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ABSTRACT

An isolated pulsar is a rotating neutron star possessing a very high magnetic dipole moment, thus providing a powerful radiating
mechanism. These stars loose rotational energy E through various processes, including a plasma wind originating from a highly
magnetized magnetosphere and the emission of magnetic dipole radiation (MDR). Such phenomena produce a time decreasing
angular velocity €2(7) of the pulsar that is usually quantified in terms of its braking index. Although these mechanisms are widely
acknowledged as the primary drivers of the spin evolution of isolated pulsars, it is plausible that other contributing factors
influencing this effect have yet to be comprehensively investigated. Most of young isolated pulsars present a braking index
different from that given by the MDR and plasma wind processes. Working in the weak field (Newtonian) limit, we take in this
work a step forward in describing the evolution of such a system by allowing the star’s shape to wobble around an ellipsoidal
configuration as a backreaction effect produced by its rotational deceleration. It is assumed that an internal damping of the
oscillations occurs, thus introducing another form of energy loss in the system, and this phenomenon may be related to the
deviation of the braking index from the models based on E ~ —Q* predictions. Numerical calculations suggest that the average
braking index for typical isolated pulsars can be thus explained by a simple phenomenological model.

Key words: methods: analytical —methods: statistical —stars: neutron—stars: oscillations (including pulsations)—pulsars:

general.

1 INTRODUCTION

The identification of isolated pulsars (Hewish et al. 1968) with
rotating neutron stars presenting a high surface magnetic field was
suggested long ago (Gold 1968), where predictions about their spin
evolution were also anticipated. Shortly thereafter, the pulsar detected
in the Crab nebula was measured (Richards 1968) to slow down.
Commonly accepted models describing the loss of energy leading
to the observed spin evolution of pulsars are based on the emission
of magnetic dipole radiation (MDR) (Pacini 1967, 1968; Gunn &
Ostriker 1969; Hamil et al. 2015; Lyne et al. 2015; Shaw et al.
2022) and plasma wind (Goldreich & Julian 1969; Ruderman &
Sutherland 1975; Beskin, Gurevich & Istomin 1984; Xu & Qiao
2001; Spitkovsky 2006; Yue et al. 2007). As these processes carry
away angular momentum, the star’s angular velocity decreases with
time, leading to a slowing-down behaviour that has been detected in
virtually all known pulsars and in some cases monitored for more than
50yr (Hobbs, Lyne & Kramer 2010; Lyne et al. 2015; Namkham,
Jaroenjittichai & Johnston 2019; Parthasarathy et al. 2019, 2020;
Shaw et al. 2022).

* E-mail: delorenci@unifei.edu.br

When only these processes are considered, the rate at which the
rotational energy is radiated away from the pulsar is described by the
power-law decay (Shapiro & Teukolsky 1983)

E=—pIQ*Y, M

where § is a parameter whose physical meaning depends on the
adopted model, / is the moment of inertia of the star, and Q2 = 27 v
is its angular velocity, with v its rotation frequency. In equation (1)
and in what follows, a dot over a physical quantity represents its
time derivative. It should be noticed that depending on the choice for
the acceleration potential in wind models (Ruderman & Sutherland
1975; Yue et al. 2007; Li et al. 2014), different power rates for the
loss of rotational energy are possible (Zhang et al. 2022). Here, the
analysis is applicable to the models obeying the power law described
by equation (1).

The relationship between E, Q, and I is given by the torque
equation Q = (IQ)"'E, leading to

Q=-pQ. @
The parameter 8 can be evaluated for the popular MDR and wind
mechanisms, with similar orders of magnitude. For instance, in the

case of the MDR model (in units where ¢ = 1 = g, with g the
magnetic vacuum permeability) it follows that 8 = (2u’sin 2a)/(31),

© 2023 The Author(s).

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,

provided the original work is properly cited.

20z Jequieoaq 0z U0 158N Aq G8ZGZY./956./€/LZS/PI0IE/SEIu/ W00 dNo"dIUSpEoE//:SA]lY WOI) POPEOJUMOQ


http://orcid.org/0000-0002-1352-0879
http://orcid.org/0000-0001-5880-2207
http://orcid.org/0000-0002-7136-8326
http://orcid.org/0000-0002-5705-5278
mailto:delorenci@unifei.edu.br
https://creativecommons.org/licenses/by/4.0/

Figure 1. The pulsar geometric configuration: the neutron star is rotating
with angular velocity Q(#) = ¢ around the z axis while its magnetic axis is
inclined by an angle « leading to precession of the field lines. The rotation
induces a deviation from sphericity so the original sphere of radius R (dashed
grid) turns into an ellipsoid whose semi-axes depend on time through the
function b(¢) related to the ellipticity.

where u is the magnitude of the magnetic dipole moment g of the
star, making an angle o with its rotation axes, determined by €2, as
illustrated in Fig. 1. In our system of units, p is related with the
magnetic field B through © = %BR3. It is worth noting that, apart
from an overall numerical factor, the wind model yields the same
behaviour 8 ~ B2R®/I, so that the phenomenological model below
does not depend on the dominant energy loss mechanism.

More generally, the different causes behind the slowing-down phe-
nomenon can be encapsulated by the power-law formula (Goldwire &
Michel 1969) @ = —K Q", where n is the so-called braking index of
the pulsar. It is usually defined as if K were constant, namely

nE o 3
and is actually constant only for constant K.

In the context of the models mentioned above, assuming K =
constant, one naturally gets n = 3. Other models have been suggested,
in which for instance the energy loss is dominated by gravitational
waves radiation; these imply different values for the braking index,
e.g. n =5 in the case of Ref. Ostriker & Gunn (1969).

Precise measurements of the braking index of several isolated
pulsars have revealed values that are consistently different than
that predicted by assuming a constant K (see for instance Refs.
Gourgouliatos & Cumming 2015; Lyne et al. 2015; Parthasarathy
et al. 2020; Lower et al. 2021). Consequences of assuming K as
time-dependent function (Blandford & Romani 1988) have been
examined (Magalhaes, Miranda & Frajuca 2012; Lyne et al. 2015),
and depending on the way K evolves in time, the braking index can
be n # 3. Furthermore, assuming (Hamil et al. 2015) I = I[2(?)]
only is not enough to explain the present observational data for the
known isolated pulsar. It was recently shown (Hamil, Stone & Stone
2016) that a MDR-based model with a time-dependent inclination
angle o = «(f) would be a possible way to explain the phenomenon.

Isolated pulsars and the braking index 7957

All the models described above are based on the simplifying
assumption that the kinetic energy Ex of the body is only due to
its rigid rotation, i.e. Ex = %I Q2. However, a neutron star cannot be
strictly considered as rigid and even though the rotation is very slow
from the point of view of relativistic effects, with typical surface
velocities of the order of! v ~ (10~* — 1072)c, the shape should be
allowed to depend on time as this rotation may naturally induce a
flattening of the poles. In such a scenario, the kinetic energy acquires
new contributions that need to be taken into account.

It is the purpose of this work to introduce a more complete
description taking into account the variation of the internal potential
energy of a self-gravitating body (Ragazzo & Ruiz 2015). In
particular, we explore the consequences of allowing the star shape to
evolve in time, under its coupling with the rotation of the body. It is
assumed that energy can be lost in this process, a phenomenon that
could be relevant in the explanation of the measured slowing-down
of isolated pulsars. Embedding our model in a general relativistic
context goes beyond the scope of this work, and as we consider the
quasi-rigid rotation of the star, we restrict attention to the Newtonian
weak field limit; given the slow velocities involved, we expect this
approximation to be meaningful.

In the next section, the basic assumptions of the model are
described and the coupled system of non-linear differential
equations governing the evolution of the star are derived. The results
of our numerical analysis are presented in Section 3, where some
suggestive solutions are studied. In particular, we show that a pulsar
evolution with n < 3 can easily be reproduced. A comparison
between our results and the available data describing the behaviour
of the Crab pulsar is given in Section 4, before a few final and
concluding remarks in Section 5.

2 THE MODEL

Suppose the star is described as a mass distribution that is slightly
deformed compared to a spherical body and is rotating around the
z-axis with time-dependent angular velocity €2(f). We assume the
volume of the star to be that of the non-rotating sphere %rr R3, its
actual shape being ellipsoidal with two equal semi-axes in the (x, y)
—plane slightly larger than the sphere radius, i.e. (1 + b)R (see Fig. 1).
Even for the large velocities involved in a rotating neutron star, we do
not expect large deviations from sphericity and thus demand that b <
1 (Baym & Pines 1971; Cutler, Ushomirsky & Link 2003; Rencoret,
Aguilera-Gémez & Reisenegger 2021). As a result, the volume of
the ellipsoid matches that of the sphere to second order in b provided
the semi-axis in the direction of rotation is (1 — 2b)R. The location
of an arbitrary element of mass dm in the body will thus be described
by the set R = {X', Y’, Z'} such that

X \? Y \? 7 \?
< R%.
(%) (%) + (%) =

As discussed in the introduction, we expect the quantity b may not
necessarily be constant, so we anticipate that b = b(t). It is convenient
to use a coordinate system related to that of the embedding sphere,
i.e. the set {x, y, z} such that x> + y* + z? = 2, with r < R. That
is, we implement the coordinate transformation X' = (1 + b)x, V' =
(1 + D)y, and Z' = (1 — 2b)z. The volume element, as expected, is
dV =dX'dY’dZ’ = dxdydz + O®?).

The Crab is among the fastest rotating isolated pulsars with known braking
index, with velocity verb ~ 1.2 X 10~2c.

MNRAS 527, 7956-7964 (2024)
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7958 E. C. A. Araujo et al.

Let us implement a rotation R;(¢) to the body about the z-axis
by an angle ¢. The position r’ of the mass element dm is then given
by the rotation applied to its location R, i.e. '(¢, b) = Rz(p) - R'.
One therefore gets

cose sing 0 1+ 0 0 X
r'=| —sing cosg 0 0 1+b O y |, 4)
0 0 1 0 0 1-2b b4
Rz (9) R

whose modulus we denote by 7.

Since we consider a pulsar, i.e. a rotating neutron star, one now
needs to assume from that point on that both the rotation angle ¢
and the flattening of the poles depend on time. The absolute velocity,
v = ||dr’/dt||, of each mass element in such system is given by

b=\ 2 4D+ (4 IR+ P, )

where Q2 = ¢ is the angular velocity of dm around the z-axis. The
kinetic energy Ex of the star is obtained by integrating %vzdm over
the whole body volume, leading to

1.
Ex = EbZ /(x2 + 2 + 4z p(r)dv
\4

+%92(1 + b)z/(xz + y)p(r)dV, (6)
14

where p(r) is the mass-density; it should be noted at this point that this
function depends here only on the radial distance and not on time as
we assumed a constant star volume. In that case, the fluid making the
star satisfies the continuity equation (mass conservation in a fixed vol-
ume), namely 0, p + V(pv) = 0, with the velocity being orthoradial
but depending only on r, so that V(pv) = 0, and therefore 9,p = 0.
The moment of inertia / of the neutron star, seen as an idealized
spherical mass distribution rotating about the z-axis, is defined by

1= / (x> +y?) p(r)av,

which, because of the spherical symmetry, is also expressible as

I :2/px2dv :2/py2dV :2/,02de. )

For the spherical unperturbed configuration, we assume a constant
density p(r) = (p) in order to approximate the moment of inertia
by I ~ %M R?, so that B8 ~ B2R*/M, with a numerical prefactor
depending on the model.

The kinetic energy now reads

3 .01
Eq = E1b2 + 51(1 +2b)Q2% + OB). ®)

As the system evolves, the body will be allowed to oscillate. Its
potential energy E, can be expanded about b = 0, as

Ep ~ E,(0) 4 5xb?, ()

where we have used that the potential energy is minimized for the
spherical configuration, so that (0E,/0b),_, = 0. In equation (9),
we noted the elastic constant as

_(PE =37 (10
T\ o =
b=0

thereby defining the coefficient y. The seemingly arbitrary rela-
tionship between y and the elastic constant « in (10) is justified a
posteriori to lead to a simplification of the corresponding equation of
motion (16a) for b(). The leading contribution to the elastic constant

MNRAS 527, 7956-7964 (2024)

can be obtained by assuming the spherical approximation, which
leads to k &~ 24GM?/(5R), such that y ~ 4GM/R>.

Neglecting higher order terms, the Lagrangian of the system reads,
up to a constant,

1o
L=3I [36% + (1 + 2b)Q* — 3yb?] . (11)

It should be noticed at this point that the O(b?) term in the kinetic
contribution, namely %I b?Q?, has been neglected because it is
assumed to be very small when compared to yIh*> coming from
the potential energy contribution. This corresponds to assuming 22
« GMI/R?, a condition that is related to the slow rotation Newtonian
hypothesis, satisfied for the physical system under consideration.

The Euler—Lagrange equations stemming from (11) must be sup-
plemented by dissipation terms (Baillieul & Levi 1987; Ragazzo &
Ruiz 2015, 2017; Caressa & Bersani 2020), in order to account
for the radiation. For a system with degrees of freedom ¢; and
Lagrangian £(qg;, ¢;), one introduces a so-called dissipation function
D(q;, g;) such that g; D 4 represents the rate of energy loss per unit
time (power dissipated by the ‘force’D ;, = 0D/04;). The Euler—
Lagrange equations are modified to include this new force as a
(negative) source term, namely

d ( oL ) oL oD
dr \ 9¢; 0g; 3Gi

This interpretation stems from the fact that defining the energy in
the usual way through H = ¢; p' — £, with the momenta given by
p' = dL/3¢;, and using the above equation, one finds the rate of
energy loss as dH /dt = —¢; D 4, as announced.

In the case at hand, introducing the dissipation function D(¢, b),
the modified equations of motion read

oD

0b’
oD
¢’
with D taking into account the radiation emission losses and the
damping of the body oscillations.

Our simplified model relies on internal dissipation processes
associated with the quadrupole moment tensor, and we demand
that the oscillations have a small amplitude such that they should
remain linear in their time derivative. These requirements can be
achieved with the following prescription for the dissipation function
(Caressa & Bersani 2020)

3Ib+3Iyb—IQ? = (12)

d
3 (1 +20)2] = - (13)

1 3.
D= —BIQ*+ o1 b?, 14
4/3 +50 (14)

thereby defining our final phenomenological parameter o .

Now, defining the total energy E = Ex + Ej, and using the above
results, it is straightforward to evaluate the energy losses, namely
—gba—D —ba—l.) = —BIQ* —351D* (15)

¢ ob ’
which is the equation that governs the energy balance of the system.

In a scenario where MDR and plasma wind are the only processes
behind the loss of energy of a pulsar, with relative strengths to
be defined by the explicit model under consideration, equation (1)
would hold and the external torque 7. = —BIQ* would be the only
responsible for the star slowdown. However, in the more complete
scenario under investigation in this work, the evolution of the system
is governed by the set of coupled equations of motion given by
equations (12) and (13) which, after inserting equation (14), can be
presented in the more compact form as

E:
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b+ob+yb=1Q7 (16a)

Q=— 2 B Q3. (16b)
(1+2b) (1A+2b)

From the point of view of physical units, the parameters g, y, and o

are expressed respectively in's ([8] = T), s~ ([y] = T2), and s~!

(lo]1=T").

The dissipation contribution in the equation of motion (16a) for
b(¢) naturally imposes a time-evolving equilibrium point for this
function, which is given by ©2/(3y). It is worth mentioning that had
the O(b?) kinetic term been kept in equation (11), this equilibrium
point would have been corrected to b(¢) ~ [Q2/(3y)][1 + Q2/(3y)],
a much higher order correction: our initial approximation to neglect
O(b?) contribution to the kinetic energy is justified for the physical
systems discussed in this work.

Before closing this section, a few words about angular momentum
conservation are in order. First, in our model, the quantity 7 =
I(1 4 b)? is identified as the time-dependent effective moment of
inertia of the body, thus making equation (16b) the equation of motion
relating the total angular momentum L =7 with the external
torque produced by the radiation emission. Naturally, in the absence
of external torque, the angular momentum is a conserved quantity,
i.e. when 7o = —0D/0¢ = 0. As expected, internal processes, as
those described by the second term in the rhs of equation (14), do not
interfere with the angular momentum conservation law. Finally, it
should be emphasized that when the moment of inertia is allowed to
vary with time, %I Q? will not be the only contribution to the kinetic
energy of the body, as clearly emphasized by equation (8). The time
evolution of the angular momentum is governed by €(#), and also
by Z(¢) through b(f). These functions are solutions of the coupled
differential equations of motion (16) that naturally follow from the
Lagrangian method.

3 MODELLING A PULSAR SLOWDOWN

Quantities like the mass of the pulsar, its radius, or the strength of
the field at its magnetic pole are not known with great precision, and
these values can also be model dependent. For instance, the mass of
a pulsar, like Crab and others, is usually taken to be approximately
1.4 Mg, with M, the solar mass (Shapiro & Teukolsky 1983). The
goal of this work is to test if our theoretical model is able to produce
acceptable solutions to the problem of pulsars slowdown, i.e. if a
braking less than 3 is possible when the oscillations described by
b(t) are taken into account.

Using the results obtained in the last section, the parameters S
and y can be conveniently expressed in terms of M, and the typical
values for the radius and the magnetic dipole field of a certain class
of known pulsars, namely

2 4
B~ 1.485 x 107181, Mo d R s, a7
M 108T 10km

M 10km\*
y ~ 5307 x 10° (—) (7”’) 52, (18)
Mo R

where we have used the expressions for / and p assuming a spherical
star, and Y, is a numerical value that depends on the specific choice
of MDR or plasma wind models. For instance, MDR model leads
to Yypr = (5/12) sin® a, while a plasma-wind model (Xu & Qiao
2001; Li et al. 2014) leads to Yy = (5/4)(A¢/Ad) cos® a, where
A¢ denotes the acceleration electric potential whose maximum value

Isolated pulsars and the braking index 7959

is A®. It is interesting to notice that assuming A¢ ~ A®/3 results
in Yy = (5/12) cos? a, which coincides with Yy for o = /4.

In the subsequent numerical calculations and for definiteness, we
assume specific values for the neutron star model. To begin with, we
assumed the mass M to be M — 1.4 M. Now, conveniently setting
y A 1.583 x 10® s72 in the simulations and using equation (18), it
follows that the star radius in this model is R = 1.674 x 10*m.
Similarly, by setting 8 & 3.542 x 107! s and plugging in the above
values of M and R into equation (17), using the MDR model with
a misalignment angle o« = (7/4)rad to estimate the parameter Y p,,
namely Yypr = 5/24, we obtain a magnetic dipole generating a field
amplitude B = 1.428 x 10° T, which denotes the magnitude of the
field at the pole of the star (Shapiro & Teukolsky 1983).

As already discussed, the value of Y, is the only one which
explicitly depends on the specific model describing the radiative
processes involved in the loss of rotational energy of the pulsar.
Given the degeneracy in the choice of the parameters, a different
value for the model-dependent parameter Y, can be associated with
the same value of 8. The remaining parameter ¢ is associated to
the dissipation processes during the oscillations of the quadrupole
moment of the body, and can be adjusted in the numerical calculations
in order to obtain the braking index of the pulsar.

Following the model described in the previous section, the evolu-
tion of the system is governed by the coupled non-linear differential
equations given by equations (16). The initial angular velocity is set
to be ©(0) = 188.5rad - s~!. The initial deformation of the body,
b(0), is assumed to be the equilibrium value of b(#) in equation (16b),
i.e. b(0) = Q(0)*/(3y) ~7.482 x 107>, for which b(0) was set to zero.

In a fashion similar to that present in the analysis in the existing
literature for the calculation of the braking index of the Crab pulsar
(Lyne et al. 2015), we consider here the following method, that can
be applied to both simulated or measured data:

(i) Let (¢, Q) = (&, ), for k = 1, ---, N, denote the complete
time-series for the angular velocity of the pulsar;

(ii) For each j such that 1 < j < N, the cumulative braking index
at time ¢#; is computed by fitting the points (#, £2;), where k = 1, ---,
J» with the 3rd-degree polynomial

3
PC;j([) = Zak;j (l - [C;j)ka

k=0

where tc;; = % (tj — to) is the half time of the interval [, #;], and the

corresponding braking index at #; is given by equation (3), reading

here

Pc;j(f_c:zj)Pc;j(fc;j) PLTLR (19)
Pej(te;) at,;

nc(tj) =

(iii) The local braking index at time t; must be determined over
each data subset with a fixed size AN € N as illustrated below:

G-AN)
| | |
1 | I | N

[N —
AN

In this case, for each AN < j < N, the local braking index at time ;
> tan is computed by fitting the points (#, €2;), where k =j — AN,
-+, j, with the 3rd-degree polynomial

3
PLi@t) = Z by (’ - tL:j)k ’

k=0

where #,;; = % (tj_AN + tj) is the centre of the interval [z _ ay, 1],
and the corresponding local braking index is again given by equation

MNRAS 527, 7956-7964 (2024)
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Figure 2. Cumulative [upper panel, equation (19)] and local [lower panel,
equation (20)] braking indices calculated from the simulation data for some
representative values of the dissipation parameter o. Note that there is no
direct relationship between the magnitude of the dissipation process and
the order of the braking indices when small variations of o are considered.
However, on average, a more intense dissipation process (larger o values)
leads to smaller values for the braking index.

(3), namely

151‘;,'(1‘14;1')131‘;1'(11‘;/') _ 2b2;jb0;j
PLz;j(tL;j) b%;j

nut)) = 20)

An extrapolation-algorithm, based on the explicit midpoint rule,
with step size control and order selection [see Section 1.9 from Ref.
(Hairer, Ngrsett & Wanner 1993)] was used to numerically integrate
the coupled system described by equations (16a) and (16b), leading
to the results depicted in Figs 2 and 3. The integration spans a time
window of about 5 yr, which was enough to obtain solutions with
stable braking indices. In fact, after a short time of instability, n(f)
eventually behaves as a slowly evolving function of time, as it can
be confirmed by direct inspection of Fig. 2, where some solutions
presenting positive braking indices were selected.

The magnitude of the dissipation process associated with the
quadrupole oscillations is dominant in determining the behaviour
of the braking index of the system. Processes for which o is of
the order of 0.01 Hz lead to braking indices around n = 3, which
is the expected result when the pulsar’s rotational energy is taken
away only by means of magnetic dipole radiation. However, for
higher values of o, richer scenarios appear, as shown in Fig. 2.
In particular, when o =~ 2 Hz, the solutions exhibit braking indices
around 2.5. Small variations of o lead to different solutions for n(7).
On the other hand, this function does not seem to be very sensitive to
small variations of the other parameters. The local behaviour of the
braking index, depicted in the lower panel of Fig. 2, was obtained
using a moving average (AN) of 400 d, which explains why it starts
after the cumulative index (upper panel). When a sufficiently high
dissipation process is taken into account, the simulations suggest
that even negative braking indices are possible solutions. This is an
aspect that deserves further examination.

MNRAS 527, 7956-7964 (2024)
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Figure 3. Time evolution of b(7) as the pulsar slows down. The upper inset
depicts the behaviour of the normalized b(t), obtained when its time-evolving
equilibrium point Q(t)z/(3y) is subtracted, thus showing that it is a highly
oscillating function in time but on a small amplitude scale. The lower inset
presents a close-up of the normalized curve (about day 2000) in a scale
of milliseconds, showing that the oscillations occur with a well defined
frequency, approximately the natural frequency ,/y/(27) of the harmonic
oscillator described by equation (12).

The behaviour of the angular velocity is very similar for all
solutions examined in Fig. 2. If the curves corresponding to the
angular velocities for these models were included in a same plot,
almost no visual difference would be seen. In fact, it can be shown
that for any instant of time in the simulations, the difference between
the angular velocities of any of these solutions is smaller than
10~3Hz.

The behaviour of b(f) for the model with ¢ = 1.995s~! is shown
in Fig. 3. In the plot scale it looks like a slowly decreasing
monotonic function of time. However, a more detailed examina-
tion shows that b(7) is a highly oscillatory function around the
time-dependent equilibrium point Q2(£)/(3y), as highlighted in the
inserts. Indeed, due to their mutual coupling, both b(f) and (r)
decompose into a slow monotonically decreasing component and
a fast (and tiny) oscillatory component; the slow component can
be extracted out by calculating the difference b(f) — Q*(t)/(3y).
Thus, as the system loses energy by means of radiation emission
and oscillation damping, as effectively described by equation (15), it
will slow-down its rotation frequency and also the amplitude of the
oscillations.

The evolution of the rotation frequency corresponding to the model
with o = 1.995s7! is depicted in Fig. 4(a), which is a solution
presenting a braking index of approximately 2.5. The other panels in
the figure show the residuals of the first, second, and third order,
which were obtained following the standard procedure [see for
instance the analysis for the Crab pulsar (Lyne et al. 2015)]: the
data set is fitted by means of a k-degree polynomial, which can be
written as v(t) = Zf:o ci(t — 1) + 8v®, where 1, is chosen, for
instance, to be the medium time of the data set, the coefficients
¢; are obtained by the fitting procedure, and the time-dependent
function §v® is the k-th order residual obtained when the k-th
order fitting polynomial is subtracted from the data. For instance,
Fig. 4(b) depicts the first-order residual sV = [v(f)|gaa — [co +
c1(t — to)], where 1y = 9.299 x 107 s &~ 1076 d, ¢y ~ 29.97 Hz, and
] &~ —3.757 x 10710572,

As it is well known, the gradual deceleration of the rotational
frequency of an isolated pulsar experiences sudden and occasional
changes, followed by a period of partial recovery to the previ-
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Figure 4. Rotational frequency (a) and residuals of the first (b), second (c),
and third-order (d) shown as functions of time (in days) for the simulation
data corresponding to a dissipation parameter ¢ = 1.995 s~!. The cumulative
braking index corresponding to this simulation data, after about 6yr of
integration time, achieves a value of approximately 2.5, as can be inferred
by direct inspection of Fig. 2. The initial frequency in this simulation was
30.00 Hz.

ous regular rotational rate. This phenomenon is referred to as a
glitch and is attributed to complex processes taking place within
the star’s internal fluid (Lyne, Pritchard & Graham Smith 1993;
Antonopoulou, Haskell & Espinoza 2022). If we examine the
residuals at the second and third order in Fig. 4, we can observe
irregularities that cannot be attributed to numerical errors. They
can be interpreted as very short moments in time during which
the angular velocity is suddenly changed before the star returns
to its original state. That could be interpreted as micro-glitches: a
more realistic model would describe for instance various rotating
shells, all of which would be subject to equations similar to those
presented here and somehow interacting. Could such a more elab-
orate model enhance this phenomenon to the level of the observed
glitches?
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Figure 5. Rotation frequency and residuals of the Crab pulsar, according to
data collected from 1982 February to 2022 August (http://www.jb.man.ac.uk/
pulsar/crab.html). The starting time in this figure corresponds to MJD 45015,
for which the measured frequency was v = 30.0592241133 Hz. The residuals
of second and third orders, depicted in panels (c) and (d), respectively, clearly
show a rich glitch activity of the pulsar in this period.

4 A NOTE ABOUT GLITCHES: THE
BEHAVIOUR OF THE CRAB PULSAR

Having described our simple model, one wants to compare with the
existing data relevant to the dynamical range under investigation. The
best example one can think of is provided by the enormous amount
of data available concerning the Crab pulsar.

The Crab pulsar (PSR B0531+21) is an isolated neutron star whose
angular velocity deceleration has been measured since the 1970s
(Gullahorn et al. 1977). Monthly spaced pulsar timing measurements
have been taken by Jodrell Bank Observatory since 1982 (Lyne et
al. 1993). In Fig. 5(a), the rotation frequency measured for the Crab
pulsar is shown as a function of time, from MJD 45 015 (1982 Febru-
ary 15) to MJD 59 806 (2022 August 15) (the data are available at
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Figure 6. Braking index as function of time for the Crab pulsar. Here the
index is calculated using the cumulative and local procedures discussed in the
last section, as depicted in upper and lower panels, respectively. A moving
average with AN = 30 was here used to obtain the local index.

http://www.jb.man.ac.uk/pulsar/crab.html). The residuals are shown
from top to bottom [panels (b) to (d)], where the coefficients of the
third-order polynomial fitting are f, = 6.389712 x 10%s = 7395.5d,
co ~ 31.36Hz, ¢; ~ —4.205 x 10719572, ¢, ~ 6.728 x 1072 573,
and c3 ~ —1.260 x 10731 g7,

This system has occasional glitches, in which the star is spinned-
up for a short period of time and returns to its former rotation
frequency within an interval of about 20 d. The glitch activities can
be clearly seen in Fig. 5(c) and 5(d). They contribute massively to
the cumulative braking index. The cumulative and local indices agree
with the constant value n ~ 2.5 if and only if they are computed in an
interval not containing a glitch. However, the cumulative braking
index decreases monotonically in time as multiple intervals are
included in the data set so that its final value reaches n &~ 2.3 (Lyne
et al. 2015).

Cumulative and local behaviours of the braking index with time are
shown in Fig. 6, upper and lower panels, respectively. In particular,
the local index as a function of time (in months) is shown in lower
panel of Fig. 6, where the moving average was calculated using
a window containing 30 successive measurements. It can be seen
that after each glitch, the braking index returns approximately to the
value it had before the glitch, and this happens in less than a month.
However, its influence in the local braking index calculation goes
way longer, an aspect that is dependent on the choice of AN.

Itis noteworthy that in the simulations leading to Fig. 4, the chosen
values for the physical parameters of the system are comparable to
those typically employed to describe the Crab pulsar. Particularly, if
we use the data from Crab timing measurements (Lyne et al. 1993)
and adjust a cubic polynomial to it, as given by equation (2), we obtain
B =3.573 x 107'%s, which is approximately the value used in the
simulations described in Section 3. Additionally, the obtained local
braking index approximately aligns with the measured value for the
Crab pulsar. This parallel suggests that the simulated system shares
similarities with the Crab pulsar, potentially indicating comparable
underlying dissipative mechanisms at work, which would lead us

MNRAS 527, 7956-7964 (2024)

to suggest that o & 2s is expected in systems like Crab. However,
in order to establish a conclusive connection between the simulated
system and the Crab pulsar, further simulations and comparisons
would be necessary.

5 FINAL REMARKS

In this work, we explored the idea that as radiation is emitted by
an isolated pulsar, its energy is continuously driven away, causing
a slow-down of its spin, and a possible modification of the shape
of the star. Although the radiation emission (MDR or plasma
wind) is largely considered in the literature, adding a perturbation
in its ellipsoidal shape by means of small oscillations has never
been considered. As the star cannot be strictly rigid, oscillations
are expected: they are produced almost in a stationary regime
as it is linked to the spin slow-down process. These oscillations
must be dissipated by internal phenomena leading to a secondary
form of energy loss by the star. The possible mechanisms behind
such dissipation of energy were not considered in details in this
work. Instead, it was assumed that the effect is described by an
effective damping process that is dependent of the velocity square
of the quadrupole moment oscillations, leading to a forced (by
means of radiation emission) and damped linear differential equa-
tion governing the evolution of the body oscillations. In planetary
tide theory terminology, this equation describes a Kelvin—Voigt
damping of the quadrupole moment oscillations, endowed with a
deformation inertia term (Correia, Ragazzo & Ruiz 2018). Addi-
tionally, the equation of motion for the angular velocity couples
to the quadrupole oscillations, as described by equation (16), thus
extending beyond previous treatments (Pacini 1968; Gunn & Ostriker
1969; Magalhaes et al. 2012; Hamil et al. 2015). As a consequence
of this description, solutions presenting braking indices below
the predicted value for a simple radiative model (n = 3) were
found by means of numerical calculations. In particular, we found
that there exist choices for the phenomenological parameters for
which the solutions exhibit values similar to those measured in
isolated young pulsars (Gourgouliatos & Cumming 2015; Lyne et al.
2015).

A potential direction for further research would involve establish-
ing a connection between the damping effect, which is effectively
described by the second term in the dissipation function D, as defined
in equation (14), and physical processes that could be associated
with energy loss driven by quadrupole oscillations. Among the
possibilities, thermal and gravitational radiation emissions are the
most anticipated causes [see e.g. Chau (1967) for a calculation of
the continuous emission of gravitational radiation from pulsars].
Obtaining an actual value for the parameter o for a given star from
first principles requires a complete model which, as far as we know,
is not yet available.

It should be noticed that the braking index calculated by means of
the cumulative method is highly dependent on the initial conditions
of the system. Furthermore, if glitches occur during the evolution, as
is the case in most of the isolated young pulsars, they can significantly
contribute to the value of this index. This aspect can be appreciated,
for instance, in the case of the Crab pulsar (Lyne et al. 2015), where
the value of n calculated by means of the local method results in
n, = 2.51, while the cumulative method leads to n. = 2.34. If the
data set is restricted to the period from 1982 onwards, the cumulative
method would result in a different value, while the local index would
not be significantly affected, as discussed in the previous section.
This suggests that the local method provides a more robust index to
describe the slow-down of isolated pulsars.
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The exact reason behind the occurrence of glitches in an isolated
pulsar is still a matter of investigation (Espinoza et al. 2014;
Antonopoulou et al. 2022). Most likely, they are associated with
redistribution of mass in short time intervals activated by resonance
phenomena throughout the evolution of the system. After a glitch,
the system approximately returns smoothly to its former state. In
the idealized model we investigated here, it is assumed that the
shape of the star evolves in time, as governed by the oscillating
function b(¢). Thus, after the initial transient, the ellipsoid describing
the star’s surface will oscillate with an almost constant amplitude.
In this scenario, localized sub-micro glitches are expected to occur
all the time, as suggested by the zigzags in the second and third-
order residuals appearing in Fig. 4. A more elaborate model could
shed more light on this important issue. Consider a multilayer
model for instance. In such a model, resonance effects between
the different layer oscillations could lead to significant angular
momentum redistribution (Anderson & Itoh 1975; Haskell & Melatos
2015), and possibly to macroscopic glitches, that would then have to
be compared to those observed in isolated pulsars. This is an issue
that deserves investigation.

A note about the meaning of the b(f) function is in order. First
of all, b(r) gives the magnitude of the ellipticity of the star at a
given time ¢. It is expected that the equilibrium form of a young
pulsar [also denoted as non-spherical relaxed configuration (Gittins,
Andersson & Jones 2021)] is reached when its crust solidifies at
a given time 7 during its evolution. At this instant, according to
the model here investigated, the pulsar’s ellipticity is determined
by the local equilibrium expression b(f) = Q(¢)*/(3y). For times
t > 1, as the angular velocity of the star decreases, e.g. due to the
loss of its rotational energy, stresses will arise and the crust shape
will evolve from its initial equilibrium state. Numerical solutions
for the coupled system discussed in the previous sections show that
b(t) is a decreasing oscillatory function of time, whose magnitude
deviates from its initial value b(0) &~ 10~ by about 10~° per year,
while its amplitude of oscillation is of the order of 10~!8. Thus, 10~°
should be understood as the ellipticity relative to its value at the
initial equilibrium configuration. It is interesting to notice that recent
publications [see for instance Gittins et al. (2021) and references
therein] have argued that a maximum deviation (‘mountains’) from
the equilibrium shape of a neutron star may be something related
to a relative ellipticity of about 108 (the modulus of the difference
between the ellipticity of the relaxed and strained star). Thus, it is
expected that as the pulsar evolves in time the star crust will break
when stresses overcome a certain critical value. This is a possible
scenario for the occurrence of macro glitches (Baym & Pines 1971).

Among the possible applications of this work, it should be
mentioned that the experimental knowledge of the rotation frequency
curve of a given pulsar could be used as a starting point to find the
best set of physical parameters behind its behaviour. It should be
noted however that the damping effects over the oscillations due to
emission of thermal radiation and quadrupole gravitational radiation
for instance, are not yet fully understood for such systems and also
deserve further investigation. Models assuming different forms for
the dissipation function and its implications in the possible values of
n could be of great value in such investigations.
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