transgressions.
Flat-topped carbonate coral platforms were able to prograde basinward
and to retrograde on basin margins simultaneously. In contrast, if the
drainage area of siliciclastic systems was large and permanently
exposed even after transgressions, a large volume of siliciclastic mate-
rial entered the basin during the highstand period. In this scenario, car-
bonates developed only during transgressions before being buried by
siliciclastics during highstands.
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