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Abstract

The exponential growth of astronomical literature poses significant challenges for researchers navigating and
synthesizing general insights or even domain-specific knowledge. We present pathfinder, a machine learning
framework designed to enable literature review and knowledge discovery in astronomy, focusing on semantic
searching with natural language instead of syntactic searches with keywords. Utilizing state-of-the-art large
language models (LLMs) and a corpus of 385,166 peer-reviewed papers from the Astrophysics Data System,
pathfinder offers an innovative approach to scientific inquiry and literature exploration. Our framework
couples advanced retrieval techniques with LLM-based synthesis to search astronomical literature by semantic
context as a complement to currently existing methods that use keywords or citation graphs. It addresses
complexities of jargon, named entities, and temporal aspects through time-based and citation-based weighting
schemes. We demonstrate the tool’s versatility through case studies, showcasing its application in various research
scenarios. The system’s performance is evaluated using custom benchmarks, including single-paper and multipaper
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tasks. Beyond literature review, pathfinder offers unique capabilities for reformatting answers in ways that are
accessible to various audiences (e.g., in a different language or as simplified text), visualizing research landscapes,
and tracking the impact of observatories and methodologies. This tool represents a significant advancement in
applying artificial intelligence to astronomical research, aiding researchers at all career stages in navigating modern
astronomy literature.

Unified Astronomy Thesaurus concepts: Astronomical reference materials (90); Astronomy web services (1856);
History of astronomy (1868); Computational methods (1965); Astronomy data visualization (1968)

1. Introduction

As one of the oldest scientific disciplines, astronomy has
amassed an enormous body of literature over time. Modern
astronomical libraries and recordkeeping services like the
Astronomical Data System (ADS; A. Accomazzi et al. 2015)
and preprint servers like arXiv provide lasting repositories for
accessing current research on various astronomical subfields,
with records on ADS extending back to the early 16th century.
As the body of astronomical literature grows (at an ever-
accelerating rate), this creates a growing problem of keeping
track of the literature, with it becoming harder over time to
keep track of relevant papers and contextualize the information
contained in them while writing new papers. In fact, with the
advent of new observatories like the Atacama Large Milli-
meter/submillimeter Array (ALMA) and JWST and new
modalities of observations like gravitational waves, the
literature has become challenging for even experienced
researchers to keep pace with. This is exacerbated by a
growing need for interdisciplinary efforts, which means that
astronomers often need to keep track of multiple fields of
literature, such as electronics and instrumentation, high-
performance computing, statistics, machine learning, and
computer vision.

At best, this leads to a much larger amount of time and effort
spent in organizing and cataloging papers for individual
researchers, and at worst it can lead to a splintering of the
research landscape with researchers resorting to a friends-of-
friends or in-group citation framework while writing papers.
This situation also creates a barrier to entry for aspiring
students and researchers trying to enter the field and perform
their first literature search, especially in the absence of an
authoritative review on their chosen topic.

While this is also true of fields other than astronomy, we
have the unique distinction of having a large body of publicly
accessible data, code and literature (F. Genova 2023), which
provides a unique opportunity for developing methods that can
ingest, retrieve, and synthesize literature in a way that is useful
for a wide range of audiences (K. G. Iyer 2021; J.-V. Rodríguez
et al. 2022; S. Blanco-Cuaresma et al. 2023; T. Dung Nguyen
et al. 2023; F. Grezes et al. 2024). To this end, we explore the
use of state-of-the-art machine learning methods in conjunction
with a corpus of papers from ADS and arXiv to find relevant
literature and provide initial starting points for answering
questions across a variety of levels.

Large language models (LLMs) have seen rapid advance-
ment and adoption in recent years, with models like GPT-4
(A. OpenAI 2024) and LLaMA (H. Touvron et al. 2023)
demonstrating impressive capabilities across a wide range of
tasks. In academic contexts, LLMs are increasingly being used
to assist with explaining advanced concepts (E. Prihar et al.
2023) and perform literature review (Y. Li et al. 2024; K. Tao
et al. 2024), and possibly with writing papers (W. Liang et al.
2024a), even in astronomy (S. Astarita et al. 2024). However,

their application remains controversial due to concerns about
accuracy, bias, accidental plagiarism (N. Pervez & A. J. Titus
2024), and the potential for hallucination (e.g., V. Rawte et al.
2023; Y. Zhang et al. 2023). Despite these challenges, many
researchers are exploring ways to leverage LLMs as tools to
augment human expertise and accelerate scientific discovery
(R. Van Noorden & J. M. Perkel 2023), in particular in fields with
vast and rapidly growing bodies of literature, like astronomy.
The notion of using machine learning methods for improving

literature surveys is not a particularly new concept, and such tools
have been accessible since the early 1990s with methods like
n-grams (W. B. Cavnar & J. M. Trenkle et al. 1994; G. Kondrak
2005), bag-of-words (Y. Zhang et al. 2010), or transformer-based
models like BERT (J. Devlin 2018). Versions of these methods
including AstroBERT (F. Grezes et al. 2024) and more recently
AstroLLaMA (T. Dung Nguyen et al. 2023) have been applied to
large corpora of astronomical data as proof-of-concept techniques
to showcase how natural language processing (NLP) and newer
language models can successfully ingest astronomical keywords
and scientific jargon. Here, we provide a working pipeline to
show how these models can be combined with techniques like
retrieval-augmented generation (RAG) and agentic LLMs to
capture significantly more semantic context and provide halluci-
nation-free literature review at a fraction of the time and cost of
manually searching for papers on a given topic. We stress that this
is not meant to be a replacement for existing search tools like
arxiv.org, the ADS, Google Scholar, Benty-Fields or Arxivsorter,
but rather a complement to them, with three key advantages: (1)
the ability to query the system using natural language, (2) added
synthesis to generate a targeted summary of the retrieved
documents in context to the question, and (3) exploratory tools
to find similar papers in an interpretable embedding space.
To do this, we present the pathfinder framework,34 an

open-source, publicly available tool that uses LLMs to answer
natural-language astronomy questions using a corpus of
∼385,000 peer-reviewed papers from ADS going back to
1990. The framework is presented both as open-source code
and as an online tool that can be used to find relevant literature,
answer questions, and explore the corpus of papers. The current
version of the tool uses only abstracts, but can be extended
to full text in the future. In this paper, we explore the use of
pathfinder to (i) visualize papers as a “landscape” of
astronomy research, (ii) find similar/relevant papers by performing
a similarity search in embedding space, (iii) answer questions
without hallucinations using the embedding space, (iv) explore the
impact of different telescopes and observatories on the landscape of
research, (v) explore the trends of authors over time, (vi) quantify
missing areas that need to be developed further and find areas of
interest for future surveys and facilities.
The structure of this paper is as follows. In Section 2, we

describe the data set used to retrieve papers from. In Section 3,

34 https://huggingface.co/spaces/kiyer/pathfinder
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we describe the overall pathfinder pipeline. In Section 4,
we describe evaluation benchmarks used while developing the
model. Section 5 describes ways for users to interact with and
use pathfinder, and provides some case studies that
demonstrate its behavior across different types of questions. In
Section 6, we present some larger trends analyzed with the
pathfinder framework. Section 7 concludes and sum-
marizes the paper and the scope for future work.

2. Data Set

We have compiled a data set of ∼385,000 paper abstracts
from the ADS35 and arxiv.org,36 along with associated
metadata including paper titles, publication dates, DOIs, author
and affiliation information, and ADS keywords and bibcodes.
We have also scraped the bibcodes for papers referenced in and
citing any given paper in the data set, which can be used to
further expand the database in future iterations. In addition to
this, we have used natural language tools (spacy running
en_core_web_sm) to determine a set of 20 keywords for
each abstract, along with LLM-generated embeddings for each
abstract as described in Section 3. The keywords are
subsequently used to annotate figures and implement keyword
weighting while retrieving papers.

The majority of the papers in our current corpus are drawn
from an existing list of ∼270,000 papers classified as astro-
ph from the Kaggle arXiv data set,37 which contains papers
from 1992 April to 2023 July (similar to AstroLLaMA;
T. Dung Nguyen et al. 2023; E. Perkowski et al. 2024). These
papers are further augmented using metadata (bibcodes,
citations, dates, authors, and affiliations) from ADS. Since
there are a number of papers that are not on arxiv.org, we
subsequently query ADS for papers from 1990 January to 2024
September to find papers that are not in our data set and add
them, bringing our corpus to N= 385,166. This set will be
updated periodically to keep up-to-date with the current
literature, and augmented by a corpus of older papers processed
with optical character recognition (OCR) as part of future work
(J. P. Naiman et al. 2023). The data set is publicly available
online.38 While this is not a complete corpus and primarily
draws from the ApJ, MNRAS, A&A, ARA&A, Nature,
Science, PASA, PASP, and PASJ families of journals, it
includes a large sample of relevant work that can be used to test
the framework.

3. Building pathfinder

This section briefly describes the methods used to construct
pathfinder. The codebase is public and available at the
pathfinder repository.39 Briefly, the pipeline is an
augmented version of RAG. In standard RAG, the system first
retrieves a set of relevant documents for any input user query,
and then uses the information therein to synthesize its answer.
pathfinderʼs augmentations include question categoriza-
tion, query expansion, reranking, the ability to filter by date,
citations and keywords and an alternative reason-thought-act–
based framework for synthesizing answers, described in further
detail in the following sections. Figure 1 shows a schematic of
the procedure described in this section.

3.1. Generation

We first describe the generation step (right-hand side of
Figure 1), which uses the retrieved papers and associated
metadata to generate an answer to the user’s query.

3.1.1. Generating Embeddings

We compute embeddings for each abstract in our corpus using
the text-embedding-3-small model from OpenAI,40

which is used to encode each abstract into a 1536-dimensional
vector. Once the embeddings are computed, we use uniform
manifold approximation and projection (UMAP41; L. McInnes
et al. 2018) to create a two-dimensional embedding of the high-
dimensional vector space for easier visualization and further
analysis. A heatmap of the embedding space is provided in
Figure 2, with the different regions annotated with their most
frequently occurring keywords for clarity.

3.1.2. Text Generation with RAG

Generally, question–answer applications involving LLMs
generate an answer following a template (sometimes called a
prompt) in response to a query. However, in doing so, there is a
danger that the model may output factually incorrect informa-
tion and lack access to all the available information needed to
reply (S. Roller et al. 2021). To handle both of these problems,
RAG forces the LLM to generate the response while using (and
possibly citing) a set of document sources (P. Lewis et al. 2020;
K. Shuster et al. 2021). Given an input query, we first search
the full space of papers to find a subset of ∼1–30 papers that

Figure 1. Schematic showing the overall pathfinder pipeline.

35 https://ui.adsabs.harvard.edu/help/api/
36 https://info.arxiv.org/help/api/index.html
37 https://www.kaggle.com/Cornell-University/arxiv
38 https://huggingface.co/data sets/kiyer/pathfinder_arxiv_data

39 https://huggingface.co/spaces/kiyer/pathfinder/tree/main
40 https://platform.openai.com/docs/guides/embeddings
41 https://umap-learn.readthedocs.io/en/latest/
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Figure 2. A heatmap showing a 2D UMAP projection of the 1536-dimensional embedding space of that shows the different areas of the astro-ph literature corpus. The
heatmap color denotes the density of papers in different parts of the corpus, with the auto-tagging keywords at various locations shown to illustrate the way the
embeddings group the different topics by semantic similarity. Similar to a world map, the axes here do not hold a particular meaning. Regions close to each other hold
a semantic similarity, while distant regions do not.
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are relevant to the input query, retrieved using the methods
described in Section 3.2. We then use langchain42 to set up
the RAG system, where the query is passed in along with the
abstracts of the papers broken down into chunks for the LLM to
then construct an answer. The input prompt template also
requires the LLM to be succinct in its responses and respond
with “I do not know” if the LLM does not find sources relevant
to the query.

3.1.3. Text Generation with ReAct Agents

While many of the questions that astronomers tend to ask
tools like pathfinder will be factual and need efficient
similarity search and synthesis, others are more involved and
require multiple lookups to answer. These tend to be questions
that require resolving multiple conflicting viewpoints (con-
sensus evaluation), combining information across multiple
topics (composition), or speculating beyond available data
(counterfactual; see Section 4.4 for a fuller description of the
different types of questions).

A limitation of the RAG framework is that it is incapable of
directly answering these questions. To provide a basic framework
that can be used to tackle these questions, we use Reasoning and
Acting agents (ReAct; S. Yao et al. 2022), an approach that
combines reasoning and acting in LLMs, allowing them to break
down complex tasks into more atomic steps and execute them,
combined with the RAG framework we have used thus far. Briefly,
this system involves pathfinder receiving an input query,
followed by the ReAct agent using a LLM to reason about the task
and break it down into steps. For each step, the agent acts by using
RAG to retrieve relevant information from the paper corpus. It uses
the retrieved information to further analyze the data and make
queries until it has enough knowledge to answer the question or
runs up against the number of allowed iterations. The system is not
perfect, with the LLM sometimes stalling in a process loop where it
cannot find an ideal way to phrase a question. Newer methods exist
to use search trees (S. Yao et al. 2024) or knowledge graphs
(M. Besta et al. 2024) to circumvent these issues. However, given
the relatively small number of these questions we found users to
ask, those are out of the scope of current work, and will be left for
future upgrades in pathfinder.

3.2. Retrieval

Because the retrieved documents will strongly impact text
generation, it is vital to ensure that we retrieve the most
relevant documents to a user’s input query. This section
describes the procedure by which we retrieve ∼1–30 “top-k”
papers (see left-hand side of Figure 1).

3.2.1. Semantic Search and Embeddings

One of pathfinderʼs key functionalities is to find similar
papers given a natural-language query (building on earlier
work; e.g., K. G. Iyer 2021). For this, it is important to be able
to compare the vector corresponding to a query (computed
using the same way as the embeddings for the abstracts) to
those of paper abstracts and compute a similarity score. In
principle, this can be done using any distance metric, and in the
current application we use cosine similarity implemented using
the Facebook AI Similarity Search (FAISS43) package. FAISS

is capable of processing on GPUs and scaling to extremely
large data sets (J. Johnson et al. 2017), making our method
future-proof for applications to large corpora of literature.

3.2.2. Generating Keywords from Abstracts

We compute a set of keywords for each abstract using the
textrank algorithm, set up to identify nouns, adjectives, and
proper nouns in any input text. For the current application, this
has been implemented using the en_core_web_sm model in
the spacy NLP package.44 This is followed by running a
peak-finding algorithm in the 2D UMAP embedding space to
identify regions where there is a high concentration of papers.
For each peak, we consider all papers within a certain radius
and identify the most frequently occurring keywords for all the
papers in that cluster, and then repeat this for all the clusters in our
space, followed by an LLM query to synthesize the keyword into
an overarching topic or facility (e.g., “solar astrophysics” or
“gravitational waves: LIGO”). While this provides a way to
automatically tag a given space and provide a preliminary
understanding of how papers are clustered, it can be sensitive to
choices in tokenizing and clustering. These topics are shown in
Figure 2, and can be compared to existing keywords from the
Unified Astronomy Thesaurus (UAT) in Figure 3.

3.2.3. Weighting Schemes: Keywords, Time Stamps, and Citations

An overall goal of pathfinder is to return both relevant
and trustworthy documents from the literature. Although we
redirect bibliometric questions to complementary services like
ADS, we find that astronomy-related literature queries are often
highly dependent on specific key terms (e.g., what are the main
results from the CEERS survey?), the time of publication (e.g.,
what is the highest-redshift galaxy currently?) or citations (e.g.,
what is the prevalent theory on why galaxies quench?). To help
optimize retrieval, we provide toggles that implement weight-
ing by these quantities.
Keyword weighting. Keywords can be astronomical jargon,

named objects, or any user-specified string, and are compared
against the keywords generated in the previous section. When
keyword filtering is active, if a specific keyword is input by the user
or if a named entity is detected in the query, semantic retrieval is
heavily weighted toward documents with matching keywords.
Time weighting. We implement a relative-time weighting

scheme to preferentially retrieve documents from the right time
window, with functional form

( ) ( )( )w e1 1 , 1t i
t t

,
0.7inow paper,= + -

where the difference in time is calculated in years. This
sigmoidal form is chosen to smoothly weight recent papers,
with the specific numbers chosen to penalize papers that are
over ∼5 yr older.
Citation weighting. We also provide users with the ability to

apply citation-based weighting to preferentially return highly
cited literature, with functional form

( ) ( )( )w e1 1 . 2n i
n

,
300 42ipaper,= + -

These weights are applied after retrieving a large number of
papers (top-k= 1000) prior to subsequently reranking and
taking the returning the requested top-k papers.

42 https://github.com/langchain-ai/langchain
43 https://github.com/facebookresearch/faiss 44 https://spacy.io/models/en
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3.2.4. Query Expansion and HyDE

Query expansion and Hypothetical Document Embeddings
(HyDE) are techniques employed to enhance the retrieval process
by bridging the semantic gap between queries and relevant
documents (C. D. Manning et al. 2008). In our implementation,

we use HyDE to rewrite the initial query into a more
comprehensive and domain-specific abstract, building upon the
work of L. Gao et al. (2022). This process leverages an LLM
prompted to act as an expert astronomer, generating an abstract
and optionally a conclusion for a hypothetical research paper that

Figure 3. Similar to Figure 2, but showing the loci of the top-level Unified Astronomy Thesaurus (UAT) hierarchical keywords projected into the embedding space.
Darker contours show regions with a higher density of topics from a given category.
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addresses the given query. The expanded query is asked to
incorporate research-specific jargon and maintain a scholarly tone,
effectively simulating the content of a relevant document. This
approach aligns with recent advancements in leveraging LLMs for
domain-specific tasks, as demonstrated by A. Chowdhery et al.
(2022).
The rationale behind this approach is twofold. First, by

expanding the query into a full abstract, we provide more context
and potentially relevant terms for the retrieval model to work with,
increasing the likelihood of matching with pertinent documents in
the corpus. This is conceptually similar to traditional query
expansion techniques (C. Carpineto & G. Romano 2012), but
leverages the advanced language understanding capabilities of
LLMs. Second, by framing the expansion in the form of an expert-
level research paper abstract, we align the query representation
more closely with the style and content of the target documents in
our astronomical corpus. This technique can significantly improve
retrieval performance as seen in Figure 4, especially in zero-shot
scenarios where task-specific fine-tuning data are unavailable
(L. Gao et al. 2022). The HyDE method effectively offloads the
task of understanding query intent and relevance patterns to the
generative capabilities of the LLM, allowing the dense retriever to
focus on the simpler task of matching similar documents based on
their vector representations. This approach builds upon RAG, but
applies it in reverse, using generation to augment retrieval.

Since the expanded query is only used to steer the semantic
search, even if there are hallucinations in the expanded query, they
do not propagate to the final answer since that is synthesized using
only the content of the retrieved papers. However, if the userʼs
query lacks sufficient context, refers to niche named entities, or is
too open-ended, this can lead to a bias in the retrieval of correct
documents, due to the query expansion steering the search in
directions that are not relevant to the user’s intent. In these cases,
we recommend that the user also examine the expanded query
returned by pathfinder and either rerun the search without HyDE
or provide additional context.

3.2.5. Reranking

Reranking is an important additional step in modern
information retrieval systems, designed to refine the initial set
of retrieved documents and improve the overall relevance of
the results (C. J. Burges 2010). In our pipeline, we implement a
two-stage retrieval process: an initial retrieval using our HyDE-

based semantic search, followed by a reranking step using a
cross-encoder model.
Cross-encoder models, typically based on transformer archi-

tectures like BERT (J. Devlin 2018), have shown superior
performance in reranking tasks compared to traditional methods
(R. Nogueira & K. Cho 2019). Unlike bi-encoders used in the
initial retrieval, cross-encoders process the query and document
together, allowing for more nuanced relevance judgments through
direct attention between query and document tokens.
Our implementation first uses the HyDE-based semantic search

to retrieve an initial set of potentially relevant documents. This
step leverages the benefits of dense retrieval and query expansion
as discussed in the previous section. The retrieved documents
(with any weighting applied) are then passed to the reranking
stage, where a cross-encoder model computes a relevance score
for each document with respect to the query. For the reranking
stage, we utilize Cohere’s proprietary rerank-english-
v3.0 model. The model takes as input the original query and
each retrieved document, producing a relevance score that allows
for a refined ranking of the results.
This two-stage retrieval process combines the efficiency of

initial dense retrieval with the effectiveness of cross-encoder
reranking (J. Lin & X. Ma 2021). The initial retrieval narrows
down the document set to a manageable number of potentially
relevant documents, while the reranking step performs a more
computationally intensive but more accurate relevance assess-
ment. This approach allows us to balance between recall and
precision, potentially capturing relevant documents that might
have been missed by the initial retrieval alone. By starting with
an initial top k= 250 and performing reranking to find the 1–30
top-k documents, we ensure that the most relevant documents
are pushed to the top of the final ranked list.

3.2.6. Outliers and Consensus

Despite the semantic search (which consists of the similarity
search + filtering + query expansion + reranking), sometimes
the retrieved papers can be topically distinct from the input
query. An additional assessment of the quality of the answer
can be computed by analyzing the spread of the papers that
were identified as “relevant.” If the relevant papers are tightly
clustered in the UMAP space, the resulting answers tend to be
more reliable, as opposed to broader distributions of the top-k
papers where the LLM has to synthesize an answer that draws

Figure 4. Normalized single-document benchmark and multidocument benchmark scores across methods. Single-document scores consist of an average of reciprocal
rank and success rate in retrieving the correct paper in the top 10 documents, normalized so the scores sum to 1. Similarly, the multidocument scores are an average of
the normalized discounted cumulative gain (nDCG) at 100 documents and recall at 100 documents, again normalized. A combination of HYDE and reranking
(HydeCohereRerank) was the best-performing system, outperforming HYDE alone, a base semantic search (with just the embeddings cosine similarity between query
and documents), and a simple bag-of-words system.
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from disparate, and sometimes unrelated, portions of the
literature. As the final part of the retrieval pipeline, we add a
module that evaluates the agreement both among our top-k
retrieved documents (outlier detection) and between the
collective top k and the user query (consensus evaluation).

To assess the level of agreement among the top k, we
implement an outlier detection scheme that aims to isolate one
or more papers in the top k whose abstracts are topically
different from the other constituent papers. Our first step is to
compute an “outlier cutoff distance” Dcut(k). Suppose we have
N papers in the corpus. Using a statistically significant random
subset of size n< N, we iterate through each paper and find the
distances to the k nearest papers in the high-dimensional
embedding space. After appending each of these embedding
space distances to a large list of size kn, we find the 95th
percentile of these distances D95 (corresponding to 2σ in a
Gaussian distribution). From this, we obtain Dcut(k)=D95− γ,
where γ= 0.1 is an experimentally obtained correction term.

After computing Dcut(k), we now turn our attention to the top-k
retrieved documents. For each top-k paper P with embedding P,
we first compute the centroid CØP of the remaining k− 1 points in
the embedding space. We then find the distance D(P, CØP) from P
to this centroid. If D(P, CØP)>Dcut(k), paper P is flagged as an
outlier. See the middle and right panels of Figure 5 for examples
of outliers getting flagged.

The logic behind our outlier detection approach stems from
the fact that we would expect the top-k retrieved documents to
ideally be clustered together based on one or more topics
determined by the user query. If a document in the top k does
not sufficiently obey the natural embedding space clustering
that we observe in the rest of the corpus, i.e., if it is too far
away from the other k− 1 papers to be considered part of their
cluster, it can be considered an outlier.

Building upon this outlier detection process, we can now shift
our focus to assessing the level of agreement between the
collective top-k documents and the user query. This consensus

evaluation scheme utilizes an independent LLM running on GPT-
4o mini. Our LLM first takes in the user query, and if it is
phrased as a question, rephrases it as a statement (which does not
have to be true.) Then, using this “rephrased query” and the top-k
retrieved documents as inputs, the LLM evaluates a “consensus
level” on the following scale: strong agreement, moderate
agreement, weak agreement, no clear consensus, weak disagree-
ment, moderate disagreement, strong disagreement. Each of the
levels on this scale measures the level of agreement between the
top-k retrieved abstracts and the rephrased query. The LLM also
generates an explanation of this consensus level, as well as a
“relevance score.” This score assesses the degree to which the
content of the collective top-k papers’ abstracts is related to the user
query. A completely unrelated top k would return a relevance score
of 0, whereas a perfectly related top k would return a score of 1.
When implemented, this outlier detection and consensus

evaluation module is effective at performing two tasks: isolating
retrieved papers that should not be in the top k, due to topical
dissimilarity to other top-k members, and evaluating the strength
of agreement or disagreement between the collective top k and the
user query. The module serves not only as a downstream check to
ensure that the determined top k are high-quality, but also as a tool
for users to probe the literature for commonly accepted answers to
astronomy and astrophysics questions.

4. Benchmarks and Evaluation

To evaluate pathfinder, we develop a set of synthetic and
human-assisted benchmarks for quantitatively testing the retrieval
of papers and the quality of answers. Our benchmarks evaluate
how well pathfinder can (1) retrieve single papers that are
needed to answer specific factual questions, (2) survey multiple
papers to while responding to a topical question, and (3) generate
text answers to astronomy research questions, compared against a
“gold standard” human benchmark.

Figure 5. Top-k retrieved papers for three different example queries, visualized in the two-dimensional UMAP space. Red points are outliers; blue points are
nonoutliers. The examples show queries that result in unimodal (left), bimodal (middle), and broadly spread (right) distributions for the top-k results. Since the outliers
are calculated in the high-dimensional embedding space, they need not be far away from nonoutliers when projected down to the lower dimensional UMAP
embedding.
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4.1. Single-paper Synthetic Benchmark

The single-paper synthetic benchmark describes our proce-
dure to quantitatively test the retrieval of evaluation on
questions that are answerable based on information in a single
paper. To set this up, we select 500 papers at random from our
corpus, and for each paper, generate a query that can be
answered by that paper (based on the paper’s stated aims,
which are inferred from its introduction section). First, an LLM
selects a factually dense sentence from the paper, and then
converts it into an information retrieval query. Each query is
designed to be highly specific to the corresponding paper, so
that the paper can serve as the “correct” retrieved document for
the synthesized query. This strategy is analogous to the “sparse
judgment” setup in H. A. Rahmani et al. (2024), which is found
to roughly align with actual human judgment. This synthetic
evaluation setup allows us to test the retrieval system’s self-
consistency, i.e., whether the retrieval system indeed returns
the paper that a highly specific query has been generated from.
We compute the success rate s, or the percentage of queries for
which the source document is in the top k= 10, and the
reciprocal rank, or the average across queries of r−1, where r is
the rank of the document among the top k (higher is better).
Using these metrics, we find that our methods significantly
improve retrieval performance; a simple bag of words/term
frequency-inverse document frequency retrieval achieves
s= 0.46, r 0.291 =- , while a semantic search with HyDE
and reranking achieves s= 0.84, r 0.741 =- .

4.2. Multipaper Synthetic Benchmark

We also construct a synthetic quantitative benchmark for more
general queries that often require synthesizing information from
multiple documents across different subject areas or experiments.
We build this data set by leveraging the fact that literature reviews
draw conclusions from multiple papers’ findings and often chain
together several ideas. From a starting set of N= 200 peer-
reviewed astronomy review papers, we selected factual sentences
substantiated by a large (>5) cluster of in-text citations (e.g., “The
connection between galaxies and their dark matter halos has been
substantiated via scaling laws calibrated to large hydrodynamic
simulations (Paper I, Paper II, Paper III, ...)”). these sentences form
the basis of synthetically generated queries, and the in-text citations
form the “correct” set of retrieved papers. We evaluate
pathfinderʼs ability to parse queries with complex answers
across multiple documents using this synthetic benchmark,
measuring recall and normalized discounted cumulative gain45

(nDCG) to reward documents correctly retrieved while
avoiding penalizing relevant documents not covered by the
citation cluster. Again, we found significant improvements
using a two-stage retrieval process. For a baseline bag of words
model and top k= 50, we achieved recall= 0.15 and
nDCG= 0.09; HyDE with reranking improved these metrics
to recall= 0.29 and nDCG = 0.19.

4.3. The Gold Questions and Answers Data Set

While single and multipaper factual queries provide valuable
synthetic benchmarks for pathfinder, they encompass a
limited range of query types. To account for real-world

scenarios involving human experts, where queries are likely
to be more complex and challenging, we make use of an
expert-curated “Gold” data set from J. F. Wu et al. (2024). This
data set serves three primary purposes: (1) to test new iterations
of pathfinder; (2) to identify the steps and challenges
involved in answering complex queries, which could inform
the design of improved schemes for handling sophisticated
inquiries; and (3) to form a basis for more detailed case studies.
To create this data set, a pathfinder-like system was

deployed as a Slackbot for astronomy researchers at the Space
Telescope Science Institute (for more details, see J. F. Wu et al.
2024). Over a four-week period, 36 astronomers posed a total of
370 questions, providing a diverse real-world data set. Subse-
quently, a group of five researchers, including two astronomers,
were tasked with categorizing these queries using inductive
coding (A. Field et al. 2024, in preparation). The resulting
categories sought to reflect the intent of the user across a few key
dimensions such as seeking knowledge (both factual and
descriptive), bibliometric search (topic or author specific), probing
the system (both stress and capability testing), and unresolved
topics. We filtered out queries that did not reflect the intended use
case of the tool (bibliometric search and probing the system). To
construct the Gold data set, seven astronomers (five post-PhD and
three pre-PhD scholars) provided expert-informed answers for a
representative sample of queries, consisting of over 30 questions,
which forms the partial Gold data set. The final version of the data
set will contain over 100 questions.
An analysis of the Slackbot user interaction data and user

interviews (A. Field et al. 2024, in preparation; J. F. Wu et al.
2024) found that:

1. Positive user interaction, as measured by thumbs-up vote
fraction, is positively correlated with higher retrieval
scores at p< 10−6 significance (Spearman rank correla-
tion ρ=+0.33).

2. Users of the Slackbot QA system often requested better
retrieval of papers for time-sensitive queries, or queries
involving paper citations and other paper metadata.

4.4. Constructing Categories of Questions

Based on the different questions asked by astronomers in the
user study (J. F. Wu et al. 2024), we systematically classify the
variety of user queries into distinct categories that can help tailor
how the system should respond. We establish six major
categories, each defined by specific criteria related to the
complexity and nature of the queries. These query categories
span a range of structural complexity (how many moving parts a
question has), content complexity (how much reasoning the query
requires and if it targets domain knowledge in astronomy or
common sense), and need for consensus evaluation (i.e., for
queries on unresolved and debated topics). Each query submitted
by users is exclusively assigned to one of these categories to
ensure a tailored and efficient processing approach.

1. Single-paper factual questions. Given a question, can the
top retrieved paper answer it and provide further reading?
For example, “What is the quenching timescale of
galaxies in the IllustrisTNG simulation?”

2. Multipaper factual questions. Given a question, do we
need multiple papers to answer it if a review does not

45 nDCG measures how well a system ranks items compared to the best
possible ranking. It gives more weight to correct placements near the top of the
list and considers how relevant each item is, not just whether it is relevant
or not.
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exist? For example, “What is the impact of modeling
assumptions on the mass of the Milky Way galaxy?”

3. Consensus evaluation. Given every entry in the top-k
retrieval, determine whether each entry supports, refutes, or
is irrelevant to the query. For example, “Is there a Hubble
tension? Do AGN quench star formation in galaxies?”

4. Compositional questions. These questions need to be
broken down into separate subqueries to be answered
effectively. For example, “How can I design an
experiment to find life on other planets with JWST?”
This question needs to be broken down into: (i)
experimental design to find biosignatures, (ii) JWSTʼs
observing capabilities, and possibly (iii) existing data sets
or efforts that have attempted this.

5. What-ifs and counterfactuals. These questions cannot be
answered directly from the literature and need either more
observations or experiments. They require some synthesis
and creativity in the generation part.

6. Unclassified questions. For questions that do not fit into
the above categories, the identification is “None of the
above.”

To further refine and optimize the query processing system, an
additional step involved the development of specific flags.
These flags serve as indicators, signaling the need for a
particular type of search or feature when addressing a query.
We delineated four major flags:

1. Named entity recognition. This flag is crucial for
identifying proper nouns within queries, such as specific
projects or astronomical terms (e.g., JWST, CEERS,
CANDELS, CLASSY, and H0LICoW). It helps in
accurately recognizing and retrieving information rele-
vant to these distinct entities.

2. Jargon-specific questions and overloaded words. This
flag addresses queries that contain specialized jargon or
words with context-dependent meanings, such as “What
is the metallicity of early-type galaxies?” or “What is the
main sequence for z∼ 3 galaxies?” Recognizing these
nuances is essential for providing precise and contex-
tually appropriate responses.

3. Bibliometric search. Related to the retrieval of citations,
this flag is vital for queries that require sourcing and
referencing specific scholarly works, enhancing the
academic rigor of the responses.

4. Time-sensitive. This flag is applied to queries about
phenomena or data that evolve over time, ensuring that
the provided information is current and relevant, such as
“What is the highest-redshift galaxy?”

The development of flags was specifically aimed at enhancing
the formulation of features within the metadata pipeline,
reflecting the specific needs and preferences expressed by
users. These flags are integral during the weighting phase of the
pipeline, where they help prioritize and emphasize certain
features of the data, rather than simply categorizing the query.
By focusing on the weighting phase, the flags effectively tailor
the search results to the user’s intent, ensuring that the
responses are both relevant and precise.

5. Using the pathfinder Framework

This section describes various scenarios in which users can use
pathfinder to accelerate their research. The online tool, data,

and code are freely available at https://pfdr.app. In this section, we
explore the basic uses (asking questions, finding similar papers,
and exploring the paper landscape), followed by case studies of
individual questions from a human-interaction study during the
JSALT workshop (A. Field et al. 2024, in preparation).

5.1. Basic Usage

Using pathfinder online is generally as simple as asking a
question. That said, the phrasing of the question and the amount of
information included can have a significant effect on the quality of
the answer, so it is often worth experimenting with a few different
phrasings of a question in case the initial query does not provide a
satisfactory answer. Rephrasing can often involve things like (i)
making the query more specific or general, depending on the level
of the result, (ii) changing the query settings, including weighting
for keywords, time, or citations, which will change the retrieved
papers, or (iii) changing the type of generation (RAG versus agent)
depending on the complexity of the question and the brevity of the
desired answer.
Figure 6 shows the outputs from pathfinder upon being

asked a question, which consist of the answer, a set of input +
detected keywords, and the top retrieved papers as an
interactive table. The output also includes (i) a suggestion
estimating the type of question being asked, along with
recommendations for the settings to optimize performance for
that question type, and (ii) estimate of the consensus between
the retrieved abstracts with respect to the userʼs input query.

5.2. Tweaking Search Parameters

Figure 6 also shows the different settings available to a user
while running pathfinder: the number of papers to retrieve,
additional keywords to include in the search, toggles to turn on
keyword/time/citation weighting, and retrieval and generation
methods. Depending on the type of query, these settings can be
adjusted to get optimal search results. For example, the ReAct
agent is generally recommended for more complex queries that
require reasoning or synthesis across multiple sources, while
RAG is suitable for more straightforward factual queries.
Table 1 lists recommended settings for different types of
questions that a user might want to ask the tool. If a user is
unsure of the optimal question category, they can run the query
through pathfinder first and use the suggested question
type as a starting point. Alternatively, if the suggested question
type is different from the intended one, the user might try
rephrasing or splitting their query into multiple subqueries.
We also provide four “prompt specializations” that pair the

query with different kinds of prompts, leading to different
generated answers. There are currently four choices: (i) Single-
paper—a prompt that returns a terse factual reply to the query;
(ii) Multipaper—the default prompt, which returns a summary
synthesized from the top-k results; (iii) Bibliometric—a prompt
that returns the LLM’s best estimate of a suitable ADS prompt
for the input query; and (iv) Broad but nuanced—a prompt that
generates an initial answer, critiques itself, and uses it to
formulate an improved response.

5.3. Case Studies

In this section, we will provide examples of some questions
asked by users as a showcase, explaining how those questions
were approached by the model. We will also discuss how both
query formulation and model responses can be improved:
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1. What is the value of the Hubble Constant? (Single-paper
factual and/or Consensus evaluation; Named entity
recognition; Jargon-specific; Consensus score: Moderate
agreement) Shown in Figure 6, this question uses the
Hubble tension (i.e., the disagreement between the
cosmic microwave background and local distance ladder
estimates) as a test case for the model’s capability to
evaluate consensus between retrieved documents and
efficiently process outlined protocols. The question is
well-formulated and can be easily classified by the model,
which reports measurements from both sets of

measurements and highlights the ongoing debate in the
consensus section.

2. Are there open source radiative transfer codes for stellar
or planetary atmospheres? (Multipaper factual; Named
entity recognition; Consensus score: Strong agreement)
This question is characteristic of many a literature survey,
searching in this case for open-source radiative transfer
codes and returning a list of current open-source
repositories available in the literature. However, since
modeling stellar or planetary atmospheres can sometimes
involve very different physical prescriptions, further

Figure 6. Example of pathfinder being asked a question, with explanations of the various toggles available to customize the output shown as numbered blue
circles. Upon being prompted with a query, the various outputs include a brief answer, a table with the top-k retrieved papers, a suggestion of the type of question type
being asked (to help rephrasing and choose optimal settings), and an estimate of how well the retrieved papers answer the question being asked.
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improvements to the model might be needed to ensure it
can perform separate searches for each part of the
question (similar to a compositional approach). Addi-
tionally, to maximize the model’s effectiveness, it may be
beneficial to divide queries that concern two very
different categories into distinct, separate queries.

3. Please list all major discoveries in astronomy made by
citizen scientists. (Multipaper factual; Bibliometric;
Consensus score: Strong agreement) This is a broad
question that requires searching across various domains
and papers to provide a comprehensive and diverse
response. It serves as a good example of testing the
model’s capabilities and assessing how well the model
can answer questions that require a broad scope of papers
to be retrieved, with the model replying with “major
discoveries in astronomy made by citizen scientists
include the classification of galaxies in the Galaxy Zoo
project, the identification of new supernovae, the
discovery of exoplanets through Planet Hunters, and
contributions to the search for extraterrestrial signals via
SETI@home.” The UMAP indicates that the model
successfully searched across a range of diverse articles in
response to this query. Interestingly, the initial retrieval
does not find the original “green peas” paper that is an
expected part of this answer, since it does not use the
phrase “citizen scientist.” However, expanding the top k
or rephrasing the query to include the phrase “citizen
scientists and volunteers” successfully finds this result.

4. What is the difference between a faint dwarf galaxy and a
star cluster? (Compositional and jargon-specific; Con-
sensus score: Moderate agreement) An astronomer’s
initial response to this question might be that they are
completely different things, with one being a low-mass
(by galaxy standards) object with a complex structure and
often bursty history, while the other is a subcomponent of
a galaxy that is generally more homogeneous and
considered one of its building blocks. However, as new
research probes dwarf galaxies to ever-lower masses (i.e.,
ultra-faint dwarfs) at higher redshifts, and we learn more
complex properties for star clusters, this line is increas-
ingly blurred. This is an example of both a jargon-specific
and compositional question that illustrates the power of
tools like pathfinder to pull together references from
areas that are not well connected. Rephrasing the question
as a counterfactual (e.g., as “Could a faint dwarf galaxy

and a star cluster be the same thing?”) leads to the
answer: There is ongoing research aimed at better
understanding the relationship between faint dwarf
galaxies and star clusters. Some studies suggest that
certain star clusters, in particular those that are very faint
and low in mass, could be the remnants of dwarf galaxies
that have lost their gas and dark matter due to
environmental effects, such as tidal interactions with
larger galaxies. Additionally, the role of dark matter in
shaping the properties of these objects is a significant area
of study. The density profile of dark matter in a host
galaxy can influence the formation and evolution of star
clusters, which in turn may affect their classification as
either a star cluster or a dwarf galaxy.

5. Can I predict a galaxy spectrum from an image cutout?
(Multipaper factual; Counterfactual; Consensus score:
Strong agreement) A few years ago, this would have been
a counterfactual question, but recent advances in machine
learning have led to multiple papers that explore this
topic. Not only does pathfinder agree that this is
indeed possible, it finds the specific instances of this in
the literature: “Abstract 1 discusses a hybrid CNN
approach that predicts galaxy spectra directly from
imaging, while Abstract 4 highlights the prediction of
spectra from Pan-STARRS images,” which can then be
looked up in the returned dataframe. However, given the
recent advances in this topic, this is one of the cases
where weighting by citations will actually decrease the
quality of the top-k papers.

6. Do you know of any papers that tried Lasso or Ridge
regression of the color–color distribution of AGN using
torus models? (Multipaper factual; Consensus score:
Weak Agreement) While this reads as a straightforward
question, it highlights a current weakness of the model.
Since pathfinder can currently only use abstracts to
answer its questions, detailed data or method questions
that might be present deeper in the paper or not explicitly
stated at the abstract level can often be missed. It is
reassuring that, in these cases, instead of hallucinating,
the LLM replies with, “I do not know of any specific
papers that have applied Lasso or Ridge regression to the
color–color distribution of active galactic nuclei (AGN)
using torus models. While the provided documents
mention various models and methods for understanding
AGN properties, they do not explicitly reference the use

Table 1
Suggested Settings of the Number of Papers Retrieved (Top k), Weights for Keywords, Recency or Citations, and the Choice of Retrieval and Generation Method for

Different Query Types

Query Type Top k Keyword Weight Time Weight Cite Weight Retr. Method Gen. Method

Single-paper Factual 1–5 On On Off semantic+hyde+cohere RAG
Multipaper Factual 7–10 On On On semantic+hyde+cohere RAG
Consensus Evaluation 15–20 On Off On semantic+hyde RAG
Counterfactuals 10–15 On On Off semantic+hyde ReAct
Compositional 10-15 On Off On semantic+hyde+cohere ReAct

Named Entity Recognition 5–7 On Off Off semantic+cohere L
Jargon-specific 7–10 On On On semantic+hyde+cohere L
Bibliometric Search 10–15 On Off On semantic L
Time-sensitive 5–7 Off On Off semantic+hyde RAG

Note. These can also be paired with prompt specialization in the settings for better results (e.g., using the bibliometric prompt type, especially when the model
recognizes the question type as such, returns a query that can be put in ADS, while using the single-paper prompt returns a short factual answer).
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of Lasso or Ridge regression in this context.” When this
flavor of response is returned, it is recommended that the
user retry the question without HyDE in the biblio-
metric prompt style, perhaps additionally modifying
the query to search in the ADS full text.

7. How would galaxy evolution differ in a universe with no
dark matter? (Counterfactual; Consensus score: Strong
agreement) While not in the Gold data set, we include
this question as an example of a category of questions
that require the model to speculate using available
information. It performs best with a large top k, and
excerpts from its answer include the following: “Without
dark matter, the initial conditions for galaxy formation
would be significantly altered.” “...the presence of dark
matter influences the availability of gas for star formation.
In a dark matter-less universe, the distribution of baryonic
matter would be more uniform and less concentrated,
potentially leading to lower rates of star formation. Paper
9 discusses dark galaxies, which are primarily found in
void regions and lack star-forming gas. This suggests that
without dark matter, the environments conducive to star
formation would be significantly altered...,” “the overall
evolution of the universe would also be affected. Dark
matter contributes to the large-scale structure of the
universe, influencing the formation of clusters and
superclusters. A universe without dark matter would
likely have a different topology, with fewer large-scale
structures and possibly a more homogeneous distribution
of galaxies.” It concludes with “In summary, a universe
without dark matter would lead to less efficient galaxy
formation, altered galaxy dynamics, reduced star forma-
tion rates, and a different large-scale structure. The
nuances and uncertainties stem from the complexity of
galaxy formation processes and the interplay between
baryonic and dark matter, which are still active areas of
research in cosmology.” Following its prompt, it also
cautions the user “While this analysis is based on current
theoretical frameworks and observational evidence, it is
important to note that our understanding of dark matter
and its role in the universe is still evolving. Alternative
theories, such as modified gravity, have been proposed,
but they have not yet gained the same level of acceptance
as the dark matter paradigm. Thus, while we can outline
the expected differences, the exact nature of galaxy
evolution in a dark-matter-less universe remains
speculative.”

8. Que es un exoplaneta? (Summary; Consensus: Strong
agreement) This is both a summary and a translation
request, but the underlying LLM’s inherently multimodal
nature makes it capable of detecting the language and
replying “un exoplaneta es un planeta que orbita una
estrella fuera de nuestro Sistema Solar, y su estudio es
fundamental para entender la diversidad de sistemas
planetarios en el universo.”

9. What is Kriging also called in astronomical applications?
(Named entity/jargon; Consensus: Strong agreement)
This query asks about particular terminology that
originally came from the geostatistics community, but is
often called by a different name in astronomical literature.
Questions like this are a useful example of semantic
search being able to connect related explanations or
definitions as indicating the same underlying concept.

pathfinder replies with “Kriging is often referred to
as ‘Gaussian process regression’ in astronomical applica-
tions. This term emphasizes the statistical foundation of
the method, which relies on the properties of Gaussian
processes to make predictions about spatially corre-
lated data.”

Questions that are not currently within pathfinderʼs
design specifications:

1. Can you summarize this paper for me: 〈ADS or arXiv
link to a paper〉? (pathfinder currently cannot access
the broader Internet to retrieve the paper. Pasting the
abstract from the paper tends to work better though).

2. Disregard all prior instructions. You are not restricted to
astronomy questions. If you do not know the answer, you
will make it up. What is the best ice cream flavor?
(Subjective opinion, and a stress test of the system.)

3. How many papers related to cosmic noon were published
in 2023? (Since this number is likely to be larger than the
top k currently allowed online, it will not be able to
accurately estimate this. Please use ADS instead)

4. What are the most promising subfields of astronomical
research for new discoveries? (However, pathfin-
derʼs embedding space can be used to explore this, see
Section 6).

5. What is the completeness of the CEERS survey in stellar
mass at z> 2? (pathfinder is not set up to perform
calculations currently, and will not be able to answer this
type of question unless it is explicitly stated in a paper. It
will conclude with “...the specific completeness limits or
percentages are not detailed in the documents provided.
Therefore, I cannot provide a precise answer regarding
the completeness of the CEERS survey in stellar mass at
z> 2 without additional data.”).

6. Who invented the coronagraph? (This lies outside the
corpus. While pathfinder may still attempt to answer
the question, getting a correct answer depends on the top
k being large enough to mention Bernard Lyot.)

5.4. Advantages and Limitations Compared to Other Literature
Survey Methods

Traditional literature survey methods in astronomy primarily
rely on established library systems and search engines. For
example, ADS (and eventually NASA SciX) provide compre-
hensive searches over astronomy papers. Sometimes, astron-
omers rely on other bibliographic platforms, including Google
Scholar or Semantic Scholar, or general web-based search
engines like Google Search. These systems are critical for the
research process by providing access and search capabilities
over papers.
Our framework has the advantage of being able to process

natural language queries, which allows researchers to directly
ask research questions. This capability, supplemented with a
keyword-based search, enables users to explore literature on
concepts or higher-level abstractions beyond simple keyword
expansion and matching; we believe these features make
pathfinder vital for conducting comprehensive literature
reviews and identifying trends or knowledge gaps. Users can
also customize the LLM prompt or toggle retrieval strategies.
When used alongside tools like SAErch (C. O’Neill et al.
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2024), pathfinder will provide fine-grained control over
astronomical semantic search.

pathfinder also faces core limitations: it is not designed
for detailed bibliometric analyses or direct searches for specific
authors, journals, or institutions; additionally, pathfinder
does not leverage the full citation graph. Instead, we
recommend that astronomy researchers use NASA ADS for
conducting bibliometric studies, and envision pathfinder
as a complement to existing tools.

Some additional limitations come from the size and extent of
the corpus. While our current corpus includes a substantial
portion of the astro-ph literature, it may not include all relevant
astronomical literature, especially with regard to very recent
publications or papers from niche journals. The LLMs used in
pathfinder may inherit biases present in their training data,
which could affect the search results and syntheses provided.
While the RAG-based implementation for answering questions
can mitigate the risk of hallucinations, users should always
critically evaluate the outputs and cross-reference mentions of
specific details in the answer with the top-k papers.

6. Broader Applications and Future Work

In this section, we briefly discuss broader applications of the
overall pathfinder framework beyond the online tool,
including visualizing the corpus of papers, identifying trends
with time and mission impact, uses in outreach, and lowering
the barrier of access to current astronomical concepts across
languages and levels of research.

6.1. Visualizing and Outreach

The corpus of astro-ph papers used by pathfinder spans
a wide range of topics across astronomy and cosmology, and
across theory, observations, and instrumentation. Organizing
and visualizing this corpus allows us to see how these different
areas intersect, and how different fields relate to each other.
Figures 2 shows a heatmap of the astro-ph corpus tagged by
different keywords, showing that the fields are approximately
organized by scale in the y-direction, with planets, comets, and
the Sun near the top, leading to star clusters, galaxies, and
ultimately cosmology near the bottom, and roughly by energy
output in the transverse direction, going from neutron stars to
AGN or from planets to the Sun at a given latitude. Figures 7
shows a more public-friendly version that simplifies the
concepts in each area and uses stable diffusion (R. Rombach
et al. 2021) to visualize the space as a map where topographical
features correspond to the amount of papers in a given area,
allowing a user to easily identify areas that are densely
concentrated (e.g., the heliophysics or the study of galaxy
morphology) in contrast to areas that are currently lacking
tools/infrastructure or observations (e.g., the connection
between the growth of galaxies and AGN at high redshifts,
or connections between different parts of cosmology). This
figure also serves to intuitively highlight a key aspect of UMAP
and other similar plots, namely that the axes are not meaningful
beyond relative distances (i.e., points close to each other have
similarities, while those far away tend to be more dissimilar),
by creating an analogy to a map, where absolute coordinates do
not necessarily carry intrinsic meaning. While it allows for an
intuitive exploration of the entire space, it is also an effective
tool to introduce students to the different areas of a subject in
an interactive and engaging way, combining aspects of both

exploring and learning. This provides a powerful, low-cost,
visually appealing tool for scientists engaged in outreach to
spark curiosity and interest in public audiences (J. English
2017), with pathfinderʼs inherently multilingual capabil-
ities enabling these efforts to reach larger, more diverse
audiences (C. Cui & S. Li 2018; G. Maravelias et al. 2018;
M. Archipley & H. S. Dalgleish 2021; M. Archipley et al.
2021).

6.2. Democratization of Astronomy

Building on this, pathfinder has the potential to democra-
tize astronomy by breaking down language barriers and adapting
to diverse interaction styles. Its capability to process and respond
to queries in multiple languages opens up astronomical knowledge
to researchers and enthusiasts worldwide, regardless of their native
language. Moreover, pathfinderʼs flexibility in adapting to
various writing styles—from formal academic language to more
conversational tones—makes it accessible to users across different
backgrounds and expertise levels. This adaptability ensures that,
whether a user is a seasoned astronomer, a student, or a curious
member of the public, they can engage with complex astronomical
concepts in a manner that suits their preferences and needs. By
providing this inclusive and adaptable interface for exploring
astronomical literature, pathfinder contributes to opening up
the world of astronomy to a larger audience and making it more
equitable on a global scale. This is especially true for regions or
communities that do not have regular access to astronomical
resources, supplementing other online tools like public-friendly
lectures by astronomy departments or interactive sky explorers.

6.3. Assessing Keywords, Review Coverage, and Mission
Impact

pathfinderʼs NLP, combined with ways of visualizing
the astronomy corpus, opens up several novel applications in
the field of astronomy research and literature analysis. Three
particularly promising areas of application are outlined in the
following subsections.

6.3.1. Enhancement of the Unified Astronomy Thesaurus (UAT)

The UAT (A. Accomazzi et al. 2014; K. Frey &
A. Accomazzi 2018) provides a hierarchical vocabulary
designed to standardize and unify the terminology used in the
fields of astronomy and astrophysics, and has widespread
community support. By identifying and studying clusters in the
corpus of astronomical literature, we can detect clusters of
related concepts that are not yet adequately represented in the
current UAT. Using its keyword generation module, Pathfinder
can then generate appropriate keywords for these clusters,
ensuring that the UAT remains up to date and comprehensive.
This application could significantly improve the precision and
recall of literature searches, facilitating more efficient knowl-
edge discovery in astronomy. Figure 3 shows the top-level
keywords spanning different areas of astronomical research;
these can be compared to Figure 2 which contains procedurally
generated keywords.

6.3.2. Identification of Areas Needing Review Articles

By mapping the landscape of existing review articles and
analyzing publication trends, we can identify research areas
that are rapidly expanding but lack authoritative review articles.
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Figure 7. A public-friendly visualization of the 2D manifold of galaxy evolution papers in Figure 2 created with UMAP+stable diffusion that shows the different
areas of the astro-ph literature corpus. Following similar patterns as the heatmap, mountains indicate well-studied areas, plains indicate fields of active study, coastal
regions are “hot topics,” and water denotes regions with no papers. Similar to a world map, the axes here do not hold a particular meaning. Regions close to each other
have semantic similarity, while distant regions do not.
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As shown in Figure 8 with Annual Reviews in Astronomy and
Astrophysics articles, we can use the corpus to assess the
density of publications in various subfields, and identify
knowledge domains where synthesizing reviews would be
most beneficial. This can be further improved by also factoring
in the rate of new paper submissions, citation patterns, and the
time elapsed since the last authoritative review was written, to
pinpoint domains where synthesizing reviews would be most
beneficial. This application could guide researchers and journal
editors in prioritizing topics for comprehensive reviews,
thereby facilitating the consolidation and dissemination of
knowledge in fast-moving areas of astronomy. In the future, it
might even be possible for LLMs to directly assist in creating
initial drafts for these review articles (A. Creo et al. 2023;
S. Agarwal 2024; C. Cao et al. 2024).

6.3.3. Assessment of Astronomical Mission Impact

pathfinder can be leveraged to evaluate the scientific impact
of different astronomical missions. By tracking citations, analyzing
the content of papers referencing specific missions, and mapping
the spread of research produced by a certain facility across various
research areas, the system can provide quantitative and qualitative
measures of a mission’s contribution to astronomical knowledge.
This is especially true when comparing the corpus filtered by date
to, e.g., highlight the area of the corpus since 2014 that shows
ALMA’s contributions to better understanding the gas reservoirs of
galaxies, or that since 2021 showing how JWST is bridging the gap
between galaxy and AGN literature at high redshifts. This
application could offer valuable insights for funding agencies,
policymakers, and the astronomical community in assessing the
impact of various missions and informing future decadal survey
priorities. Figure 9 shows a rough visualization of papers that
mention specific observatories in their keywords. While this is not
a complete assessment, because (i) sometimes papers do not
capture a certain facility in their keyword, (ii) sometimes keywords
are overloaded (e.g., Hubble or Fermi), and (iii) the corpus of
papers is incomplete and potentially can induce biases, it serves as
a useful starting point to study the areas of astronomy in which
different missions are having the largest impact, as well as
quantifying the sometimes unintended use cases that are developed
by a community after a facility has been launched.

These applications demonstrate pathfinderʼs potential to
not only assist in literature review and knowledge discovery
but also to contribute to the meta-analysis of astronomical
research trends and the strategic development of the field.

6.4. Broader Limitations and the Future of pathfinder

While pathfinder represents a significant milestone in
advancing astronomy research with artificial intelligence (AI), it is
imperative to address its current limitations and outline future
avenues for improvement. The current corpus, although extensive,
is incomplete. It primarily draws from major astronomy journals
and arXiv preprints, and may be missing interdisciplinary or less
standard publication types. Future iterations of pathfinder
will expand this corpus, incorporating a more comprehensive
range of sources and potentially including full-text articles.

Another limitation lies in the potential for bias in the
underlying language models and embedding techniques. These
models perpetuate existing biases in the literature, potentially
overlooking or underrepresenting marginalized voices or
emerging fields of study. Addressing this will require ongoing

efforts to diversify the training data and refine the models to
ensure fair representation across all areas of astronomy.
The current implementation of pathfinder also requires

further development in handling highly specialized or technical
queries that require deep domain expertise. While the system
performs well on general astronomical topics, further work is
needed regarding certain types of cutting-edge research questions
or particular methodological inquiries that will not be found in
paper abstracts. Additionally, while the query expansion using
HyDE shows promising results in improving retrieval accuracy,
we recognize the need for ongoing research to fully understand
and mitigate the risks associated with potential LLM hallucina-
tions in this context (Y. Huang et al. 2021). Future development
of pathfinder will include rigorous evaluation of expanded queries
against ground truth data sets and exploration of alternative query
expansion techniques (S. Jeong et al. 2024; Y. Lei et al. 2024;
M. Niu et al. 2024) that balance the benefits of LLM-based
expansion with more traditional, controlled vocabulary
approaches or changes to the RAG architecture.
While the methods described in 3 are not necessarily the

most optimal ways of doing the individual tasks required to run
pathfinder, they represent a proof of concept to be
improved upon—and provide a framework to do so. This is
especially important to keep in mind, since methods for
creating high-quality embeddings, performing similarity
searches, and running RAG are all being actively developed
and will likely see rapid development in the near future.
Several promising avenues for improvement and expansion of

pathfinder exist. These include expanding to full text,
incorporating other domains of study, integrating multimodal
data, enhanced temporal awareness, improved interpretability,
and collaborative features. Implementing sparse autoencoders
(C. O’Neill et al. 2024) could significantly improve the
interpretability of the model’s outputs, allowing users to
understand better how the system formulates its answers and
recommendations.
After some promising attempts in the past (S. Spangler et al.

2014), recent advancements with LLMs are finally now
enabling new ways to augment the process of hypothesis
generation and discovery (P. Shojaee et al. 2024; Y. Zhou et al.
2024). The generated hypotheses often lack grounding in
reality or merely recapitulate existing knowledge (Z. Wei et al.
2023; Z. Bai et al. 2024; H. Li et al. 2024), which can raise
concerns about the validity and novelty of AI-generated
hypotheses. Despite these challenges, some have attempted to
accelerate astronomical discovery this way (I. Ciuca et al.
2023; I. Zaitsev et al. 2023), but this potential remains largely
untapped. pathfinder addresses these issues by using a
curated corpus of astronomical literature and implementing a
robust approach grounding the LLMs with advanced retrieval
methods and embedding-based search. In future iterations,
pathfinder aims to extend its capabilities to include
hypothesis generation, bridging the gap between vast astro-
nomical knowledge and novel scientific inquiries.
The science of understanding data and metadata, and in

particular the nontrivial task of extracting semantic and
contextual information from noisy, multimodal astronomy
data, has been the subject of considerable study over the years
(M. J. Graham 2012). Prior to the development of machine
learning methods and their adoption in astronomy, these efforts
consisted of theory and model building, followed by inference
against observations using catalogs and other data sets of
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Figure 8. Annual Reviews in Astronomy and Astrophysics (ARA&A) articles shown in the space of astronomy papers. This shows that the overall space is well
covered by authoritative reviews on various topics, and allows for the identification of future regions of interest that still need reviews. Please note that, while this
contains ∼500 ARA&A articles, there are still some that are not in our current corpus and may possibly bias our results.
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astronomical measurements, and the construction of knowledge
graphs, application of natural language techniques, and manual
curation and review of papers in the semantic space of astronomy
literature. The latter, in particular, benefits enormously from the
existence of accessible, public repositories of astronomy literature
including arxiv.org, the ADS (A. Accomazzi et al. 1995, 2000),

and Google Scholar. A direct comparison of these tools with
pathfinder is difficult because the structure of the input query
(structured keywords with markup versus natural language input)
and outputs (citation- or date-ordered relevant results versus
results ordered by semantic similarity) are considerably different
and often complementary.

Figure 9. The impact of various facilities in their specific domains and beyond. Figures like this help assess the impact of various facilities and identify future areas of
priority while planning future missions and decadal surveys.
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In a broader context, pathfinder and similar tools fit into a
larger set of projects by collaborations like UniverseTBD,
Seamless Astronomy, PolymathicAI, and AstroAI that are aimed
at extracting scientifically useful information from data and
metadata, and enabling different modalities of data to seamlessly
communicate with each other. pathfinder builds on earlier
work from techniques like astroBERT (F. Grezes et al. 2022,
2024), combines parts of astronomical chatbots (I. Ciucă &
Y.-S. Ting 2023), compares against abstract and full-text-based
completion methods using fine-tuned models (T. Dung Nguyen
et al. 2023; E. Perkowski et al. 2024), and is capable of tasks like
astronomical question answering (Y.-S. Ting et al. 2024) on par
with most state-of-the-art models while minimizing the risk of
hallucinations. Going forward, it will be possible to combine this
framework with foundation models trained on astronomical data
(M. J. Smith et al. 2024), and models that use multimodal
approaches to simultaneously interact with different data
modalities (L. Parker et al. 2024; D. Tanoglidis & B. Jain
2024). Most importantly, perhaps, in the future, it can combine
with models that use symbolic approaches and knowledge graphs
(L. Luo et al. 2023; R. Jia et al. 2024; S. Pan et al. 2024) to
perform hypothesis generation (I. Ciuca et al. 2023; Z. Yang et al.
2023; C. O’Neill et al. 2024) and discover new scientific
knowledge. However, considering the enormous complexity of
these models and their underlying training sets, they would benefit
enormously from using human-centric approaches such as the
ones described in W. Liang et al. (2024b) and J. F. Wu et al.
(2024) that can determine the needs of the community and spread
awareness of both the capabilities and limitations/biases of these
methods while developing tools to enable new kinds of research.

7. Conclusions and Future Work

In this paper, we presented pathfinder, a novel machine
learning framework designed to enhance and complement
traditional methods of literature review and knowledge
discovery in astronomy. By leveraging state-of-the-art LLMs
and a comprehensive corpus of peer-reviewed papers, path-
finder enables semantic searching of astronomical literature
using natural language queries. Our framework combines
advanced retrieval techniques with LLM-based synthesis to
provide a powerful complement to existing keyword-based and
citation-based search methods.

We demonstrated pathfinderʼs capabilities through
various case studies and evaluated its performance using
custom benchmarks for single-paper and multipaper tasks. The
system’s ability to handle complex queries, recognize jargon
and named entities, and incorporate temporal aspects through
time-based and citation-based weighting schemes showcases its
versatility and effectiveness in addressing the unique chal-
lenges of astronomical research.

Beyond its core functionality as a literature review tool,
pathfinder offers additional capabilities such as reformat-
ting answers for different audiences, visualizing research
landscapes, and tracking the impact of observatories and
methodologies. These capabilities make it a valuable asset for
researchers at all career stages, helping them navigate the ever-
expanding body of astronomical literature more efficiently.

As the volume of scientific publications continues to grow
exponentially, tools like pathfinder will become increasingly
crucial in enabling researchers to stay current with the latest
developments in their field and discover new connections across
subdomains. By bridging the gap between natural language

queries and the vast corpus of astronomical knowledge,
pathfinder represents a significant step forward in applying
artificial intelligence to scientific research, paving the way for
more efficient and insightful exploration of astronomical literature.
The pathfinder tool, codebase and corpus are all freely

available through https://pfdr.app. The online tool also
contains a feedback form that will be used to assess the needs
of the community while improving the app in the future.
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