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A B S T R A C T 

An isolated pulsar is a rotating neutron star possessing a very high magnetic dipole moment, thus providing a powerful radiating 

mechanism. These stars loose rotational energy E through various processes, including a plasma wind originating from a highly 

magnetized magnetosphere and the emission of magnetic dipole radiation (MDR). Such phenomena produce a time decreasing 

angular velocity �( t ) of the pulsar that is usually quantified in terms of its braking index. Although these mechanisms are widely 

acknowledged as the primary drivers of the spin evolution of isolated pulsars, it is plausible that other contributing factors 
influencing this effect have yet to be comprehensively investigated. Most of young isolated pulsars present a braking index 

different from that given by the MDR and plasma wind processes. Working in the weak field (Newtonian) limit, we take in this 
work a step forward in describing the evolution of such a system by allowing the star’s shape to wobble around an ellipsoidal 
configuration as a backreaction effect produced by its rotational deceleration. It is assumed that an internal damping of the 
oscillations occurs, thus introducing another form of energy loss in the system, and this phenomenon may be related to the 
deviation of the braking index from the models based on Ė ∼ −�4 predictions. Numerical calculations suggest that the average 
braking index for typical isolated pulsars can be thus explained by a simple phenomenological model. 

Key words: methods: analytical – methods: statistical – stars: neutron – stars: oscillations (including pulsations) – pulsars: 
general. 
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 I N T RO D U C T I O N  

he identification of isolated pulsars (Hewish et al. 1968 ) with
otating neutron stars presenting a high surface magnetic field was
uggested long ago (Gold 1968 ), where predictions about their spin
volution were also anticipated. Shortly thereafter, the pulsar detected
n the Crab nebula was measured (Richards 1968 ) to slow down.
ommonly accepted models describing the loss of energy leading

o the observed spin evolution of pulsars are based on the emission
f magnetic dipole radiation (MDR) (Pacini 1967 , 1968 ; Gunn &
striker 1969 ; Hamil et al. 2015 ; Lyne et al. 2015 ; Shaw et al.
022 ) and plasma wind (Goldreich & Julian 1969 ; Ruderman &
utherland 1975 ; Beskin, Gurevich & Istomin 1984 ; Xu & Qiao
001 ; Spitko vsk y 2006 ; Yue et al. 2007 ). As these processes carry
way angular momentum, the star’s angular velocity decreases with
ime, leading to a slo wing-do wn behaviour that has been detected in
irtually all known pulsars and in some cases monitored for more than
0 yr (Hobbs, Lyne & Kramer 2010 ; Lyne et al. 2015 ; Namkham,
aroenjittichai & Johnston 2019 ; Parthasarathy et al. 2019 , 2020 ;
haw et al. 2022 ). 
 E-mail: delorenci@unifei.edu.br 
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When only these processes are considered, the rate at which the
otational energy is radiated away from the pulsar is described by the
ower-law decay (Shapiro & Teukolsky 1983 ) 

˙
 = −βI �4 , (1) 

here β is a parameter whose physical meaning depends on the
dopted model, I is the moment of inertia of the star, and � = 2 πν

s its angular velocity, with ν its rotation frequency. In equation ( 1 )
nd in what follows, a dot o v er a physical quantity represents its
ime deri v ati ve. It should be noticed that depending on the choice for
he acceleration potential in wind models (Ruderman & Sutherland
975 ; Yue et al. 2007 ; Li et al. 2014 ), dif ferent po wer rates for the
oss of rotational energy are possible (Zhang et al. 2022 ). Here, the
nalysis is applicable to the models obeying the power law described
y equation ( 1 ). 
The relationship between Ė , �, and I is given by the torque

quation �̇ = ( I �) −1 Ė , leading to 

˙ = −β �3 . (2) 

he parameter β can be e v aluated for the popular MDR and wind
echanisms, with similar orders of magnitude. For instance, in the

ase of the MDR model (in units where c = 1 = μ0 , with μ0 the
agnetic vacuum permeability) it follows that β = (2 μ2 sin 2 α)/(3 I ),
© 2023 The Author(s). 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 

http://orcid.org/0000-0002-1352-0879
http://orcid.org/0000-0001-5880-2207
http://orcid.org/0000-0002-7136-8326
http://orcid.org/0000-0002-5705-5278
mailto:delorenci@unifei.edu.br
https://creativecommons.org/licenses/by/4.0/


Isolated pulsars and the braking index 7957 

Figure 1. The pulsar geometric configuration: the neutron star is rotating 
with angular velocity �( t) = ϕ̇ around the z axis while its magnetic axis is 
inclined by an angle α leading to precession of the field lines. The rotation 
induces a deviation from sphericity so the original sphere of radius R (dashed 
grid) turns into an ellipsoid whose semi-axes depend on time through the 
function b ( t ) related to the ellipticity. 
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1 The Crab is among the fastest rotating isolated pulsars with known braking 
index, with velocity v crab ∼ 1.2 × 10 −2 c . 
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here μ is the magnitude of the magnetic dipole moment μ of the 
tar, making an angle α with its rotation axes, determined by �, as
llustrated in Fig. 1 . In our system of units, μ is related with the
agnetic field B through μ = 

1 
2 BR 

3 . It is worth noting that, apart
rom an o v erall numerical factor, the wind model yields the same
ehaviour β ∼ B 

2 R 

6 / I , so that the phenomenological model below
oes not depend on the dominant energy loss mechanism. 
More generally, the different causes behind the slo wing-do wn phe- 

omenon can be encapsulated by the power-law formula (Goldwire & 

ichel 1969 ) �̇ = −K�n , where n is the so-called braking index of
he pulsar. It is usually defined as if K were constant, namely 

 

. = 

��̈

�̇2 
, (3) 

nd is actually constant only for constant K . 
In the context of the models mentioned abo v e, assuming K = β

onstant, one naturally gets n = 3. Other models have been suggested, 
n which for instance the energy loss is dominated by gravitational 
aves radiation; these imply different values for the braking index, 

.g. n = 5 in the case of Ref. Ostriker & Gunn ( 1969 ). 
Precise measurements of the braking index of several isolated 

ulsars have re vealed v alues that are consistently different than 
hat predicted by assuming a constant K (see for instance Refs.
ourgouliatos & Cumming 2015 ; Lyne et al. 2015 ; Parthasarathy 

t al. 2020 ; Lower et al. 2021 ). Consequences of assuming K as
ime-dependent function (Blandford & Romani 1988 ) have been 
xamined (Magalhaes, Miranda & Frajuca 2012 ; Lyne et al. 2015 ),
nd depending on the way K evolves in time, the braking index can
e n �= 3. Furthermore, assuming (Hamil et al. 2015 ) I = I [ �( t )]
nly is not enough to explain the present observational data for the
nown isolated pulsar. It was recently shown (Hamil, Stone & Stone 
016 ) that a MDR-based model with a time-dependent inclination 
ngle α = α( t ) would be a possible way to explain the phenomenon.
All the models described abo v e are based on the simplifying
ssumption that the kinetic energy E K of the body is only due to
ts rigid rotation, i.e. E K = 

1 
2 I �

2 . Ho we ver, a neutron star cannot be
trictly considered as rigid and even though the rotation is very slow
rom the point of view of relativistic effects, with typical surface
elocities of the order of 1 v � (10 −4 − 10 −2 ) c , the shape should be
llowed to depend on time as this rotation may naturally induce a
attening of the poles. In such a scenario, the kinetic energy acquires
ew contributions that need to be taken into account. 
It is the purpose of this work to introduce a more complete

escription taking into account the variation of the internal potential 
nergy of a self-gravitating body (Ragazzo & Ruiz 2015 ). In
articular, we explore the consequences of allowing the star shape to
volve in time, under its coupling with the rotation of the body. It is
ssumed that energy can be lost in this process, a phenomenon that
ould be rele v ant in the explanation of the measured slo wing-do wn
f isolated pulsars. Embedding our model in a general relativistic 
onte xt goes be yond the scope of this work, and as we consider the
uasi-rigid rotation of the star, we restrict attention to the Newtonian
eak field limit; given the slow v elocities involv ed, we e xpect this

pproximation to be meaningful. 
In the next section, the basic assumptions of the model are

escribed and the coupled system of non-linear differential 
quations go v erning the e volution of the star are deri ved. The results
f our numerical analysis are presented in Section 3 , where some
uggestive solutions are studied. In particular, we show that a pulsar
volution with n < 3 can easily be reproduced. A comparison
etween our results and the available data describing the behaviour 
f the Crab pulsar is given in Section 4 , before a few final and
oncluding remarks in Section 5 . 

 T H E  M O D E L  

uppose the star is described as a mass distribution that is slightly
eformed compared to a spherical body and is rotating around the
-axis with time-dependent angular velocity �( t ). We assume the
olume of the star to be that of the non-rotating sphere 4 

3 πR 

3 , its
ctual shape being ellipsoidal with two equal semi-axes in the ( x , y )
plane slightly larger than the sphere radius, i.e. (1 + b ) R (see Fig. 1 ).
ven for the large velocities involved in a rotating neutron star, we do
ot expect large deviations from sphericity and thus demand that b �
 (Baym & Pines 1971 ; Cutler, Ushomirsky & Link 2003 ; Rencoret,
guilera-G ́omez & Reisenegger 2021 ). As a result, the volume of

he ellipsoid matches that of the sphere to second order in b provided
he semi-axis in the direction of rotation is (1 − 2 b ) R . The location
f an arbitrary element of mass d m in the body will thus be described
y the set R 

′ = { X 

′ , Y 

′ , Z 

′ } such that (
X 

′ 

1 + b 

)2 

+ 

(
Y 

′ 

1 + b 

)2 

+ 

(
Z 

′ 

1 − 2 b 

)2 

≤ R 

2 . 

s discussed in the introduction, we expect the quantity b may not
ecessarily be constant, so we anticipate that b = b ( t ). It is convenient
o use a coordinate system related to that of the embedding sphere,
.e. the set { x , y , z} such that x 2 + y 2 + z 2 = r 2 , with r ≤ R . That
s, we implement the coordinate transformation X 

′ = (1 + b ) x , Y 

′ =
1 + b ) y , and Z 

′ = (1 − 2 b ) z. The volume element, as expected, is
 V = d X 

′ d Y 

′ d Z 

′ = d x d y d z + O( b 2 ). 
MNRAS 527, 7956–7964 (2024) 
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Let us implement a rotation R ˆ z ( ϕ) to the body about the z-axis
y an angle ϕ. The position r ′ of the mass element d m is then given
y the rotation applied to its location R 

′ , i.e. r ′ ( ϕ, b) = R ˆ z ( ϕ) · R 

′ .
ne therefore gets 

r ′ = 

⎛ 

⎝ 

cos ϕ sin ϕ 0 
− sin ϕ cos ϕ 0 

0 0 1 

⎞ 

⎠ 

︸ ︷︷ ︸ 
R ˆ z ( ϕ) 

⎛ 

⎝ 

1 + b 0 0 
0 1 + b 0 
0 0 1 − 2 b 

⎞ 

⎠ 

⎛ 

⎝ 

x 

y 

z 

⎞ 

⎠ 

︸ ︷︷ ︸ 
R ′ 

, (4) 

hose modulus we denote by r ′ . 
Since we consider a pulsar, i.e. a rotating neutron star, one now

eeds to assume from that point on that both the rotation angle ϕ 

nd the flattening of the poles depend on time. The absolute velocity,
 = ‖ d r ′ / d t‖ , of each mass element in such system is given by 

 = 

√ 

( x 2 + y 2 + 4 z 2 ) ̇b 2 + ( x 2 + y 2 ) �2 (1 + b) 2 , (5) 

here � = ϕ̇ is the angular velocity of d m around the z-axis. The
inetic energy E K of the star is obtained by integrating 1 

2 v 
2 d m over

he whole body volume, leading to 

 K = 

1 

2 
ḃ 2 

∫ 
V 

( x 2 + y 2 + 4 z 2 ) ρ( r) d V 

+ 

1 

2 
�2 (1 + b) 2 

∫ 
V 

( x 2 + y 2 ) ρ( r) d V , (6) 

here ρ( r ) is the mass-density; it should be noted at this point that this
unction depends here only on the radial distance and not on time as
e assumed a constant star volume. In that case, the fluid making the

tar satisfies the continuity equation (mass conservation in a fixed vol-
me), namely ∂ t ρ + ∇ ( ρv ) = 0, with the velocity being orthoradial
ut depending only on r , so that ∇ ( ρv ) = 0, and therefore ∂ t ρ = 0. 

The moment of inertia I of the neutron star, seen as an idealized
pherical mass distribution rotating about the z-axis, is defined by 

 

. = 

∫ (
x 2 + y 2 

)
ρ( r) d V , 

hich, because of the spherical symmetry, is also expressible as 

 = 2 
∫ 

ρx 2 d V = 2 
∫ 

ρy 2 dV = 2 
∫ 

ρz 2 d V . (7) 

or the spherical unperturbed configuration, we assume a constant
ensity ρ( r ) = 〈 ρ〉 in order to approximate the moment of inertia
y I ∼ 2 

5 MR 

2 , so that β ∼ B 

2 R 

4 / M , with a numerical prefactor
epending on the model. 
The kinetic energy now reads 

 K = 

3 

2 
I ̇b 2 + 

1 

2 
I (1 + 2 b) �2 + O( b 2 ) . (8) 

As the system evolves, the body will be allowed to oscillate. Its
otential energy E P can be expanded about b = 0, as 

 P ≈ E p (0) + 

1 
2 κb 2 , (9) 

here we have used that the potential energy is minimized for the
pherical configuration, so that ( ∂ E P / ∂ b ) b= 0 = 0. In equation ( 9 ),
e noted the elastic constant as 

= 

( 

∂ 2 E P 

∂ b 2 

) 

b= 0 

= 3 I γ, (10) 

hereby defining the coefficient γ . The seemingly arbitrary rela-
ionship between γ and the elastic constant κ in ( 10 ) is justified a
osteriori to lead to a simplification of the corresponding equation of
otion ( 16a ) for b ( t ). The leading contribution to the elastic constant
NRAS 527, 7956–7964 (2024) 
an be obtained by assuming the spherical approximation, which
eads to κ ≈ 24 GM 

2 /(5 R ), such that γ ≈ 4 GM / R 

3 . 
Neglecting higher order terms, the Lagrangian of the system reads,

p to a constant, 

 = 

1 

2 
I 
[
3 ̇b 2 + (1 + 2 b) �2 − 3 γ b 2 

]
. (11) 

t should be noticed at this point that the O( b 2 ) term in the kinetic
ontribution, namely 1 

2 I b 
2 �2 , has been neglected because it is

ssumed to be very small when compared to γ Ib 2 coming from
he potential energy contribution. This corresponds to assuming �2 

GM / R 

3 , a condition that is related to the slow rotation Newtonian
ypothesis, satisfied for the physical system under consideration. 

The Euler–Lagrange equations stemming from ( 11 ) must be sup-
lemented by dissipation terms (Baillieul & Levi 1987 ; Ragazzo &
uiz 2015 , 2017 ; Caressa & Bersani 2020 ), in order to account

or the radiation. For a system with degrees of freedom q i and
agrangian L ( q i , q̇ i ), one introduces a so-called dissipation function
( q i , q̇ i ) such that q̇ i D , ̇q i represents the rate of energy loss per unit

ime (power dissipated by the ‘force’ D , ̇q i = ∂ D/ ∂ ̇q i ). The Euler–
agrange equations are modified to include this new force as a

ne gativ e) source term, namely 

d 

d t 

(
∂ L 

∂ ̇q i 

)
− ∂ L 

∂ q i 
= −∂ D 

∂ ̇q i 
. 

This interpretation stems from the fact that defining the energy in
he usual way through H = q̇ i p 

i − L , with the momenta given by
 

i = ∂ L / ∂ ̇q i , and using the abo v e equation, one finds the rate of
nergy loss as d H / d t = −q̇ i D , ̇q i , as announced. 

In the case at hand, introducing the dissipation function D( ̇ϕ , ̇b ),
he modified equations of motion read 

 I ̈b + 3 I γ b − I �2 = −∂ D 

∂ ̇b 
, (12) 

d 

d t 
[ I (1 + 2 b) �] = −∂ D 

∂ ̇ϕ 

, (13) 

ith D taking into account the radiation emission losses and the
amping of the body oscillations. 
Our simplified model relies on internal dissipation processes

ssociated with the quadrupole moment tensor, and we demand
hat the oscillations have a small amplitude such that they should
emain linear in their time deri v ati ve. These requirements can be
chieved with the following prescription for the dissipation function
Caressa & Bersani 2020 ) 

 = 

1 

4 
βI �4 + 

3 

2 
σI ḃ 2 , (14) 

hereby defining our final phenomenological parameter σ . 
Now, defining the total energy E = E K + E P , and using the abo v e

esults, it is straightforward to e v aluate the energy losses, namely 

˙
 = −ϕ̇ 

∂ D 

∂ ̇ϕ 

− ḃ 
∂ D 

∂ ̇b 
= −βI �4 − 3 σI ̇b 2 , (15) 

hich is the equation that go v erns the energy balance of the system.
In a scenario where MDR and plasma wind are the only processes

ehind the loss of energy of a pulsar, with relative strengths to
e defined by the explicit model under consideration, equation ( 1 )
ould hold and the external torque τ ext = −βI �3 would be the only

esponsible for the star slo wdo wn. Ho we ver, in the more complete
cenario under investigation in this work, the evolution of the system
s go v erned by the set of coupled equations of motion given by
quations ( 12 ) and ( 13 ) which, after inserting equation ( 14 ), can be
resented in the more compact form as 
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b̈ + σ ḃ + γ b = 

1 
3 �

2 , (16a) 

˙ = − 2 �ḃ 

(1 + 2 b) 
− β

(1 + 2 b) 
�3 . (16b) 

rom the point of view of physical units, the parameters β, γ , and σ
re expressed respectively in s ([ β] = T ), s −2 ([ γ ] = T 

−2 ), and s −1 

[ σ ] = T 

−1 ). 
The dissipation contribution in the equation of motion ( 16a ) for

 ( t ) naturally imposes a time-evolving equilibrium point for this
unction, which is given by �2 /(3 γ ). It is worth mentioning that had
he O( b 2 ) kinetic term been kept in equation ( 11 ), this equilibrium
oint would have been corrected to b ( t ) ≈ [ �2 /(3 γ )][1 + �2 /(3 γ )],
 much higher order correction: our initial approximation to neglect 
( b 2 ) contribution to the kinetic energy is justified for the physical

ystems discussed in this work. 
Before closing this section, a few words about angular momentum 

onservation are in order. First, in our model, the quantity I . =
 (1 + b) 2 is identified as the time-dependent ef fecti ve moment of
nertia of the body, thus making equation ( 16b ) the equation of motion
elating the total angular momentum L = I� with the external 
orque produced by the radiation emission. Naturally, in the absence 
f external torque, the angular momentum is a conserved quantity, 
.e. when τext = −∂ D/ ∂ ̇ϕ = 0. As expected, internal processes, as
hose described by the second term in the rhs of equation ( 14 ), do not
nterfere with the angular momentum conservation law . Finally , it
hould be emphasized that when the moment of inertia is allowed to
ary with time, 1 

2 I�2 will not be the only contribution to the kinetic
nergy of the body, as clearly emphasized by equation ( 8 ). The time
volution of the angular momentum is go v erned by �( t ), and also
y I( t) through b ( t ). These functions are solutions of the coupled
ifferential equations of motion (16) that naturally follow from the 
agrangian method. 

 M O D E L L I N G  A  PULSAR  SLO  W D O  W N  

uantities like the mass of the pulsar, its radius, or the strength of
he field at its magnetic pole are not known with great precision, and
hese values can also be model dependent. For instance, the mass of
 pulsar, like Crab and others, is usually taken to be approximately
 . 4 M �, with M � the solar mass (Shapiro & Teukolsky 1983 ). The
oal of this work is to test if our theoretical model is able to produce
cceptable solutions to the problem of pulsars slo wdo wn, i.e. if a
raking less than 3 is possible when the oscillations described by 
 ( t ) are taken into account. 
Using the results obtained in the last section, the parameters β

nd γ can be conv eniently e xpressed in terms of M � and the typical
alues for the radius and the magnetic dipole field of a certain class
f known pulsars, namely 

≈ 1 . 485 × 10 −18 ϒ m 

(
M �
M 

)(
B 

10 8 T 

)2 (
R 

10 km 

)4 

s , (17) 

≈ 5 . 307 × 10 8 
(

M 

M �

)(
10 km 

R 

)3 

s −2 , (18) 

here we have used the expressions for I and μ assuming a spherical
tar, and ϒ m 

is a numerical value that depends on the specific choice
f MDR or plasma wind models. For instance, MDR model leads 
o ϒ MDR = (5 / 12) sin 2 α, while a plasma-wind model (Xu & Qiao
001 ; Li et al. 2014 ) leads to ϒ W 

= (5 / 4)( �φ/�� ) cos 2 α, where
φ denotes the acceleration electric potential whose maximum value 
s �� . It is interesting to notice that assuming �φ ≈ �� /3 results
n ϒ W 

= (5 / 12) cos 2 α, which coincides with ϒ MDR for α = π /4. 
In the subsequent numerical calculations and for definiteness, we 

ssume specific values for the neutron star model. To begin with, we
ssumed the mass M to be M → 1 . 4 M �. Now, conveniently setting
≈ 1 . 583 × 10 8 s −2 in the simulations and using equation ( 18 ), it

ollows that the star radius in this model is R = 1 . 674 × 10 4 m.
imilarly, by setting β ≈ 3 . 542 × 10 −16 s and plugging in the abo v e
alues of M and R into equation ( 17 ), using the MDR model with
 misalignment angle α = ( π/ 4) rad to estimate the parameter ϒ m 

,
amely ϒ MDR = 5 / 24, we obtain a magnetic dipole generating a field
mplitude B = 1 . 428 × 10 9 T, which denotes the magnitude of the
eld at the pole of the star (Shapiro & Teukolsky 1983 ). 
As already discussed, the value of ϒ m 

is the only one which
xplicitly depends on the specific model describing the radiative 
rocesses involved in the loss of rotational energy of the pulsar.
iv en the de generac y in the choice of the parameters, a different
alue for the model-dependent parameter ϒ m 

can be associated with 
he same value of β. The remaining parameter σ is associated to
he dissipation processes during the oscillations of the quadrupole 
oment of the body, and can be adjusted in the numerical calculations

n order to obtain the braking index of the pulsar. 
Following the model described in the previous section, the evolu- 

ion of the system is go v erned by the coupled non-linear differential
quations given by equations (16). The initial angular velocity is set
o be �(0) = 188 . 5 rad · s −1 . The initial deformation of the body,
 (0), is assumed to be the equilibrium value of b ( t ) in equation ( 16b ),
.e. b (0) = �(0) 2 /(3 γ ) ≈ 7.482 × 10 −5 , for which ̇b (0) was set to zero.

In a fashion similar to that present in the analysis in the existing
iterature for the calculation of the braking index of the Crab pulsar
Lyne et al. 2015 ), we consider here the following method, that can
e applied to both simulated or measured data: 

(i) Let ( t , �) = ( t k , �k ), for k = 1, ···, N , denote the complete
ime-series for the angular velocity of the pulsar; 

(ii) For each j such that 1 < j ≤ N , the cumulative braking index
t time t j is computed by fitting the points ( t k , �k ), where k = 1, ···,
 , with the 3rd-degree polynomial 

 C ; j ( t) = 

3 ∑ 

k= 0 

a k; j 

(
t − t C ; j 

)k 
, 

here t C ; j = 

1 
2 

(
t j − t 0 

)
is the half time of the interval [ t 0 , t j ], and the

orresponding braking index at t j is given by equation ( 3 ), reading
ere 

 C ( t j ) = 

P̈ C ; j ( t C ; j ) P C ; j ( t C ; j ) 

Ṗ 

2 
C ; j ( t C ; j ) 

= 2 
a 2; j a 0; j 

a 2 1; j 

; (19) 

(iii) The local braking index at time t j must be determined o v er
ach data subset with a fixed size �N ∈ N as illustrated below: 

n this case, for each � N < j ≤ N , the local braking index at time t j 
 t � N is computed by fitting the points ( t k , �k ), where k = j − � N ,

··, j , with the 3rd-degree polynomial 

 L ; j ( t) = 

3 ∑ 

k= 0 

b k; j 

(
t − t L ; j 

)k 
, 

here t L ; j = 

1 
2 

(
t j−�N + t j 

)
is the centre of the interval [ t j − � N , t j ],

nd the corresponding local braking index is again given by equation
MNRAS 527, 7956–7964 (2024) 



7960 E. C. A. Araujo et al. 

M

2.4

2.6

2.8

3.0

500 1000 1500 2000

2.4

2.6

2.8

3.0

Figure 2. Cumulative [upper panel, equation ( 19 )] and local [lower panel, 
equation ( 20 )] braking indices calculated from the simulation data for some 
representati ve v alues of the dissipation parameter σ . Note that there is no 
direct relationship between the magnitude of the dissipation process and 
the order of the braking indices when small variations of σ are considered. 
Ho we v er, on av erage, a more intense dissipation process (larger σ values) 
leads to smaller values for the braking index. 
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 3 ), namely 

 L ( t j ) = 

P̈ L ; j ( t L ; j ) P L ; j ( t L ; j ) 

Ṗ 

2 
L ; j ( t L ; j ) 

= 2 
b 2; j b 0; j 

b 2 1; j 

. (20) 

An extrapolation-algorithm, based on the explicit midpoint rule,
ith step size control and order selection [see Section II.9 from Ref.

Hairer, Nørsett & Wanner 1993 )] was used to numerically integrate
he coupled system described by equations ( 16a ) and ( 16b ), leading
o the results depicted in Figs 2 and 3 . The integration spans a time
indow of about 5 yr, which was enough to obtain solutions with

table braking indices. In fact, after a short time of instability, n ( t )
v entually behav es as a slo wly e volving function of time, as it can
e confirmed by direct inspection of Fig. 2 , where some solutions
resenting positive braking indices were selected. 
The magnitude of the dissipation process associated with the

uadrupole oscillations is dominant in determining the behaviour
f the braking index of the system. Processes for which σ is of
he order of 0 . 01 Hz lead to braking indices around n = 3, which
s the expected result when the pulsar’s rotational energy is taken
way only by means of magnetic dipole radiation. Ho we ver, for
igher values of σ , richer scenarios appear, as shown in Fig. 2 .
n particular, when σ ≈ 2 Hz , the solutions exhibit braking indices
round 2.5. Small variations of σ lead to different solutions for n ( t ).
n the other hand, this function does not seem to be very sensitive to

mall variations of the other parameters. The local behaviour of the
raking index, depicted in the lower panel of Fig. 2 , was obtained
sing a moving average ( � N ) of 400 d, which explains why it starts
fter the cumulative index (upper panel). When a sufficiently high
issipation process is taken into account, the simulations suggest
hat ev en ne gativ e braking indices are possible solutions. This is an
spect that deserves further examination. 
NRAS 527, 7956–7964 (2024) 
The behaviour of the angular velocity is very similar for all
olutions examined in Fig. 2 . If the curves corresponding to the
ngular velocities for these models were included in a same plot,
lmost no visual difference would be seen. In fact, it can be shown
hat for any instant of time in the simulations, the difference between
he angular velocities of any of these solutions is smaller than
0 −5 Hz. 
The behaviour of b ( t ) for the model with σ = 1 . 995 s −1 is shown

n Fig. 3 . In the plot scale it looks like a slowly decreasing
onotonic function of time. Ho we ver, a more detailed examina-

ion shows that b ( t ) is a highly oscillatory function around the
ime-dependent equilibrium point �2 ( t )/(3 γ ), as highlighted in the
nserts. Indeed, due to their mutual coupling, both b ( t ) and �( t )
ecompose into a slow monotonically decreasing component and
 fast (and tiny) oscillatory component; the slow component can
e extracted out by calculating the difference b ( t ) − �2 ( t )/(3 γ ).
hus, as the system loses energy by means of radiation emission
nd oscillation damping, as ef fecti vely described by equation ( 15 ), it
ill slo w-do wn its rotation frequency and also the amplitude of the
scillations. 
The evolution of the rotation frequency corresponding to the model

ith σ = 1 . 995 s −1 is depicted in Fig. 4 (a), which is a solution
resenting a braking index of approximately 2.5. The other panels in
he figure show the residuals of the first, second, and third order,
hich were obtained following the standard procedure [see for

nstance the analysis for the Crab pulsar (Lyne et al. 2015 )]: the
ata set is fitted by means of a k -degree polynomial, which can be
ritten as ν( t) = 

∑ k 

i= 0 c i ( t − t 0 ) i + δν( k) , where t 0 is chosen, for
nstance, to be the medium time of the data set, the coefficients
 i are obtained by the fitting procedure, and the time-dependent
unction δν( k ) is the k -th order residual obtained when the k -th
rder fitting polynomial is subtracted from the data. For instance,
ig. 4 (b) depicts the first-order residual δν(1) = [ ν( t )] data − [ c 0 +
 1 ( t − t 0 )], where t 0 = 9 . 299 × 10 7 s ≈ 1076 d , c 0 ≈ 29 . 97 Hz , and
 1 ≈ −3 . 757 × 10 −10 s −2 . 

As it is well known, the gradual deceleration of the rotational
requency of an isolated pulsar experiences sudden and occasional
hanges, followed by a period of partial reco v ery to the previ-
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Figure 4. Rotational frequency (a) and residuals of the first (b), second (c), 
and third-order (d) shown as functions of time (in days) for the simulation 
data corresponding to a dissipation parameter σ = 1 . 995 s −1 . The cumulative 
braking index corresponding to this simulation data, after about 6 yr of 
inte gration time, achiev es a value of approximately 2.5, as can be inferred 
by direct inspection of Fig. 2 . The initial frequency in this simulation was 
30.00 Hz. 
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Figure 5. Rotation frequency and residuals of the Crab pulsar, according to 
data collected from 1982 February to 2022 August ( http://www.jb.man.ac.uk/ 
pulsar/crab.html ). The starting time in this figure corresponds to MJD 45015, 
for which the measured frequency was ν = 30 . 0592241133 Hz . The residuals 
of second and third orders, depicted in panels (c) and (d), respectively, clearly 
show a rich glitch activity of the pulsar in this period. 
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us regular rotational rate. This phenomenon is referred to as a 
litch and is attributed to complex processes taking place within 
he star’s internal fluid (Lyne, Pritchard & Graham Smith 1993 ; 
ntonopoulou, Haskell & Espinoza 2022 ). If we examine the 

esiduals at the second and third order in Fig. 4 , we can observe
rregularities that cannot be attributed to numerical errors. They 
an be interpreted as very short moments in time during which 
he angular velocity is suddenly changed before the star returns 
o its original state. That could be interpreted as micro-glitches: a 

ore realistic model would describe for instance various rotating 
hells, all of which would be subject to equations similar to those
resented here and somehow interacting. Could such a more elab- 
rate model enhance this phenomenon to the level of the observed 
litches? 
 A  N OT E  A B O U T  GLI TCHES:  T H E  

E H AV I O U R  O F  T H E  C R A B  PULSAR  

aving described our simple model, one wants to compare with the
xisting data rele v ant to the dynamical range under investigation. The
est example one can think of is provided by the enormous amount
f data available concerning the Crab pulsar. 
The Crab pulsar (PSR B0531 + 21) is an isolated neutron star whose

ngular velocity deceleration has been measured since the 1970s 
Gullahorn et al. 1977 ). Monthly spaced pulsar timing measurements 
ave been taken by Jodrell Bank Observatory since 1982 (Lyne et
l. 1993 ). In Fig. 5 (a), the rotation frequency measured for the Crab
ulsar is shown as a function of time, from MJD 45 015 (1982 Febru-
ry 15) to MJD 59 806 (2022 August 15) (the data are available at
MNRAS 527, 7956–7964 (2024) 

http://www.jb.man.ac.uk/pulsar/crab.html
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M

Figure 6. Braking index as function of time for the Crab pulsar. Here the 
index is calculated using the cumulative and local procedures discussed in the 
last section, as depicted in upper and lower panels, respectiv ely. A mo ving 
average with � N = 30 was here used to obtain the local index. 
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ttp:// www.jb.man.ac.uk/ pulsar/ crab.html ). The residuals are shown
rom top to bottom [panels (b) to (d)], where the coefficients of the
hird-order polynomial fitting are t 0 = 6 . 389712 × 10 8 s = 7395 . 5 d ,
 0 ≈ 31 . 36 Hz , c 1 ≈ −4 . 205 × 10 −10 s −2 , c 2 ≈ 6 . 728 × 10 −21 s −3 ,
nd c 3 ≈ −1 . 260 × 10 −31 s −4 . 

This system has occasional glitches, in which the star is spinned-
p for a short period of time and returns to its former rotation
requency within an interval of about 20 d. The glitch activities can
e clearly seen in Fig. 5 (c) and 5 (d). They contribute massively to
he cumulative braking index. The cumulative and local indices agree
ith the constant value n ≈ 2.5 if and only if they are computed in an

nterval not containing a glitch. Ho we ver, the cumulati ve braking
ndex decreases monotonically in time as multiple intervals are
ncluded in the data set so that its final value reaches n ≈ 2.3 (Lyne
t al. 2015 ). 

Cumulative and local behaviours of the braking index with time are
hown in Fig. 6 , upper and lower panels, respectively. In particular,
he local index as a function of time (in months) is shown in lower
anel of Fig. 6 , where the moving average was calculated using
 window containing 30 successive measurements. It can be seen
hat after each glitch, the braking index returns approximately to the
alue it had before the glitch, and this happens in less than a month.
o we ver, its influence in the local braking index calculation goes
ay longer, an aspect that is dependent on the choice of � N . 
It is noteworthy that in the simulations leading to Fig. 4 , the chosen

alues for the physical parameters of the system are comparable to
hose typically employed to describe the Crab pulsar. Particularly, if
e use the data from Crab timing measurements (Lyne et al. 1993 )

nd adjust a cubic polynomial to it, as given by equation ( 2 ), we obtain
= 3.573 × 10 −16 s, which is approximately the value used in the

imulations described in Section 3 . Additionally, the obtained local
raking index approximately aligns with the measured value for the
rab pulsar. This parallel suggests that the simulated system shares

imilarities with the Crab pulsar, potentially indicating comparable
nderlying dissipative mechanisms at work, which would lead us
NRAS 527, 7956–7964 (2024) 
o suggest that σ ≈ 2s is expected in systems like Crab. Ho we ver,
n order to establish a conclusive connection between the simulated
ystem and the Crab pulsar, further simulations and comparisons
ould be necessary. 

 FINA L  R E M A R K S  

n this work, we explored the idea that as radiation is emitted by
n isolated pulsar, its energy is continuously driven away, causing
 slo w-do wn of its spin, and a possible modification of the shape
f the star. Although the radiation emission (MDR or plasma
ind) is largely considered in the literature, adding a perturbation

n its ellipsoidal shape by means of small oscillations has never
een considered. As the star cannot be strictly rigid, oscillations
re e xpected: the y are produced almost in a stationary re gime
s it is linked to the spin slo w-do wn process. These oscillations
ust be dissipated by internal phenomena leading to a secondary

orm of energy loss by the star. The possible mechanisms behind
uch dissipation of energy were not considered in details in this
 ork. Instead, it w as assumed that the effect is described by an

f fecti ve damping process that is dependent of the velocity square
f the quadrupole moment oscillations, leading to a forced (by
eans of radiation emission) and damped linear differential equa-

ion go v erning the evolution of the body oscillations. In planetary
ide theory terminology, this equation describes a Kelvin −Voigt
amping of the quadrupole moment oscillations, endowed with a
eformation inertia term (Correia, Ragazzo & Ruiz 2018 ). Addi-
ionally, the equation of motion for the angular velocity couples
o the quadrupole oscillations, as described by equation (16), thus
 xtending be yond previous treatments (P acini 1968 ; Gunn & Ostriker
969 ; Magalhaes et al. 2012 ; Hamil et al. 2015 ). As a consequence
f this description, solutions presenting braking indices below
he predicted value for a simple radiative model ( n = 3) were
ound by means of numerical calculations. In particular, we found
hat there exist choices for the phenomenological parameters for
hich the solutions exhibit values similar to those measured in

solated young pulsars (Gourgouliatos & Cumming 2015 ; Lyne et al.
015 ). 
A potential direction for further research would involve establish-

ng a connection between the damping effect, which is ef fecti vely
escribed by the second term in the dissipation function D , as defined
n equation ( 14 ), and physical processes that could be associated
ith energy loss driven by quadrupole oscillations. Among the
ossibilities, thermal and gravitational radiation emissions are the
ost anticipated causes [see e.g. Chau ( 1967 ) for a calculation of

he continuous emission of gravitational radiation from pulsars].
btaining an actual value for the parameter σ for a given star from
rst principles requires a complete model which, as far as we know,

s not yet available. 
It should be noticed that the braking index calculated by means of

he cumulative method is highly dependent on the initial conditions
f the system. Furthermore, if glitches occur during the evolution, as
s the case in most of the isolated young pulsars, they can significantly
ontribute to the value of this index. This aspect can be appreciated,
or instance, in the case of the Crab pulsar (Lyne et al. 2015 ), where
he value of n calculated by means of the local method results in
 L = 2 . 51, while the cumulative method leads to n C = 2 . 34. If the
ata set is restricted to the period from 1982 onwards, the cumulative
ethod would result in a different value, while the local index would

ot be significantly affected, as discussed in the previous section.
his suggests that the local method provides a more robust index to
escribe the slo w-do wn of isolated pulsars. 

http://www.jb.man.ac.uk/pulsar/crab.html
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The exact reason behind the occurrence of glitches in an isolated 
ulsar is still a matter of investigation (Espinoza et al. 2014 ;
ntonopoulou et al. 2022 ). Most likely, they are associated with 

edistribution of mass in short time intervals activated by resonance 
henomena throughout the evolution of the system. After a glitch, 
he system approximately returns smoothly to its former state. In 
he idealized model we investigated here, it is assumed that the 
hape of the star evolves in time, as governed by the oscillating
unction b ( t ). Thus, after the initial transient, the ellipsoid describing
he star’s surface will oscillate with an almost constant amplitude. 
n this scenario, localized sub-micro glitches are expected to occur 
ll the time, as suggested by the zigzags in the second and third-
rder residuals appearing in Fig. 4 . A more elaborate model could
hed more light on this important issue. Consider a multilayer 
odel for instance. In such a model, resonance effects between 

he different layer oscillations could lead to significant angular 
omentum redistribution (Anderson & Itoh 1975 ; Haskell & Melatos 

015 ), and possibly to macroscopic glitches, that would then have to
e compared to those observed in isolated pulsars. This is an issue
hat deserves investigation. 

A note about the meaning of the b ( t ) function is in order. First
f all, b ( t ) gives the magnitude of the ellipticity of the star at a
iven time t . It is expected that the equilibrium form of a young
ulsar [also denoted as non-spherical relaxed configuration (Gittins, 
ndersson & Jones 2021 )] is reached when its crust solidifies at
 given time t ′ during its evolution. At this instant, according to
he model here investigated, the pulsar’s ellipticity is determined 
y the local equilibrium expression b ( t ′ ) = �( t ′ ) 2 /(3 γ ). For times
 > t ′ , as the angular velocity of the star decreases, e.g. due to the
oss of its rotational energy, stresses will arise and the crust shape
ill evolve from its initial equilibrium state. Numerical solutions 

or the coupled system discussed in the previous sections show that 
 ( t ) is a decreasing oscillatory function of time, whose magnitude
eviates from its initial value b (0) ≈ 10 −4 by about 10 −9 per year,
hile its amplitude of oscillation is of the order of 10 −18 . Thus, 10 −9 

hould be understood as the ellipticity relative to its value at the
nitial equilibrium configuration. It is interesting to notice that recent 
ublications [see for instance Gittins et al. ( 2021 ) and references
herein] have argued that a maximum deviation (‘mountains’) from 

he equilibrium shape of a neutron star may be something related 
o a relative ellipticity of about 10 −8 (the modulus of the difference
etween the ellipticity of the relaxed and strained star). Thus, it is
xpected that as the pulsar evolves in time the star crust will break
hen stresses o v ercome a certain critical value. This is a possible

cenario for the occurrence of macro glitches (Baym & Pines 1971 ).
Among the possible applications of this work, it should be 
entioned that the experimental knowledge of the rotation frequency 

urve of a given pulsar could be used as a starting point to find the
est set of physical parameters behind its behaviour. It should be 
oted ho we ver that the damping ef fects o v er the oscillations due to
mission of thermal radiation and quadrupole gravitational radiation 
or instance, are not yet fully understood for such systems and also
eserv e further inv estigation. Models assuming different forms for 
he dissipation function and its implications in the possible values of
 could be of great value in such investigations. 

C K N OW L E D G E M E N T S  

ADL is supported in part by the Brazilian research agency CNPq
Conselho Nacional de Desenvolvimento Cient ́ıfico e Tecnol ́ogico) 
nder Grant No. 302492/2022-4. LSR is supported in part by CFisUC
rojects (UIDB/04564/2020 and UIDP/04564/2020), and ENGAGE 
KA (POCI-01- 0145-FEDER-022217), funded by COMPETE 2020 
nd FCT, Portugal, and also FAPEMIG (Funda c ¸ ˜ ao de Amparo à
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