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ABSTRACT: Submesoscale turbulence in the upper ocean consists of fronts, filaments, and vortices that have horizontal
scales on the order of 100 m to 10 km. High-resolution numerical simulations have suggested that submesoscale turbulence
is associated with strong vertical motion that could substantially enhance the vertical exchange between the thermocline
and mixed layer, which may have an impact on marine ecosystems and climate. Theoretical, numerical, and observational
work indicates that submesoscale turbulence is energized primarily by baroclinic instability in the mixed layer, which is
most vigorous in winter. This study demonstrates how such mixed layer baroclinic instabilities induce vertical exchange by
drawing filaments of thermocline water into the mixed layer. A scaling law is proposed for the dependence of the exchange
on environmental parameters. Linear stability analysis and nonlinear simulations indicate that the exchange, quantified by
how much thermocline water is entrained into the mixed layer, is proportional to the mixed layer depth, is inversely pro-
portional to the Richardson number of the thermocline, and increases with increasing Richardson number of the mixed
layer. The results imply that the tracer exchange between the thermocline and mixed layer is more efficient when the mixed
layer is thicker, when the mixed layer stratification is stronger, when the lateral buoyancy gradient is stronger, and when
the thermocline stratification is weaker. The scaling suggests vigorous exchange between the permanent thermocline and
deep mixed layers in winter, especially in mode water formation regions.

SIGNIFICANCE STATEMENT: This study examines how instabilities in the surface layer of the ocean bring interior
water up from below. This interior–surface exchange can be important for dissolved gases such as carbon dioxide and oxy-
gen as well as nutrients fueling biological growth in the surface ocean. A scaling law is proposed for the dependence of the
exchange on environmental parameters. The results of this study imply that the exchange is particularly strong if the well-
mixed surface layer is thick, lateral density gradients are strong (such as at fronts), and the stratification below the surface
layer is weak. These theoretical findings can be implemented in boundary layer parameterization schemes in global ocean
models and improve our understanding of the marine ecosystem and how the ocean mediates climate change.
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1. Introduction

Submesoscale turbulence, encompassing fronts, filaments,
and vortices with horizontal scales typically ranging from 100 m
to 10 km, is an important part of the upper ocean’s circulation
(Thomas et al. 2008; McWilliams 2016; Taylor and Thompson
2023). Numerical modeling has shown that submesoscale dynamics
can locally generate vertical motion up to 100 m day21}one
order of magnitude stronger than that generated by mesoscale
eddies (Mahadevan and Tandon 2006; Thomas et al. 2008; Capet
et al. 2008). Large vertical velocities at the base of the mixed layer
can lead to vertical transport of tracers and particles, such as
nutrients, dissolved inorganic carbon, oxygen, and particulate or-
ganic carbon, between the surface and interior ocean. The verti-
cal exchange can have significant climatological and biological
effects (Mahadevan and Archer 2000; Lévy et al. 2001; Thomas
et al. 2008; Lévy et al. 2012a,b; Mahadevan 2014; Omand et al.
2015; Mahadevan 2016; Balwada et al. 2018; Lévy et al. 2018). On
one hand, strong downwelling takes heat and particulate organic
carbon into the interior ocean (Omand et al. 2015; Balwada et al.

2018), and the resulting acceleration in air–sea exchange has im-
portant implications in the context of global warming. Such sub-
duction of surface water can also export phytoplankton from the
surface ocean into the interior, thus reducing primary productiv-
ity (Lévy et al. 2012a; Mahadevan 2014). On the other hand, it
has been proposed that enhanced upwelling speeds up primary
production by bringing nutrient-replete interior water into the
euphotic surface layer, which overcomes surface oligotrophic con-
ditions and leads to phytoplankton growth (Mahadevan and
Archer 2000; Lévy et al. 2001, 2012a; Mahadevan 2016), although
some studies have cast doubt on the importance of submesoscale
motion in this process (Ascani et al. 2013; Lévy et al. 2018).

Submesoscale turbulence can be energized by a number of
mechanisms, such as mixed layer instabilities, mesoscale strain-
induced frontogenesis, or topographic wakes (e.g., Thomas et al.
2008; McWilliams 2016; Taylor and Thompson 2023). This pa-
per focuses on the energization of balanced submesoscale mo-
tion by mixed layer instability (MLI; Boccaletti et al. 2007;
Callies et al. 2016), which invigorates submesoscale turbulence
in deep winter mixed layers (Mensa et al. 2013; Sasaki et al.
2014; Callies et al. 2015). Like baroclinic instability in the ther-
mocline that energizes mesoscale eddies, MLI energizes subme-
soscale eddies by tapping into potential energy stored in the
mixed layer in the presence of a lateral buoyancy gradient.
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According to QG theory (Eady 1949), which can be used to
roughly characterize MLI (Boccaletti et al. 2007; Callies et al.
2016), the most unstable horizontal scale lies around the defor-
mation radius of the mixed layer, Nmhm/f, where Nm and hm are
the buoyancy frequency and thickness of the mixed layer, re-
spectively, and f is the Coriolis parameter. Under Richardson
number Ri ; N2/L2 ; 1 conditions (where L is the vertical
shear of the horizontal mean flow), the instability scale is larger

than predicted by QG theory by a factor
���������������(11Ri)/Ri

√
(Stone

1966). Under typical conditions of mixed layer stratification and
thickness, the deformation radius of the mixed layer falls in the
submesoscale range. QG theory further suggests that the growth
rate of MLI scales with the Eady growth rate of the mixed layer,
fL/Nm. This scaling is also slightly changed by non-QG effects
under Ri ; 1 conditions, modifying the growth rate by a factor���������������
Ri/(11Ri)√

(Stone 1966). Weak stratification in the mixed
layer leads to large growth rates, which is consistent with the
time scales of submesoscale turbulence}on the order of a few
days (Callies et al. 2020). Due to variations in the mixed layer
depth and available potential energy, the strength of MLI
undergoes a seasonal cycle, consistent with the observed season-
ality in submesoscale turbulence (Callies et al. 2015; Qiu et al.
2017; Soares et al. 2022). The observed vertical structure of sub-
mesoscale energy, which is enhanced throughout the mixed
layer and decays below its base, is also consistent with energiza-
tion by MLI (Callies et al. 2015).

Submesoscale turbulence powered by MLI plays two re-
lated roles in the upper ocean: restratifying the mixed layer
and potentially speeding up the exchange between the ther-
mocline and mixed layer. The former has received significant
attention (e.g., Boccaletti et al. 2007; Mahadevan et al. 2010)
and a parameterization for coarse models has been proposed
(Fox-Kemper et al. 2008; Fox-Kemper and Ferrari 2008;
Fox-Kemper et al. 2011). In the parameterization, a scaling
law for an overturning streamfunction that restratifies the
mixed layer is presented. The streamfunction is proportional
to Lh2m (Fox-Kemper et al. 2008), although it is not clear how
universal this scaling is (Callies and Ferrari 2018b). The
Fox-Kemper et al. (2008) streamfunction also advects tracers,
but the parameterization does not produce any exchange be-
tween the thermocline and mixed layer because the stream-
function vanishes at the base of the mixed layer. The latter,
i.e., MLI’s role in vertical exchange, however, has received
less attention. A drastic increase in vertical velocities is typi-
cally seen in numerical simulations when submesoscales are
resolved (e.g., Capet et al. 2008), with a vertical structure as
expected from MLI (Callies et al. 2016). But it remains un-
clear whether and how this increase in vertical velocity enhan-
ces vertical exchange.

As MLI is affected by various environmental conditions,
such as the stratification of the mixed layer and thermocline,
the horizontal buoyancy gradient, and the vertical shear of the
mean flow, it is expected that these environmental parameters
also influence the vertical exchange caused by MLI-induced
submesoscale motion. In this study, we first demonstrate how
MLI induces vertical exchange between the thermocline and
mixed layer, and then explore the parameter dependence of

the exchange. The physics revealed in this work can potentially
be added to state-of-the-art boundary layer parameterization
schemes in global ocean models (e.g., Large et al. 1994; Fox-
Kemper et al. 2008; Bachman et al. 2017; Van Roekel et al.
2018).

This article consists of two parts, linear stability analysis
and nonlinear simulations, which will be discussed in the next
two sections, respectively. Linear stability analysis captures
the onset of MLI and demonstrates how it induces vertical
motion and deforms the interface between the mixed layer
and thermocline. Nonlinear simulations show how the defor-
mation of the layer interface eventually forms filaments that
transport thermocline water into the mixed layer, causing
tracer exchange (Figs. 1 and 6).

2. Linear stability analysis

a. Model formulation

We formulate the simplest model for MLI in a controlled set-
ting, a two-layer Eady model (Fig. 2; Eady 1949). The upper
layer represents the mixed layer, with depth hm and buoyancy
frequency Nm. The lower layer represents the thermocline, with
depth ht and buoyancy frequencyNt (Nt . Nm).

For simplicity, we impose the same horizontal buoyancy
gradient (only in the y direction) for the two layers, and we
assume that the buoyancy is continuous at a flat interface be-
tween the two layers. With B representing the mean buoy-
ancy, we assume B/y 5 2fL. In the y–z plane, the sloping
isopycnals are steep in the mixed layer and relatively flat in
the thermocline. Conforming to the thermal wind relation, a
mean vertical shear L exits in both layers. We assume that the
sea surface is located at z 5 hm/2 and apply the rigid-lid ap-
proximation. These mean flow conditions in the linear stabil-
ity analysis will also be the initial conditions in the nonlinear
simulations presented in the next section. It is worth noting
that a thick thermocline layer can isolate the MLI from the
mesoscale instability (Callies et al. 2016), but for the sake of
computational feasibility, we add a flat, rigid bottom at the
base of a relatively thin thermocline layer. In the linear stabil-
ity analysis, we set ht 5 5hm. In the nonlinear simulations, we
use ht 5 hm. We only present cases where MLI remains well
isolated.

QG theory offers an approximate understanding of MLI
(Callies et al. 2016). Due to the discontinuity of stratification
across the interface in the presence of a horizontal buoyancy
gradient, a sheet of quasigeostrophic potential vorticity
(QGPV) is present at the layer interface, with the horizontal
QGPV gradient in the 2y direction. This PV gradient gives
rise to Rossby waves propagating in the 1x direction. The
rigid surface acts as a layer with infinitely strong stratification.
Due to the “effective” stratification jump across the surface, an-
other QGPV sheet is present at the surface with the horizontal
QGPV gradient in the 1y direction. This QGPV gradient gives
rise to Rossby waves propagating in the 2x direction. Due to the
vertical shear in the mean flow, the Rossby waves at the surface
are Doppler shifted toward the 1x direction, and the Rossby
waves at the interface are Doppler shifted toward the 2x
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direction. This allows the phase speeds of the two sets of Rossby
waves to be similar, such that they can phase lock and mutually
amplify, giving rise to the instability (see, e.g., Vallis 2017).

Rigorously speaking, this QG reasoning only applies to circum-
stances where the Rossby number Ro5U/fL5 1/

����
Ri

√
,, 1,

where U 5 Lhm is the characteristic speed of the horizontal
flow, and L is the characteristic horizontal length scale. In the
ocean, the mixed layer is typically observed to be weakly strati-
fied and have an Rim�1 (Thomas et al. 2013). The observed
properties originate from two competing processes. On one
hand, mixing induced by wind stress, negative surface buoyancy
forcing, and cross-front Ekman transport induced by alongfront
wind stress can potentially reduce the stratification of the mixed
layer down to zero or even negative values. On the other hand,
fast-growing gravitational and symmetric instabilities can restore
Rim back to 1 (Haine and Marshall 1998; Thomas et al. 2013).
With Rim restored to;1, baroclinic instability becomes the fast-
est growing instability and further increases Rim by restratifying
the mixed layer (Stone 1966; Stone et al. 1969; Stone 1970;
Haine and Marshall 1998; Boccaletti et al. 2007). To be able to
capture the non-QG mixed layer dynamics with small Ri during
the early stage of the development of the mixed layer baroclinic
instability, we will use the hydrostatic Boussinesq equations.

Linearized around the mean state described above, these
equations read:

u
t

1 Lz
u
x

1 wL 2 fy 52
1
r0

p
x

, (1)

y
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1 Lz

y

x
1 fu 52

1
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, (2)
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5 b, (3)
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1
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z

5 0, (4)

b
t

1 Lz
b
x

2 fLy 1 N2w 5 0: (5)

Here, u, y , and w represent perturbation velocities in the
x, y, and z directions, respectively; p and b are perturbation
pressure and buoyancy, respectively. The full buoyancy is
2g(r 2 r0)/r0 5 N2z 2 fLy 1 b, where r is the density and r0
a constant reference density. We ignore the compressibility of
seawater. The buoyancy frequency N is equal to Nm in the
mixed layer and Nt in the thermocline. For the boundary con-
ditions, we assume zero vertical velocities at the surface and
at the base of the thermocline. At the layer interface, w and p
are continuous. For simplicity, the hydrostatic approximation
is adopted in the vertical momentum equation. Nonhydro-
static effects are insignificant for baroclinic instability unless
the vertical shear L is far smaller than the Coriolis parameter
f (Stone 1971; Mahadevan 2006; Callies and Ferrari 2018a).

We nondimensionalize the equations to reduce the number
of model parameters and thus simplify the parameter space.
We follow QG scaling in picking the deformation radius of
the mixed layer Nmhm/f as the horizontal length scale and the
mixed layer thickness hm as the vertical length scale. For the
horizontal perturbation velocities, we pick Lhm, the difference
in the mean flow between the surface and base of the mixed
layer. We then choose the scales for all other variables based on
dimensional relationships in geostrophic and hydrostatic bal-
ance: we pick Lhmf/Nm for the perturbation vertical velocity,
r0Lh

2
mNm for the perturbation pressure, LhmNm for the pertur-

bation buoyancy, and Nm/fL for time. The nondimensionaliza-
tion is summarized in Table 1. The resulting dimensionless
equations are

FIG. 1. Thermocline water with a high tracer concentration and
high potential vorticity (PV) is entrained into the mixed layer.
Shown are snapshots of the vertical cross sections (in the x–z plane)
of (a) the binary tracer concentration c and (b) the PV q. The initial
interface between the mixed layer and thermocline is located at
z 5 20.5hm. Data are taken from the nonlinear simulation with
mixed layer Richardson number Rim 5 1 and thermocline Richard-
son number Rit 5 100 (simulation time t 5 89Nm/fL). The spatial
coordinates and PV are nondimensionalized, and their dimensions
are shown in the parentheses. Details are described in section 3.

.

FIG. 2. Schematic of the idealized model of mixed layer instabil-
ity. A deformable interface separates the mixed layer and thermo-
cline. MLI can be isolated by making the thermocline layer infi-
nitely deep, but here a solid bottom is assumed at the base of the
thermocline. The black arrows show the mean flow in the x direc-
tion. The contours in the y–z plane represent isopycnals. Data are
taken from one of the nonlinear simulations in this study (Rim 5 1,
Rit 5 100, simulation time t5 60Nm/fL).
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1������
Rim

√ u′

t′
1 z′
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√ y ′
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1������
Rim

√ b′

t′
1 z′

b′

x′
2 y ′

( )
1 Sw′ 5 0, (10)

where primes denote dimensionless variables and S 5 1 in the
mixed layer and S 5 Rit/Rim in the thermocline. The bound-
ary condition is w′ 5 0 at z′ 5 1/2 and at z′ 5 21/22 ht/hm.

The dimensionless equations show that the problem is deter-
mined by three dimensionless numbers}the Richardson num-
ber of the mixed layer Rim, the Richardson number of the
thermocline Rit, and the ratio of the thermocline to mixed layer
thickness g ; ht/hm. The equations above are transformed into
an eigenvalue problem for a complex frequency v by plugging
in a wave ansatz u′ 5Rû(z)exp[i(kx1 ly2vt)], etc. for u′, y ′,
w′, p′, and b′, where k and l are the horizontal wavenumbers in
the x and y directions, respectively, and R denotes taking the
real part. We then use Dedalus, an open-source code that solves
differential equations using spectral methods (Burns et al.
2020), to solve the discretized equations and obtain a numerical
solution for the dispersion relation v 5 v(k, l; Rim, Rit, g). The
imaginary part of v, denoted as s 5 Iv, is the exponential
growth rate of the instability. In addition to the dispersion rela-
tion, the vertical structures of the growing modes, namely,
û(z), ŷ (z), ŵ(z), p̂(z), and b̂(z), can also be obtained. These
inform where MLI-induced motion is the strongest and how en-
ergy is distributed vertically.

Experimentation shows that g 5 5 is sufficient for isolating
MLI from the influence of the rigid bottom of the thermocline
layer, so we use g 5 5 in all the linear stability analysis calcula-
tions. We resolve the mixed layer, located between z 5 0.5hm
and z 5 20.5hm, and the thermocline layer, located between
z 5 20.5hm and z 5 25.5hm, with 128 Chebyshev modes each
(Boyd 2001; Burns et al. 2020). In both layers, the vertical

spacing is therefore uneven}the spacing is finer near the sur-
face, near the layer interface, and near the bottom of the ther-
mocline. It is coarser in the interior of each layer.

b. Results

As shown by Stone (1966), at a given k, the largest growth
rate takes place at l 5 0, so we consider that case only. The
growth rate curve s(k) (Fig. 3a) is similar to that in Callies
et al. (2016). The peak at smaller wavenumbers corresponds
to the thermocline baroclinic instability, produced by the
QGPV gradient reversal between the surface and the base of
the thermocline layer. The maximum growth rate takes place
near the Rossby deformation radius of the mixed layer, rang-
ing from 1.1Nmhm/f to 1.6Nmhm/f, depending on Ri of the two
layers. The maximum growth rate falls between 0.23fL/Nm

and 0.31fL/Nm. As typically Ntht .. Nmhm, the two growth
rate peaks are well separated from each other in terms of spa-
tial scales. Also, as typically Nt .. Nm, MLI outcompetes the
thermocline instability in terms of the maximum growth rate.

Figure 3 also shows typical spatial structures associated
with the fastest-growing MLI modes in the x–z plane. The
flow is largely confined to the mixed layer, from z 5 20.5hm
to z 5 0.5hm, and the modes tilt in the 2x direction. The
largest amplitudes of u and y are located at the surface
(z 5 0.5hm) and at the layer interface (z 5 20.5hm;
Figs. 3b,c). In contrast, the largest amplitude of w takes place
near the midplane of the mixed layer (z 5 0; Fig. 3d). Impor-
tantly, u, y , and w all extend into the upper part of the ther-
mocline. In particular, w at the layer interface can cause a
growing vertical displacement of the interface, eventually re-
sulting in vertical exchange between the thermocline and
mixed layer. The dependence of the vertical structure of w on
Rit is illustrated in Fig. 4. At the layer interface (z 5 20.5hm),
the amplitude of w decreases as Rit increases, indicating that
large thermocline Richardson number suppresses vertical mo-
tion at the layer interface.

The spatial structure of the buoyancy perturbation b is dif-
ferent from that of u, y , and w (Fig. 3e). The largest amplitude
takes place beneath the layer interface. In the thermocline,
the amplitude decays with depth, and the modes tilt toward
the 2x direction. Within the mixed layer, the amplitude of b
is small, and its largest values take place at the surface and
just above the interface. The modes in the mixed layer tilt to-
ward the 1x direction. There is an abrupt phase shift in b
across the interface. For typical Richardson numbers of the
mixed layer and thermocline, the phase shift is about 1808,
due to the fact that the MLI-induced motion in the y–z plane
is inclined with a slope between that of mean isopycnals in the
mixed layer and thermocline. The value of the phase shift de-
pends on Rim and Rit. Note that the discontinuity in b across
the interface does not imply a discontinuity in the full buoy-
ancy; in fact, considering the background, the full buoyancy
N2z2 fLy1 b is continuous across the interface.

The modal amplitudes shown in Figs. 3 and 4 are normal-
ized such that the horizontal-mean column-integrated
eddy energy is r0L

2h3m. Such a normalization is needed to
allow for a comparison of modal amplitudes at different

TABLE 1. Scales used for the nondimensionalization of the
equations of motion. These choices follow QG scaling based on
mixed layer quantities (denoted with subscript m).

Variable name(s) Symbol(s) Scale

Horizontal coordinates x, y Nmhm/f
Vertical coordinate z hm
Time t Nm/fL
Horizontal velocities u, y Lhm
Vertical velocity w fLhm/Nm

Pressure perturbation p r0Lh
2
mNm

Buoyancy perturbation b LhmNm
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parameters because the linear analysis itself leaves the
amplitude of the perturbations undetermined. The eddy
energy is defined as the sum of perturbation kinetic energy
K 5 r0(u

2 1 y2)/2 and eddy potential energy P 5 r0b
2/2N2,

where N is evaluated with Nm or Nt accordingly in the two
layers. The normalization is motivated physically: the en-
ergy associated with the perturbations is scaled to be com-
parable to the energy associated with the mean state in the
mixed layer. This roughly marks the transition point from
the linear phase of the instability development to its nonlin-
ear phase. The relationship between the energy normaliza-
tion and the transition point will be discussed further in
section 3.

Figure 5 shows the dependence of the linear model on Rim
and Rit. The ranges of the Richardson numbers discussed
here, 1# Rim # 3000, 60# Rit # 105, cover typical conditions
in the real upper ocean. If Rim and Rit are too close to each

other}i.e., when the stratification jump across the interface
between the mixed layer and thermocline is too small}MLI
modes extend downward far below the base of the mixed
layer and touch the bottom of the thermocline layer. To avoid
such interaction with the artificial bottom at the base of the
thermocline layer, we only present cases with Rit $ 30Rim.

Figure 5a shows the dependence of the wavenumber kmax

of the most unstable mode on Rim and Rit. In the middle right
part of the figure, Rim ; 100, and Rit approaches 10

5, so the
mixed layer approaches the QG limit, and the base of the
mixed layer behaves approximately like a rigid bottom. The
most unstable wavenumber takes its maximum value of
kmax ≃ 1.6f/Nmhm in the middle right part of the figure, con-
sistent with the QG result (Eady 1949). As Rim decreases,
the mixed layer moves away from the QG limit, and kmax

decreases toward 1.1f/Nmhm, consistent with Stone’s (1966)
formula for a single layer:

b c d e

a

FIG. 3. Growth rates and structure of most unstable mode from the linear stability analysis. (a) The growth rate
curve for Rim 5 1 and Rit 5 100. The unstable modes to the right of the MLI peak are the ageostrophic modes de-
scribed in Stone (1970). (b)–(e) Spatial structures of the most unstable mode for u, y , w, and b, respectively. The hori-
zontal axes show the distance in the x direction multiplied by the most unstable wavenumber k. The vertical axes
show depth. The mixed layer is located between z560.5hm. The thermocline reaches to z525.5hm but only the up-
per part is shown. The quantity against which a variable is nondimensionalized is shown in parentheses. The magni-
tudes of the variables are scaled such that the horizontally averaged energy in the water column is equal to r0L

2h3m.
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kmax ≃

��������������
5
2

Rim
1 1 Rim

√
f

Nmhm
: (11)

This behavior is observed for a broad range of Rit and indi-
cates that non-QG effects in general result in a larger spa-
tial scale of the instability than predicted by QG dynamics.
When Rit approaches Rim, kmax also decreases due to the
modification of the MLI modes by the thermocline as the
MLI modes penetrate deeper into it.

The maximum growth rate smax depends primarily on Rim
(Fig. 5b). In the upper half of the figure, where Rim .. 1, the
result from the QG Eady model is reproduced: smax ≃ 0.3fL/Nm.
As Rim decreases, the mixed layer moves away from the QG
limit, and the maximum growth rate decreases, again consistent
with the result in Stone (1966):

smax ≃

���������������
5
54

Rim
1 1 Rim

√
fL
Nm

: (12)

This indicates that non-QG dynamics produce slower growth
of baroclinic instability compared to the QG prediction. Note
that this is a secondary effect on top of the change in the
growth rate dimension fL/Nm 5 f /

������
Rim

√
, which increases with

decreasing Rim at fixed f. Also note that the trends in kmax

and smax are independent of the energy normalization.
With the column-integrated perturbation energy normal-

ized to r0L
2h3m, the nondimensional vertical velocity at the

layer interface has a strong dependence on Rit and a weak de-
pendence on Rim (Fig. 5c). Increasing Rit from 102 to 105

reduces the w amplitude at the interface from 0.1Lhmf/Nm to
0.003Lhmf/Nm. The reduction of w at the base of the mixed
layer is unrelated to the amplitude of w in the interior of the
mixed layer, whose change is small (Fig. 4). Taking the scale
of w (which is Lhm f /Nm 5 hm f /

������
Rim

√
) into consideration, the

amplitude of the dimensional w decreases with increasing Rim
if hm and f are held fixed.

Figure 5d provides another perspective for how a large Rit
suppresses vertical motion at the base of the mixed layer, show-
ing the variance of the vertical displacement of the layer inter-
face h. The magnitude of the interface deformation is a more
straightforward indicator of the vertical exchange across the
base of the mixed layer after the perturbation grows to finite
amplitude than the magnitude of w. The amplification of the in-
terface deformation is caused by the correlation between w and
h rather than w alone. The growth rate of the variance of the
vertical displacement of the interface is

dh2

dt
5 2hw, (13)

where overbars denote a horizontal average. If h and w are in
phase, the deformation of the interface grows. The part of w
that is out of phase with h does not lead to an increase in the
deformation of the interface and therefore does not contrib-
ute to eventual exchange between the two layers.

Like w at the layer interface, the nondimensionalized
(against h2m) variance of the interface displacement depends
strongly on Rit and weakly on Rim (Fig. 5d). Increasing Rit
from 102 to 105 decreases h2 from 0:01h2m to 53 1026h2m. But
unlike that of w, the scale of h2 does not contain Rim, so the
dimensional h2 has negligible Rim dependence (with the
column-integrated perturbation energy normalized to r0L

2h3m).
This is because the scale of time Nm/fL5

������
Rim

√
/f cancels out

the 1/
������
Rim

√
in the scale of w.

It is worth emphasizing that the magnitudes of w and h2 rely
on the energy normalization, as stated above, which we choose to
target the transition point from the linear to the nonlinear phase
of the instability development. It is also worth noting that the����
Rit

√
dependence of the interface displacement (Fig. 5d) should

be understood as a qualitative measure of exchange between the
thermocline and mixed layer because nonlinearity in the later
stage of the instability development stretches the sinusoidal
waves into filaments of thermocline water, which are subse-
quently entrained into the mixed layer (Fig. 1). The linear stabil-
ity analysis only captures the onset of this filament formation.

The dimension of h2 and the parameter dependence of the
nondimensional h2 nevertheless inform where and when
strong exchange between the thermocline and mixed layer
can be expected in the real ocean. The dimension h2m implies
that deep winter mixed layers, as observed in mode water
formation regions in the Southern Ocean and western
parts of subtropical gyres (e.g., de Boyer Montégut et al.
2004; Dong et al. 2008), are favorable for strong vertical
exchange. The dependence of h2 on Rit 5N2

t /L
2 implies

that a weakly stratified thermocline, as observed again in
mode water formation regions, and strong horizontal buoy-
ancy gradient (i.e., strong mesoscale eddies), as observed

FIG. 4. Large thermocline Richardson number suppresses the
vertical velocity at the interface between the mixed layer and ther-
mocline. Shown are the vertical structures of the magnitude of the
MLI-induced w. The interface is located at z 5 20.5hm. Data are
taken from three linear stability calculations with fixed mixed layer
Richardson number Rim and varying thermocline Richardson num-
ber Rit. The magnitudes of the variables are scaled such that the
horizontally averaged energy in the water column is equal to
r0L

2h3m.
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in the Southern Ocean and near the western boundary cur-
rents, are favorable for strong vertical exchange across the
base of the mixed layer.

3. Nonlinear simulations

a. Model formulation

To characterize the parameter dependence of the vertical
exchange in the nonlinear phase of the instability, we pose an
initial-value problem, where the system freely evolves from
an idealized initial state. The model configuration is similar to
that used in the linear stability analysis}only g is reduced
from 5 to 1 in order to concentrate more resolution in the
mixed layer. Linear stability analysis shows that g 5 1 is suffi-
ciently large that MLI modes in all of the nonlinear simula-
tions presented here are well isolated. The simulation domain
extends from x5 0 to 12Nmhm/f, from y 5 0 to 12Nmhm/f, and
from z 5 21.5hm to 0.5hm. The domain is doubly periodic in
the horizontal directions. In the initial state, the upper half of
the domain (from z 5 20.5hm to 0.5hm) represents the mixed
layer with a small Richardson number Rim, and the lower half
(from z 5 21.5hm to 20.5hm) represents the thermocline
with a large Rit. We now use one Chebyshev basis for the full
domain instead of the compound basis used in the linear

stability analysis because the location of the mixed layer base
now changes over time.

The nonlinear terms in the equations of motion are
restored (Taylor and Ferrari 2010; Callies and Ferrari
2018a):

u
t

1 (Lz 1 u)u
x

1 y
u
y

1 w L 1
u
z

( )
2 fy 52

1
ro

p
x

1 F(u),
(14)

y

t
1 (Lz 1 u)y

x
1 y

y

y
1 w

y

z
1 fu 52

1
ro

p
y

1 F(y),
(15)

1
ro

p
z

5 b, (16)

u
x

1
y

y
1

w
z

5 0, (17)

b
t

1 (Lz 1 u)b
x

1 y 2fL 1
b
y

( )
1 w

b
z

5 F(b), (18)

FIG. 5. Dependence of the most unstable linear mode on the Richardson numbers of the mixed layer and thermo-
cline. The four panels show the dependence on the Richardson numbers of the mixed layer and thermocline Rim and
Rit of (a) the most unstable wavenumber kmax, (b) the associated maximum growth rate smax, (c) the magnitude of w
at the layer interface, and (d) the variance of the vertical displacement of the interface. The magnitudes of the varia-
bles are scaled such that the horizontally averaged energy in the water column is equal to r0L

2h3m.
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where F(u), F(y), and F(b) represent terms that are used to
smooth out gridscale gradients and stabilize the numerical
simulations. We apply the same operator

F 52m
4

x4
1 2

4

x2y2
1

4

y4

( )
1 n

2

z2
(19)

for momentum and buoyancy, using hyperdiffusion in the hori-
zontal directions and regular diffusion in the vertical direction.

Note that the decomposition of buoyancy into background
buoyancy B 5 2Lfy and perturbation buoyancy b in the non-
linear simulations is different from that employed in the linear
stability analysis, where B 5 N2z 2 fLy. Now, the initial N2z
is part of the “perturbation” field b, which allows for signifi-
cant changes in the stratification as the instability evolves.

In addition to the five dynamical variables, we solve for a
scalar field to trace water that is initially in the thermocline.
The tracer concentration c is advected by the background
plus perturbation flow and diffused using the same operator
as applied for momentum and buoyancy:

c
t

1 (Lz 1 u)c
x

1 y
c
y

1 w
c
z

5 F(c): (20)

For boundary conditions, we apply w 5 0 at the top of the
mixed layer and at the bottom of the thermocline. No pertur-
bation surface or bottom stress is assumed: u/z 5y /z 5 0.
This implies a weak zonal stress nL that maintains the back-
ground flow against viscous dissipation. Similarly, we apply
no-flux conditions on buoyancy and the tracer: b/z 5 0,
c/z5 0.

The initial state of the model consists of the background
flow U 5 Lz with the perturbation flow u 5 y 5 w 5 0. On
top of a background lateral buoyancy gradient B/y 5 2fL,
the vertical gradient of the perturbation buoyancy b is initial-
ized using a tanh function in order to mitigate the Gibbs phe-
nomenon at the stratification jump:

b
z

5
N2

m

2
1 2

Rit
Rim

( )
tanh

z 1 0:5hm
z0

1 1 1
Rit
Rim

( )[ ]
, (21)

where z0 5 0.02hm is an arbitrarily chosen parameter that sets
the transition scale between the mixed layer and thermocline.
Away from the layer interface, b/z ≃N2

m in the mixed layer,
and b/z ≃N2

t in the thermocline. The initial buoyancy is de-
termined by vertically integrating (21). Similarly, we used a
tanh function to initialize the tracer concentration c:

c 5
1
2

1 2 tanh
z 1 0:5hm

z0

( )
, (22)

so that c is set to 1 (dimensionless) in the thermocline and 0 in
the mixed layer. We will from now on refer to c as the “binary
tracer.”

The nonlinear equations are nondimensionalized as in the lin-
ear stability analysis (Table 1). The viscosities m and n are nondi-
mensionalized as follows: m5LN3

mh
4
m/f

3Re, n 5 Lh2mf /NmRe,

where Re is the Reynolds number. Re should be as large
as possible to minimize the effect of these terms. We set
Re 5 104, the largest possible Re that does not incur check-
erboard instability at the resolution used. The dimensionless
F ′ then takes the form

F ′ 52
1������
Rim

√ 1
Re

4

x′4
1 2

4

x′2y′2
1

4

y′4

( )
1

1������
Rim

√ 1
Re

2

z′2
:

(23)

We use Dedalus to solve the initial value problem with 192
Fourier modes in the x and y directions and 256 Chebyshev
modes in the z direction. Translated into the physical space,
these are equivalent to 192 evenly spaced grid points in the x
and y directions and 256 unevenly spaced grid points in the z
direction. The linear stability analysis shows that the wave-
length of mixed layer instability in the x direction ranges from
3.9 to 5.7Nmhm/f. Therefore, with 192 Fourier modes resolving
12Nmhm/f in the horizontal directions, each wavelength is re-
solved by 62–91 grid points. The vertical grid points are
denser near the surface and near the bottom of the thermo-
cline layer and are sparser in the center of the domain, where
the base of the mixed layer is located in the initial state. This
resolution was sufficient to close the PV budget (see below)
for all simulations.

We add white noise to the initial perturbation buoyancy
field b to seed the instability. The noise at all grid points
follows a Gaussian distribution with a mean value of zero
and a standard deviation of 1023. All simulations are run to
t5 100Nm/fL.

We simulate six combinations of Rim and Rit (Table 2). Rim
and Rit not only determine the initial state but also the magni-
tude of deviation from QG dynamics. We keep Rit .. Rim to
avoid MLI modes penetrating deep into the thermocline layer
and interacting with the artificial bottom.

b. Results

Every nonlinear simulation undergoes four stages of evolu-
tion (Fig. 6). Out of the initial white noise emerges the fastest
exponentially growing mode predicted by the linear stability
analysis in section 2, which is characterized by parallel stripes
oriented in the y direction (l 5 0) with alternate positive and

TABLE 2. Richardson numbers used in the nonlinear
simulations. The Richardson number is defined as the ratio of the
buoyancy frequency squared to the vertical shear of the horizontal
flow squared, Ri ; N2/L2. Rim is the mixed layer Richardson
number, and Rit is the thermocline Richardson number.

Rim Rit

1 102

1 103

1 104

10 103

10 104

100 104

J OURNAL OF PHY S I CAL OCEANOGRAPHY VOLUME 532708

Unauthenticated | Downloaded 12/20/24 01:06 PM UTC



negative buoyancy anomalies in the x direction (Fig. 6a).
In this linear stage, vertical velocity is very small and the asso-
ciated vertical transport of thermocline water is invisible
(Fig. 6e). The buoyancy anomalies grow exponentially until
the advection of perturbations by perturbation flow becomes
important, at which time a transition from the linear phase to
the nonlinear phase occurs (Figs. 6b,f). Note the correspon-
dence between the patterns in Figs. 6b and 6f. The subsequent
nonlinear phase is characterized by small cyclonic and anticy-
clonic eddies that transport momentum, buoyancy, and the
binary tracer (Figs. 6c,g). Gradually, energy is transferred to
larger scales, with vortices merging and growing in size. By
the end of each simulation, there is a cyclonic vortex centered
around a negative buoyancy anomaly at the midplane of the
mixed layer (Figs. 6d,h), and the horizontally averaged buoy-
ancy anomaly at this level has decreased below zero (the
mean value in the initial state).

After the nonlinear phase starts around t 5 50Nm/fL, verti-
cal displacement of the base of the mixed layer becomes finite
amplitude, leading to entrainment of thermocline water into
the mixed layer. This is evident from the binary tracer and hy-
drostatic PV fields (Fig. 1). Hydrostatic PV is defined as

q 5 f 1
y

x
2

u
y

( )
b
z

2
y

z
b
x

1 L 1
u
z

( )
2fL 1

b
y

( )
: (24)

In the initial state, q5 fb/z2 fL2 5 fN2 2 fL2 5 fL2(Ri2 1).
Therefore, if we pick fL2 as the dimension for PV, the nondimen-
sional value in the initial state is q′ 5 Ri 2 1. Thermocline water
has a high PV, and mixed layer water has a low PV. Since PV is
approximately conserved on water parcels (it is exactly conserved
if the flow is inviscid), high PV serves as a tracer of thermocline
water, as does high binary tracer concentration. Figure 1a shows
an x–z cross section of the binary tracer field, where water from

FIG. 6. Snapshots from the nonlinear evolution of (top) the perturbation buoyancy b at the midplane of the mixed layer (z 5 0) and
(bottom) the binary tracer concentration at y 5 0. The panels show the four different stages of the evolution: (a),(e) the linear phase at
t5 29Nm/fL, (b),(f) the transition point between the linear phase and the nonlinear phase at t5 48Nm/fL, (c),(g) the early nonlinear phase
at t 5 55Nm/fL, and (d),(h) the late nonlinear phase when the inverse cascade of energy has taken place at t 5 85Nm/fL. Data are taken
from a nonlinear simulation with Rim 5 10 and Rit 5 103.
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the shallow thermocline with high tracer concentration forms fila-
ments that extend upward into the mixed layer. The cross section
of PV shows a similar pattern to that of the binary tracer in the
lower part of the mixed layer, where high-PV thermocline water
forms filaments and is entrained upward (Fig. 1b), similar to the
PV intrusions into the low-PV intermediate layer caused by vor-
tex rollup in Garner et al. (1992). As the low-buoyancy and high-
PV thermocline water is gradually entrained into the mixed layer,
at the midplane of the mixed layer (z5 0), the average buoyancy
decreases, and vorticity has an increasingly positive bias (Fig. 6d).

Unlike the lower part of the mixed layer, where PV and
tracer filaments largely mirror one another, the upper part of
the mixed layer shows differences between the two. The binary
tracer concentration near the sea surface keeps a close-to-zero
value because there is no tracer input at the surface (Fig. 1a).
By contrast, high-PV blobs and filaments frequently appear
near the surface and are subsequently transported downward
into the interior of the mixed layer. This occurs because PV can
be created or destroyed in the presence of viscosity. The upward
PV flux can be decomposed into three terms: an advection term

Ja 5 wq, (25)

a diffusion term

Jd 52 f 1
y

x
2

u
y

( )
F(b), (26)

and a viscosity term

Jy 5
b
x

F(y) 2 2 fL 1
b
y

( )
F(u): (27)

At the boundaries, the advection term is zero because w 5 0,
but the diffusion and the viscosity terms can be nonzero, lead-
ing to a nonzero PV flux into or out of the domain. As ex-
pected, the instability produces PV input at the surface (e.g.,
Nakamura and Held 1989). Garner et al. (1992) pointed out
that this PV input and entrainment into the mixed layer from

the surface is analogous to that at the base of the thermocline.
The rigid surface acts like an overlying layer with infinite
stratification.

Figure 7a shows the horizontally averaged binary tracer
concentration in the interior of the mixed layer during the
late linear phase and the nonlinear phase of the simulations.
At fixed Rim, increasing Rit suppresses the vertical exchange
between the thermocline and mixed layer. This is consistent
with the linear stability analysis (section 2), where we found a
strong dependence of the variance of the interface displace-
ment on Rit (Fig. 5d).

Garner et al.’s (1992) analogy between a rigid boundary
and an interface with an infinitely stratified layer inspires a
scaling law for the dependence of the tracer injection into the
mixed layer and thermocline stratification. We assume that
for realistic conditions, Rim ,, Rit, such that the mixed layer
can be thought of as sandwiched between two boundaries: the
rigid boundary at the surface and the quasi-rigid interface
with the thermocline. As shown in section 2, the instability in
the mixed layer is determined largely by Rim. If this indepen-
dence of thermocline properties carries over to the nonlinear
phase, the dimensionless hydrostatic PV q′ in the mixed layer
should only be a function of Rim, nondimensional depth z′,
and nondimensional time t′:

q′ 5 q′(Rim, z
′, t′): (28)

We denote the column integrated PV in the mixed layer as Q,
and its nondimensional form as Q′ 5Q/fL2hm. Then, as the
vertical integration excludes the dependence on z′, Q′ is only
a function of Rim and t′:

Q′ 5 Q′(Rim, t
′): (29)

Because PV can be regarded as a conserved quantity carried by
fluid parcels in the limit of large Re, and the two boundaries of
the mixed layer are approximately symmetric, the above argu-
ment implies that the PV increase in the mixed layer is half
sourced from the surface and half sourced from the interface
with the thermocline, the latter via high-PV thermocline water

FIG. 7. The amount of thermocline water entrained into the mixed layer is inversely proportional to the initial PV
difference between the thermocline and mixed layer. (a) Time series of the average binary tracer concentration in the
interior of the mixed layer (at z 5 0.1hm). (b) Times series of the product of the average binary tracer concentration
in the interior of the mixed layer (at z 5 0.1hm) and the initial PV difference Dq′ 5 Rit 2 Rim between the thermo-
cline and mixed layer. We present the level of z 5 0.1hm instead of the midplane of the mixed layer in the initial state
(z5 0) because the base of the mixed layer is elevated by diffusion (see section 4).
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peeling off the thermocline and getting entrained into the mixed
layer in filaments (Fig. 1b).

Let us denote the thickness of the thermocline layer that is
pealed off and entrained into the mixed layer, the “entrainment
depth,” as D and its nondimensional form as D′ 5 D/hm. The
contribution to the increase of mixed layer PV, half of the total
PV increase, can then be written as the product of the PV differ-
ence between the two layers and the rate of change of the en-
trainment depth:

1
2
dQ′

dt′
5 (Rit 2 Rim)

dD′

dt′
, (30)

where Rit 2 Rim are the nondimensional PV difference be-
tween the thermocline and mixed layer.

The left-hand side of the equation depends on Rim only, so
the right-hand side also only depends on Rit. That is to say,
dD′/dt′ can be written as

dD′

dt′
5

u(Rim, t
′)

Rit 2 Rim
, (31)

where u is a dimensionless function of Rim and t′. This means
that the entrainment depthD′ also takes the form

D′ 5
F(Rim, t

′)
Rit 2 Rim

≃
F(Rim, t

′)
Rit

, (32)

where F is the integral of u over t′ and is also a dimensionless
function, and we made use of Rit .. Rim.

Figure 7b shows the time series of the horizontally averaged
binary tracer concentration, which represents the amount of
vertical exchange between the thermocline and mixed layer,
multiplied by the initial Rit 2 Rim. We can observe that for
the same Rim, the curves with different Rit approximately col-
lapse, thus supporting the proposed scaling law D′ ;Ri21

t .
This is consistent with the results in the linear stability analy-
sis, which predicts a decrease of the nondimensional surface
displacement with increasing Rit (Fig. 5d).

Back in dimensional form,

D 5 hmD
′ ≃

hm
Rit

F Rim,
fL
Nm

t
( )

: (33)

Using the entrainment depth as a metric for the vertical ex-
change between the thermocline and mixed layer, we conclude
that the vertical exchange is proportional to the thickness of the
mixed layer and inversely proportional to the Richardson num-
ber of the thermocline.

Figure 7b also shows the dependence of the product
c (Rit 2Rim) on Rim. The product increases as Rim increases,
which is at first sight inconsistent with the finding in the linear sta-
bility analysis that the variance of the vertical displacement of
the mixed layer base is largely independent of Rim (Fig. 5d). This
discrepancy is due to the fact that normalizing the horizontally
averaged column-integrated perturbation energy to r0L

2h3m in
the linear stability analysis does not precisely capture the en-
ergy at the moment when the instability transitions from the

linear to the nonlinear phase. Figure 8 shows the time series of
the horizontally averaged column-integrated perturbation ki-
netic energy (EKE) in the nonlinear simulations, nondimension-
alized against r0L

2h3m. The kinetic energy first exponentially
increases with time and then levels off at the transition point be-
tween the linear and the nonlinear phases. With the same Rit,
the kinetic energy in the nonlinear phase increases with Rim.
Since the fraction of kinetic energy in total perturbation energy
is similar in different cases (ranging from 0.25 to 0.37), the total
energy in the nonlinear phase also increases with Rim. This
means that when normalizing the horizontally averaged column-
integrated perturbation energy to r0L

2h3m in the linear stability
analysis (the horizontal dashed line in Fig. 8), the amplitude of
all the variables (including w) is overestimated (with respect to
the “real” amplitude at the transition point as shown in the non-
linear simulations) in the small-Rim cases and underestimated in
the large-Rim cases. Consequently, the positive correlation be-
tween the magnitude of vertical motion and Rim, as demon-
strated in the nonlinear simulations, appears to be absent in
Figs. 5c and 5d.

4. Discussion

In the nonlinear simulations, there is a marked asymmetry
between the upwelling of thermocline water into the mixed
layer and the subduction of mixed layer water into the ther-
mocline (Fig. 1). It appears that MLI primarily peels fila-
ments of thermocline water off the underlying layer and
incorporates them into the mixed layer. The phenomenology
and dynamics are similar to stratospheric intrusions into the
troposphere (e.g., Shapiro 1980). Subduction of mixed layer
water into the thermocline, as observed in Omand et al.
(2015) or described in Freilich and Mahadevan (2021), is not
prominent in our model and may be induced by processes
that are not represented here, such as the interaction be-
tween mesoscale and submesoscale features or atmospheri-
cally forced unbalanced instabilities.

FIG. 8. Time series of the horizontal-mean vertically integrated
perturbation kinetic energy in the nonlinear simulations. The en-
ergy levels off after reaching levels that depend primarily on the
Richardson number of the mixed layer Rim.
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It should be noted that our calculations capture only the tran-
sient evolution of unforced MLI. In the real ocean, mixed layer
turbulence is forced by winds and buoyancy loss at the surface,
which can both counter the restratification by MLI (e.g., Callies
and Ferrari 2018a) and modify the dynamics of the instability
(e.g., Young 1994; Crowe and Taylor 2019). This mixed layer
turbulence, of course, also entrains thermocline fluid when deep-
ening the mixed layer}although it cannot reach beneath the
maximum wintertime mixed layer depth. Given the short time
scale of MLI compared to the seasonal cycle, MLI can still in-
duce substantial exchange at times when the mixed layer is not
deepening, especially in late winter, when the mixed layer depth
is at its maximum and instabilities are strong.

In the nonlinear simulations, an artificial hyperviscosity
that damps variations on small spatial scales is indispensable

for stabilizing the model. The magnitude of the hyperviscos-
ity, measured by the reciprocal of the Reynolds number, must
be chosen such that the artificial diffusion of momentum,
buoyancy, and tracer is small compared to the advection while
keeping the model numerically stable. With a higher model
resolution, smaller-scale flow can be resolved, and the hyper-
viscosity required for numerical stability is smaller. We have
chosen the largest possible Reynolds number with which the
PV budget in the mixed layer, an indicator of numerical stability,
is closed at the current model resolution. We deem the em-
ployed Re 5 104 sufficient and expect the findings to be robust
under further increases of the resolution and Reynolds number.

That said, the artificial diffusive fluxes do elevate the base
of the mixed layer and thereby reduce its thickness (Fig. 9).
The first column in Fig. 9 shows the nondimensionalized

FIG. 9. In the nonlinear phase of the instability development, advective fluxes dominate in the vertical transport of the binary tracer and
PV above the “effective” base of the mixed layer that is elevated by diffusion. Shown are the horizontally averaged upward fluxes of the
binary tracer and PV within the mixed layer as functions of time and depth. Each row shows one simulation, with the Richardson numbers
of the simulation indicated on the left. The left two columns show the two terms of the upward tracer flux, with the two plots in the same
row sharing the same color bar. The right three columns show the three terms of the upward PV flux, with the three plots in the same row
sharing the same color bar. The colors show nondimensional fluxes, with their dimensions shown at the top of the figure.
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advective tracer flux wc, the second column shows the nondi-
mensionalized diffusive tracer flux 2nc/z, the third column
shows the nondimensionalized advective PV flux Ja 5 wq, the
fourth column shows the nondimensionalized diffusive PV flux
Jd, and the rightmost column shows the nondimensionalized

viscous PV flux Jy. In the linear phase, diffusive tracer and PV
fluxes dominate, elevating the base of the mixed layer to the
same depth. After the transition to the nonlinear phase, advec-
tive fluxes dominate in the mixed layer above the elevated base
and also in the uppermost part of the thermocline below the

FIG. 10. In the nonlinear phase, the tracer and PV are homogenized in the mixed layer. Shown are the horizontally
averaged binary tracer concentration (blue curves) and hydrostatic PV (orange curves) at t 5 70Nm/fL. (a)–(f) Verti-
cal profiles in both the initial mixed layer and thermocline. (g)–(l) Vertical profiles in the initial mixed layer only. The
Richardson numbers are shown above each panel. Both the binary tracer concentration and PV are normalized such
that the initial values in the mixed layer are equal to 0 and the initial values in the thermocline are equal to 1. Both
the tracer and PV are roughly homogeneous between z 5 20.1hm and z 5 0.3hm. That is why
z5 0.1hm is chosen to represent the whole mixed layer in terms of the binary tracer concentration in Fig. 7.
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elevated mixed layer base. With the same Rim, a smaller Rit per-
mits stronger vertical motion and deeper penetration of vertical
velocity into the (diffusion-elevated) thermocline, so the domi-
nance of the advective fluxes over the diffusive and viscous
fluxes extends to a greater depth (Fig. 9). This is consistent with
the findings in the linear stability analysis (Fig. 4). Figure 10
shows that in the nonlinear phase, the tracer and PV are both
nearly homogeneous in the vertical direction in the mixed layer,
so we choose the level z5 0.1hm, which is slightly above the ini-
tial center of the mixed layer at z 5 0, to represent the mixed
layer in terms of tracer concentration.

5. Conclusions

To investigate how mixed layer instabilities produce verti-
cal exchange between the thermocline and mixed layer and
how the exchange depends on environmental parameters, we
perform a linear stability analysis and nonlinear simulations
of an idealized configuration. We find that the instability indu-
ces vertical flow reaching into the upper thermocline, deforms
the interface between the mixed layer and thermocline, and
produces filaments of thermocline water spreading into and
blending with the mixed layer water, similar to how strato-
spheric air is folded into the troposphere (e.g., Shapiro 1980).

The vertical velocity associated with mixed layer instability
reaches deeper into the thermocline if the mixed layer is thicker
or the thermocline stratification is weaker, and the vertical veloc-
ity at the base of the mixed layer is stronger if the thermocline
stratification is weaker. A scaling law for the vertical exchange be-
tween the thermocline and mixed layer, characterized by how
much thermocline water is entrained into the mixed layer, sug-
gests that the exchange is proportional to the mixed layer depth
and inversely proportional to the thermocline Richardson num-
ber. The vertical exchange also increases with an increasing mixed
layer Richardson number. Our results imply that the tracer ex-
change between the thermocline and mixed layer is more efficient
when the mixed layer is deeper, the lateral buoyancy gradient is
larger, the thermocline stratification is weaker, and the mixed
layer stratification is stronger. This suggests a vigorous exchange
between the permanent thermocline and deep mixed layers in
winter, especially in mode water formation regions, where mixed
layers are deep and the underlying stratification is weak.

Existing parameterizations of MLI-induced restratification
(Fox-Kemper et al. 2008) should be augmented to take the
tracer exchange into account. Our findings suggest that an en-
trainment of thermocline water into the mixed layer should
be included. The scaling law proposed here could be a starting
point for parameterizing the dependence of such an entrain-
ment velocity on environmental parameters.

It should be emphasized that we here investigated the ex-
change between the thermocline and mixed layer produced
by an unforced, idealized, and isolated mixed layer instability.
There are other processes that can exchange fluid between these
two layers, such as turbulence produced by gravitational and
symmetric instabilities or the deepening of the mixed layer
caused by wind-forced turbulence. The relative importance of
different processes to the exchange depends on environmental
conditions and should be investigated in future work.
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