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ABSTRACT

Context. Recent observations and theoretical progress made about the history of the Earth-Moon system suggest that tidal dissipation
in oceans primarily drives the long-term evolution of orbital systems hosting ocean planets. Particularly, they emphasise the key role
played by the geometry of land-ocean distributions in this mechanism. However, the complex way continents affect oceanic tides still
remains to be elucidated.
Aims. In the present study, we investigate the impact of a single supercontinent on the tidal response of an ocean planet and the induced
tidally dissipated energy.
Methods. The adopted approach is based on the linear tidal theory. By simplifying the continent to a spherical cap of a given angular
radius and position on the globe, we carried out a harmonic analysis of the whole planet’s tidal response including the coupling with
the solid part due to ocean loading and self-attraction variations. In this framework, tidal flows are formulated analytically in terms of
explicitly defined oceanic eigenmodes, as well as the resulting tidal Love numbers, dissipated power, and torque.
Results. The analysis highlights the symmetry breaking effect of the continent, which makes the dependence of tidal quantities on the
tidal frequency become highly irregular. The metric introduced to quantify this continentality effect reveals abrupt transitions between
polar and non-polar configurations, and between small-sized and medium-sized continents. Additionally, it predicts that a continent
similar to South America or smaller (∼30◦ angular radius) does not qualitatively alter the tidal response of a global ocean regardless
of its position on the planet.

Key words. hydrodynamics – planet–star interactions – planets and satellites: oceans – planets and satellites: terrestrial planets –
Earth

1. Introduction

‘Can one hear the shape of a drum?’ This question, raised by
Kac (1966), emphasises the link connecting the geometry of a
vibrating system to the frequencies at which it can vibrate. Math-
ematically, it defines a broad class of problems referred to as
spectral geometry, which aims to establish relationships between
the eigenmodes of Riemannian manifolds and their geometric
features. In the aforementioned study, Kac investigates whether
it is possible or not to infer some information about the shape of
a vibrating drumhead from the sound it makes, which amounts
to recovering the drumhead’s geometry from its acoustic signa-
ture in an inverse problem approach. Unfortunately, the answer
to this question was shown to be negative in the general case,
as two different shapes are able to produce the very same sound
(e.g. Gordon et al. 1992). Nevertheless, it remains possible to
infer some specific geometric features of the system to a certain
extent.

Interestingly, this statement is also applicable to tidally
forced ocean planets, which may be regarded as giant celestial
vibrating drumheads. In the general case, one calls ‘ocean plan-
ets’ rocky bodies that are partly or totally covered by a surface
liquid layer1 (e.g. Léger et al. 2004). With more than 70% of
its surface covered by oceans (e.g. Eakins & Sharman 2010), the
Earth thus appears as a typical ocean planet. It is actually the

1 The extended definition of ocean planets – or ocean worlds – may
also refer to bodies containing a substantial amount of water in the form
of subsurface oceans, such as Jupiter’s moon Europa (e.g. Kivelson et al.
2000).

only planet of this kind that can be found presently in the Solar
System, although observational evidences indicate that Mars
possibly had large paleo-oceans as well before it dried (Carr &
Head 2003; Dohm et al. 2009; Scheller et al. 2021).

This uniqueness of the Earth, however, diminishes if one
considers extrasolar systems. The remarkable exoplanetary
diversity established thus far suggests that ocean planets are
rather ordinary, if not widespread. Particularly, a substantial
number of rocky planets were found to orbit in the habitable zone
of their host stars, which is the region where temperature condi-
tions can sustain liquid water on the planets’ surfaces (Kasting
et al. 1993). This is the case of many rocky planets orbiting red
and brown dwarfs (e.g. Payne & Lodato 2007; Raymond et al.
2007; Kopparapu et al. 2017) such as the super-Earths GJ 1214 b
(e.g. Charbonneau et al. 2009), LHS 1140 b (e.g. Lillo-Box et al.
2020), and TOI-1452 b (Cadieux et al. 2022), or the Earth-sized
planets TRAPPIST-1 e, f, and g (e.g. Grimm et al. 2018), with
the latter being suspected to harbour ocean-scale volumes of liq-
uid water (e.g. Bolmont et al. 2017; Bourrier et al. 2017; Turbet
et al. 2018). Improving our understanding of the surface condi-
tions, climate, and fate of these planets requires to constrain their
long-term orbital evolution better (e.g. Pierrehumbert 2010).

Tides are the main mechanism that controls the evolution of
planetary systems over timescales ranging from millions to bil-
lions of years (e.g. Hut 1981; Correia & Laskar 2001; Levrard
et al. 2009). Apart from the atmospheric thermal tides that
are induced by insolation variations (e.g. Lindzen & Chapman
1969; Leconte et al. 2015; Auclair-Desrotour et al. 2019b),
they result from the mutual gravitational interactions between
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celestial bodies, which undergo the differential attraction of their
neighbours. Combined with dissipative processes, this tidal forc-
ing generates a delayed mass redistribution, thereby leading to
exchanges of angular momentum between the orbit of the tidal
perturber and the spin of the tidally forced body (e.g. Correia
et al. 2014). Additionally, tides are accompanied with energy dis-
sipation where the mechanical energy lost by the orbital system
is converted into heat. While it is negligible on Earth, this tidal
heating is sometimes able to partly melt the body and to generate
surface volcanism, as observed on the Jovian moon Io (e.g. Peale
et al. 1979).

Oceanic tides take the form of frequency-resonant surface
gravity modes distorted by the planet’s rotation (e.g. Auclair-
Desrotour et al. 2018), which strongly differs from the smooth
visco-elastic elongation of solid bodies (e.g. Correia et al. 2014).
As a consequence, tidal dissipation in oceans may be increased
by several orders of magnitude while crossing a resonance asso-
ciated with a predominant mode (e.g. Arbic & Garrett 2010).
This resonant behaviour notably explains why, for present day
Earth, the oceanic contribution (∼2.5 TW) to the semidiurnal
component (M2) of dissipated tidal energy is an order of magni-
tude greater than the solid counterpart (Lambeck 1977; Provost
& Lyard 1997; Egbert & Ray 2001; Tyler 2021). Analogously,
oceanic tidal flows presumably warm up the icy moons of the
Solar System outer planets that are suspected to harbour subsur-
face oceans, such as Europa, Callisto, or Titan (e.g. Tyler 2008,
2014; Kamata et al. 2015; Beuthe 2016; Matsuyama et al. 2018).

Starting with MacDonald (1964), several authors investi-
gated the role played by oceanic tides in the evolution of the
Earth-Moon system, using either semi-analytical approaches
with simplified geometries (e.g. Webb 1980, 1982; Bills & Ray
1999; Farhat et al. 2022a) – including global ocean models (e.g.
Auclair-Desrotour et al. 2018; Motoyama et al. 2020; Tyler 2021)
–, or numerical methods based upon realistic land-ocean dis-
tributions (e.g. Le Provost et al. 1994, 1998; Arbic et al. 2010;
Kodaira et al. 2016; Green et al. 2017; Blackledge et al. 2020;
Daher et al. 2021). For a didactical review of the pioneering
studies of the field, the reader is referred to Lambeck (1977)
and Bills & Ray (1999). This long series of works particularly
emphasises the strong interplay between the resonant oceanic
tidal flows and continents, which shapes the four billion year-
history of the Earth’s length of the day (LOD) and Earth-Moon
distance (see e.g. Daher et al. 2021; Farhat et al. 2022a). More-
over, Green et al. (2017) show that the topography significantly
increases tidal dissipation, and Blackledge et al. (2020) under-
line the sensitivity of the latter to coastlines’ fractality. However,
the way the large-scale geometry of the ocean basin alters the
planet’s tidal response cannot be easily disentangled from other
effects in realistic models due to its complexity.

The present work is an attempt to address this issue by gener-
alising the semi-analytical tidal theory of hemispherical oceans
(Longuet-Higgins & Pond 1970; Webb 1980, 1982; Farhat et al.
2022a) to ocean basins of arbitrary sizes. In this approach, the
oceanic depth is assumed to be uniform and thin compared
to the planet radius. Adopting the so-called ’shallow water’
approximation (e.g. Vallis 2006), we ignore both the ocean strat-
ification and the associated baroclinic component of tidal flows
– that is the contribution of internal gravity waves (e.g. Gerkema
& Zimmerman 2008) – so that the described tide is purely
barotropic. Also, the geometry of the continent is simplified to a
spherical cap of specified angular radius in order to avoid math-
ematical complications. Finally, bottom friction is modelled by
a standard Rayleigh drag, and the coupling effect between the
ocean and the deformable solid surface is taken into account.

Analogously with the examples of the global and hemispherical
oceans, this formalism allows the planet’s tidal response and the
resulting dissipated energy to be formulated in terms of explicit
eigenmodes, each of these eigenmodes being resonant for a
specific tidal frequency. Additionally, the ocean dynamics is con-
trolled by a small number of dimensionless parameters, which
provides an appropriate framework for probing the parameter
space and characterising the continentality effect.

In Sect. 2, we detail the theory by successively introducing
the Laplace’s Tidal Equations (LTEs) that govern the oceanic
tidal response, the eigenmodes of the ocean basin, and the
expressions of the tidal Love numbers, torque, and power. In
Sect. 3, we examine the frequency-behaviour of an Earth-sized
planet with an equatorial hemispherical ocean. This reference
case is used in Sect. 4 to characterise the sensitivity of the
planet’s tidal response to the position of the continent on the
globe, its size, the oceanic depth, the dissipation timescale, the
elasticity of the solid part, and its anelasticity timescale. We
elaborate on the continentality effect in Sect. 5 by introducing
a metric that quantifies the dependence of the tidal torque on
the position and size of the supercontinent. Finally, in Sect. 6,
the conclusions of the study are summarised. We stress here that
Sect. 2 details technical aspects of the developed model. Thus we
invite the reader that might be only interested in the application
of the theory to skip this section and to jump directly to Sect. 3.
It is also noteworthy that all the notations introduced in the main
text can be retrieved in the nomenclature made in Appendix A.

2. Oceanic tidal response

We establish here the equations governing the tidal dynamics
of the ocean basin harboured by a rocky planet of radius Rp.
These equations are based on the commonly used shallow water
approach, where the ocean is considered as a thin liquid layer
of uniform density and depth H ≪ Rp (e.g. Vallis 2006). In
this approach, the fluid is supposed to be incompressible. The
tidal response thus described is said to be barotropic because it
does not depend on the vertical structure of the ocean (Vallis
2006). The continental geometry is simplified to a spherical cap
of angular radius θc, as shown by Fig. 1. Accordingly, the angular
radius of the ocean basin is defined as θ0 ≡ π − θc.

2.1. Geometry of the ocean basin

To write down the equations that describe the oceanic tidal
waves, we shall preliminarily introduce two frames of references
and their associated systems of coordinates. First, we denote by
R: (O, eX , eY , eZ) the frame of reference rotating with the planet
and having its centre of gravity, O, as origin. The Cartesian
basis of unit vectors (eX , eY , eZ) is such that eX and eY corre-
spond to two orthogonal directions in the planet’s equatorial
plane, and eZ to the direction of the spin vector. The unit vec-
tor eZ thus designates the position of the north pole on the
unit sphere. The geocentric frame of reference R is associated
with the usual spherical coordinates

(
r̂, θ̂, φ̂

)
, where r̂, θ̂, and

φ̂ designate the radial, colatitudinal and longitudinal coordi-
nates, respectively. The position of the circular supercontinent
on the globe is defined by the coordinates of its centre,

(
θ̂S, φ̂S

)
.

As the centre of the oceanic basin corresponds to the antipo-
dal point, its coordinates on the globe are given by

(
θ̂oc, φ̂oc

)
=(

π − θ̂S, π + φ̂S

)
.

The oceanic frame of reference, Roc:
(
O, ex, ey, ez

)
, is such

that ez points towards the centre of the ocean basin, while ex and
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Fig. 1. Geometry of the studied system and associated parameters. The
unit vector e′z, which indicates the position of the continental centre, is
defined as e′z ≡ −ez, with ez pointing towards the centre of the ocean
basin. In the diagram, the longitude of the continental centre is set to
φ̂S = 0.

ey define two orthogonal axes in the plane normal to ez. This
frame of reference is associated with the spherical coordinates
(r, θ, φ), where r = r̂ is the radial coordinate, θ the colatitude
(θ = 0 at the centre of the ocean basin), and φ the longitude. The
change of basis vectors (eX , eY , eZ) →

(
ex, ey, ez

)
is expressed as

a function of the coordinates of the continental centre asex
ey
ez

 =
 cos φ̂S cos θ̂S sin φ̂S cos θ̂S − sin θ̂S

sin φ̂S − cos φ̂S 0
− cos φ̂S sin θ̂S − sin φ̂S sin θ̂S − cos θ̂S


eX
eY
eZ

 . (1)

We note that the longitude of the continental centre does not
affect the tidal response since the tidal forcing is periodic in
longitude. Therefore, we set this longitude to φ̂S = 0 in the fol-
lowing, similar to the example shown by Fig. 1, which yields

ex
ey
ez

 =
 cos θ̂S 0 − sin θ̂S

0 −1 0
− sin θ̂S 0 − cos θ̂S


eX
eY
eZ

 . (2)

Finally, we introduce the set of unit vectors
(
er, eθ, eφ

)
associated

with the spherical coordinates (r, θ, φ), respectively. The change
of basis vectors

(
ex, ey, ez

)
→

(
er, eθ, eφ

)
is given by the standard

relation,er
eθ
eφ

 =
sin θ cosφ sin θ sinφ cos θ
cos θ cosφ cos θ cosφ − sin θ
− sinφ cosφ 0


ex
ey
ez

 . (3)

2.2. Laplace’s tidal equations

The planet is subject to the effects of the tidal gravitational
potential generated by the perturber (the Moon or the Sun in the
Earth case), which is expressed, in the frame of reference R, as

UT ≡
GMs∣∣∣Rper − rs

∣∣∣ − GMs

r2
s

Rp cos θ̂ −
GMs

rs
, (4)

where the constant component and the component responsible
for the Keplerian dynamics of the two-body system are removed
(second and third terms in the right-hand member of Eq. (4)).
In this equation, G is the universal gravitational constant, Ms
the mass of the perturber, rs its position vector, and rs ≡ |rs|

the planet-perturber distance. We note that the symbol ≡ is used
throughout the text to distinguish between definitions and equal-
ities. The tidal force per unit mass exerted by the perturber on the
planet is given by F ≡ ∇UT. Following the formalism introduced
in earlier works (e.g. Tyler 2011; Matsuyama 2014; Auclair-
Desrotour et al. 2018, 2019a; Motoyama et al. 2020; Farhat et al.
2022a), we write down the momentum and mass conservation
equations, respectively, as

∂tV + σRV + f × V + g∇
(
ΓDζ − ΓTζeq

)
= 0, (5)

∂tζ + ∇ · (HV) = 0, (6)

with t designating the time, g the surface gravity at rest, σR the
Rayleigh drag frequency used to describe the action of dissipa-
tive mechanisms, V the horizontal velocity vector – defined from
the horizontal displacement vector ξ as V ≡ ∂tξ –, f the Corio-
lis parameter, ζ the vertical displacement of the ocean’s surface
with respect to the oceanic floor, and ζeq ≡ UT/g the equilibrium
displacement corresponding to the equipotential surface induced
by the tidal gravitational potential.

In the momentum equation, the notations ΓD and ΓT refer to
non-trivial linear operators accounting for the effects of ocean
loading, self-attraction, and deformation of the solid regions of
the planet (e.g. Hendershott 1972). These operators are called the
‘solid deformation operators’ in the following. They encompass
the complex coupling between the oceanic shell and the solid
interior described by Poisson’s equation, and the momentum and
rheological equations governing the tidal dynamics of the solid
part. The two operators simplify to ΓD = ΓT = 1 if one neglects
both the tidal deformation of the solid part (infinite-rigidity
approximation) and the variation of self-attraction induced by
the oceanic tidal response (Cowling approximation; see Cowling
1941; Unno et al. 1989). In the general case, they are determined
by the rheological behaviour of the solid part in its response to
gravitational and surface forcings.

Equations (5) and (6) are known as the Laplace’s tidal equa-
tions (hereafter, LTEs) in reference to Laplace’s masterpiece
(Laplace 1798). We note that ζeq results from the coupled oceanic
tidal response and tidal deformation of the solid part, which
includes both gravitational and loading interactions, as discussed
further. The Coriolis parameter is expressed as a function of the
colatitude of the current point in R,

f ≡ 2Ω cos θ̂ er, (7)

where Ω > 0 is the planet’s spin angular velocity. The horizontal
gradient operator and divergence of the horizontal velocity are
expressed in Roc, and the associated basis vectors,

(
eθ, eφ

)
, as

∇ ≡ R−1
p

[
eθ∂θ + eφ (sin θ)−1 ∂φ

]
, (8)

∇ · V =
(
Rp sin θ

)−1 [
∂θ (sin θVθ) + ∂φVφ

]
. (9)

The Rayleigh drag term σRV in Eq. (5) accounts for the cumu-
lated effects of dissipative mechanisms on tidal flows. The
frequency σR is the inverse of the effective dissipation timescale
associated with these dissipative mechanisms. It takes values
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Table 1. Dimensionless control parameters determining the regime of the oceanic tidal response.

Parameter Description Limits Asymptotic regimes Reference

Geometry of the ocean basin

θc Size of the supercontinent θc = 0◦ Global ocean Fig. 1
θc = 180◦ Dry planet

θ̂S Position of the supercontinent on the globe θ̂S = 0◦ Polar continent Eq. (1)
θ̂S = 90◦ Equatorial continent

Ocean dynamics

σ̃ ≡
σ

2Ω
Distortion of forced tidal waves by Coriolis forces σ̃ ≪ 1 Sub-inertial regime Eq. (15)

σ̃ ≫ 1 Super-inertial regime

σ̃G ≡

√
gH

2ΩRp
Deviation of free surface waves by Coriolis forces σ̃G ≪ 1 Fast rotator regime Eq. (14)

σ̃G ≫ 1 Slow rotator regime

σ̃R ≡
σR

2Ω
Damping of Coriolis effects by friction σ̃R ≪ 1 Quasi-adiabatic regime Eq. (14)

σ̃R ≫ 1 Frictional regime

Solid deformation

γσD;l , γ
σ
T;l Visco-elastic response of the solid part γσD;l , γ

σ
T;l = 1 Rigid body (with CA) Eq. (47)

else Solid-ocean coupling

Notes. The acronym ‘CA’ refers to the Cowling approximation (Cowling 1941), mentioned in Sect. 2.2.

around ∼10−5 s−1 for the present day Earth (e.g. Webb 1980;
Farhat et al. 2022a)2.

2.3. Nondimensional tidal equations

The nondimensional momentum and continuity equations are
obtained by choosing as reference time and velocity scales the
inertial time, t0, and the typical velocity of long-wavelength
surface gravity waves, V0, which are defined, respectively, as

t0 ≡ (2Ω)−1 , V0 ≡
√
gH. (10)

Introducing the normalised time t̃, Coriolis parameter f̃ , hori-
zontal gradient ∇̃, the complex horizontal displacement vector
ξ̃, and vertical displacements ζ̃ and ζ̃eq, such that

t = t0 t̃, f = t−1
0 f̃ ∇ = R−1

p ∇̃,

ξ = ℜ
(
Rpξ̃

)
, ζ = ℜ

(
Hζ̃

)
, ζeq = ℜ

(
Hζ̃eq

)
,

(11)

with ℜ referring to the real part of a complex number, we end
up with the nondimensional complex LTEs given by[
∂t̃t̃ +

(
σ̃R + f̃×

)
∂t̃

]
ξ̃ + σ̃2

G∇̃Ξ̃ = 0, (12)

ζ̃ + ∇̃ · ξ̃ = 0, (13)

with Ξ̃ ≡ ΓDζ̃ −ΓTζ̃eq. In the above equations, tidal dynamics are
controlled by two dimensionless parameters,

σ̃G ≡
V0

2ΩRp
=

√
gH

2ΩRp
, σ̃R ≡

σR

2Ω
. (14)

2 Other values of σR may be found in the literature. For example,
Wunsch et al. (1997) uses a much smaller value to study the dynam-
ics of the long-period tides, σR = 2.5 × 10−7 s−1, while Motoyama et al.
(2020) set this value to σR ∼ 4 × 10−6 s−1 following the prescription
given by Schwiderski (1980).

The first parameter, σ̃G, can be considered as a normalised
Rossby deformation length since it compares the typical prop-
agation velocity of surface gravity waves (V0) with the Earth’s
rotation velocity. If σ̃G ≪ 1 (fast rotator regime), the inertial
forces resulting from Coriolis acceleration predominate with
respect to the restoring forces of surface gravity waves (pressure
forces and gravity). Conversely, if σ̃G ≫ 1 (slow rotator regime),
Coriolis terms are not strong enough to significantly deviate free
surface gravity waves. As it describes the ratio of drag forces to
Coriolis forces, the second dimensionless parameter, σ̃R, may
be regarded as an Ekman number. If σ̃R ≪ 1, the drag does
not alter the tidal response much. Conversely, σ̃R ≫ 1 charac-
terises a frictional (or viscous) regime where inertial effects are
annihilated by the strong damping associated with the drag.

In addition to σ̃G and σ̃R, the time-derivative operators in
Eq. (12) introduce a third dimensionless parameter describing
the ratio of tidal forces to Coriolis forces,

σ̃ ≡
σ

2Ω
. (15)

The notation σ in the above equation designates the typical fre-
quency of tidal flows, which will serve as the tidal frequency
of the considered tidal force in the Fourier expansion of tidal
quantities detailed further. If σ̃ ≪ 1 (sub-inertial regime), the
acceleration term of the momentum equation can be neglected
with respect to Coriolis terms. Conversely, if σ̃ ≫ 1 (super-
inertial regime), the flow is strongly driven by the tidal forcing
and it is thus hardly distorted by the planet’s rotation. We note
that σ̃ is the inverse of the so-called spin parameter that is com-
monly used to characterise the oscillations of rotating fluids in
planetary and stellar hydrodynamics (e.g. Lee & Saio 1997). The
dimensionless parameters that control the planet’s tidal response
are summarised in Table 1.

2.4. Helmholtz decomposition

Proudman (1920) demonstrated that Helmholtz’s theorem (e.g.
Arfken & Weber 2005) can be used to decompose the horizontal
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displacement vector field into curl-free and divergence-free vec-
tor fields,

ξ̃ = ∇̃Φ + ∇̃Ψ × er. (16)

The curl-free (∇̃ ×
(
∇̃Φ

)
= 0) and divergence-free (∇̃ ·(

∇̃Ψ × er

)
= 0) components of ξ̃ are defined from the divergent

displacement potentialΦ and the rotational displacement stream-
functionΨ, respectively (Webb 1980; Tyler 2011). We emphasise
that the Helmholtz decomposition is not unique for bounded
domains such as the considered ocean basin. This results from
the fact that additional physical constraints on the boundary con-
dition are necessary to define Φ and Ψ (e.g. Fox-Kemper et al.
2003). However choosing boundary conditions for the two func-
tions is not straightforward given that the two components of
Eq. (16) cannot be disentangled in the total flux. For instance,
the impermeability condition at the coastline is formulated as
ξ̃ · n = 0, where n designates the outward pointing unit vector
defining the normal to the coast. This theoretically requires to
find another boundary condition and to solve it for ∇̃Φ and ∇̃Ψ
together with the first condition, which may lead to significant
mathematical complications.

To circumvent this difficulty, it is convenient to adopt a com-
monly used trick (e.g. Webb 1980, 1982; Gent & McWilliams
1983; Watterson 2001; Han & Huang 2020; Farhat et al. 2022a),
which consists in applying the impermeability condition to both
components of Eq. (16),

n · ∇̃Φ = 0, n ·
(
∇̃Ψ × er

)
= 0. (17)

The first condition of Eq. (17) means that the gradient of Φ is
zero in the direction normal to the coastline, which is equivalent
to Neumann condition (specified value of the derivative of the
solution applied at the boundary of the domain; e.g. Morse &
Feshbach 1953, Sect. 6.1). The second condition may be refor-
mulated as (er × n) · ∇̃Ψ = 0, implying that the streamfunction
is a constant along the coastline. This corresponds to a Dirich-
let condition (specified value of the solution itself; Morse &
Feshbach 1953, Sect. 6.1). Since both Φ and Ψ are defined to
a constant, the value of Ψ at the coastline is set to zero, which
simplifies the second condition of Eq. (17) to Ψ = 0. Interest-
ingly, this condition induces the orthogonality of the curl-free
and divergence-free components of the horizontal displacement
(e.g. Farhat et al. 2022a, Appendix E), formulated as∫
O

∇̃Φ ·
(
∇̃Ψ × er

)
dS = 0, (18)

with dS = sin θdθdφ being an infinitesimal surface element of
the unit sphere, O the domain occupied by the ocean basin,
and ∇̃Φ the complex conjugate of ∇̃Φ. This property leads to
appreciable simplifications in the LTEs, as discussed further.

The divergent potential function and the streamfunction are
defined on a compact connected domain, the ocean basin (O),
and they satisfy either Neumann or Dirichlet conditions at its
boundary, ∂O. As a consequence, the two functions can be
expanded in terms of the complete sets of orthogonal eigenfunc-
tions {Φk}1≤k≤∞ or {Ψk}1≤k≤∞ that are the solutions of the wave
equations given by(
∇̃2 + λ

)
Φ = 0 on O, n · ∇̃Φ = 0 at ∂O, (19)(

∇̃2 + ν
)
Ψ = 0 on O, Ψ = 0 at ∂O, (20)

where ∇̃2 designates the normalised Laplacian operator defined,
for any function f , as

∇̃2 f ≡ (sin θ)−2
[
sin θ∂θ (sin θ∂θ f ) + ∂φφ f

]
. (21)

The solutions of the colatitudinal component of Eqs. (19)
and (20) are the associated Legendre functions of the first kind
(ALFs) of real degrees, which are detailed in Appendix B.
The corresponding eigenfunctions Φk are associated with the
eigenvalues λk ∈ R

+, and the eigenfunctions Ψk with the eigen-
values νk ∈ R+, the relationship between the real degrees of the
ALFs and the eigenvalues being detailed in Appendix C (see
Table C.2). These eigenfunctions are obtained by multiplying the
ALFs to the solutions of the longitudinal component of Eqs. (19)
and (20), namely exp (±imφ), with i being the imaginary number.
The outcome is a set of functions known as spherical cap har-
monics (Haines 1985; Hwang & Chen 1997; Thébault et al. 2004,
2006), and denoted by ‘SCHs’ in the following (see Eq. (C.19)).
Thus, the set {Φk}1≤k≤∞ is refered to as the ‘SCHNs’ (Neumann
condition), and the set {Ψk}1≤k≤∞ as the ‘SCHDs’ (Dirichlet con-
dition). For example, Fig. 2 shows the first basis functions of
the two sets for a supercontinent of angular radius θc = 10◦ (i.e.
θ0 = 170◦).

One shall notice that the SCHs and their associated eigen-
values both depend on the boundary condition applied at the
coastline, meaning that the sets {Φk}1≤k≤∞ and {Ψk}1≤k≤∞ are nec-
essarily different by construction. In each set, the basis functions
are orthogonal to each other and normalised so that∫
O

ΦkΦ jdS =
∫
O

ΨkΨ jdS = δk, j, (22)

where δk, j designates the Kronecker delta function, such that
δk, j = 1 for k = j and δk, j = 0 otherwise. However, two func-
tions belonging to different sets are not orthogonal in the general
case,∫
O

ΦkΨ jdS , 0, (23)

since the sets of basis functions {Φk}1≤k≤∞ and {Ψk}1≤k≤∞ are not
the same.

Introducing the time-dependent coefficients pk and p−k, we
write down the divergent potential function and the streamfunc-
tion as

Φ
(
θ, φ, t̃

)
=

∞∑
k=1

pk
(
t̃
)
Φk (θ, φ) , (24)

Ψ
(
θ, φ, t̃

)
=

∞∑
k=1

p−k
(
t̃
)
Ψk (θ, φ) . (25)

By substituting Eq. (24) into Eq. (13), the continuity equation
becomes

ζ̃ + ∇̃2Φ = 0, (26)

which implies that

ζ̃ =

∞∑
k=1

λk pkΦk. (27)

However, such a simple expression cannot be obtained for the
equilibrium displacement (ζ̃eq) in the general case since it is
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Fig. 2. Eigenfunctions describing the oceanic tidal response for a supercontinent of angular radius θc = 10◦ (i.e. θ0 = 170◦), and associated tidal
flows. Top: set {Φk} (SCHNs). Bottom: set {Ψk} (SCHDs). The orange disk designates the continent. The eigenfunctions are computed from the
expression given by Eq. (C.19), and their real parts are plotted for ln such that n = 0, . . . , 3 (vertical axis) and −n ≤ m ≤ n (horizontal axis). Bright
or dark colours designate positive or negative values of the eigenfunctions, respectively. Streamlines indicate the tidal flows corresponding to ∇̃Φk
for the set {Φk} and to ∇̃Ψk × er for the set {Ψk}.

naturally expanded in series of spherical harmonics (hereafter,
SPHs) in the coordinate system associated with the planet’s spin,
which do not satisfy Dirichlet or Neumann conditions at coast-
lines. The form of the expression given by Eq. (27) can be
obtained for ζ̃eq only in the particular case of the hemispheric
ocean (θ0 = 90◦), where the set of eigenfunctions {Φk}1≤k≤∞
actually corresponds to a subset of the SPHs for the hemispheri-
cal domain, as shown by Farhat et al. (2022a).

2.5. Temporal equations

The method used to establish the temporal differential equations
for the coefficients pk and p−k introduced in Eqs. (24) and (25)
closely follows that used for the hemispheric ocean configuration
(e.g. Webb 1980, 1982; Farhat et al. 2022a). As a first step, we

substitute Φ and Ψ by their series expansions in Eq. (16) and in
the momentum equation given by Eq. (12). As a second step, we
do the dot product of the equation thus obtained by ∇̃Φk, and we
integrate it over the domain of the ocean basin. It follows

∞∑
j=1

{
[∂t̃t̃ + σ̃R∂t̃] p j

∫
O

∇̃Φk · ∇̃Φ jdS (28)

+ (∂t̃t̃ + σ̃R∂t̃) p− j

∫
O

∇̃Φk ·
(
∇̃Ψ j × er

)
dS

+ ∂t̃ p− j

∫
O

∇̃Φk ·
[
f̃ ×

(
∇̃Ψ j × er

)]
dS

+∂t̃ p j

∫
O

∇̃Φk ·
(

f̃ × ∇̃Φ j

)
dS

}
+ σ̃2

G

∫
O

∇̃Φk · ∇̃Ξ̃dS = 0.
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The dot product of two eigenfunctions that appears in the first
term of Eq. (28) is computed by invoking, successively, Green’s
first identity (e.g. Strauss 2007, Chapter 7),∫
O

∇̃Φk · ∇̃Φ jdS =
∫
∂O

Φ j

(
∇̃Φk · n

)
dℓ −

∫
O

Φ j∇̃
2ΦkdS , (29)

the impermeability boundary condition on Φk given by Eq. (17),
the fact that the Φk are eigenfunctions of the Laplacian operator
as described by Eq. (19), and the orthogonality property given
by Eq. (22). This yields∫
O

∇̃Φk · ∇̃Φ jdS = λkδk, j, (30)

and for the forcing term,∫
O

∇̃Φk · ∇̃Ξ̃dS = λk

∫
O

ΦkΞ̃dS . (31)

Since the tidal gravitational potential is expressed in terms of
the SPHs associated with the coordinates

(
θ̂, φ̂

)
, the calculation

of the above integral requires computing the transition matrix
between these SPHs and the oceanic eigenfunctions. This calcu-
lation is achieved in two steps. First, one computes the rotated
SPHs associated with the change of coordinates

(
θ̂, φ̂

)
→ (θ, φ),

as detailed in Appendices D and E. Second, the transition matri-
ces between the non-rotated SPHs and the SCHs are evaluated
following the method described in Appendix F.

The integral of the second term in the left-hand member of
Eq. (28) actually vanishes owing to the orthogonality property of
the curl-free and divergence-free components of the horizontal
displacement (Eq. (18)),∫
O

∇̃Φk ·
(
∇̃Ψ j × er

)
dS = 0. (32)

Finally, the integrals of the third and fourth terms of Eq. (28) are
simplified with the help of vectorial identities, yielding∫
O

∇̃Φk ·
[
f̃ ×

(
∇̃Ψ j × er

)]
dS =

∫
O

(
f̃ · er

)
∇̃Φk · ∇̃Ψ jdS ,∫

O

∇̃Φk ·
(

f̃ × ∇̃Φ j

)
dS = −

∫
O

f̃ ·
(
∇̃Φk × ∇̃Φ j

)
dS . (33)

The above simplifications lead to the first set of temporal equa-
tions for the coefficients p j and p− j,

∞∑
j=1

{
[∂t̃t̃ + σ̃R∂t̃] p jλkδk, j + ∂t̃ p− j

∫
O

(
f̃ · er

)
∇̃Φk · ∇̃Ψ jdS

−∂t̃ p j

∫
O

f̃ ·
(
∇̃Φk × ∇̃Φ j

)
dS

}
+ σ̃2

Gλk

∫
O

ΦkΞ̃dS = 0. (34)

The second set of equations is obtained by repeating the same
steps with ∇̃Ψk × er instead of ∇̃Φk in the dot product operation,

∞∑
j=1

{
(∂t̃t̃ + σ̃R∂t̃) p j

∫
O

(
∇̃Ψk × er

)
· ∇̃Φ jdS (35)

+ ∂t̃ p j

∫
O

(
∇̃Ψk × er

)
·
(

f̃ × ∇̃Φ j

)
dS

+ ∂t̃ p− j

∫
O

(
∇̃Ψk × er

)
·
[
f̃ ×

(
∇̃Ψ j × er

)]
dS

+ (∂t̃t̃ + σ̃R) p− j

∫
O

(
∇̃Ψk × er

)
·
(
∇̃Ψ j × er

)
dS

}
− σ̃2

G

∫
O

er ·

(
∇̃Ψk × ∇̃Ξ̃

)
dS = 0,

which, using the orthogonality properties of the eigenfunctions
and the relations∫
O

∇̃Ψk · ∇̃Ψ jdS = νkδk, j, (36)

simplifies to

∞∑
j=1

{
(∂t̃t̃ + σ̃R) p− jνkδk, j − ∂t̃ p j

∫
O

(
f̃ · er

) (
∇̃Ψk · ∇̃Φ j

)
dS

−∂t̃ p− j

∫
O

f̃ ·
(
∇̃Ψk × ∇̃Ψ j

)
dS

}
− σ̃2

G

∫
O

er ·

(
∇̃Ψk × ∇̃Ξ̃

)
dS = 0.

(37)

Thus, following the formalism used in earlier studies (Webb
1980, 1982; Farhat et al. 2022a), Eqs. (34) and (37) form an
infinite linear system in the coefficients pk and p−k, written as

(∂t̃t̃ + σ̃R∂t̃) pk + λ
−1
k

+∞∑
j=−∞
j,0

βk, j∂t̃ p j + σ̃
2
G

∫
O

ΦkΞ̃dS = 0, (38)

(∂t̃t̃ + σ̃R∂t̃) p−k + ν
−1
k

+∞∑
j=−∞
j,0

β−k, j∂t̃ p j (39)

−
σ̃2

G

νk

∫
O

er ·

(
∇̃Ψk × ∇̃Ξ̃

)
dS = 0.

In the above equations, the symbols βk, j designate the so-called
‘gyroscopic coefficients’ (e.g. Proudman 1920; Longuet-Higgins
& Pond 1970; Webb 1980),

βk, j ≡ −

∫
O

cos θ̂ er ·
(
∇Φk × ∇Φ j

)
dS , (40)

βk,− j ≡

∫
O

cos θ̂
(
∇Φk · ∇Ψ j

)
dS , (41)

β−k, j ≡ −

∫
O

cos θ̂
(
∇Ψk · ∇Φ j

)
dS , (42)

β−k,− j ≡ −

∫
O

cos θ̂ er ·
(
∇Ψk × ∇Ψ j

)
dS . (43)

These coefficients account for the coupling effect of the Coriolis
terms and the geometry of the ocean basin, which affects how
the gradients of the eigenfunctions overlap. Their behaviour and
properties are examined in Appendix G. The expression of the
forcing term in Eq. (39) is given here for generality. This term
is actually zero, as discussed in the next section, meaning that
Eq. (39) does not depend on Ξ̃.

2.6. Ocean loading and self-attraction variation

At this stage, we still have to express Ξ̃ as a function of p j and
p− j. To do so, we consider the fact that the gravitational tidal
force acts on the planet as a periodic perturbation oscillating in
time and longitude. Therefore, the tidal gravitational potential
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given by Eq. (4) can be expanded in Fourier series of time and
series of SPHs. In the general case, UT is expressed as

UT = V2
0ℜ

∑
σ

+∞∑
l=2

l∑
m=−l

Ũm,σ
T;l Ŷm

l

(
θ̂, φ̂

)
eiσt

 , (44)

where σ is the tidal frequency, V0 the reference velocity intro-
duced in Eq. (10), Ŷm

l the complex SPH of degree l and order m
associated with the coordinate system

(
θ̂, φ̂

)
, defined in Eq. (C.9),

and Ũm,σ
T;l ∈ C the associated frequency-dependent normalised

component of the tidal gravitational potential. In the following,
these notations are shortened for convenience. Similarly as the
eigenfunctions of the ocean basin, Φk and Ψk, the SPHs are sim-
ply denoted by Ŷk = Ŷmk

lk
, and the corresponding coefficients by

ŨσT;k = Umk ,σ
T;lk

, the index k referring to an element of the set of

SPHs,
{
Ŷk

}
1≤k≤∞

. Moreover, all the indices used from now on (k,
j, n, q) are supposed to run from one to infinity when bounds are
not specified. It is noteworthy that the Fourier series expansion
in Eq. (44) can always be written in term of positive tidal fre-
quencies as long as m runs from −l to l. Therefore, we assume
that σ ≥ 0, and that the frequencies are all different from each
other (no resonance).

Since the components associated with two different tidal fre-
quencies are not correlated in the linear tidal theory, the resulting
tidal responses can be treated separately. We thus consider the
contribution of the component associated with a given tidal fre-
quency, ŨσT , and the associated forcing term, Ξ̃σ, expressed as

ŨσT =
∑

j

ŨσT; jŶ j

(
θ̂, φ̂

)
, Ξ̃σ =

∑
j

Ξ̃σj Ŷ j

(
θ̂, φ̂

)
. (45)

As highlighted in earlier studies (e.g. Matsuyama 2014;
Matsuyama et al. 2018; Auclair-Desrotour et al. 2019a), the com-
bined contribution of ocean loading, self-attraction variation,
and deformation of solid regions may be formulated as

Ξ̃σj = γ
σ
D;l j

∑
n

⟨Ŷ j,Φn⟩λn pn

 − γσT;l j
ŨσT; j, (46)

where we have made use of the scalar product defined by
Eq. (C.12) and introduced the solid deformation factors, γσD;l and
γσT;l (see e.g. Hendershott 1972),

γσT;l ≡ 1 + kσl − hσl , (47)

γσD;l ≡ 1 −
(
1 + kσL;l − hσL;l

) 3
(2l + 1)

ρw

ρ
. (48)

The factors γσD;l and γσT;l are independent of the order m
since they are expressed as functions of the Love numbers of
the solid part, which is commonly assumed to be spherically
symmetric in the tidal theory. The parameters kσl and hσl in the
first expression are known as the tidal gravitational and displace-
ment Love numbers, respectively. They describe the response of
the solid body to a gravitational tidal forcing, which takes the
form of a self-attraction variation and a surface displacement.
By analogy, the loading Love numbers kσL;l and hσL;l account for
the gravitational and mechanical responses of solid regions to
the cumulated gravitational and pressure forces generated by
the oceanic mass redistribution, respectively. The second solid
deformation factor, γσT;l , also depends on the ratio of seawater

density to the mean density of the solid regions, ρ. We remark
that γσD;l and γσT;l are sometimes considered as real factors (e.g.
Matsuyama 2014; Motoyama et al. 2020), which corresponds to
an adiabatic elastic response of the solid part, where dissipative
mechanisms are ignored. However, the correspondence principle
established by Biot (1954) makes it possible to treat dissipative
anelastic cases similarly as long as the anelasticity is linear. As
a consequence, the expressions given by Eqs. (47) and (48) can
be extended to any rheological model including dissipative pro-
cesses. In that case, the solid Love numbers are complex transfer
functions describing the visco-elastic response of solid regions
when subjected to a harmonic tidal force (Remus et al. 2012;
Auclair-Desrotour et al. 2019a; Farhat et al. 2022b).

Using the expression given by Eq. (46) and proceeding to
a change of basis functions between the oceanic eigenfunc-
tions and the SPHs associated with the coordinate system

(
θ̂, φ̂

)
,

we expand the integrals depending on the forcing in Eqs. (38)
and (39) in series of p j and components of the tidal gravitational
potential,∫
O

ΦkΞ̃dS =
∑

n

∑
j

⟨Φk, Ŷ j⟩γ
σ
D;l j
⟨Ŷ j,Φn⟩

 λn pn (49)

−
∑

j

⟨Φk, Ŷ j⟩γ
σ
T;l j

ŨσT; j,

∫
O

er ·

(
∇̃Ψk × ∇̃Ξ̃

)
dS =

∑
n

∑
j,q

υk,q⟨Yq, Ŷ j⟩γ
σ
D;l j
⟨Ŷ j,Φn⟩

 λn pn

−
∑

j,q

υk,q⟨Yq, Ŷ j⟩γ
σ
T;l j

ŨσT; j, (50)

where υk,q designates the coefficients defined as

υk,q ≡

∫
O

er ·

(
∇̃Ψk × ∇̃Yq

)
dS . (51)

These coefficients are all zero as shown in Appendix G, which
implies that∫
O

er ·

(
∇̃Ψk × ∇̃Ξ̃

)
dS = 0. (52)

We remark that the quadrupolar component of the tidal gravita-
tional potential (the component associated with the Ŷ2

2 SPH) is
far greater than the components of higher degrees if the size of
the planet is small compared with the planet-perturber distance.
These components can thus be ignored in standard two-body
systems. The series in the formulation of the tidal gravitational
given by Eq. (45) then reduces to one term only. This removes the
summation over j in the second term of the right-hand member
of Eq. (49).

2.7. The tidal solution

As a last step, the tidal equations given by Eqs. (38) and (39)
are written down in the Fourier domain. To compute the solution
numerically, all the sets of basis functions are truncated, meaning
that the infinite spaces of functions they describe are approx-
imated by finite spaces of functions. As the tidal gravitational
potential varies over planetary length scales, the tidal response is
essentially described by the eigenmodes of largest wavelengths.
As a consequence, the truncation does not alter much the solu-
tion as long as the number of eigenmodes of the set is sufficiently
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large. The numbers of basis functions for the sets
{
Φ j

}
,
{
Ψ j

}
, and{

Ŷ j

}
are denoted by M, N, and K, respectively, while the vectors

describing the tidal response and the tidal gravitational potential
in these sets are expressed as

Φ =
[
p1, . . . , p j, . . . , pM

]T
, (53)

Ψ =
[
p−1, . . . , p− j, . . . , p−N

]T
, (54)

ŨT =
[
ŨσT;1, . . . , Ũ

σ
T; j, . . . , Ũ

σ
T;K

]T
, (55)

with T designating the transpose of a matrix. Converted into an
algebraic form, the forcing term given by Eq. (49) is written as∫
O

ΦkΞ̃dS = ET
M,k

(
AΦΦ + RΦŨT

)
, (56)

where we have introduced the unit vectors EM,k defined as

EM,k ≡
[
δ1,k, . . . , δ j,k, . . . , δM,k

]T
, (57)

and the matrices AΦ, and RΦ,

AΦ = PŶ ,Φ
T
ΓD PŶ ,ΦΛ, RΦ = −PŶ ,Φ

T
ΓT. (58)

In the above expressions, PŶ ,Φ designates the transition matrix
from the SPHs Ŷk to the eigenfunctions Φk. The other matrices
are defined as

ΓD ≡



γσD;l1
0 . . . . . . 0

0
. . .

. . .
...

...
. . . γσD;l j

. . .
...

...
. . .

. . . 0
0 . . . . . . 0 γσD;lK


, (59)

ΓT ≡



γσT;l1
0 . . . . . . 0

0
. . .

. . .
...

...
. . . γσT;l j

. . .
...

...
. . .

. . . 0
0 . . . . . . 0 γσT;lK


, (60)

Λ ≡



λ1 0 . . . . . . 0

0
. . .

. . .
...

...
. . . λ j

. . .
...

...
. . .

. . . 0
0 . . . . . . 0 λM


, (61)

N ≡



ν1 0 . . . . . . 0

0
. . .

. . .
...

...
. . . ν j

. . .
...

...
. . .

. . . 0
0 . . . . . . 0 νN


. (62)

Also, we introduce the matrix of gyroscopic coefficients

B ≡
[
Λ−1BΦ,Φ Λ−1BΦ,Ψ
N−1BΨ,Φ N−1BΨ,Ψ

]
, (63)

where the block matrices BΦ,Φ, BΦ,Ψ, BΨ,Φ, and BΨ,Ψ are defined
in terms of the βk, j defined in Eqs. (40)–(43) as

BΦ,Φ ≡



β1,1 . . . β1, j . . . β1,M
...

...
...

βk,1 . . . βk, j . . . βk,M
...

...
...

βM,1 . . . βM, j . . . βM,M


, (64)

BΦ,Ψ ≡



β1,−1 . . . β1,− j . . . β1,−N
...

...
...

βk,−1 . . . βk,− j . . . βk,−N
...

...
...

βM,−1 . . . βM,− j . . . βM,−N


, (65)

BΨ,Φ ≡



β−1,1 . . . β−1, j . . . β−1,M
...

...
...

β−k,1 . . . β−k, j . . . β−k,M
...

...
...

β−N,1 . . . β−N, j . . . β−N,M


= −BΦ,Ψ

T
, (66)

BΨ,Ψ ≡



β−1,−1 . . . β−1,− j . . . β−1,−N
...

...
...

β−k,−1 . . . β−k,− j . . . β−k,−N
...

...
...

β−N,−1 . . . β−N,− j . . . β−N,−N


. (67)

Finally, the matrix accounting for the gravitational and pres-
sure effects of the oceanic surface displacement, A, the matrix
describing the coupling between the forcing tidal gravitational
potential and the oceanic eigenmodes, R, and the solution vector,
X, are respectively expressed as

A ≡
[
AΦ 0
0 0

]
, R ≡

[
RΦ
0

]
, X ≡

[
Φ
Ψ

]
. (68)

The temporal tidal equations given by Eqs. (38) and (39) thus
lead to the solution

X = H
(
σ̃, σ̃R, σ̃G, θc, θ̂S; γσD;l , γ

σ
T;l

)
ŨT, (69)

H ≡ σ̃2
G

[
σ̃ (σ̃ − iσ̃R) I − iσ̃B − σ̃2

G A
]−1

R, (70)

with I being the identity matrix. In the above expression, the
oceanic tidal response to the tidal perturbation in the Fourier
domain is expressed as a complex frequency-dependent matrix
(H), which links the tidal gravitational potential (ŨT) to the
potential and stream functions that describe the horizontal tidal
displacement (X).
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2.8. Tidal Love numbers, torque, and power

To close this theoretical section, it remains to introduce the
parameters that quantify the tidally dissipated energy and its
effect on the evolution of planetary systems. The tidal mass
redistribution itself is quantified by self-attraction variations,
which is derived from the gravitational potential of the tidally
distorted body, UD, defined at its surface as

UD = V2
0ℜ

∑
σ

+∞∑
l=0

l∑
m=−l

Ũm,σ
D;l Ŷm

l

(
θ̂, φ̂

)
eiσt

 . (71)

The components Ũm,σ
D;l of this gravitational potential are

expressed as

Ũm,σ
D;l = kσl Ũm,σ

T;l +
(
1 + kσL;l

) 3
2l + 1

ρw

ρ
ζ̃m,σ

l , (72)

where Ũm,σ
T;l is the corresponding component of the forcing tidal

potential introduced in Eq. (44), and ζ̃m,σ
l the corresponding

component of the normalised surface elevation,

ζ̃m,σ
l =

∞∑
k=1

⟨Ŷm
l ,Φk⟩λk pk. (73)

The first term of Eq. (72) is the self-attraction variation due to
the distortion of the solid part generated by the gravitational
tidal force, while the second term is the contribution of the
ocean loading, which includes both the potential generated by
the oceanic mass redistribution and the potential resulting from
the distortion of the solid part induced by ocean loading.

The complex Love numbers are the transfer functions
accounting for the intrinsic response of an extended body under-
going a tidal gravitational forcing (e.g. Ogilvie 2014). They are
defined, for each SPH, as the ratio of the gravitational potential
of the tidal response to the forcing tidal potential evaluated at the
body’s surface,

km,σ
D;l

(
σ̃, σ̃R, σ̃G, θc, θ̂S; γσD;l , γ

σ
T;l

)
≡

Ũm,σ
D;l

Ũm,σ
T;l

, (74)

which, using the expression of the tidal potential given by
Eq. (72), yields

km,σ
D;l = kσl +

(
1 + kσL;l

) 3
2l + 1

ρw

ρ

ζ̃m,σ
l

Ũm,σ
T;l

. (75)

Considering the above equation, we note that the Love number
depends both on the order m and the degree l of the associated
SPH in the general case contrary to the solid Love numbers,
which only depend on the degrees (see Eqs. (47) and (48)). This
is due to the fact that the oceanic tidal response is not spheri-
cally symmetric owing to the geometry of coastlines and Coriolis
effects.

The long-term effect of tides on the evolution of the planet-
perturber system is quantified by the generated tidal torques.
The main contributor to this evolution is the time-averaged tidal
torque exerted about the spin axis of the planet (Zahn 1966),

Tz ≡

〈∫
V

∂φ̂UTδρdV
〉
, (76)

which affects the long-term variation rate of the planet-perturber
distance and the planet’s spin angular velocity (e.g. Ogilvie
2014). In the above equation, V designates the volume filled by
the planet, dV an infinitesimal volume parcel, and δρ the local
density variations associated with the tidal response. These den-
sity variations are related through Poisson’s equation to the tidal
gravitational potential of the distorted planet, UD, namely

∇2UD = −4πGδρ. (77)

This allows the tidal torque to be expressed in terms of the
forcing and deformation tidal gravitational potentials,

Tz = −
1

4πG

〈∫
V

∂φ̂UT∇
2UDdV

〉
. (78)

The latter integral is defined over the volume filled by the
tidally deformed planet (V), but it can actually be carried out
over any region that includes this volume. By making use of this
property, Ogilvie (2013) demonstrates that both the tidal torque
and the tidally dissipated power are straightforwardly related to
the Fourier components of the two gravitational potentials. As a
first step, one shall notice that ∇2UT = 0 outside of the perturber,
by virtue of Poisson’s equation, which implies that

∇2
(
∂φ̂UT

)
= ∂φ̂

(
∇2UT

)
= 0, (79)

since the Laplacian and ∂φ̂ operators can be permuted. Let V∗
be any region that is simply connected and does not include the
perturber. Then, the fact that ∇2

(
∂φ̂UT

)
= 0 in V∗ allows the

integral of Eq. (78) to be rewritten as∫
V∗

∂φUT∇
2UDdV =

∫
V∗

[
∂φ̂UT∇

2UD − UD∇
2
(
∂φ̂UT

)]
dV. (80)

By virtue of Green’s second identity (e.g. Arfken & Weber 2005,
Sect. 1.11), Eq. (80) yields∫
V∗

∂φUT∇
2UDdV =

∮
∂V∗

[
∂φ̂UT∇UD − UD∇

(
∂φ̂UT

)]
· dS, (81)

with the notation ∂V∗ referring to the boundary of the domain
V∗, and dS to and outward pointing infinitesimal surface element
vector.

By applying the time-averaging operator to the integral we
obtain

Tz =
∑
σ

V4
0

8πG
ℜ

{∮
∂V∗

[
ŨσD∇

(
∂φ̂ŨσT

)
− ∂φ̂ŨσT∇ŨσD

]
· dS

}
, (82)

with ŨσT and ŨσD defined as

UT

(
r, θ̂, φ̂, t

)
= V2

0ℜ

∑
σ

ŨσT
(
r, θ̂, φ̂

)
eiσt

 , (83)

UD

(
r, θ̂, φ̂, t

)
= V2

0ℜ

∑
σ

ŨσD
(
r, θ̂, φ̂

)
eiσt

 . (84)

In practice, V∗ can be chosen such that its boundary is a sphere
of some radius r∗ centred on the planet.

In the vicinity of ∂V∗, the forcing tidal potential and the
deformation tidal potential can be represented using interior and
exterior multipole expansions in SPHs, respectively,

ŨσT
(
r, θ̂, φ̂

)
=

+∞∑
l=2

l∑
m=−l

Ũm,σ
T;l

(
r

Rp

)l

Ŷm
l

(
θ̂, φ̂

)
, (85)
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ŨσD
(
r, θ̂, φ̂

)
=

+∞∑
l=0

l∑
m=−l

Ũm,σ
D;l

(
r

Rp

)−(l+1)

Ŷm
l

(
θ̂, φ̂

)
. (86)

By substituting Eqs. (85) and (86) into Eq. (82), and for arbi-
trary radius r∗, we end up with the formulation of the torque as a
function of the imaginary part of Love numbers,

Tz =
∑
σ

+∞∑
l=2

l∑
m=−l

m (2l + 1) RpV4
0

8πG

∣∣∣∣Ũm,σ
T;l

∣∣∣∣2 ℑ {
km,σ

D;l

}
. (87)

For the quadrupolar tidal gravitational potential (e.g. Ogilvie
2014),

Ũ2,σ
T;2 =

√
6π
5

GMs

aV2
0

 (Rp

a

)2

, (88)

with a being the semi-major axis of the perturber, we recover
the well-known relationship between the tidal torque and the
quadrupolar Love number (e.g. Makarov & Efroimsky 2013;
Auclair-Desrotour et al. 2019a),

Tz;2 =
3
2

GM2
s

R5
p

a6 ℑ
{
k2,σ

D;2

}
. (89)

The time-averaged power input by the tidal force can be
determined in a similar way. This power is defined as the work
per unit time done by the tidal force on the tidal motions (e.g.
Ogilvie 2013),

PT ≡

〈∫
V∗

ρV · ∇UTdV
〉
, (90)

where ρ is the local density of the planet. We note that V desig-
nates here the velocity field of tidal motions in the whole planet
and not only in the ocean basin. By proceeding to an integration
by parts, we rewrite the above expression as

PT =

∮
∂V∗

UTρV · dS −
∫
V∗

UT∇ · (ρV) dV. (91)

The first term of the right-hand member in Eq. (91) is zero since
the boundary ∂V∗ is outside of the planet, where ρ = 0. By
combining together the continuity equation,

∂tδρ + ∇ · (ρV) = 0, (92)

and Poisson’s equation, given by Eq. (77), we express ∇ · (ρV) as
a function of the deformation tidal gravitational potential,

∇ · (ρV) =
1

4πG
∇2 (∂tUD) , (93)

which yields

PT = −
1

4πG

〈∫
V∗

UT∇
2 (∂tUD) dV

〉
. (94)

Using Green’s second identity, the above expression becomes

PT =
∑
σ

V4
0σ

8πG
ℑ

{∮
∂V∗

[
ŨσT∇ŨσD − ŨσD∇ŨσT

]
· dS

}
. (95)

Finally we use the expressions of ŨσT and ŨσD given by Eqs. (85)
and (86), and the definition of the Love number given by
Eq. (74). It follows

PT = −
∑
σ

+∞∑
l=2

l∑
m=−l

(2l + 1) RpV4
0σ

8πG

∣∣∣∣Ũm,σ
T;l

∣∣∣∣2 ℑ {
km,σ

D;l

}
. (96)

The tidal input power in the ocean is expressed as a function
of the harmonics of the surface tidal elevation only,

PT;oc = −
3RpV4

0

8πG

(
ρw

ρ

)∑
σ

+∞∑
l=2

l∑
m=−l

σℑ
{
Ũm,σ

T;l ζ̃
m,σ
l

}
. (97)

By noting that ŨT = ζ̃eq and expanding the component of the
forcing tidal potential in series of oceanic eigenmodes,

Ũm,σ
T;l =

∞∑
k=1

⟨Ŷm
l ,Φk⟩ζ̃eq;k, (98)

we can rewrite the sum on degrees and orders in Eq. (97) as

+∞∑
l=0

l∑
m=−l

Ũm,σ
T;l ζ̃

m,σ
l =

∑
k, j

 +∞∑
l=0

l∑
m=−l

⟨Φk, Ŷm
l ⟩⟨Ŷ

m
l ,Φ j⟩

 ζ̃eq;kλ j p j.

(99)

Therefore, owing to the orthogonality of the Φk eigenfunctions,
Eq. (97) simplifies to

PT;oc =
1
2

R2
pH2gρw

∑
σ

+∞∑
k=1

σℑ
{
λk pkζ̃eq;k

}
, (100)

which corresponds to the usual expression of the work per unit
time done by the tidal force on the oceanic tidal motions (e.g.
Webb 1980; Farhat et al. 2022a).

Similarly, the tidally dissipated power within the oceanic
layer is defined as

Pdiss;oc ≡

〈∫
O

ρwHσRV · VdS
〉
. (101)

By making use of the orthogonality properties of the oceanic
eigenmodes described by Eqs. (30) and (36), this power is
expressed as (e.g. Webb 1980)

Pdiss;oc =
1
2
σRρwR4

pH
∑
σ

+∞∑
k=1

σ2
(
λk |pk |

2 + νk |p−k |
2
)
. (102)

The dissipated power Pdiss;oc is equal to the input tidal power
given by Eq. (97) if the solid regions are rigid, as assumed in
earlier studies (e.g. Webb 1980; Auclair-Desrotour et al. 2018).

When the solid part is deformable, the total input tidal power
given by Eq. (96), PT, and the total tidally dissipated power,
Pdiss, are the sum of the solid and oceanic contributions,

PT = PT;sol + PT;oc, (103)
Pdiss = Pdiss;sol + Pdiss;oc, (104)

where PT;sol , Pdiss;sol and PT;oc , Pdiss;oc in the general case.
Particularly, we note that the two components of the input tidal
power can take negative values due to the energy exchanges
between the ocean and solid regions resulting from the loading
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Table 2. Values of parameters used in the reference case.

Parameter Symbol Value Reference

Planet’s solid part
Planet mass Mp 1.0 ME 1
Planet radius Rp 1.0 RE 1
Effective shear modulus µ 25.1189 GPa 2
Maxwell time τM 685 yr 2
Andrade time τA 12 897.1 yr 2
Rheological parameter α 0.25 2

Planet’s ocean basin
Oceanic depth H 4.0 km
Continental angular radius θc 90◦

Colatitude of the continental centre θ̂S 90◦
Longitude of the continental centre φ̂S 0◦

Seawater density ρw 1022 kg m−3

Rayleigh drag frequency σR 1.0 × 10−5 s−1

Perturber
Mass of the perturber Ms 1.0 M$ 1
Orbital frequency of the perturber ns 1.0 n$ 1

Spectral method
Truncation degree of the SPHs K 100
Truncation degree of the oceanic SCHs M 30

References. (1) Mamajek et al. (2015); (2) Bolmont et al. (2020).

and gravitational coupling, while Pdiss;sol ≥ 0 and Pdiss;oc ≥ 0. In
the following, the input and tidally dissipated powers of the solid
regions, PT;sol and Pdiss;sol, are evaluated from the oceanic con-
tributions given by Eqs. (97) and (102), and the total input tidal
power, expressed in Eq. (96), by using the fact that Pdiss = PT.

At this stage, we have established the expressions of all the
tidal quantities that characterise the dissipative tidal response of
the planet in the general case. In the following, we apply the
theory to specific cases. The above expressions are thus used to
evaluate the tidally dissipated power as a function of the forcing
frequency.

3. Study of a reference case

Before making any attempt to explore the parameter space, it
seems appropriate to elucidate the tidal response of the planet for
a well-chosen reference configuration. In this section, we detail
the physical setup of this configuration and we compute the fre-
quency spectra of the quantities that characterise the semidiurnal
tidal response of the planet. The obtained results are used as a
starting point in the parametric study achieved in Sect. 4.

3.1. Physical setup

Since the Earth-Moon system is the planet-satellite system that
we know best, it appears as a privileged option for the aforemen-
tioned reference configuration. Therefore, we consider a simpli-
fied Earth-Moon system where the Moon orbits an Earth-sized
planet with a circular and coplanar motion. In this framework,
the Moon’s trajectory is a circle in the planet’s equatorial plane.
The values used for the model parameters in this reference case
are summarised in Table 2.

Following Webb (1980), the planet’s surface is assumed to be
divided into continental and oceanic hemispheres centred at the
equator. Namely, the continental angular radius is set to θc = 90◦
and the colatitude of the continental centre to θ̂S = 90◦. In this

configuration, the coastlines correspond exactly to meridians.
The ocean basin may be regarded as a geometrically simplified
version of the Pacific ocean. Its depth is set to H = 4 km and its
Rayleigh drag frequency to σR = 10−5 s−1, consistently with the
values found in earlier studies from constraints on the actual tidal
dissipation rate of the Earth-Moon system and its age (Webb
1980, 1982; Farhat et al. 2022a). The mean density of seawater
is set to ρw = 1022 kg m−3, which is a typical value of seawa-
ter density on Earth (Gerkema & Zimmerman 2008). Finally,
the solid part of the planet is assumed to behave as a visco-
elastic body described by the Andrade model (see Appendix H).
In this model, the solid tidal response is parametrised by an
effective shear modulus, µ, the Maxwell time associated with
viscous friction τM, the Andrade time associated with the inelas-
tic component of the solid elongation, τA, and the dimensionless
parameter α. The values used for these rheological parameters
are adopted from Bolmont et al. (2020), Table 2.

In the considered system, the tidal perturber is a dimension-
less body of mass Ms = M$ and mean motion ns = n$, with
M$ and n$ being the Lunar mass and mean motion, respec-
tively. Since its orbit is circular and coplanar, the induced tidal
perturbation reduces to the semidiurnal tide, which is associ-
ated with the quadrupolar tidal potential given by Eq. (88) and
the forcing frequency σ = 2 (Ω − ns) (e.g. Ogilvie 2014). This
quadrupole is coupled with the SCHs describing the oceanic
tidal response, which are determined by the geometry of the
ocean basin. To account for this coupling properly, the truncation
degrees of the two sets of basis functions must be such that the
spatial resolution reached with SPHs is higher than that reached
with SCHs. Besides, the truncation degree of the SCHs shall
be chosen sufficiently high to describe all the excited oceanic
eigenmodes.

Preliminary tests with various truncation degrees show that
convergence is reached, in all cases, for truncation degrees M
less than ∼30. Therefore, we set the truncation degree of the
SCHs to M = 30. Similarly, a truncation degree of K = 100 is
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Fig. 3. Frequency spectra of tidal quantities and their components for the reference case (Table 2) and the semidiurnal tide. Top: Tidal input power
(left panel) and tidally dissipated power (right panel). Bottom: Imaginary part of the quadrupolar Love number (left panel) and tidal torque exerted
about the planet’s spin axis (right panel). All quantities are plotted in logarithmic scale (vertical axis) as functions of the normalised semidiurnal
tidal frequency χ = (Ω − ns) /ΩE (horizontal axis). In each plot, the orange, blue and black lines designate the response of the solid part, ocean,
and whole planet, respectively. Solid lines indicate decelerating tidal torque (ℑ

(
k2,σ

D;2

)
≤ 0 and Tz;2 ≤ 0) and positive tidal input power (PT ≥ 0),

while dashed lines indicate accelerating tidal torque (ℑ
(
k2,σ

D;2

)
> 0 and Tz;2 > 0) and negative tidal input power (PT < 0). In the plot of the tidal

torque, the magenta vertical dashed line and arrow indicate the position of the present day Earth in the spectrum and the direction of evolution of
the semidiurnal tidal frequency, respectively. The red dot designates the corresponding tidal torque.

sufficient for the SPHs. We note that an estimate of K can be
obtained by considering the fact that the degrees of the SCHs
approximately scale as the inverse of the ocean’s angular radius
(see Appendix C). Typically, the SCHs exactly correspond to
the hemispherical harmonics in the reference case, meaning
that their degrees are roughly twice the degrees of the SPHs.
Since the number of SPHs needed to represent accurately the
sets of oceanic eigenfunctions increases as the size of the basin
decreases, configurations dominated by the continental part
would require truncation degrees greater than 100 for the SPHs.

3.2. Dissipation frequency spectra

By making use of the TRIP computer algebra system (Gastineau
& Laskar 2011), we numerically solved the algebraic LTEs estab-
lished in Sect. 2.7 for 1001 uniformly sampled values of the
normalised semidiurnal frequency χ = (Ω − ns) /ΩE, with ΩE
being the spin rate of the present day Earth. For simplicity,
we let the values of the spin period Prot = 2π/Ω vary with
the tidal frequency while the mean motion of the satellite is
fixed. In reality, both Ω and ns would vary in the meantime
due to exchanges of angular momentum between the planet’s
spin and the satellite’s orbit. However, this approximation is

relevant as long as ns ≪ Ω. The adopted frequency interval
of the tidal forcing ranges between 0 (spin-orbit synchronisa-
tion; Prot ≈ 27.2 days) and 4 (fast spin rotation; Prot ≈ 5.9 hr).
We note that the present Earth-Moon system corresponds to the
normalised frequency χ ≈ 0.963.

Figure 3 shows the obtained frequency spectra in the ref-
erence case for four tidal quantities and their components for
each layer (solid part and ocean basin): (i) the input tidal power,
(ii) the tidally dissipated power, (iii) the imaginary part of the
quadrupolar Love number, and (iv) the tidal torque exerted on
the planet about its spin axis. These quantities are evaluated by
making use of the expressions given by Eqs. (96), (102), (75),
and (87), respectively.

First of all, one observes that the plotted quantities are simply
related to each other, the input and dissipated powers differ-
ing from the other two quantities by a scaling factor of σ, as
established in the tidal theory (e.g. Ogilvie 2014). Moreover, the
tidally dissipated power predicted by the model for the Lunar
semidiurnal tide (M2) in the actual Earth-Moon system is close
to the ∼2.5 TW estimated from altimetric measurements and
lunar laser ranging (e.g. Egbert & Ray 2001, 2003). Consid-
ering this point, we shall emphasise that we do not expect to
recover exactly the estimates obtained from more sophisticated
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numerical models owing to the numerous simplifications made
in the present approach. Nevertheless, as demonstrated in the
next section, the value obtained from measurements could actu-
ally be retrieved by slightly tuning the free parameters of the
model, though this is not the purpose of this work.

According to the frequency spectra of Fig. 3, the present
parameters of the Earth-Moon system (dashed pink line at χ ≈
0.963) places the oceanic tidal response close to a resonance,
which corresponds to a maximum of the tidal dissipation rate.
This feature of the spectra is in agreement with the increasing
dissipation rate inferred from geological data in the past tens of
millions of years (see e.g. Farhat et al. 2022a, and references
therein) and the predictions of more sophisticated models includ-
ing realistic bathymetries and land-ocean distributions (Green
et al. 2017; Daher et al. 2021). In the low-frequency range, the
tidal response of the planet is dominated by the oceanic dynami-
cal tide, which is characterised by resonant peaks. Conversely,
in the high-frequency range, the resonances associated with
oceanic modes are attenuated by the visco-elastic adjustment of
the solid part, and the latter becomes the predominant contrib-
utor to the tidally dissipated energy. This change of regime can
be simply understood by considering the fact that the solid tidal
torque scales as ∝σ−α with α = 0.25 (see Table 2), while the
non-resonant background of the oceanic tidal torque scales as
∝σ−3 (e.g. Auclair-Desrotour et al. 2019a, Eqs. (47) and (55),
respectively).

We note that the tidal input power and tidally dissipated
power are not equivalent for a given layer – solid part or oceanic
basin – whereas they are strictly equal for the whole planet. This
discrepancy is due to the solid-ocean energy transfer allowed
by the elasticity of the solid part through ocean loading and
self-attraction variations. The energy transfer strongly affects the
tidal elongation of the solid part when the oceanic resonances
predominate because this elongation is essentially controlled by
the ocean loading in this regime. As a consequence, the tidal
torque exerted on the solid part can be accelerating instead of
being decelerating as observed in the signs of the tidal input
power, imaginary part of the Love number, and tidal torque.

Another change of sign can be noticed near the zero-
frequency limit (σ → 0). This behaviour actually results from
the maximum reached by the solid tidal torque for tidal periods
close to the Maxwell and Andrade times, which are both much
larger than the typical timescales associated with the oceanic
waves (e.g. Bolmont et al. 2020). At these timescales, the ocean
basin is no longer resonant and the dissipative component of its
tidal response thus tends to vanish, which allows the solid tide to
be predominant in the very low-frequency range. However, the
solid tidal torque also tends to zero for σ ≪ min

(
τ−1

M , τ
−1
A

)
, and

Tz = 0 at σ = 0.
Finally, Fig. 3 highlights the symmetry breaking effect

induced by the continent. Whereas the tidal response of a global
ocean takes the form of a regular series of harmonics (see e.g.
Auclair-Desrotour et al. 2018, Fig. 5), the continent interferes
with the forced wave by deviating tidal flows. As a consequence,
additional oceanic eigenmodes are excited by the tidal forcing
and the energy concentrated into one mode of the global ocean
is spread over several modes. As they are each associated with
one resonant peak, these new modes alter the general aspect of
the spectra by breaking their regularity and by flattening the res-
onances of the dominating tidal modes. In the next sections, we
show quantitatively that the former effect can actually be iden-
tified as the typical signature of a supercontinent in the tidal
response of an ocean planet.

4. Parametric study

As the reference case is now well understood, we can apply the
harmonic analysis performed in Sect. 3 to various configurations.
The fact that the tidal response is controlled by a relatively small
number of physical parameters in our approach (see Table 2)
makes it possible to explore the parameter space in an exhaustive
way. This is the purpose of the present section.

4.1. Preliminary physical analysis

Before all, we shall briefly proceed to a selection of key param-
eters representing well the parameter space. We recall that the
oceanic tidal response is fully determined by the dimension-
less control parameters summarised in Table 1. Notwithstanding
the deformation of the solid part, which intervenes as a cor-
rective effect through the deformation factors (γσD;l , γ

σ
T;l ), this

set of parameters can essentially be reduced to five numbers:
three numbers governing the dynamics of oceanic tidal flows
(σ̃, σ̃G, σ̃R) and two numbers defining the geometry of the ocean
basin (θc, θ̂S). The parameter space of the oceanic tidal response
thus simplifies to five dimensions.

Moreover, σ̃ ≈ 1 for the semidiurnal tide as long as ns ≪

Ω, indicating that this number can be roughly considered as
invariant over time for planet-satellite systems similar to the
Earth-Moon system. Therefore, the parameter space can be
limited to the set

(
σ̃G, σ̃R, θc, θ̂S

)
for the semidiurnal oceanic

tide of a rapidly rotating Earth-like planet. For convenience,
instead of varying the dimensionless parameters governing the
ocean dynamics, we choose to vary the physical parameters they
depend on, namely the oceanic depth H for σ̃G, and the Rayleigh
drag frequency σR for σ̃R. The first parameter defines the water
volume of the ocean, while the second one characterises the
efficiency of the dissipative mechanisms.

Concerning the geometry of the ocean basin, we note that the
size of the continent is linked to the oceanic depth through the
volume of sea water. Since one expects the water volume to be
conserved as the size of the continent evolves, it seems more
appropriate to vary θc at constant volume rather than at con-
stant depth. Consequently, when we vary the continental radius,
we shall vary the oceanic depth by using the expression of the
seawater volume in the thin layer approximation,

V = 2πHR2
p (1 + cos θc) . (105)

Contrary to its size, the position of the continent on the globe
can be changed independently of the other parameters.

A set of four additional parameters is brought by the tidal
response of the solid part through the Andrade model: the effec-
tive shear modulus (µ), the Maxwell time (τM), the Andrade time
(τA), and the dimensionless rheological parameter that accounts
for the inelastic component of the solid deformation (α). A quick
dimensional analysis allows the Maxwell and Andrade times to
be eliminated from the list of parameters affecting the regime of
the planet’s tidal response. These times are indeed much larger
than the typical times characterising the ocean dynamics and
tidal forcing. Owing to this net separation of scales, varying
them over several orders of magnitude would not induce any
change of regime in the tidal dynamics. Typically, for |σ| ≫
τ−1

M , τ
−1
A , the imaginary part of the quadrupolar Love number

defined by the Andrade model for the solid part scales as (e.g.
Auclair-Desrotour et al. 2019a, Eq. (47))

ℑ
{
kσ2

}
∼

3
2

A2

(1 + A2)2 Γ (1 + α) sin
(
απ

2

)
(|σ| τA)−α , (106)
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with A2 = 38πR2
pµ/

(
3GM2

p

)
being a constant, and Γ the

Gamma function (Abramowitz & Stegun 1972, Chapter 6). The
above expression entails that, in the limit of |σ| ≫ τ−1

M , τ
−1
A ,

the solid tidal response is dependent on τA, but independent
of τM. We thus consider only the former in the parametric
study.

Similarly as the Maxwell time, the rheological parameter α
can almost be considered as a constant parameter owing to the
strong constraints provided by laboratory experiments on olivine
minerals and ices, which suggest it takes a value between 0.20
and 0.40 (Castillo-Rogez et al. 2011). Due to these constraints,
we choose to let it fixed to the value used in the reference case,
α = 0.25 (see Table 2). Nevertheless, we note from Eq. (106) that
varying α would essentially modify the rheological behaviour
of the solid part in the high-frequency range by acting on the
scaling law ℑ

{
kσ2

}
∝ |σ|−α. Finally, the effective shear modu-

lus of the solid part, µ, accounts for the elasticity of the solid
part, which is responsible for the solid-ocean coupling. Thus, as
discussed for τA, we shall consider various values of µ in the
parametric study.

In the above analysis we have examined the role played by
the main parameters of the model, and we have selected the six
of them that seem to be the most relevant to map the param-
eter space, (θ̂S, θc, H, σR, µ, and τA). Other parameters occur
in the model, such as the planet mass (Mp) or radius (Rp), the
seawater density (ρw), or the mass of the perturber (Ms). How-
ever, they either affect the same dimensionless control numbers
as the selected parameters, or they act as obvious scaling fac-
tors. For instance, the tidally dissipated power and torque scale
as ∝M2

s since the tidal response is proportional to the forcing
gravitational potential – given by Eq. (88) – in the used linear
tidal theory. Similarly, we note that the planet mass and radius
act on the speed of gravity waves through the planet’s surface
gravity, which shifts the frequencies of resonant oceanic modes.
Such dependences can be characterised analytically from the
derivations detailed in Sect. 2.

4.2. Calculations

Using the reference case defined in Table 2 (hemispherical
equatorial ocean) as a template configuration, we performed cal-
culations for various values of the colatitude of the continental
centre (θ̂S), angular radius of the continent at constant volume
(θc), oceanic depth (H), Rayleigh drag frequency (σR), effective
shear modulus of the solid part (µ), and Andrade time (τA). In
these computations, the parameter values are defined so as to
describe the transitions between the asymptotic regimes iden-
tified in Table 1. The obtained results are shown by Fig. 4,
where the imaginary part of the quadrupolar Love number is
plotted as a function of the normalised semidiurnal frequency
for variations of each parameter. The values of the reference
case (Table 2) are superscripted by ∗: θ̂∗S = 90◦, θ∗c = 90◦, H∗ =
4.0 km, σ∗R = 10−5 s−1, µ∗ = 25.1189 GPa, and τ∗A = 12 897.1 yr.

Effect of the continental position. First, we consider the
role played by the geometry of the ocean basin. As the colati-
tude of the continental centre evolves from 0◦ (polar continent)
to 90◦ (equatorial continent), the frequency spectrum of the Love
number rapidly becomes irregular (see Fig. 4, top left panel). For
θ̂S = 0◦, the coastline of the hemispherical continent exactly cor-
responds to the planet’s equator. As a consequence, it does not
interfere with the latitudinal component of tidal flows, which is
already zero at the equator in the absence of a continent. This

explains why we recover approximately the spectrum obtained
for the global ocean (Auclair-Desrotour et al. 2018) up to a factor
of 2, the noticed slight discrepancy being due to the contribution
of the solid part. This spectrum is composed of a regular series
of harmonics that results from the coupling – caused by Coriolis
forces – between the oceanic normal modes and the quadrupo-
lar tidal potential. For a non-rotating planet, only one resonance
would be observed in that configuration. A slight inclination
of the continental centre with respect to the pole (Fig. 4, top
left panel, θ̂S = 10◦) appears to be sufficient to break the axis
symmetry and to alter significantly the regularity of the spec-
trum. The harmonics of the polar case are split into more modes,
which induces intermediate relative maxima and decreases the
dissipation rate reached while crossing the main resonances.

Effect of the continental size. Such an effect can also be
observed as the angular radius of the continent varies from 0◦
(global ocean) to 90◦ (hemispherical ocean) at constant water
volume (Fig. 4, top right panel). As the size of the continent
increases, the peaks of the global ocean get progressively altered
by the interferences of coastlines with tidal flows. However,
we remark that this effect really becomes significant only for
θc ≥ 30◦, which suggests that continents smaller than South
America hardly alter the tidal response of the global ocean even
if they are located at the equator. Moreover, the spectra highlight
the fact that oceanic resonances are shifted to the right as the size
of the continent increases, which also means resonances become
of smaller amplitudes, so less dissipative. This effect is directly
related to the ocean’s geometry. Acoustically, the ocean basin
is analogous to a vibrating drumhead, with its size and depth
standing for the drumhead’s diameter and tension, respectively.
On one hand, the eigenfrequencies of the oceanic normal modes
increase as the size of the basin decreases since the latter corre-
sponds to the wavelength of the lowest tidal modes. On the other
hand, the speed of gravity waves scales as ∝

√
H, meaning that

it increases as the size of the ocean basin decreases at constant
volume.

Effect of the oceanic depth. Consistently with the above
drumhead analogy, increasing the oceanic depth essentially
induces a dilation of the frequency spectrum without changing
its global aspect (Fig. 4, middle left panel). This is related to the
way the resonances are controlled by the oceanic depth. Both the
heights and frequencies of resonant peaks scale as ∝

√
H (e.g.

Auclair-Desrotour et al. 2019a, Eq. (55)), which explains why
their relative positions and amplitudes are conserved as H varies.

Effect of dissipative mechanisms. Similarly, we analyse
the evolution of the frequency spectrum with the Rayleigh
drag frequency (Fig. 4, middle right panel) using the closed-
form solutions provided by the analytical theory (e.g. Auclair-
Desrotour et al. 2018). The plot highlights the transition from the
quasi-adiabatic regime (σR = 10−6 s−1) to the frictional regime
(σR = 10−3 s−1). In the former, the resonances of oceanic modes
are weakly damped, while they are completely annihilated in the
latter.

The two asymptotic regimes can be considered separately.
In the quasi-adiabatic regime, the frequencies of resonances are
almost independent of the Rayleigh drag frequency, whereas
their heights scale as ∝σ−1

R , their widths as ∝σR, and the
non-resonant background of the oceanic dissipation rate as
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Fig. 4. Frequency spectra of the imaginary part of the quadrupolar Love number associated with the semidiurnal tide, k2,σ
D;2, for the considered

reference case and various values of the model key parameters. Top: variation of the colatitude of the continental centre (left panel) and continental
angular radius at constant seawater volume (right panel). Middle: variation of the oceanic depth (left panel) and Rayleigh drag frequency (right
panel). Bottom: variation of the effective shear modulus (left panel) and Andrade time (right panel) of the solid part. In each panel, the imaginary
part of the Love number is plotted in logarithmic scale (vertical axis) as a function of the normalised semidiurnal frequency χ = (Ω − ns) /ΩE
(horizontal axis), with ΩE being the spin angular velocity of the actual Earth. The solid black line designates the reference case defined by Table 2:
θ̂∗S = 90◦, θ∗c = 90◦, H∗ = 4.0 km, σ∗R = 10−5 s−1, µ∗ = 25.1189 GPa, and τ∗A = 12 897.1 yr.

∝σR (Auclair-Desrotour et al. 2015, 2018, 2019a). As a conse-
quence, the number of visible peaks increases as σR decreases.
The new peaks appear in the high-frequency range since
they are associated with oceanic harmonics of high degrees.
In the zero-drag limit (σR → 0), the number of resonant
peaks exactly corresponds to the number of harmonics with
eigenfrequencies less than the upper bound of the considered
frequency interval. In the frictional regime, the spectrum is
regular and only one maximum is visible, for a frequency

scaling as ∝σ−1
R . This behaviour is described by a closed-form

solution that will be detailed in a forthcoming article. Consid-
ering the estimate of ∼10−5 s−1 found for the Earth’s Rayleigh
drag frequency from model adjustments to the current dissipa-
tion rate (Webb 1980; Farhat et al. 2022a), we note that this
value is just slightly less than the critical value marking the
transition between the quasi-adiabatic and frictional regimes in
Fig. 4 (middle right panel), namely σR ≈ 3.2× 10−5 s−1 (see also
Sect. 5).
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Table 3. Evolution of the frequency spectrum of the quadrupolar tidal Love number as one parameter increases while the values of other parameters
are fixed.

Altered features of spectra θ̂S θc H σR µ τA

Frequencies of resonant peaks – ↗ ↗ – – –
Heights of resonant peaks – – ↗ ↘ ↗ –
Widths of resonant peaks – – – ↗ – –
Non-resonant background – – – ↗ ↗ ↘

Irregularity of spectra ↗ ↗ – ↘ – –

Notes. The table is limited to the quasi-adiabatic regime, where oceanic resonances are not completely damped by dissipative mechanisms. In the
frictional regime, there is no oceanic resonances, and the quadrupolar Love number varies smoothly with the forcing tidal frequency.

Effect of the solid elasticity and anelasticity. We finally
examine the role played by the parameters of the solid part
(Fig. 4, bottom panels). As discussed above, the elasticity of
the solid part acts to attenuate the resonances of oceanic tidal
modes by elastic adjustment. The load caused by a local water
mass surplus lowers the oceanic floor, which decreases the grav-
itational potential of the planet’s tidal response. If the solid part
is rigid, this tidal response corresponds to the oceanic tide, as
observed for µ = 300 GPa. The Andrade time only affects the
non-resonant background of the spectrum through the scaling
factor τ−αA of the solid dissipation rate, as shown by Eq. (106).
As τA increases, the non-resonant background decreases. This
effect is visible in the high-frequency range, in particular. Table 3
summarises the effects of all the studied parameters on specific
features of the frequency spectra.

Ignored effects and model limitations. As the spectral fea-
tures detailed above for tidal dissipation have been obtained from
the simplified theoretical framework of Sect. 2, we shall end
this section by discussing the main ignored effects that may
alter them. First, although the single continent configuration
appears as a convenient setup to introduce the anisotropic effect
induced by continentality, realistic land-ocean distributions are
more complex. Consequently, the oceanic tidal response can-
not be simply related to the geometry of the ocean basin in the
general case, as highlighted by numerical studies performed for
Earth and exoplanetary land-ocean distributions (Egbert & Ray
2001, 2003; Green et al. 2017; Blackledge et al. 2020). However,
since the oceanic tidal waves are planetary scale, one may rea-
sonably expect that they shall mainly interfere with large scale
continental features. The predominant modes that shape the tidal
dissipation spectrum of the planet are thus related to the largest
length scales of the continental distribution.

That said, as shown by Green et al. (2017), the smoothness
of the continental geometry tends to yield overestimates of the
tidally dissipated energy. The coastline fractality thus both acts
to attenuate and broaden the resonances. Similarly, we remark
that the eigenfrequencies of the oceanic tidal modes vary with
the oceanic depth, given that the phase speed of gravity waves
scales as ∝H1/2. As a consequence, planetary scale variations
of the oceanic depth presumably act to attenuate and broaden
the resonant peaks. Complex bathymetries are associated with
spatially dependent dissipation rates, the dissipation coefficients
being strongly determined by small-scale topographic features
(e.g. Egbert & Ray 2001; Carter et al. 2008; Arbic et al. 2010;
Green & Huber 2013; Merdith et al. 2021). It is also notewor-
thy that predominant dissipative mechanisms such as turbulent
bottom drag scale non-linearly with the speed of tidal flows,
which precludes resonances to reach very high amplitudes. Anal-
ogously, the stabilising effect of an hypothetic overlying ice shell

would damp the resonant peaks, thus reducing tidal dissipa-
tion, as observed in the case of icy satellites (e.g. Beuthe 2016;
Matsuyama et al. 2018).

5. A metric for the signature of supercontinents

Until now, we have been investigating the direct problem that
consists in generating frequency spectra of the tidal quantities
from sets of values assigned to the model parameters. Particu-
larly, in Sect. 4, we made an attempt to infer the tidal response
of planets hosting ocean basins from knowledge of their geom-
etry. The relationships between spectral and geometric features
actually correspond to a very broad field of mathematical prob-
lems known as spectral geometry. Through popular case studies
of this field, such as Kac’s drum (Kac 1966), it was shown that
the geometry of a vibrating system can be predicted to a cer-
tain extent if its spectral features are known. This is the so-called
inverse problem that we aim to address in the present section by
investigating the extent to which one can infer the geometry of
the ocean basin from the spectral features of the planet’s tidal
response. Particularly, we define further a metric that quantifies
the specific signature of a supercontinent in the evolution of the
tidal torque with the tidal frequency. This frequency dependence
of the tidal torque is straightforwardly connected to the orbital
evolution of the satellite or the rotational evolution of the planet,
as any crossed resonance induces a rapid variation of the orbital
parameters over a short time period (see e.g. Auclair-Desrotour
et al. 2014; Farhat et al. 2022a).

The parametric study of Sect. 4 shows evidence of the
numerous degeneracies characterising the dependences of the
frequency spectra on the system’s parameters (see Table 3).
Several features – such as the height of resonant peaks or the
non-resonant background – appear to be sensitive to three key
parameters at the same time. Particularly, these results highlight
the predominant role played by the Rayleigh drag frequency,
which affects almost all of the spectral features listed in Table 3.
Nevertheless, we also remark that the only parameters having
an impact on the regularity of the spectra – notwithstanding the
effect of the Rayleigh drag frequency – are those defining the
geometry of the ocean basin, namely the colatitude of the conti-
nental centre and the angular radius of the continent. This argues
for the existence of spectral quantities sensitive to these param-
eters only. Such quantities are metrics of the geometry. Ideally,
they shall vary with θ̂S, θc, and σR, while being insensitive to the
other parameters.

In Fig. 4, the irregularity of spectra seems to be mainly char-
acterised by a significant dispersion of the frequency intervals
separating consecutive relative maxima of the tidal torque,
denoted by ∆σk ≡ σk+1 − σk in the following, with σk being
the frequency of the k-th maximum. In order to make these
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Fig. 5. CDF of the frequency intervals separating two consecutive relative maxima in the spectra of Fig. 4. Top: variation of the colatitude of the
continental centre (left panel) and continental angular radius at constant seawater volume (right panel). Middle: variation of the oceanic depth (left
panel) and Rayleigh drag frequency (right panel). Bottom: variation of the effective shear modulus (left panel) and Andrade time (right panel)
of the solid part. For each spectrum, the frequency intervals are normalised by their average, and the CDF is normalised. The solid black line
designates the reference case defined by Table 2: θ̂∗S = 90◦, θ∗c = 90◦, H∗ = 4.0 km, σ∗R = 10−5 s−1, µ∗ = 25.1189 GPa, and τ∗A = 12 897.1 yr.

frequency intervals insensitive to the dilation-contraction effect
induced by oceanic depth variations (see Fig. 4, middle left
panel), they are normalised by their average, given by

∆σ ≡
1
N

N∑
k=1

∆σk, (107)

where N designates the total number of intervals. We thus denote
by ∆̂σk ≡ ∆σk/∆σ the normalised intervals. Finally, sorting the
intervals in ascending order and using the subscript j such that
∆σ j < ∆σ j+1 for j = 1, . . . ,N, we introduce the cumulative dis-
tribution function (CDF) of the normalised frequency intervals,

CDF
(
∆̂σ

)
≡

1
N

argmax
∆̂σ j≤∆̂σ

{
∆̂σ j

}
. (108)

Figure 5 shows the CDFs of the frequency intervals sepa-
rating two consecutive maxima for the spectra plotted in Fig. 4.
In these plots, the quasi-uniformly spaced peaks of the global
and polar hemispherical oceans are characterised by a sharp step
in the CDF, which abruptly switches from 0 to 1. Conversely,
the symmetry breaking effect of continental shelves induces a
smooth transition. As noted qualitatively with the spectra of
Fig. 4, the slope of the CDF essentially varies with the posi-
tion of the continent on the globe, its size, and the dissipative
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time scale. This leads us to consider, as an appropriate metric
for the continentality effect, the normalised standard deviation
of the frequency intervals separating consecutive maxima of the
tidal torque,

σ̂ ≡

√√√
1
N

N∑
k=1

(
∆σk

∆σ
− 1

)2

. (109)

The thus defined normalised standard deviation is such that 0 ≤
σ̂ ≤ 1, where σ̂ = 0 corresponds to uniformly spaced relative
maxima or to N = 1 (two maxima), and σ̂ = 1 to an extreme
dispersion of the resonant peaks. By convention, we set σ̂ to zero
when one unique maximum is observed.

By reproducing the methodology detailed in Sect. 4, we com-
puted the tidal response of the reference planet defined in Table 2
for various values of the colatitude of the continental centre,
angular radius of the continent at constant seawater volume,
oceanic depth, Rayleigh drag frequency, effective shear modu-
lus of the solid part, and Andrade time, each parameter being
modified independently of the others. In all cases, we calculated
the values of σ̂ from the frequency spectra obtained for the
imaginary part of the quadrupolar Love number. These values
are plotted in Fig. 6.

The quantity σ̂ appears to be almost insensitive to variations
of H, µ, and τA, whereas it varies over several orders of mag-
nitude when θ̂S, θc, or σR are modified. Moreover, we recover
quantitatively the tendencies identified in the parametric study
(Table 3), namely σ̂ really accounts for the role played by the
geometry of the ocean basin and the dissipative timescale in the
planet’s tidal response. Thus, the normalised standard deviation
defined by Eq. (109) can be considered as a spectral metric of
the planet’s geometric features, both on the global scale per-
taining to the location or spread of land, if any, along with the
local topographical scale dictating the dissipative timescale in
the ocean.

Interestingly, the dependence of σ̂ on θ̂S, θc, or σR, is not
even. Instead, threshold effects may be observed, similar to those
of Fig. 5. First, the evolution of the metric with θ̂S (Fig. 6, top
left panel) illustrates the fact that a small inclination of the con-
tinent on the globe with respect to the pole is sufficient to break
the axi-symmetry. By switching from θ̂S = 0◦ (polar continent)
to θ̂S = 10◦, the metric skyrockets to reach a plateau around
σ̂ ∼ 0.4. This plateau suggests that changing the position of the
continental centre from 10◦ to 90◦ does not affect the regularity
of the frequency spectrum. Basically, one observes here a satu-
ration regime where the signature of the supercontinent through
the chosen metric is the same regardless of its position on the
globe.

A similar behaviour is observed as the angular radius of the
continent grows from 0◦ (global ocean) to 90◦ (hemispherical
ocean) at constant water volume (Fig. 6, top right panel). While
the metric does not evolve much with θc in general, it increases
drastically around θc ≈ 35◦, which is the critical size identified
from the plotted spectra in the parametric study. This value is
consistent with the highest value of θc for which the frequency
spectrum still exhibits a regular series of resonant peaks that
resembles the tidal response of the global ocean (Fig. 4, top right
panel). Beyond 35◦, the spectrum becomes complex and irregu-
lar due to the strong interference of the continent with tidal flows.
We note that the metric remains stable for θc ≳ 40◦, which sug-
gests that the regularity of the frequency spectrum is insensitive
to the size of the continent beyond this value. This highlights
another saturation regime, similar to that observed for the posi-
tion of the continent, in which the signature of the supercontinent

is the same regardless of its size. It is noteworthy that the way
the continent interferes with the oceanic tidal flows is related
to its size with respect to the typical horizontal wavelengths of
the predominating tidal modes, which are planetary scale. As
a consequence, the critical angular radius marking the regime
transition for the studied Earth-sized planet would be similar for
a super-Earth or a smaller planet.

Finally, the metric decays monotonically as the Rayleigh drag
frequency increases, with a sharp variation occurring around
σR ∼ 3.2 × 10−5 s−1 (Fig. 6, middle right panel). This criti-
cal value marks the transition between the quasi-adiabatic and
frictional regimes (see Table 1). In the latter, the resonances
associated with oceanic modes are damped by the strong fric-
tion of tidal flows with the oceanic floor, which makes the tidal
torque evolve smoothly with the tidal frequency, as shown by
Fig. 4 (middle right panel). Therefore, the regularity of the spec-
trum conveys no information about the geometry of the ocean
basin in this regime. Conversely, in the quasi-adiabatic regime,
σ̂ increases as σR decays due to the growing number of visible
resonant peaks.

6. Conclusions

In this paper we have examined the linear response of an ocean
planet hosting a supercontinent to gravitational tidal forcing.
This problem may be regarded as a simplified model of the tides
raised on Earth by the Moon and their interactions with the land-
ocean distribution, which predominantly drives the evolution of
the Earth-Moon system over long time scales (e.g. Bills & Ray
1999; Daher et al. 2021; Tyler 2021; Farhat et al. 2022a). The the-
ory developed in the present study expands on earlier works that
investigated the tidal response of hemispherical or global oceans
(Longuet-Higgins 1968; Longuet-Higgins & Pond 1970; Webb
1980, 1982; Auclair-Desrotour et al. 2018; Farhat et al. 2022a). In
this approach, the continent is represented by a spherical cap of
arbitrary size and position, and the LTEs are written in the shal-
low water approximation for an oceanic layer of uniform depth.
These simplifications allow the problem to be formulated analyt-
ically in terms of explicitly defined oceanic eigenmodes, which
provides a deep insight into the physics governing the planet’s
tidal response. Additionally, such a formalism appears to be well
suited to the harmonic analysis of the tidal dynamics since it
relies on a small set of key parameters.

As a first step, we established the equations describing the
dynamics of the forced tidal flows. These equations include the
gravitational and surface couplings that result from the defor-
mation of the solid part generated by the ocean loading and the
tidal forces exerted by the perturber. The visco-elastic response
of the solid part to tidal forcings is described in a generic way by
gravitational and load Love numbers. We computed it in prac-
tice by making use of the closed-form solutions provided by
the Andrade model for a homogeneous body, following the pre-
scriptions obtained from 1D models taking the planet’s internal
structure into account. The LTEs were expressed as an algebraic
system describing the evolution of coupled eigenmodes in the
frequency domain. This system is controlled by a small set of
clearly identified dimensionless numbers that characterise the
regime of oceanic tidal waves and the geometry of the ocean
basin. We finally used the harmonic expansion of tidal flows to
express the corresponding input tidal power, tidally dissipated
power, tidal Love numbers, and tidal torque exerted about the
spin axis.

As a second step, we applied the theory to a reference case,
which is essentially defined as a simplified Earth-Moon system.
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Fig. 6. Evolution of the normalised standard deviation of the frequency interval separating two relative maxima with the parameters of Fig. 4. The
metric, given by Eq. (109), is plotted in logarithmic scale (vertical axis) as a function of the parameters (horizontal axis). Top: Dependence on
the colatitude of the continental centre (left panel) and angular radius of the continent (right panel). Middle: Dependence on the oceanic depth
(left panel) and Rayleigh drag frequency (right panel). Bottom: Dependence on the effective shear modulus (left panel) and Andrade time (right
panel) of the solid part. Blue dots indicate the values obtained for various values of the parameters, while black squares designate the reference
case defined in Table 2: θ̂∗S = 90◦, θ∗c = 90◦, H∗ = 4.0 km, σ∗R = 10−5 s−1, µ∗ = 25.1189 GPa, and τ∗A = 12 897.1 yr.

In this configuration, the continent is hemispherical and located
at the equator. By computing the evolution of the aforementioned
tidal quantities with the forcing tidal frequency, we recovered the
solutions obtained in Farhat et al. (2022a). We showed that the
planet’s tidal dissipation rate is dominated by the contribution
of the ocean, while the solid part determines it mainly in the
high-frequency range, that is for a fast rotating planet. Moreover,
the obtained results highlight the symmetry breaking effect of
the supercontinent, which splits the modes of the global ocean
into more modes by interfering with tidal flows. As a result, the

spectra of tidal quantities are flattened and they exhibit additional
relative maxima corresponding to the resonances of the basin
modes.

As a third step, we carried out a parametric study for a set
of six key parameters, by using the previously defined reference
case as a template configuration. The obtained results reveal the
degeneracies affecting the evolution of the main spectral features
with the selected parameters. However, they also indicate that
the specific signature of the geometry can be unravelled to a cer-
tain extent by characterising the erraticity of the spectra. As the
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position or angular radius of the continent increase, the fre-
quency spectrum of the tidal torque becomes irregular, while
the other parameters only alter the frequencies of the resonant
peaks, their widths, their heights, and the non-resonant back-
ground. The only exception to this statement is the Rayleigh drag
frequency, which affects the regularity of frequency spectra as
well.

The above qualitative results were refined in a quantitative
way as a last step. By following an inverse problem approach
inspired from spectral geometry, we showed that some geomet-
ric features of the ocean basin may be inferred from the spectral
irregularity, which is quantified by the normalised standard devi-
ation of the frequency intervals separating consecutive relative
maxima in the frequency spectrum of the tidal Love number.
The sensitivity of this quantity to the geometrical parameters is
characterised by threshold effects. As regards the position of the
continent on the globe, the metric only allows the poles to be
distinguished from other locations. Similarly, it seems to indi-
cate that the signatures of continents with angular radii larger
than 40◦ are indistinguishable from each other.

Nevertheless, the harmonic analysis also suggests that a con-
tinent similar to South America (∼30◦-angular radius) or smaller
would not alter, qualitatively, the oceanic tidal response even
if it is located at the equator, where the interference of the
coastlines with tidal flows tends to be maximal. In such config-
urations, the tidally dissipated energy predicted by the harmonic
analysis is approximately the same as in the absence of conti-
nent. Finally the metric appears to be sensitive to the transition
between the quasi-adiabatic and frictional regimes, which occurs
forσR ≈ 3.2×10−5 s−1. This critical value is slightly greater than
that estimated for Earth (∼10−6−10−5 s−1, e.g. Garrett & Munk
1971; Webb 1973; Tyler 2021; Farhat et al. 2022a), which is con-
sistent with the frequency-resonant behaviour of the Earth’s tidal
dissipation rate inferred from Lunar laser ranging and geological
data (e.g. Bills & Ray 1999; Tyler 2021).

Both the spectral method and the metric for continentality
effects elaborated in the present work are highly relevant to stud-
ies dealing with the long-term tidal evolution of bodies with
surface oceans, such as extrasolar rocky planets orbiting in the
habitable zone of their host star. Particularly, the studied spec-
tral irregularity of the tidal torque has direct implications on the
history of planet-satellite systems. Tidal resonances cause irreg-
ular evolutions of the satellite’s orbit and planet’s rotation, thus
leading to abrupt LOD or obliquity variations that might result
in significant climatic effects. We will examine specifically the
consequences of continentality on the long-term evolution of the
Earth-Moon system in a separate dedicated study by using the
theory established in the present work.

As this theory forms a basis for more sophisticated descrip-
tions of continentality effects, we will consider refining the
geometry in the future in order to account for the role played by
the fractality of non-smooth coastlines, the complex bathymetry
of the ocean basin, or the spatial dependence of energy dissi-
pation. Also, while we have characterised the signature of one
unique supercontinent in the planet’s tidal response, the com-
bined effects of several continents still needs to be elucidated.
All these questions require further work improving meanwhile
the theory and the quality of observational constraints on the
past history of the Earth-Moon system. We will address them
through several forthcoming studies.
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Appendix A: Nomenclature

The notations introduced in the main text are listed below in
order of appearance.

LOD Length of the day p. 2
LTEs Laplace’s Tidal Equations p. 2
Rp Planet radius p. 2
H Oceanic depth p. 2
θc Angular radius of the supercontinent p. 2
θ0 Angular radius of the ocean basin p. 2
R Geocentric frame of reference rotating

with the planet p. 2
eX Cartesian unit vector associated with R p. 2
eY Cartesian unit vector associated with R p. 2
eZ Cartesian unit vector associated with R p. 2
r̂ Radial coordinate in R p. 2
θ̂ Colatitude in R p. 2
φ̂ Longitude in R p. 2
θ̂S Colatitude of the continental centre in R p. 3
φ̂S Longitude of the continental centre in R p. 3
θ̂oc Colatitude of the oceanic centre in R p. 3
φ̂oc Longitude of the oceanic centre in R p. 3
O Planet’s centre of mass p. 3
Roc Frame of reference rotating with the planet and oriented

by the centre of the ocean basin p. 3
ex Cartesian unit vector associated with Roc p. 3
ey Cartesian unit vector associated with Roc p. 3
ez Cartesian unit vector associated with Roc p. 3
r Radial coordinate in Roc p. 3
θ Colatitude in Roc p. 3
φ Longitude in Roc p. 3
er Radial unit vector associated with Roc p. 3
eθ Colatitudinal unit vector associated with Roc p. 3
eφ Longitudinal unit vector associated with Roc p. 3
UT Tidal gravitational potential generated by the per-

turber p. 3
G Universal gravitational constant p. 3
Ms Mass of the perturber p. 3
rs Position vector of the perturber with respect to O p. 3
rs Planet-perturber distance p. 3
≡ Symbol used for definitions in equations p. 3
F Tidal force per unit mass induced by UT p. 3
t Time p. 3
g Surface gravity at rest p. 3
σR Rayleigh drag frequency p. 3
V Horizontal velocity vector p. 3
ξ Horizontal displacement vector p. 3
f Coriolis parameter p. 3
ζ Vertical displacement of the ocean’s surface with

respect to the oceanic floor p. 3
ζeq Equilibrium displacement corresponding to the equipo-

tential surface p. 3
ΓD,ΓT Solid deformation operators p. 3
Ω Planet’s spin angular velocity p. 3
CA Cowling approximation p. 4

t0 Reference time for normalisation p. 3
V0 Reference velocity for normalisation p. 3
t̃ Normalised time p. 4
f̃ Normalised Coriolis parameter p. 4
∇̃ Normalised gradient operator p. 4
ξ̃ Normalised horizontal displacement vector p. 4
ζ̃ Normalised oceanic surface elevation p. 4
ζ̃eq Normalised equilibrium surface elevation p. 4
Ξ̃ Normalised forcing term p. 4
σ̃G Normalised Rossby deformation length p. 4
σ̃R Normalised friction parameter p. 4
σ Tidal frequency p. 4
σ̃ Rossby number of forced waves p. 4
Φ Divergent displacement potential p. 4
Ψ Rotational displacement streamfunction p. 4
n Outward pointing unit vector defining the normal to the

coast p. 4
dS Infinitesimal surface element p. 5
O Domain occupied by the ocean basin p. 5
∂O Boundary of the ocean basin p. 5
z Conjugate of a complex number (z) p. 5
∇̃2 Normalised Laplacian operator p. 5
ALFs Associated Legendre Functions of the first kind p. 5
Φk k-th eigenfunction of the set of SCHNs p. 5
λk Eigenvalue associated with Φk p. 5
Ψk k-th eigenfunction of the set of SCHDs p. 5
νk Eigenvalue associated with Ψk p. 5
i Imaginary number p. 5
SCHs Spherical cap harmonics p. 5
SCHNs SCHs with Neumann boundary conditions p. 5
SCHDs SCHs with Dirichlet boundary conditions p. 5
δk, j Kronecker delta function p. 5
pk Weighting coefficient of Φk p. 5
p−k Weighting coefficient of Ψk p. 5
SPHs Spherical harmonics p. 5
βk, j Gyroscopic coefficient p. 6
Ŷm

l Complex SPH associated with the coordinates of R p. 7
l Degree (or latitudinal wavenumber) of the SPHs p. 7
m Order (or longitudinal wavenumber) of the SPHs p. 7
Ũm,σ

T;l Ŷm
l -component of the normalised tidal gravitational

potential p. 7
Ŷk k-th function of the set of SPHs associated with R p. 7
ŨσT;k k-th component of the normalised tidal potential p. 7

ŨσT σ-component of the normalised tidal gravitational
potential p. 7

Ξ̃σ σ-component of the forcing term Ξ̃ p. 7
ŨσT; j Ŷ j-component of ŨσT p. 7

Ξ̃σj Ŷ j-component of Ξ̃ p. 7
γσD;l , γ

σ
T;l Solid deformation factors p. 7

kσl Degree-l solid tidal gravitational Love number p. 7
hσl Degree-l solid tidal displacement Love number p. 7
kσL;l Degree-l solid loading tidal Love number p. 7
hσL;l Degree-l solid loading displacement Love number p. 7
ρ Mean density of the solid regions p. 7
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υk,q Coupling coefficients appearing in the forcing terms of
the LTEs p. 7

M Number of basis functions or truncation degree of the
set

{
Φ j

}
p. 8

N Number of basis functions or truncation degree of the
set

{
Ψ j

}
p. 8

K Number of basis functions or truncation degree of the
set

{
Ŷ j

}
p. 8

Φ Vector defining Φ in terms of the Φk p. 8
Ψ Vector defining Ψ in terms of the Ψk p. 8
ŨT Vector defining ŨσT in terms of the SPHs p. 8
T Transpose of a matrix p. 8
EM,k Unit vector of size M made of Kronecker delta func-

tions p. 8
AΦ, RΦ Matrices accounting for the deformation of the solid

regions p. 8
PŶ ,Φ Transition matrix from the SPHs Ŷk to the SCHs Φk p. 8
ΓD,ΓT Diagonal matrices of solid deformation factors p. 8
Λ, N Diagonal matrices of eigenvalues p. 8
B Matrix of gyroscopic coefficients p. 8
BΦ,Φ First block matrix of B p. 8
BΦ,Ψ Second block matrix of B p. 8
BΨ,Φ Third block matrix of B p. 8
BΨ,Ψ Fourth block matrix of B p. 8
A Matrix accounting for the gravitational and pressure

effects p. 8
R Matrix describing the coupling between the forcing tidal

gravitational potential and the oceanic eigenmodes p. 8
X Vector describing the horizontal displacement in terms

of the oceanic SCHs p. 8
I Identity matrix p. 9
H Tidal transfer function matrix p. 9
UD Gravitational potential of the tidally distorted body p. 9
Ũm,σ

D;l Complex (σ, l,m)-component of UD p. 9

ζ̃m,σ
l Complex (σ, l,m)-component of the normalised surface

elevation p. 9
km,σ

D;l Complex Love numbers p. 9
Tz Tidal torque exerted about the planet’s spin axis p. 9
dV Infinitesimal volume parcel p. 9
δρ Local tidal density variations p. 9
V∗ Simply connected region that includes the planet but not

the perturber p. 9
∂V∗ Boundary ofV∗ p. 9
r∗ Radius of the spherical volumeV∗ p. 10
a Semi-major axis of the perturber p. 10
PT Time-averaged power input by the tidal force p. 10
ρ Local density p. 10
PT;oc Time-averaged tidal input power in the ocean p. 10
Pdiss;oc Time-averaged tidally dissipated power in the

ocean p. 10
Pdiss Total time-averaged tidally dissipated power p. 11
PT;sol Time-averaged tidal input power in the solid

regions p. 11
Pdiss;sol Time-averaged tidally dissipated power in the solid

regions p. 11

µ Effective shear modulus of the solid regions p. 11
τM Maxwell time p. 11
τA Andrade time p. 11
α Parameter determining the duration of the transient

response in the primary creep (Andrade model) p. 11
ns Mean motion of the perturber p. 12
M$ Lunar mass p. 12
n$ Lunar mean motion p. 12
χ Normalised semidiurnal tidal frequency p. 13
ΩE Spin rate of the actual Earth p. 13
Prot Spin period p. 13
A2 Dimensionless constant parametrising the quadrupolar

solid tidal Love number p. 15
Γ Gamma function p. 15
∗ Superscript referring to the values of the reference case

defined in Table 2 p. 15
θ̂∗S Colatitude of the continental centre in the reference

case p. 15
θ∗c Angular radius of the continent in the reference

case p. 15
H∗ Oceanic depth in the reference case p. 15
σ∗R Rayleigh drag frequency in the reference case p. 15
µ∗ Effective shear modulus in the reference case p. 15
τ∗A Andrade time in the reference case p. 15
σk Tidal frequency of the k-th maximum p. 17
∆σk k-th frequency interval between two consecutive max-

ima p. 17
∆σ Mean frequency interval separating two consecutive

relative maxima of the tidal torque p. 18
∆̂σk k-th frequency interval normalised by the mean inter-

val p. 18
CDF Cumulative distribution function p. 18
σ̂ Normalised standard deviation of the intervals separat-

ing consecutive relative maxima of the tidal torquep. 18

Appendix B: Associated Legendre functions
(ALFs)

The ALFs, usually denoted by Pm
l , are the solutions of the

equation

1
sin θ

d
dθ

(
sin θ

dh
dθ

)
+

[
l (l + 1) −

m2

sin2 θ

]
h = 0, (B.1)

which is found by separating the longitude (φ) and the colati-
tude (θ) in the eigenvalues problems associated with the Laplace
equation in spherical coordinates (see Eq. (C.1)). The function
h (θ) in Eq. (B.1) is assumed to be a regular function of the
colatitude. The parameters l and m are commonly referred to as
the degree and the order of the Legendre function, respectively.
They may be integral, non-integral, or complex depending of the
eigenvalues of the problem, m2 and l (l + 1), which are deter-
mined both by the boundary conditions and the geometry of the
domain of definition of the solutions on the unit sphere.

In the general case, the ALFs are defined, for z ∈ C such that
|z| < 1 and arbitrary complex constants, l and m, as (Abramowitz
& Stegun 1972, Eq. (8.1.2))

Pm
l (z) ≡

1
Γ (1 − m)

(
1 + z
1 − z

) m
2

2F1

(
−l, l + 1; 1 − m;

1 − z
2

)
. (B.2)
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In the above equation, Γ is the Gamma function introduced in
Eq. (106), which is defined for ℜ (z) > 0 as (Abramowitz &
Stegun 1972, Eq. (6.1.1))

Γ (z) ≡
∫ ∞

0
tz−1e−tdt. (B.3)

The hypergeometric function 2F1 is defined as (Abramowitz &
Stegun 1972, Eq. (15.1.1))

2F1 (a, b; c; d) =
∞∑
j=0

(a) j (b) j

(c) j

x j

j!
, (B.4)

where (a) j designates the Pochhammer symbol (Abramowitz &
Stegun 1972, Eq. (6.1.22)),

(a)0 ≡ 1, (B.5)

(a) j ≡ a (a + 1) . . . (a + j − 1) =
Γ (a + j)
Γ (a)

. (B.6)

The derivatives of the ALFs with respect to z are given by

∂zPm
l =

1
z2 − 1

[
zlPm

l (z) − (m + l) Pm
l−1 (z)

]
. (B.7)

We note that the functions Γ and 2F1 in Eq. (B.2) are defined
only if their arguments satisfy certain conditions. In practice,
the ALFs are computed for any values of these arguments by
using the symmetry properties of the regularised hypergeometric
function 2F̃1, which is defined as (e.g. Johansson 2016)

2F̃1 (a, b; c; z) ≡ 2F1 (a, b; c; z)
Γ (c)

. (B.8)

For m ∈ Z, l ∈ R and z = x ∈ R such that −1 ≤ x ≤ 1, which
corresponds to the case of the SCHs, the general definition given
by Eq. (B.2) simplifies to (e.g. Thébault et al. 2006)

Pm
l (x) =

(−1)
m+|m|

2

2|m| |m|!
Γ (l + |m| + 1)
Γ (l − m + 1)

(
1 − x2

)|m|/2
(B.9)

× 2F̃1

(
|m| − l, l + |m| + 1; |m| + 1;

1 − x
2

)
.

Here, the hypergeometric function is expressed as

2F̃1

(
|m| − l, l + |m| + 1; |m| + 1;

1 − x
2

)
=

∞∑
j=0

a j

(
1 − x

2

) j

,

(B.10)

with the coefficients a j recursively defined as

a0 = 1, (B.11)

a j+1 =
( j + |m| − l) ( j + |m| + l + 1)

( j + 1) ( j + 1 + |m|)
a j. (B.12)

In the general case, the sum of Eq. (B.9) converges only for
−1 < x ≤ 1, which corresponds to the inequality 0 ≤ θ < π in the
change of coordinates x = cos θ. However the sum of Eq. (B.9)
is not infinite any more when l is an integer since a j+1 = 0 as
long as j > l − |m|. As a consequence it converges also for θ = π
in this case.

Since the degrees l tend to integral values (l = 0, 1, 2, . . .) as
θ → π, the generalised ALFs given by Eqs. (B.2) and (B.9) con-
tinuously converge towards the well-known ALFs of the SPHs,
which are defined for −1 ≤ x ≤ 1, and l and m integers such that
l ≥ |m|, as (Abramowitz & Stegun 1972; Arfken & Weber 2005)

Pm
l (x) ≡ (−1)m

(
1 − x2

)m/2 dm

dxm Pl (x) , (B.13)

the Pl designating the Legendre polynomials, given by

Pl (x) ≡
1

2ll!
dl

dxl

[(
x2 − 1

)l
]
. (B.14)

Owing to the large number of terms that is sometimes required
to compute the sum of Eq. (B.10) at machine precision, the
numerical evaluation of the generalised ALFs given by Eq. (B.9)
may be tricky in some cases. Particularly, the series converges
very slowly when x ≈ −1, which occurs if the ocean is almost
global. In practice, the evaluation is achieved by making use of
the build-in hypergeometric function 2F1 of the TRIP algebraic
manipulator (Gastineau & Laskar 2011).

Appendix C: Spherical cap harmonics (SCHs)

In the same way that the SPHs are the harmonics of the entire
sphere, the SCHs designate the harmonics of the sphere trun-
cated at a colatitude θ0 (e.g. Haines 1985; Thébault et al. 2004,
2006; Torta 2019, and references therein). Figure C.1 shows the
two geometrical configurations. We note that the natural coordi-
nate system of the SCHs is such that the z-axis is the axis going
through the centre of the bounded ocean, which is the symme-
try axis of the system, while the coordinate system of the SPHs
does not need to be specified due to the spherical symmetry of
the global ocean.

The SPHs and the SCHs are found by solving – for spe-
cific boundary conditions discussed further – the eigenvalue-
eigenfunction problem described by the Helmholtz equation
(e.g. Haines 1985),

∇2 f = −λ f , (C.1)

where ∇2 designates the Laplace operator, defined for any
function f (θ, φ) as

∇2 f ≡
1

sin θ
∂θ (sin θ∂θ f ) +

1
sin2 θ

∂φφ f , (C.2)

the notation ∂x or ∂xx referring to the first or second partial
derivatives with respect to the x coordinate. In both case, the
variables θ and φ can be separated, which allows the problem to
be solved as two decoupled eigenvalue problems.

Since the functions f (θ, φ) in Eq. (C.1) are defined for all φ,
the boundary conditions on φ are those of continuity,

f (θ, φ) = f (θ, φ + 2π) , (C.3)
∂φ f (θ, φ) = ∂φ f (θ, φ + 2π) , (C.4)

which restricts the values of m to be integral (m ∈ Z). These
conditions hold both for the ordinary SPHs and for the SCHs.
Analogously, the two sets of basis functions share the same
regularity condition on θ at the pole (θ = 0),

∂θ f (0, φ) = 0 m = 0, (C.5)
f (0, φ) = 0 m , 0. (C.6)
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Fig. C.1. Geometry of the land-ocean distribution in the model. Left: global ocean distribution where the eigenfunctions are the SPHs. Right:
bounded circular ocean distribution where the eigenfunctions are the SCHs. In the bounded case, the frame of reference Roc:

(
O, ex, ey, ez

)
intro-

duced in Sect. 2.1 is such that ez corresponds to the symmetry axis going through the centre of the ocean basin, while it is not specified in the
global case due to the spherical symmetry.

Fig. C.2. Real degrees lk of the SCHs for doublets (k, |m|) with 0 ≤
|m| ≤ k ≤ 2 as functions of the angular radius of the supercontinent.
The set of basis functions obtained for the Neumann condition given by
Eq. (C.15) (SCHNs) are designated by solid lines, and those obtained for
the Dirichlet condition given by Eq. (C.16) (SCHDs) by dashed lines.

However, they differ as regards the second boundary condition.
The SPHs are obtained by solving the Helmholtz equation given
by Eq. (C.1) on the entire sphere, S: (θ, φ) ∈ [0, π]× [0, 2π[, with
regularity boundary conditions at θ = π similar to those applied
at θ = 0,

∂θ f (π, φ) = 0 m = 0, (C.7)
f (π, φ) = 0 m , 0. (C.8)

They are associated with integral degrees l ∈ N such that l ≥ |m|.
Following Varshalovich et al. (1988), we use, for the com-

plex SPHs, the convention given by (Varshalovich et al. 1988,
Sect. 5.2, Eq. (1))

Ym
l (θ, φ) =

√
(2l + 1) (l − m)!

4π (l + m)!
Pm

l (cos θ) eimφ, (C.9)

or, equivalently,

Ym
l (θ, φ) ≡ (−1)

|m|−m
2

√
(2l + 1) (l − |m|)!

4π (l + |m|)!
P|m|l (cos θ) eimφ, (C.10)

where the Pm
l are the standard ALFs defined in Eq. (B.13). The

eigenvalues associated with the SPHs only depend on the degree
l, and are expressed as

λl = l (l + 1) . (C.11)

In the used convention (Eq. (C.9)), the SPHs form a set of
orthonormal basis functions through the scalar product defined,
for any complex functions f and g, as

⟨ f , g⟩ ≡
∫
S

fgdS , (C.12)

=

∫ 2π

φ=0

∫ π

θ=0
f (θ, φ)g (θ, φ) sin θ dθdφ.

the notation dS referring to an infinitesimal surface element of
the unit sphere, and f to the conjugate of f . This scalar product
allows the ℓ2-norm of the space of functions of S to be defined,

∥ f ∥2 ≡
√
⟨ f , f ⟩. (C.13)

Hence, for any pair of SPHs Ym
l and Yq

p,

⟨Ym
l ,Y

q
p⟩ = δl,pδm,q. (C.14)

The SCHs are obtained by solving the Helmholtz equation
given by Eq. (C.1) on the domain filled by the spherical cap,
C : (θ, φ) ∈ [0, θ0] × [0, 2π[, together with the boundary condi-
tions specified at ∂C, namely θ = θ0. In the present model, the
applied boundary conditions are either Neumann (fixed value for
∂θ f at θ = θ0) or Dirichlet (fixed value for the function f itself)
conditions, which are respectively formulated as

∂θ f (θ0, φ) = 0 (Neumann condition), (C.15)
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Table C.1. Values of the real degrees ln of the SCHs with Neumann (SCHNs) or Dirichlet (SCHDs) boundary conditions for various angular radii
of the supercontinent (θc).

θc (deg) (0, 0) (1, 0) (1, 1) (2, 0) (2, 1) (2, 2)

Neumann boundary conditions (SCHNs)
0 0.000000 1.000000 1.000000 2.000000 2.000000 2.000000
10 0.000000 1.014533 0.984857 2.040535 1.957224 1.999318
20 0.000000 1.054431 0.945331 2.139648 1.889718 1.989826
30 0.000000 1.115646 0.900510 2.277970 1.885701 1.956707
40 0.000000 1.196823 0.867186 2.450068 1.948680 1.901867
50 0.000000 1.298769 0.851964 2.657126 2.062763 1.851211
60 0.000000 1.424123 0.856313 2.904340 2.220869 1.827443
70 0.000000 1.577470 0.880927 3.200567 2.423975 1.840734
80 0.000000 1.765876 0.927569 3.559164 2.679212 1.896224
90 0.000000 2.000000 1.000000 4.000000 3.000000 2.000000
100 0.000000 2.296162 1.105011 4.553241 3.408276 2.162574
110 0.000000 2.680266 1.254256 5.266546 3.939640 2.402474
120 0.000000 3.195691 1.467987 6.219529 4.654189 2.752588
130 0.000000 3.920704 1.783375 7.555648 5.660659 3.273969
140 0.000000 5.012005 2.275396 9.561941 7.176982 4.090469
150 0.000000 6.835398 3.119597 12.908284 9.712069 5.492825
160 0.000000 10.488504 4.843239 19.604445 14.793105 8.355251
170 0.000000 21.459763 10.083479 39.699467 30.056683 17.051968

Dirichlet boundary conditions (SCHDs)
0 0.000000 1.000000 1.000000 2.000000 2.000000 2.000000
10 0.201220 1.286874 1.014533 2.359807 2.040535 2.000661
20 0.274502 1.424749 1.054431 2.561533 2.139648 2.009153
30 0.346184 1.568297 1.115646 2.777734 2.277970 2.037781
40 0.422281 1.726592 1.196823 3.019705 2.450068 2.095353
50 0.506293 1.905895 1.298769 3.296147 2.657126 2.186686
60 0.601509 2.112863 1.424123 3.616943 2.904340 2.315699
70 0.711801 2.355851 1.577470 3.994876 3.200567 2.487779
80 0.842253 2.646183 1.765876 4.447503 3.559164 2.711416
90 1.000000 3.000000 2.000000 5.000000 4.000000 3.000000
100 1.195606 3.441373 2.296162 5.690014 4.553241 3.374653
110 1.445566 4.008030 2.680266 6.576628 5.266546 3.869485
120 1.777288 4.762779 3.195691 7.758259 6.219529 4.542151
130 2.240037 5.818619 3.920704 9.412016 7.555648 5.497155
140 2.932276 7.401491 5.012005 11.892079 9.561941 6.944195
150 4.083687 10.038551 6.835398 16.024836 12.908284 9.373283
160 6.383235 15.311204 10.488504 24.289410 19.604445 14.255320
170 13.275607 31.126398 21.459763 49.081367 39.699467 28.946234

Notes. The values are given for the doublets (n, |m|) such that n = 0, 1, 2 and |m| ≤ n.

f (θ0, φ) = 0 (Dirichlet condition). (C.16)

Each condition leads to a set of orthogonal basis functions.
These sets are referred to as the ‘SCHNs’ for Eq. (C.15) and the
‘SCHDs’ for Eq. (C.16).

As the Helmholtz equation is the same for both the SCHs
and the SPHs, solving the eigenfunction-eigenvalue problem
defined by Eqs. (C.1) and (C.15) (or Eq. (C.16)) amounts to find-
ing the set of ALFs (see Eq. (B.9)) that satisfy the specified
boundary conditions for a given m ∈ Z. As a consequence, the
eigenfunction-eigenvalue problem becomes a root-finding prob-
lem where one computes the series of real degrees l such that,
alternately,

dPm
l

dθ
(cos θ0) = 0, (Neumann condition), (C.17)

Pm
l (cos θ0) = 0 (Dirichlet condition). (C.18)

This can be achieved numerically using a standard Newton-
Raphson algorithm (e.g. Press et al. 2007, Sect. 9.4) since the
ALFs defined by Eq. (B.9) and their derivatives are regular
functions of l.

For each condition (Eq. (C.15) or Eq. (C.16)), we end up with
the degrees of the distorted ALFs, ln (m), which are subscripted
with indices n ∈ N such that n ≥ |m|. These indices3 correspond
to the integral degrees of the SPHs towards which the SCHs con-
verge for the ℓ2-norm defined by Eq. (C.13) in the global ocean

3 Other conventions exist for the indices n. For instance, Haines (1985)
introduces a convention where the parity of k − |m| allows the two sets
of basis functions (with Neumann or Dirichlet conditions) to be distin-
guished. In this convention, the roots of Eq. (C.17) (Neumann condition)
are designated by even n − |m|, while those of Eq. (C.18) (Dirichlet
condition) are designated by odd n − |m|.
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Table C.2. Eigenvalues of the SCHs with Neumann (SCHNs) or Dirichlet (SCHDs) boundary conditions for various angular radii of the
supercontinent.

θc (deg) (0, 0) (1, 0) (1, 1) (2, 0) (2, 1) (2, 2)

Neumann boundary conditions (SCHNs)
0 0.000000 2.000000 2.000000 6.000000 6.000000 6.000000
10 0.000000 2.043810 1.954799 6.204319 5.787950 5.996589
20 0.000000 2.166257 1.838982 6.717744 5.460750 5.949235
30 0.000000 2.360311 1.711429 7.467118 5.441569 5.785407
40 0.000000 2.629208 1.619197 8.452903 5.746033 5.518966
50 0.000000 2.985569 1.577808 9.717446 6.317753 5.278194
60 0.000000 3.452250 1.589586 11.339534 7.153126 5.166990
70 0.000000 4.065883 1.656959 13.444194 8.299630 5.229035
80 0.000000 4.884195 1.787952 16.226814 9.857388 5.491887
90 0.000000 6.000000 2.000000 20.000000 12.000000 6.000000
100 0.000000 7.568523 2.326061 25.285246 15.024623 6.839299
110 0.000000 9.864090 2.827415 33.003048 19.460404 8.174357
120 0.000000 13.408133 3.622974 44.902072 26.315661 10.329330
130 0.000000 19.292626 4.963802 64.643464 37.703724 13.992842
140 0.000000 30.132199 7.452826 100.992648 58.686045 20.822406
150 0.000000 53.558065 12.851483 179.532083 104.036347 35.663952
160 0.000000 120.497214 28.300199 403.938705 233.629059 78.165464
170 0.000000 481.981173 111.760030 1615.747119 933.460872 307.821577

Dirichlet boundary conditions (SCHDs)
0 0.000000 2.000000 2.000000 6.000000 6.000000 6.000000
10 0.241710 2.942918 2.043810 7.928496 6.204319 6.003307
20 0.349854 3.454660 2.166257 9.122983 6.717744 6.045851
30 0.466027 4.027851 2.360311 10.493540 7.467118 6.190333
40 0.600603 4.707711 2.629208 12.138321 8.452903 6.485855
50 0.762626 5.538331 2.985569 14.160734 9.717446 6.968283
60 0.963323 6.577054 3.452250 16.699223 11.339534 7.678163
70 1.218462 7.905884 4.065883 19.953910 13.444194 8.676820
80 1.551642 9.648467 4.884195 24.227788 16.226814 10.063195
90 2.000000 12.000000 6.000000 30.000000 20.000000 12.000000
100 2.625081 15.284420 7.568523 38.066269 25.285246 14.762935
110 3.535228 20.072333 9.864090 49.828657 33.003048 18.842401
120 4.936042 27.446847 13.408133 67.948839 44.902072 25.173291
130 7.257803 39.674941 19.292626 97.998058 64.643464 35.715869
140 11.530519 62.183561 30.132199 153.313622 100.992648 55.166033
150 20.760187 110.811047 53.558065 272.820192 179.532083 97.231717
160 47.128920 249.744161 120.497214 614.264854 403.938705 217.469478
170 189.517352 999.979043 481.981173 2458.061916 1615.747119 866.830706

Notes. The values of λl are were computed from Eq. (C.20) for the doublets (n, |m|) such that n = 0, 1, 2 and |m| ≤ n using the values of real degrees
given by Table C.1.

limit: ln → n as θ0 → 180◦ independently of the applied bound-
ary condition. Similarly as integral degrees, the real degrees ln
are ranked in ascending order. For any n and j such that n < j,
the inequality ln < l j is verified. The values of the real degrees
are given by Table C.1 for 0 ≤ |m| ≤ 2 and various values of
angular radius of the continent, θc = 180 − θ0 (in degrees). They
are plotted on Fig. C.2.

We note that ln ≥ |m| when Dirichlet conditions are applied,
similarly as in the case of SPHs (e.g. Thébault et al. 2006).
However, when the Neumann conditions are applied, this is only
valid for θ0 ≤ 90◦ since there exists degrees l|m| < |m| as long as
θ0 > 90◦. Asymptotic scaling laws may be used to estimate the
values of the degrees ln ≫ |m| as functions of the indices n and
the angle θ0 (see e.g. Thébault et al. 2006, Eq. (40)). Particularly,
these laws show that ln ∝ θ−1

0 for θ0 ≪ 1 consistently with what

may be observed in Fig. C.2. This results from the fact that the
degree l of an harmonic scales as the inverse of the correspond-
ing wavelength, which is determined by the size of the spherical
cap.

The resulting SCHs are defined on the unit sphere, for |m| =
0, . . . ,+∞ and l = l|m|, l|m|+1, . . ., as

Θm
l (θ, φ) ≡

{
αl,mP|m|l (cos θ) eimφ if (θ, ϕ) ∈ C,
0 if (θ, ϕ) ∈ S \ C

(C.19)

where the normalisation coefficients αl,m ∈ R are to be specified.
The corresponding eigenvalues λl are expressed as

λl (m) = l (m) [l (m) + 1] , (C.20)

similarly as in the case of SPHs, though they now also depend
on the order m through l. The eigenvalues associated with the
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SCHNs and SCHDs are given in Table C.2 for 0 ≤ |m| ≤ n ≤
2 and various values of the continental angular radius (θc).
They are computed straightforwardly from the values of the
real degrees given in Table C.1 using the expression given by
Eq. (C.20).

The SCHs obtained for a given boundary condition are
orthogonal basis functions of the space of regular functions on
C through the scalar product introduced in Eq. (C.12). Since the
harmonics are set to zero for θ > θ0, this scalar product reads

⟨ f , g⟩ =
∫ 2π

φ=0

∫ θ0

θ=0
f (θ, φ)g (θ, φ) sin θ dθ dφ. (C.21)

For any pair of SCHs belonging to the same set, Θm
l and Θq

p, the
property given by Eq. (C.14) for the SPHs,

⟨Θm
l ,Θ

q
p⟩ = δl,pδm,q, (C.22)

is enforced by defining the normalisation coefficients αl,m ∈ R as

αl,m = (−1)
|m|−m

2

[
2π

∫ θ0

0

[
P|m|l (cos θ)

]2
sin θ dθ

]−1/2

. (C.23)

However, the functions in one set are not orthogonal to those in
the other since (e.g. Haines 1985)

⟨Θm
l ,Θ

q
p⟩ = δm,q

2π sin θ0Pm
l (cos θ0)

(p − l) (p + l + 1)
dPq

p

dθ
(cos θ0) , (C.24)

for Θm
l and Θq

p taken in the sets of SCHNs and SCHDs, respec-

tively. In the general case, Pm
l (cos θ0) , 0 and

dPq
p

dθ
(cos θ0) , 0,

which implies ⟨Θm
l ,Θ

m
p ⟩ , 0. This highlights the fact that the

SCHDs and the SCHNs are two distinct complete sets of basis
functions for the space of functions defined on C.

In the case of real eigenfunctions defined as

Θm
l (θ, φ) ≡

{
αl,mP|m|l (cos θ) cos (mφ + φm) if (θ, ϕ) ∈ C,
0 if (θ, ϕ) ∈ S \ C,

(C.25)

with φm = 0 if m ≥ 0 and φm = π/2 if m < 0, the orthogonality
property given by Eq. (C.22) still holds and the normalisation
coefficients defined in Eq. (C.23) become

αl,m = (−1)
|m|+m

2

[(
1 + δm,0

)
π

∫ θ0

0

[
P|m|l (cos θ)

]2
sin θ dθ

]−1/2

.

(C.26)

We note that the factors (−1)k with k = (|m| − m) /2 or k =
(|m| + m) /2 in the expressions of the normalisation coefficients
are introduced to make the SCHs consistent with the SPHs in the
used convention (Eq. (C.9)).

As θ0 increases, the ALFs smoothly evolve from the Bessel
functions (θ0 → 0) to the standard ALFs of integral parame-
ters (θ0 → π). Similarly, the SCHs evolve from the cylindrical
harmonics, where there is no curvature effect (small-sea config-
uration), to the SPHs given by Eq. (C.9) (global-ocean configura-
tion). Nevertheless, we emphasise that both the eigenvalues and
the eigenfunctions depend on the specified boundary condition
through the degrees l, different conditions leading to different

Fig. D.1. Euler angles corresponding to the standard Euler rotation
matrix defined by Eq. (D.1).

sets of eigenfunctions. Besides, the limit θ0 → π is not strictly
equivalent to the global-ocean configuration since boundary con-
ditions are still applied at ∂C, instead of the periodic conditions
of the SPHs. In other words, the presence of a small island
still alters the eigenmodes of the oceanic tide locally although
this effect is negligible at a global scale. The impact of the
island on the horizontal structure of tidal flows is quantified
by the differences of degrees, |ln − n|, and overlap coefficients,∣∣∣∣1 − ⟨Θm

ln
,Ym

n ⟩

∣∣∣∣, both of them tending to zero as the size of the
island decreases.

Appendix D: Euler rotation matrix

We consider the frame of reference R: (O, eX , eY , eZ) having the
planet’s centre of gravity as origin and associated with the Carte-
sian coordinates (X,Y,Z). As shown by Fig. D.1, any rotation
R: (O, eX , eY , eZ)→ Rrot:

(
O, ex, ey, ez

)
of this frame of reference

may be performed by three rotations about the coordinate axes
(e.g. Varshalovich et al. 1988, Sect. 1.4): (i) a rotation about the
Z-axis through an angle α such that 0 ≤ α < 2π, (ii) a rotation
about the new Y ′-axis through an angle β such that 0 ≤ β ≤ π,
and (iii) a rotation about the new axis z through an angle γ
such that 0 ≤ γ ≤ 2π. The frame of reference Rrot:

(
O, ex, ey, ez

)
is associated with the Cartesian coordinates (x, y, y). The three
rotation angles, α, β, and γ, are the so-called Euler angles.

Introducing the notations Cϕ = cos ϕ and S ϕ = sin ϕ for ϕ =
α, β, or γ, the standard Euler rotation matrix is defined in terms
of the Euler angles as (e.g. Varshalovich et al. 1988, Eq. (54)
p. 30)

Rα,β,γ ≡

CαCβCγ − S αS γ −CαCβS γ − S αCγ CαS β
S αCβCγ +CαS γ −S αCβS γ +CαCγ S αS β
−S βCγ S βS γ Cβ

 , (D.1)
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which is formed by the product of three rotation matrices,

Rα,β,γ =R3,αR2,βR3,γ (D.2)

=

Cα −S α 0
S α Cα 0
0 0 1


 Cβ 0 S β

0 1 0
−S β 0 Cβ


Cγ −S γ 0
S γ Cγ 0
0 0 1

 .
The inverse rotation matrix R−1 is given by

R−1
α,β,γ = RT

α,β,γ = R−γ,−β,−α. (D.3)

The Euler rotation matrix and its inverse correspond to the
change of basis matrices between the initial and rotated vectorial
bases, (eX , eY , eZ)→

(
ex, ey, ez

)
, which is expressed asex

ey
ez

 = R−1
α,β,γ

eX
eY
eZ

 ,
eX
eY
eZ

 = Rα,β,γ

ex
ey
ez

 . (D.4)

Besides, the rotation U → Urot of any vector U through the Euler
angles α, β, and γ in the Cartesian coordinate system S {X,Y,Z}
is expressed as Urot = Rα,β,γU.

In spherical coordinates, the transformation relations are
deduced from Eq. (D.4) by making use of trigonometric iden-
tities. We denote by

(
r̂, θ̂, φ̂

)
the spherical coordinates associated

with the initial frame of reference, R, where r̂ designates the
radial coordinate, θ̂ the colatitude, and φ̂ the longitude. The anal-
ogous coordinates in the rotated frame of reference, Rrot, are
denoted by (r, θ, φ), with r = r̂. In the forward transformation,(
r̂, θ̂, φ̂

)
→ (r, θ, φ), the relations between angles

(
θ̂, φ̂

)
and (θ, φ)

are given by (Varshalovich et al. 1988, Sect. 1.4.1, Eqs (2-3))

cos θ = cos θ̂ cos β + sin θ̂ sin β cos (φ̂ − α) , (D.5)

cot (φ + γ) = cot (φ̂ − α) cos β −
cotθ̂ sin β

sin (φ̂ − α)
, (D.6)

while the inverse relations are

cos θ̂ = cos θ cos β − sin θ sin β cos (φ + γ) , (D.7)

cot (φ̂ − α) = cot (φ + γ) cos β +
cotθ sin β
sin (φ + γ)

. (D.8)

As an example, we consider the rotation generating the coor-
dinate system of the ocean basin from the geocentric coordinate
system rotating with the planet. From the definition of the ocean
centre in the usual geocentric frame of reference, we obtain

ez = cos φ̂oc sin θ̂oceX + sin φ̂oc sin θ̂oceY + cos θ̂oceZ . (D.9)

In addition, by considering the same vector as the image of eZ
through a rotation of Euler angles α, β, and γ, we can write
ez = Rα,β,γ (0, 0, 1)T, where we made use of the standard Euler
rotation matrix defined in Eq. (D.1). It follows

ez = cosα sin βeX + sinα sin βeY + cos βeZ . (D.10)

By comparing Eqs. (D.9) and (D.10), we identify β = θ̂oc
and α = φ̂oc. Considering the inverse transformation, eZ =
RT
α,β,γ (0, 0, 1)T, we get

eZ = − sin β cos γex + sin β sin γey + cos βez, (D.11)

which shows that eZ does not depend on the rotation through the
angle α in the oceanic frame of reference.

We note that the angle γ describes a rotation of coordinates
around the axis defined by ez. Since the ocean is circular, the
geometry remains unchanged through this rotation. The angle
γ can therefore be set to γ = 0, which allows the position of
the North pole in the ocean’s coordinate system to be simpli-
fied to eZ = − sin βex + cos βez. The coordinates of the North
pole in the coordinate system defined from the centre of the
ocean basin are thus given by (θNP, φNP) = (β, π). At the end,
the ocean’s coordinate system is simply obtained from the usual
geocentric coordinate system through a rotation of Euler angles
(α, β, γ) =

(
φ̂oc, θ̂oc, 0

)
. We shall emphasise that the gyroscopic

coefficients of the tidal theory only depend on the colatitude of
the supercontinent’s centre since β is the only angle necessary to
define the position of the spin axis in the coordinate system of
the ocean basin. Moreover, the rotation of angle α can be ignored
owing to the periodicity of the tidal response across the longi-
tudinal coordinate, φ̂, which implies that the longitude of the
supercontinent’s centre can be set to φ̂S = 0 without any loss of
generality.

Appendix E: Rotation of spherical harmonics

We consider a rotation R: (O, eX , eY , eZ) → Rrot:
(
O, ex, ey, ez

)
described by the Euler angles introduced in Appendix D, which
are denoted by α, β, and γ (see Fig. D.1). The initial frame of
reference, R, is associated with the spherical coordinate system(
r̂, θ̂, φ̂

)
, while the rotated frame of reference, Rrot, is associated

with the coordinate system (r, θ, φ). In the convention defined by
Eq. (C.9), the complex SPHs of the rotated coordinate system are
expressed as functions of those defined in the initial coordinate
system (Varshalovich et al. 1988, Sect. 4.1),

Ym
l (θ, φ) =

l∑
q=−l

Dl
q,m (α, β, γ) Yq

l

(
θ̂, φ̂

)
, (E.1)

and, conversely, the SPHs of the initial coordinate system are
expressed as

Ym
l

(
θ̂, φ̂

)
=

l∑
q=−l

Dl
m,q (α, β, γ) Yq

l (θ, φ) . (E.2)

The notation Dl
q,m refers to the Wigner D-functions (Var-

shalovich et al. 1988, Sect. 4.3, Eq. (1)),

Dl
q,m (α, β, γ) ≡ e−iqαdl

q,m (β) e−imγ, (E.3)

where dl
q,m is a real function expressed as (Varshalovich et al.

1988, Sect. 4.3.1, Eq. (2))

dl
q,m (β) = (−1)l−m

√
(l + q)! (l − q)! (l + m)! (l − m)! (E.4)

×
∑

k

(−1)k

(
cos β2

)q+m+2k (
sin β2

)2l−q−m−2k

k! (l − q − k)! (l − m − k)! (q + m + k)!
.

In the above equation, k runs over all integer values for which the
factorial arguments are non-negative, namely max (0,−q − m) ≤
k ≤ min (l − q, l − m).
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Fig. E.1. Rotation matrix D of Eq. (E.5) for Euler angles (α, β, γ) = (120◦, 60◦, 270◦). Left: Modulus of the matrix coefficients. Right: Argument
of the matrix coefficients (degrees). The truncation degree of the set of SPHs is set to L = 4. The SPHs are sorted in ascending order of degrees
(l = 0, 1, 2, 3, 4), with orders (−l ≤ m ≤ l) grouped together.

The Wigner D-functions introduced in Eqs. (E.1) and (E.2)
are the matrix elements of the rotation operator,

D ≡



D0
0,0 0 . . . . . . . . . 0

0 D1
q,m

. . .
...

...
. . .

. . .
. . .

...
...

. . . Dl
q,m

. . .
...

...
. . .

. . . 0
0 . . . . . . . . . 0 DL

q,m


, (E.5)

where L is the chosen truncation degree, and Dl
q,m is the matrix

defined as

Dl
q,m ≡



Dl
−l,−l . . . Dl

−l,m . . . Dl
−l,l

...
...

...
Dl

q,−l . . . Dl
q,m . . . Dl

q,l
...

...
...

Dl
l,−l . . . Dl

l,m . . . Dl
l,l


. (E.6)

Thus, the set of SPHs associated with the rotated coordinate sys-
tem, denoted by Y ≡ [Y1, . . . ,YK]T, is expressed as a function of
the initial set, Ŷ ≡

[
Ŷ1, . . . , ŶK

]T
, through the algebraic relation

Y = DTŶ, (E.7)

which is analogous to the change of basis equation given by
Eq. (D.4). The inverse transformation is given by

Ŷ = DY. (E.8)

We remark that DT D = I, the symbol I referring to the identity
matrix. As a consequence, the rotation transformation is con-
servative: going back and forth through the transformation does
not induce any loss of information. Figure E.1 shows the rota-
tion matrix obtained for a rotation of Euler angles (α, β, γ) =
(120◦, 60◦, 270◦) with a truncation degree set to L = 4. As pre-
viously observed in Eq. (E.1), the rotated SPHs are expressed in
terms of the non-rotated SPHs having the same degree (l). The
orders (m) only are mixed up by the rotation of the coordinate
system.

Appendix F: Transition matrices

In this appendix, we establish the general transition relations
between sets of basis functions of various types (SPHs, SCHNs,
SCHDs; see Sect. 2.4 and Appendix C), and associated with dif-
ferent coordinate systems. These relations are used to compute
the overlap coefficients between the forcing gravitational tidal
potential and the tidal response in the calculation of the tidal
torque.

Let be two sets of basis functions, Â and B̂, associated with
the same coordinate system, R, but not necessarily the same def-
inition domains4, denoted by CÂ and CB̂, respectively. Both Â
and B̂ can be either the SPHs, SCHNs, or SCHDs, whose expres-
sions are given by Eqs. (C.9) and (C.19). The sets undergo the
rotation transformations Â → A and B̂ → B, where A and
B are assumed to have the same definition domains as Â and
B̂, respectively. The expressions of the standard Euler rotation
matrices RA and RB describing these transformations are given
by Eq. (D.1), and the corresponding Wigner rotation matrices
for the functional bases, DA and DB, are given by Eq. (E.5). We
note that the second Euler angle can only be set to β = 0 in the
case of the SCHs since the definition domains of the initial and
rotated function would not overlap otherwise in that case. How-
ever, the rotation matrix of the SPHs still holds for the rotations
of angles α and γ since these angles just introduce a phase lag in
the eimφ component of the SCHs.

The initial and rotated functional basis vectors are denoted by
YÂ, YB̂, YA, and YB, the vector YH of any setH being expressed
as

YH =
[
YH ,1,YH ,2, . . . ,YH ,k, . . . ,YH ,KH

]T , (F.1)

where the YH ,k designate the orthogonal functions of setH , and
KH its total number of elements, which depends on the trunca-
tion degree LH introduced in Eq. (E.5). To lighten expressions,
we assume that the sets of basis functions Â and A contain
M elements, and that B̂ and B contain N elements, so that
KÂ = KA = M and KB̂ = KB = N. Using the above notations,
we can write down the relations

YA = DT
A

YÂ, YB = DT
B

YB̂,

YÂ = DAYA, YB̂ = DBYB.
(F.2)

4 By definition domain, we refer to the domain where the functions are
non-zero, the SCHs being defined on the full unit sphere similarly as the
SPHs in the used convention (see Eq. (C.19)).
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Fig. F.1. Transition matrices between the SCHNs, SCHDs and SPHs for an ocean basin of angular radius θ0 = 130◦. The transition matrices are
defined in Eq. (F.10). The SCHs (SCHNs and SCHDs) are calculated from the expressions given by Eq. (C.19), and the SPHs from the expression
given by Eq. (C.9), using the same coordinate system for all the sets of basis functions and the truncation degree L = 4. In every set, the basis
functions are sorted in ascending order of orders (m = −4,−3, . . . , 3, 4), with degrees (l ≥ |m|) grouped together.

As a next step, we establish the relationship between the
bases Â and B̂, which share the same coordinate system. The
functions YB̂, j and YÂ,k are expressed in terms of each other
through the relations

YB̂, j =
M∑

k=1

⟨YÂ,k,YB̂, j⟩

⟨YÂ,k,YÂ,k⟩
YÂ,k + εB̂, j, (F.3)

YÂ,k =
N∑

j=1

⟨YB̂, j,YÂ,k⟩

⟨YB̂, j,YB̂, j⟩
YB̂, j + εÂ,k. (F.4)

In the above equations, the functions εB̂, j and εÂ,k are the resid-
uals of the functions YB̂, j or YÂ,k when the latter are expanded in
terms of the functions of set Â or B̂, respectively. These residuals
result both from the truncation of the sets Â and B̂ – which are
mathematically defined as infinite-dimension sets of basis func-
tions for the definition domains CÂ and CB̂ –, and from the fact
that CÂ and CB̂ are different from each other in the general case.

For instance, if CÂ ⊊ CB̂, the functions of set B̂ can be
expressed as linear combinations of the elements of set Â on
CÂ only. This is the case for SPHs, which cannot be approx-
imated using SCHs while the opposite is true. Therefore, the

function YB̂, j tends to be fully described by the functions of
set Â as M → ∞ if CB̂ ⊂ CÂ, and consequently ∥εB̂, j∥2 → 0
in that case. Conversely, ∥εB̂, j∥2 > 0 for M = ∞ in the general
case if CÂ ⊊ CB̂. The residual function εÂ,k behaves in a similar
way if the domains CÂ and CB̂ are interchanged: ∥εÂ,k∥2 → 0 as
N → ∞ if CÂ ⊂ CB̂, while ∥εÂ,k∥2 > 0 if CB̂ ⊊ CÂ.

Since the functions of the two sets are assumed to be
orthonormal by construction (see Appendix C), ⟨YÂ,k,YÂ,k⟩ =
⟨YB̂, j,YB̂, j⟩ = 1 for all k ∈ {1, . . . ,M} and j ∈ {1, . . . ,N}. As
a consequence, the expressions given by Eqs. (F.3) and (F.4)
simplify to

YB̂, j =
M∑

k=1

⟨YÂ,k,YB̂, j⟩YÂ,k + εB̂, j on CB̂, (F.5)

YÂ,k =
N∑

j=1

⟨YB̂, j,YÂ,k⟩YB̂, j + εÂ,k on CÂ, (F.6)

which, introducing the vectors

εB̂ =
[
εB̂,1, . . . , εB̂, j, . . . , εB̂,N

]T
, (F.7)

εÂ =
[
εÂ,1, . . . , εÂ,k, . . . , εÂ,M

]T
, (F.8)
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Fig. F.2. Real part of complex SCH of order m = 1 and degree l3 = 6.806057 corresponding to an ocean basin of angular radius θ0 = 80◦
(i.e. θc = 100◦) with Dirichlet boundary conditions (Eq. (C.16)). Left: Function plotted in its coordinate system using the expression given by
Eq. (C.19). Middle: Function expanded in SPHs up to the truncation degree L = 6, 8, 16 (from top to bottom) in the same coordinate system
using the transition relation of Eq. (F.9). Right: Function expanded in rotated SPHs (α = 120◦, β = 60◦, γ = 270◦) following the relation given by
Eq. (F.11). All functions are plotted in polar coordinates, the radial coordinate corresponding to the colatitude of the considered coordinate system,
and the angular coordinate to its longitude (in degrees).

may be rewritten as

YB̂ = PT
Â,B̂

YÂ + εB̂, YÂ = PÂ,B̂YB̂ + εÂ. (F.9)

In the above equations, the transition matrix is expressed as

PÂ,B̂≡



⟨YÂ,1,YB̂,1⟩ . . . ⟨YÂ,1,YB̂, j⟩ . . . ⟨YÂ,1,YB̂,N⟩
...

...
...

⟨YÂ,k,YB̂,1⟩ . . . ⟨YÂ,k,YB̂, j⟩ . . . ⟨YÂ,k,YB̂,N⟩
...

...
...

⟨YÂ,M ,YB̂,1⟩ . . . ⟨YÂ,M ,YB̂, j⟩ . . . ⟨YÂ,M ,YB̂,N⟩


,

(F.10)

where ⟨YÂ,k,YB̂, j⟩ is the scalar product of the k-th element of
Â with the j-th element of B̂ following the formulation given

by Eq. (C.12). We note that the integral of the scalar product is
actually performed on the intersection of the domains associated
with Â and B̂, namely C = CÂ ∩ CB̂.

With the used normalisations, the transition matrix satisfies
the properties PB̂,Â = PÂ,B̂

T
, PÂ,Â = IM , and PB̂,B̂ = IN , the

notation IM referring to the identity matrix of size M. How-
ever, one should pay attention to the fact that PÂ,B̂PB̂,Â , PÂ,Â
and PB̂,ÂPÂ,B̂ , PB̂,B̂ due to the inability of the sets of basis
functions to fully describe the space of functions defined on the
unit sphere, as discussed above. In other words, going back and
forth between the two sets necessarily induces a loss of infor-
mation contrary to the rotation operator of the SPHs detailed in
Appendix E, which is conservative.

Figure F.1 shows the transition matrices PÂ,B̂ between the
SCHNs, SCHDs, and SPHs for an ocean of angular radius θ0 =
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130◦ (i.e. a continent of angular radius θc = 50◦). The basis
functions are sorted in ascending order of degrees and orders in
every set, with degrees grouped together, which differs from the
SPHs of Fig. E.1, where orders are grouped together. Only basis
functions with the same order overlap, due to the fact that the
SCHs and SPHs have the same longitudinal component. How-
ever, some functions belonging to one set are poorly described
by the basis functions of the other sets.

By combining together the relations given by Eqs. (F.2)
and (F.9), we finally obtain

YB = PT
A,BYA + DT

BεB̂, YA = PA,BYB + DT
AεÂ, (F.11)

where the transition matrix PA,B is given by

PA,B = DA
T

PÂ,B̂DB. (F.12)

A given function f defined on the sphere can thus be written
both in terms of the basis functions ofA and those of B as

f = yT
AYA + ϵA, f , f = yT

BYB + ϵB, f , (F.13)

where we have introduced the residual functions ϵA, f and ϵB, f ,
and the coordinate vectors of f in the two sets of basis functions,
yA and yB, defined as

yA ≡
[
yA,1, . . . , yA,k, . . . , yA,M

]T , (F.14)

yB ≡
[
yB,1, . . . , yB, j, . . . , yB,N

]T
. (F.15)

The vectors yA and yB contain the coefficients of the expansion
of f on the set of basis functions A or B, respectively. They are
related to each other by the transition matrix PA,B introduced in
Eq. (F.12) through the relation equations

yA = PA,ByB, yB = PA,B
T
yA. (F.16)

Figure F.2 shows the three steps of the transition from SCHs
to rotated SPHs through the example of the eigenfunction Θ1

l3
obtained with Dirichlet conditions (SCHD). First the function is
evaluated in its associated coordinate system using the expres-
sion given by Eq. (C.19) (left panels). We note that the region
where the function is set to zero is not represented in the plot.
Second, the function is expanded in series of SPHs in the same
coordinate system (middle panels). Finally, we apply an Euler
rotation to the SPHs, as described by Eq. (E.1), and Θ1

l3
is evalu-

ated in terms of the rotated SPHs in the rotated coordinate system
(right panel). These three steps are shown for various trunca-
tion degrees of the SPHs, L = 6, 8, 16 (from top to bottom). We
observe that the discontinuity of the gradient of the function at
θ = θ0 gives rise to ‘ringing’ when Θ1

l3
is expanded in series of

SPHs. This effect also alters the expansions of the SCHNs due
to their discontinuous transition at θ = θ0. However it vanishes
as the truncation degrees L increases.

Appendix G: Gyroscopic coefficients

In this section, we detail the calculation of the gyroscopic coef-
ficients that couple the LTEs. Following earlier studies (Webb
1980, 1982; Farhat et al. 2022a), these coefficients are denoted
by β. They are defined as

βk, j ≡ −

∫
C

cos θ̂ er ·
(
∇Φk × ∇Φ j

)
dS , (G.1)

βk,− j ≡

∫
C

cos θ̂
(
∇Φk · ∇Ψ j

)
dS , (G.2)

β−k, j ≡ −

∫
C

cos θ̂
(
∇Ψk · ∇Φ j

)
dS , (G.3)

β−k,− j ≡ −

∫
C

cos θ̂ er ·
(
∇Ψk × ∇Ψ j

)
dS , (G.4)

where the Φk and Ψk are the basis functions generating the
potential and stream functions, respectively (see Sect. 2.4 and
Appendix C).

We emphasise that k and j are the indices of the functions in
their respective sets. One shall be cautious not to mix up these
indices with the orders and degrees of the functions. The third
coefficient, given by Eq. (G.3), is straightforwardly deduced
from the second one, given by Eq. (G.2), since β−k, j = −β j,−k.
In some particular cases, such as the hemispherical ocean con-
figuration considered in previous studies (e.g. Webb 1980; Farhat
et al. 2022a), the recurrence relations of the ALFs can be used to
obtain the analytical expressions of the gyroscopic coefficients
(see e.g. Farhat et al. 2022a, Appendix G). Unfortunately, these
recurrence relations do not hold for non-integral degrees, which
requires to evaluate the integrals of Eqs. (G.1–G.4) numerically.
However, it is still possible to write down these integrals as
products of separated coordinates.

Introducing the coordinates of the north pole in the ocean’s
coordinate system, (θNP, φNP) =

(
θ̂oc, π

)
, and using trigonometric

identities, we express cos θ̂ as a function of the colatitude of the
ocean’s centre (θ̂oc) and the ocean’s coordinate system,

cos θ̂ = cos θNP cos θ + sin θNP sin θ cos (φ − φNP) (G.5)

= cos θ̂oc cos θ − sin θ̂oc sin θ cosφ. (G.6)

Considering the definitions of the SPHs and SCHs given by
Eqs. (C.9) and (C.19), the functions Φk and Ψk are expressed
in the general case as

Φk (θ, φ) = αkFk (θ) eimkφ, (G.7)

Ψk (θ, φ) = γkGk (θ) eimkφ, (G.8)

where Fk (θ) = Pmk
lk

(cos θ) designates the ALF of the k-th func-
tion of the set of SCHNs (Neumann conditions) used to expand
the potential function, and Gk (θ) = Pmk

lk
(cos θ) the ALF of the

k-th function of the set of SCHDs (Dirichlet conditions) used
to expand the stream function, as detailed in Appendix C. The
gyroscopic coefficients given by Eqs. (G.1–G.4) are therefore
expressed as

βk, j = − i2παkα j

{
cos θ̂ocδmk ,m j mk

∫ θ0

0
cos θ

[
dFk

dθ
F j + Fk

dF j

dθ

]
dθ

−
sin θ̂oc

2
δ|m j−mk|,1

∫ θ0

0
sin θ

[
m j

dFk

dθ
F j + mkFk

dF j

dθ

]
dθ

}
,

(G.9)

βk,− j = πα jγk

{
cos θ̂ocδmk ,m j

∫ θ0

0
sin 2θ

[
dF j

dθ
dGk

dθ
+ m2

k
F jGk

sin2 θ

]
dθ

− sin θ̂ocδ|m j−mk|,1

∫ θ0

0
sin2 θ

[
dF j

dθ
dGk

dθ
+ mkm j

F jGk

sin2 θ

]
dθ

}
,

(G.10)
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Fig. G.1. Gyroscopic coefficients of an ocean basin of angular radius θ0 = 130◦ (i.e. θc = 50◦) for various values of the colatitude of the ocean’s
centre. Top: θ̂oc = 0◦ (polar ocean). Middle: θ̂oc = 45◦ (mid-latitude ocean). Bottom: θ̂oc = 90◦ (equatorial ocean). The gyroscopic coefficients are
computed from the expressions given by Eqs. (G.9–G.12) with the truncation degree set to L = 4. The basis functions of indices k and j are sorted
in ascending order of orders (m = −4,−3, . . . , 3, 4), with degrees (l ≥ |m|) grouped together. For convenience, the minimum and maximum of the
colour bar are set to 6 in absolute value although the maximum values reached by gyroscopic coefficients are around ∼15 in this case.

β−k, j = −β j,−k, (G.11)

β−k,− j = − i2πγkγ j

{
cos θ̂ocδmk ,m j mk

∫ θ0

0
cos θ

[
dGk

dθ
G j +Gk

dG j

dθ

]
dθ

−
sin θ̂oc

2
δ|m j−mk|,1

∫ θ0

0
sin θ

[
m j

dGk

dθ
G j + mkGk

dG j

dθ

]
dθ

}
.

(G.12)

Interestingly, the coefficients β±k,± j are zero if
∣∣∣m j − mk

∣∣∣ > 1,
meaning that Coriolis effects couple the eigenmodes having
either the same order or neighbouring orders in the general case.
If the ocean is polar (θ̂oc = 0, π), the gyroscopic coefficients
only mix up eigenmodes with the same order (m j = mk). In this
configuration, β±k,± j

(
θ̂oc = π

)
= −β±k,± j

(
θ̂oc = 0

)
. If the ocean

is equatorial (θ̂oc = π/2), the gyroscopic coefficients only mix
up eigenmodes of neighbouring orders (

∣∣∣m j − mk

∣∣∣ = 1). Between
these two extremal configurations, the gyroscopic coefficients

are the sum of one component in cos θ̂oc associated with eigen-
modes having the same order, and one component in sin θ̂oc
associated with eigenmodes having neighbouring orders. The
gyroscopic coefficients that do not mix up potential and stream
functions (βk,− j and β−k,− j) are pure imaginary numbers. Con-
versely, the coefficients that mix up the functions (βk,− j and β−k, j)
are pure real numbers.

By comparing the expressions given by Eqs. (G.9)
and (G.12), we remark that the βk, j and β−k,− j converge towards
the same asymptotic values as θ0 → 180◦ since both the SCHNs
and SCHDs converge towards the standard SPHs for the ℓ2-
norm introduced in Eq. (C.13), as illustrated by Fig. C.2. To
our knowledge, no recurrence formula exist between the ALFs
of real degrees of the SCHNs and SCHDs except in the specific
case of the hemispherical ocean, where the degrees are integers
(see Webb 1980, 1982; Farhat et al. 2022a, and Table C.1). As
a consequence, the integrals in Eqs. (G.9–G.12) are evaluated
numerically in practice.

Figure G.1 shows the gyroscopic coefficients characterising
an ocean basin of angular radius θ0 = 130◦ for three typical
configuration: θ̂oc = 0◦ (polar ocean), θ̂oc = 45◦ (mid-latitude
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ocean), and θ̂oc = 90◦ (equatorial ocean). The eigenmodes of
indices k and j are sorted in ascending order of degrees and
orders in the displayed plots, which emphasises the fact that
gyroscopic coefficients only couple eigenmodes with the same
or neighbouring orders.

The coefficients υk,q introduced in Eq. (51) are evaluated
similarly as the gyroscopic coefficients. These coefficients are
defined as

υk,q ≡

∫
O

er ·

(
∇̃Ψk × ∇̃Yq

)
dS , (G.13)

where the SPHs Yq are written as products of functions of
separated variables,

Yq (θ, φ) = ηqHq (θ) eimqφ. (G.14)

After an integration by part, the coefficients are simply expressed
as

υk,q = i2πγkηqmkδmk ,mq

[
Gk (θ0) Hq (θ0) −Gk (0) Hq (0)

]
. (G.15)

We note that the υk,q are zero if mk = 0. Besides, if |mk | > 0, the
Dirichlet condition satisfied by theΨk at θ0 implies that Gk (θ0) =
0, and the polar condition of Yq implies that Hq (0) = 0. As a
consequence, υk,q = 0 for all k and q.

Appendix H: Solid tidal Love numbers

The gravitational and load Love numbers introduced in Eqs. (47)
and (48) describe the tidal response of the planet’s solid part
in the general case as far as the latter is spherically symmetric.
For the present study, these parameters were formulated analyt-
ically from the prescriptions given by Bolmont et al. (2020) for
solid Earth (see Table 2 of the article). This formulation is based
on the tidal model described in Tobie et al. (2005), which inte-
grates the equations of the elasto-gravitational theory (Takeuchi
& Saito 1972) for realistic radial profiles of background quanti-
ties. As a first step, Bolmont et al. (2020) used this tidal model
with the background profiles computed from the internal struc-
ture model of Sotin et al. (2007). As a second step, they fitted
the parameters of simplified models to the obtained solutions.
These simplified models describe the rheology of equivalent
bodies with uniform interiors, for which the Love numbers can
be explicitly formulated in terms of the degrees of the associated
SPHs (Munk & MacDonald 1960).

The degree-l Love numbers of a homogeneous solid body
of mass Mcore, radius Rcore, and uniform shear modulus µ, are
expressed as (e.g. Munk & MacDonald 1960)

{
kσl , h

σ
l , k

σ
L;l, h

σ
L;l

}
=

1
1 + µ̃σl

{
3

2 (l − 1)
,

2l + 1
2 (l − 1)

,−1,−
2l + 1

3

}
.

(H.1)

In the above equation, the degree-l dimensionless shear modulus
µ̃σl is defined as

µ̃σl ≡ Alµ̃, (H.2)

where µ̃ designates the dimensionless visco-elastic rigidity
accounting for the rheology of the material, and Al the dimen-
sionless parameter given by (Castillo-Rogez et al. 2011; Efroim-
sky 2012)

Al ≡
4
(
2l2 + 4l + 3

)
πR4

coreµ

3lGM2
core

. (H.3)

Since the oceanic layer is thin in the present study, the mass and
radius of the solid part can be approximated by the planet mass
and radius, respectively, which yields Mcore ≈ Mp and Rcore ≈

Rp.
The normalised rigidity µ̃ is a complex parameter that

describes the rheological behaviour of the solid part in the fre-
quency domain. This parameter is determined by the adopted
rheological model. For standard models such as the Maxwell
visco-elastic rheology (e.g. Correia et al. 2014), it is expressed
as a simple function of the tidal frequency, σ. Following Bol-
mont et al. (2020), we opt for an Andrade rheology. Similarly as
the Maxwell rheology, the Andrade model describes the visco-
elastic deformation of the material. However, it additionally
accounts for the unrecoverable creep forming the anelastic com-
ponent of the response, which affects the frequency-dependence
of tidal dissipation in the high-frequency range (e.g. Efroim-
sky 2012). In the Andrade rheology, µ̃ is expressed as (e.g.
Castillo-Rogez et al. 2011)

µ̃ =
1

1 + (iστA)−α Γ (1 + α) + (iστM)−1 , (H.4)

where τM designate the Maxwell time, τA the Andrade time, Γ
the Gamma function introduced in Eq. (B.3), and α the param-
eter determining the duration of the transient response in the
primary creep (Castelnau et al. 2008; Castillo-Rogez et al. 2011).
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