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Abstract

Typical solar wind electrons are modeled as being composed of a dense but less energetic thermal “core”
population plus a tenuous but energetic “halo” population with varying degrees of temperature anisotropies for
both species. In this paper, we seek a fundamental explanation of how these solar wind core and halo electron
temperature anisotropies are regulated by combined effects of collisions and instability excitations. The observed
solar wind core/halo electron data in (β∥, T⊥/T∥) phase space show that their respective occurrence distributions
are confined within an area enclosed by outer boundaries. Here, T⊥/T∥ is the ratio of perpendicular and parallel
temperatures and β∥ is the ratio of parallel thermal energy to background magnetic field energy. While it is known
that the boundary on the high-β∥ side is constrained by the temperature anisotropy-driven plasma instability
threshold conditions, the low-β∥ boundary remains largely unexplained. The present paper provides a baseline
explanation for the low-β∥ boundary based upon the collisional relaxation process. By combining the instability
and collisional dynamics it is shown that the observed distribution of the solar wind electrons in the (β∥, T⊥/T∥)
phase space is adequately explained, both for the “core” and “halo” components.

Unified Astronomy Thesaurus concepts: Solar physics (1476); Solar wind (1534); Heliosphere (711);
Interplanetary physics (827)

Materials only available in the online version of record: animations

1. Introduction

Understanding the physics of solar wind is a contemporary
research topic. Ongoing inner heliospheric missions from
NASA and ESA, namely Parker Solar Probe (N. J. Fox et al.
2016; S. D. Bale et al. 2023; N. E. Raouafi et al. 2023) and
Solar Orbiter (SolO; D. Müller et al. 2020; S. Opie et al. 2022),
have unveiled a number of intriguing discoveries (L. P. Chitta
et al. 2023). Among the fundamental science questions these
missions are exploring is the nature of the evolution of the
thermodynamic states of the charged particles that comprise the
solar wind—e.g., the protons, electrons, and helium (or alpha)
particles. One useful means of studying this evolution is
through occurrence distributions—two-dimensional (2D) histo-
grams—of their physical states. A canonical occurrence
diagram uses the phase space defined by the parallel plasma
beta β∥,s and the ratio of perpendicular and parallel tempera-
tures (defined with respect to the ambient magnetic field B),
T⊥,s/T∥,s (J. C. Kasper et al. 2002, 2003; E. Marsch et al. 2006;
S. D. Bale et al. 2009; B. A. Maruca et al. 2011, 2012; J. He
et al. 2013; L. Matteini et al. 2013; P. Hellinger &

P. M. Trávníček 2014; C. H. K. Chen et al. 2016; K. G. Klein
et al. 2018, 2019, 2021; D. Perrone et al. 2019; J. Huang et al.
2020). Here, T⊥,s and T∥,s are perpendicular and parallel
temperatures for each species (labeled s). The parallel plasma
beta for species s is defined by β∥,s= 8πnsT∥,s/B

2, where ns and
B stand for the density for species s and ambient magnetic field
intensity, respectively. The data show that the charged-particle
distributions in this phase space are confined within an area
encompassed by a rhombic-shaped outer boundary. It is well
established that the outer boundaries in the high-beta regime
are partially defined by various temperature anisotropy
instability threshold conditions (S. P. Gary et al. 1997, 2001;
E. Marsch et al. 2004; P. Hellinger et al. 2006; L. Matteini et al.
2007; S. M. Shaaban et al. 2017, 2019a; P. H. Yoon 2017;
H. Sun et al. 2019, 2020; D. Verscharen et al. 2019; G. Q. Zhao
et al. 2019; L. Xiang et al. 2020, 2021; M. M. Martinović et al.
2021), but the boundaries in the low-beta regime are largely
unexplained.
A recent paper by the present group of authors (P. H. Yoon

et al. 2024) extended the earlier work by S. Vafin et al. (2019),
demonstrating that the boundaries associated with the solar
wind protons can be explained by a combination of collisional
and collective (i.e., instability excitation) relaxations. While
S. Vafin et al. (2019) invoked the proton collisional relaxation
frequency, νpp, to show that a certain contour of νpp, when
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parametrized with T⊥/T∥ and β∥, matches the low-beta
boundary, P. H. Yoon et al. (2024) carried out the dynamical
calculation of collisional relaxation of bi-Maxwellian protons
in the low-beta regime. This calculation demonstrated that a
hypothetical ensemble of solar wind protons with initially low-
beta values undergo collisional relaxation and settle down to
the state described by the low-beta outer boundary within a
typical transit time between the solar source and the distance of
1 au. Conversely, for high-beta protons, it is the instability
excitation and subsequent quasilinear saturation that brings the
unstable protons close to the high-beta outer boundary.

In the present paper, we focus on the electrons (Š. Štverák
et al. 2008; M. L. Adrian et al. 2016; V. Pierrard et al. 2016;
H. Sun et al. 2020). The solar wind electrons are observed to be
made of several distinct components, but the simplest
description is the two-component model where the electrons
comprise dense Maxwellian core electrons and a tenuous but
energetic halo electron population (W. C. Feldman et al. 1975;
C. S. Salem et al. 2023). Typically, the core and halo electrons
are characterized by a finite relative drift, and they also exhibit
different degrees of temperature anisotropy in their respective
reference frame (L. B. I. Wilson et al. 2019). Moreover, the
halo electrons are characterized by a ubiquitous suprathermal
population, a feature that is often modeled by a bi-kappa
velocity distribution function (V. M. Vasyliunas 1968;
M. Maksimovic et al. 1997; C. S. Salem et al. 2023). In the
present study, we ignore the relative drift and also model the
halo electron population by a bi-Maxwellian velocity distribu-
tion, for the sake of simplicity, focusing on the temperature
anisotropies of bi-Maxwellian core and halo electrons. Here,
we note that the temperature anisotropy is the dominant source
of free energy, and thus understanding the behavior of
temperature relaxation is an essential first step to tackling the
issue of relaxation of relative drift. Although it is generally
assumed that the solar wind near 1 au is largely collision-free,
the cumulative effects of binary collisions, known as the
collisional age effect, can be important (Š. Štverák et al. 2008;
P. Hellinger & P. M. Trávníček 2014; J. C. Kasper et al. 2017),
particularly for the electrons (C. S. Salem et al. 2003). We will
extend our earlier analysis for the protons (P. H. Yoon et al.
2024) and analyze the collisional and collective relaxation
processes for the core and halo electrons.

The organization of this paper is as follows: In Section 2, we
discuss the problem of temperature anisotropy relaxation
processes by collisions in the low-beta regime. Section 3 is
devoted to the discussion of anisotropic temperature relaxation
by instability excitation and subsequent quasilinear saturation
in the high-beta regime. Section 4 summarizes the findings.

2. Collisional Temperature Relaxation for Core–Halo
Electron System

The equations that describe the relaxation of anisotropic
temperatures by collisional processes are presented below. The
derivation can be found in Appendix A, and these equations
pertain to a plasma made of the background protons and two
distinct electron components, the core and halo populations.
The core (c) electrons are characterized by low energy but
dense population with distinct bi-Maxwellian temperatures,
T⊥c and T∥c, while the halo (h) electrons are tenuous but more
energetic, with the bi-Maxwellian temperatures, T⊥h and T∥h,
which are substantially higher than those of the core electrons.
Admittedly, it is more realistic to model the halo electrons by a

bi-Kappa distribution, but we nevertheless adopt a bi-
Maxwellian model to simplify the analysis. The protons (p)
are considered as a single species. The protons and core–halo
electrons are assumed to satisfy the charge neutrality condition,
or equivalently, the density conservation, np= nc+ nh, where
np, nc, and nh denote the proton, core, and halo electron
densities, respectively. As noted, we ignore the relative drift
between the core and halo electrons, or any drifts between the
electrons and protons. The relative drifts are important for the
heat flux, but as our focus is on explaining the solar wind
electron occurrence distribution in (β∥, T⊥/T∥) phase space, our
main emphasis will be on the anisotropic temperatures. Upon
writing out the collisional relaxation Equation (A7) for each
species, a, b= c, h, p, we arrive at
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The various collisional relaxation frequencies are defined by
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and these expressions follow from the detailed manipulations
of Equation (A7). Equations (1a) and (1b) describe the
relaxation of anisotropic core electron temperatures by
collisions among themselves (the first terms on the right-hand
side dictated by νcc), by collisions with the halo electrons (the
second terms associated with νch), and through collisions with
the protons (the third terms related to νcp). Similarly,
Equations (1c) and (1d) describe the temperature relaxation
of halo electrons with each term on the right-hand side
specifying different collisional processes, that is, the first terms
on the right-hand side describing the self collisions among the
halo electrons (νhh), the second terms describing the core–halo
collision (νch), and the third terms depicting the halo-proton
collision (νhp). Equations (1e) and (1f) likewise depict the
collisional relaxation of proton temperatures, with each term
providing the details of different collisional processes, namely,
the proton–proton collisions (νpp), proton–core (νcp), and
proton–halo collisions (νhp). In the above mp and me denote
the proton and electron masses, respectively, e is the unit
electric charge, and Λ is defined by n4 D

3p lL = , where
n= np= nc+ nh and ( )T ne4D e

3 3 2 2 3 2l p= . Here, Te repre-
sents the total electron temperature

⎛
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and λD corresponds to the Debye length. In
Equations (2a)–(2c), it is seen that the core and halo parallel
temperatures are coupled through the definitions of collisional
relaxation frequencies.

Following our previous paper (P. H. Yoon et al. 2024), we
normalize the time variable with respect to the proton
gyrofrequency, Ωp= eB/mpc, where c is the speed of light.
One would think that the electron time normalization would be
more natural for the electron physics, but our purpose here is to
deliberately choose the same normalization scheme as in our
previous paper so that a direct comparison can be made. The
dimensionless temperatures are expressed via plasma betas, the
ratio of thermal to magnetic field energy densities. The proton-
to-electron mass ratio is denoted by M=mp/me. The ratio of
halo electron density to the total density is defined by δ= nh/n.
We also normalize the various collision frequencies by the
proton gyrofrequency. With this normalization convention all
the dimensionless physical quantities that pertain to the present
paper can be directly compared with the same quantities and
expressions found in our previous paper (P. H. Yoon et al.
2024)
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Under the present normalization convention, the same two
dimensionless parameters that were introduced in our previous

paper (P. H. Yoon et al. 2024) emerge as the main quantities
that characterize the strength of collisional effects
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where T[eV] represents a reference electron temperature, given
in electron volts, n[pcc] is the background plasma density, given
in units of number of particles per cubic centimeter, and
B[Gauss] is the magnetic field intensity, given in Gauss,
respectively. In Equation (5), ( )ne m4pp p

2 1 2w p= and
( )v B nm4A p

1 2p= represent the proton plasma oscillation
frequency and the Alfvén speed, respectively. The quantity g is
related to the inverse of the number of plasma particles in a
sphere with the radius equal to the proton inertial length,
Lp= c/ωpp. Thus, if the number of particles in this sphere is
infinite, N nLp

3=  ¥, then g→ 0, and the plasma is
perfectly collision-free. For a finite value of g, however, the
binary collisions among plasma particles cannot be ignored. In
general, g must be sufficiently small for a plasma. The quantity
lnL is the familiar Coulomb logarithm.

In terms of the normalized quantities, the set of equations
that describe the collisional relaxation of anisotropic tempera-
tures, namely Equations (1a)–(2f), can be re-expressed as
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Here, [ ] [ ] [ ]n T B8ref pcc eV Gauss
2b p= denotes the reference beta

value.
From the normalized Equations (6a)–(6m), it is seen that the

dominant processes are electron collisions among core and halo
components, as indicated by their normalized collision
frequencies, ¯ ( )Mccn µ O , ¯ ( )Mhhn µ O , and ¯ ( )Mchn µ O .
In contrast, the proton–proton collision frequency is of order
unity, ¯ ( )1ppn µ O , while the proton–electron collision fre-
quency is even lower, of the order ¯ ¯ ( )Mcp hp

1 2n n~ µ -O .
From this, we may simplify the problem by ignoring terms of
order unity, ( )1O , and ( )M 1 2-O . Here, we consider that the
electron collision frequencies are of comparable order in that
c̄cn , c̄hn , and ¯hhn have a similar magnitude in an overall sense,
although in detail, we expect a hierarchy of ¯ ¯ ¯cc ch hhn n n> > .
Nevertheless, when compared with ¯ppn or c̄pn and ¯hpn , these
electron collision frequencies are much higher in the sense of
the order-of-magnitude comparison. Thus, by retaining the
dominant terms of order ( )M1 2O only, we may ignore the
proton dynamics, and we have a reduced set of dimensionless
equations
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where the relevant collisional relaxation frequencies are
redefined by
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As with our previous paper, we take the typical 1 au value for
the plasma density, n∼ 8 cm−3, the magnetic field intensity,
B∼ 5nT= 5× 10−5 Gauss, and the reference electron temper-
ature, Te∼ 140,000 K∼ 12 eV (M. L. Stevens et al. 2018;
K. G. Klein & D. Vech 2019). Given that 1 au equals
1.496× 108 km and the typical solar wind speed is
∼300–600 km s−1, the transit time for a typical solar parcel
to traverse the distance the Sun–Earth separation is
∼2.5× 105–5 10 s5´ . We thus find that the normalized
parameter g¢ is on the order ( )10 7-O . We choose the maximum
value for dimensionless time as 5× 104, following our
previous paper (P. H. Yoon et al. 2024). In short, our choice
of parameters is identical to those adopted in P. H. Yoon et al.
(2024)

( )g 10 , 5 10 . 97
max

4t¢ ~ ~ ´-

Here, we note that we are working under a simplifying
assumption that the protons are implicitly assumed to be
isotropic and act as a neutralizing background. Recall that in
our earlier work (P. H. Yoon et al. 2024), we have made an
opposite assumption that the electrons are essentially isotropic
and simply follow the ions in an adiabatic sense. Of course,
both dynamics can be combined, but we are able to treat the
proton and electron dynamics separately because of the fact
that the very light electrons and protons move at a disparate
timescale.
Following our previous study on the proton dynamics

(P. H. Yoon et al. 2024), we consider a hypothetical ensemble
of “initial” solar wind electron states. We consider an ensemble
of core electrons and a separate ensemble of halo electrons.
That is, we act as if the particles in these two populations are
distinguishable. We assume that these initial ensemble states
are associated with regions close to the coronal source and
propagate to the near-Earth vicinity. However, as we stated in
our previous paper, it should be emphasized that we are not
attempting to model the realistic solar wind conditions close to
the solar source (J. Huang et al. 2020; P. Mostafavi et al. 2024),
but rather, our purpose is to cover a wide range of phase space
uniformly by choosing a hypothetical ensemble of core and
halo electrons at the initial time. In choosing the initial data
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points for the dual core and halo electron populations, we need
to be mindful that there are many possible combinations.

In Figure 1, the colormap of the occurrence distributions for
the solar wind core and halo electrons is plotted as a backdrop.
The left-hand panel plots the initial core electron ensemble
points against the background of color-shaded core electron
data distribution with the right-hand panel showing the same
for the halo electrons. The color-shaded core and halo electron
data distributions use electron measurements from the Helios
mission, which consisted of two spacecraft (s/c) dedicated to
making in situ observations of the inner heliosphere between
0.3 and 1 au. Helios 1 was launched on 1974 December 10, and
Helios 2 on 1976 January 15, and both operated up to 1986.
Helios 1 and 2 rank among the most important missions in
Heliophysics, and the more than 11 yr of data returned by its
spacecraft remain of paramount interest to researchers
(E. Marsch 2012). Electrons with energy from 0.4 to 1658 eV
were measured with a hemispherical electrostatic analyzer in
one angular dimension and in 32 energy channels, part of the
Helios Plasma Detectors Experiment E1 (R. Schwenn et al.
1975; H. Rosenbauer et al. 1977). Only 2D (in the ecliptic
plane) electron distributions were provided (see, e.g.,
W. G. Pilipp et al. 1987a, for more details) at a time resolution
of 40.5 s.

These measurements were analyzed to extract the properties
of the three distinct solar wind electron populations, i.e., the
thermal core, the suprathermal halo and the beam-like strahl
(Š. Štverák et al. 2009, 2015; C. S. Salem et al. 2023), using
least-square fit techniques. Since the measurements are only
2D, data preselection rules are required: (a) measurements for
which the local interplanetary magnetic field is close to be
perpendicular to the s/c spin axis (s/c spin axis being
perpendicular to the ecliptic plane); (b) measurements for
which the magnetic field vector is well aligned with the axis of
one of the eight detector angular bins. The least-square fit
technique applied to the selected sample of electron velocity
distribution functions (VDFs) yield various moments of the
core (c), halo (h), and strahl (s) populations, namely density N,
velocity V, temperature parallel T∥, and perpendicular T⊥ to the
local magnetic field, as well as total heat flux Q (third-order
moment of the VDFs). The condition (a) ensures that any
temperature anisotropies with respect to the magnetic field are

accurately determined, and the condition (b) ensures that
magnetic field aligned strahl is always well resolved by the
detector.
Against the background of the data distribution, we display

in Figure 1, one possible combination where the respective core
and halo electron data points are arranged in a manner that has
a similar repeating pattern for both species. That is, for case 1,
we place both the core and halo electron initial states to occupy
the upper-left corner points in their respective beta-anisotropy
phase spaces, namely, β∥c= 10−2.75, T⊥c/T∥c= 100.2, and
β∥h= 10−3.25, T⊥h/T∥h= 100.2, with case 2 for both core and
halo chosen as the points immediately below those of case 1,
that is, all the parameters are the same except that the
temperature ratio is chosen slightly lower for both core and
halo, T⊥c/T∥c= 100.15, T⊥h/T∥h= 100.15, so on and so forth,
until we reach case 9. Then we repeat the pattern with a slightly
higher value of parallel betas, β∥c= 10−2.5 and β∥h= 10−3, etc.
Figure 1 shows this particular arrangement with each case
indicated by the corresponding number. Of course, even with
the initial states of core electrons as arranged in the left-hand
panel of Figure 1, one could reshuffle the halo initial positions
in any arbitrary arrays, and vice versa. Doing so could better
span the phase space, but this leads to an additional
complication, which arises for the multiple charged-particle
populations and is distinct from our earlier study with the focus
only on a single proton species. Note, however, that even
though it is possible for one to choose a different set of initial
conditions for these parameters, there is no observational
incentive for it, especially for halo electrons. Halo parameters,
as measured over a large span of radial distances (L. Berčič
et al. 2000; M. Maksimovic et al. 2005; Š. Štverák et al. 2009;
J. S. Halekas et al. 2020) are well within the assumed range.
Consequently, in the present paper, we confine ourselves to the
particular initial ensemble arrangement as shown in Figure 1.
We have solved the dynamical Equations (7a)–(7d), together

with the dimensionless collision frequencies defined by
Equations (8a)–(8d), under input parameters corresponding to
the estimate given in Equation (9), namely, g 10 7¢ = - and

5 10max
4t = ´ . These normalized input parameters are

exactly identical to those adopted in our earlier study on the
protons (P. H. Yoon et al. 2024). In the left-hand panel of
Figure 2, the initial ensemble of core electron data points is

Figure 1. (Left) Initial ensemble positions of core electrons plotted against the backdrop of core electron data distribution. (Right) The same for the halo electrons,
plotted against the backdrop of halo electron 2D distribution. The numerical designations signify the case numbers; 1–81. The colormap background data distributions
use electron measurements from the Helios mission.
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plotted with open circles without the numerical designations.
The ensemble of points are plotted in the background of core
electron data distribution (2D histogram), as in Figure 1. The
dynamic paths in (β∥c, T⊥c/T∥c) space, as the core electrons
relax via collisional processes, are indicated with magenta
curves, and the final states at t 5 10pmax max

4t = W = ´ are
marked with black dots. We have, of course, solved the halo
electron equations concomitantly, and the results for the halo
electrons are plotted in the right-hand panel of Figure 2,
where we have followed the same procedure as we did for the
core components. All of these theoretical results are plotted
against the background of electron halo data distribution in
2D (β∥h, T⊥h/T∥h) space. Judging from both panels in
Figure 2, the “initial” ensemble points that are sufficiently far
outside the boundary of the data distributions for both core
and halo electrons are seen to swiftly move toward and settle
around the outer perimeters on the low-beta sides of the
respective data distributions. In contrast, those ensemble
points that are already situated within the data distributions
either barely move or move rather sluggishly. This finding is
consistent with our earlier work on the protons in that, the
collisional relaxation process is indeed a baseline explanation
for the boundary of the charged-particle distributions on the
low-beta side, as observed in the solar wind near 1 au. In the
video file accompanying this paper, we also present the entire
course of core and halo electron ensemble evolution, where
the ensemble trajectories from their initial positions, shown
by open circles, are displayed for every time interval of
ΩpΔt= 103, until the final computation period corresponding
to Ωpt= 5× 104. The traces of the animated ensemble
trajectories correspond to the magenta-colored curves in the
inline figure.

3. Regulation of Core–Halo Electron Temperature
Anisotropies by Collective Instability Excitation

As for the boundaries associated with the 2D data
distributions on the high-beta regime, it is known that the

temperature anisotropy-driven instabilities are largely respon-
sible for their existence (P. H. Yoon 2017; D. Verscharen et al.
2022). Nevertheless, for the sake of completeness, we will
demonstrate the effects of the temperature anisotropy instabil-
ities and saturation by carrying out an ensemble of quasilinear
relaxation calculations. We should note that the core and halo
electron data boundaries on the high-beta side have received
relatively less attention as compared to the similar high-beta
boundary in the case of protons (Š. Štverák et al. 2008). For
this purpose, we again consider an ensemble of initial core and
halo electron ensemble points in the parameter space (β∥,
T⊥/T∥), but this time, corresponding to the high-beta regime,
for both core and halo electrons. These initial ensemble points
are meant to encompass the unstable regime. Among the
temperature anisotropy instabilities of interest to us are the
electromagnetic electron–cyclotron (EMEC) or whistler
instability, in the case of excessive perpendicular temperature
anisotropy, T⊥> T∥, and the electron firehose (EFH) instability
in the case of excessive parallel temperature anisotropy,
T∥> T⊥. For the sake of simplicity, we restrict ourselves to
the parallel propagation of these unstable modes. This is
certainly a simplification. It is known that oblique modes such
as the electron mirror (P. Hellinger & v. Štverák 2018;
M. Sarfraz et al. 2022) or oblique firehose (P. Hellinger &
P. M. Trávníček 2008; R. A. López et al. 2022) modes act very
rapidly on the electrons, so that this restriction might affect
some of the early evolution in the ensemble calculation. One
could certainly improve upon the present approach with a more
sophisticated quasilinear simulation, but the purpose of the
present study is to provide a baseline explanation. Such
advanced computations could and should be the focus of a
future endeavor. In any event, the evolution equation for the
core and halo electron temperatures subject to these instabilities
propagating in the parallel direction are discussed in standard
references (e.g., M. Sarfraz et al. 2017; P. H. Yoon et al. 2017;
S. M. Shaaban et al. 2019a, 2019b), and herewith we
reproduce the quasilinear velocity moment equations derived

Figure 2. (Left) Initial ensemble of core electron data points are plotted with open circles; the dynamic paths in (β∥c, T⊥c/T∥c) space are indicated with magenta
curves; and the final states at t 5 10pmax max

4t = W = ´ are marked with black dots, against the background of core electron data distribution. (Right) The same for the
halo electrons. An animation of this figure is available, where the ensemble trajectories from their initial positions, shown by open circles, are displayed for every time
interval of ΩpΔt = 103, until the final computation period corresponding to Ωpt = 5 × 104. The traces of the animated ensemble trajectories correspond to the
magenta-colored curves in the inline figure. The real-time duration of the animation is 62 s.
(An animation of this figure is available in the online article.)
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( )[( )

( ) ( )] ( )

dT

dt

e

m c

dk

k
W k A

i Z

2
2 1

Im 2 , 10a

c

e
c k

e c c

2

2 2
,

ò å g

g h z

=- +

+  W

^

+ -


 

( )[( )

( ) ( )] ( )

dT

dt

e

m c

dk

k
W k A

Z

1

Im , 10b

c

e
c k

e c c

2

2 2
,

ò å g

w h z

= +

+  W
+ -



 



( )[( )

( ) ( )] ( )

dT

dt

e

m c

dk

k
W k A

i Z

2
2 1

Im 2 , 10c

h

e
h k

e h h

2

2 2
,

ò å g

g h z

=- +

+  W

^

+ -


 

( )[( )

( ) ( )] ( )

dT

dt

e

m c

dk

k
W k A

Z

1

Im , 10d

h

e
h k

e h h

2

2 2
,

ò å g

w h z

= +

+  W
+ -



 



where ω= ωk+ iγk denotes the complex conjugate solutions of
the dispersion relation
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In the above, the plus and minus signs signify the left-hand
circularly polarized electron firehose (EFH) mode and the right-
hand circularly polarized EMEC or whistler mode, respec-
tively. The spectral magnetic field wave energy density
corresponding to the left/right mode, ( ) ( )W k B k2d=  , satisfies
the wave kinetic equation
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If we allow for negative real frequency, then both + and −
signs can be discussed in a single framework by confining
ourselves to only one sign associated with the plasma
eigenmodes. For convenience, we choose to work with the
lower sign. We may write the set of equations in terms of the
same dimensionless quantities, which we have already
introduced, namely, τ=Ωpt, n T B8c h c h c h, , , , , 0

2b p=^ ^  ,
δ= nh/n0, Ac,h= T⊥c,h/T∥c,h− 1= β⊥c,h/β∥c,h− 1, as well as
in terms of additional normalized variables
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The wave intensities for each mode are computed by solving
the wave kinetic equation, ∂w(κ)/∂τ= 2γw(κ). Here, we
should point out that the ensemble calculation for the high-beta
regime is carried out by ignoring the collisional relaxation
altogether, and only the instability-induced relaxation processes
are considered. It is possible to combine both effects, but the
purpose of the present section is to isolate the effects of
instabilities on the electron ensemble states in the high-beta
regime. Note that we have made a similar delineation in our
previous study of protons (P. H. Yoon et al. 2024), and
herewith we follow the same practice so that a side-by-side
comparison can be made.
In the numerical analysis, we find that the numerical

complex root solving routine based upon the exact instanta-
neous dispersion relation (11) is quite cumbersome. Unlike the
single proton species problem, which we considered in our
previous paper (P. H. Yoon et al. 2024), the present situation of
multiple electron species combined with the background
protons renders the automatic complex root solving scheme
at each time step along the quasilinear computation by
numerical means somewhat unreliable. For this reason, we
employ an approximation in which the collective relaxation by
EMEC instability can be treated by a weak growth formalism,
which assumes that the underlying nature of the wave-particle
resonance is that of resonant variety. On the other hand, for the
EFH instability, we find that the assumption of nonresonant
instability is a reasonable first-cut approximation. The details
can be found in Appendix B.
To investigate the temperature anisotropy relaxation by

collective instability excitation we choose the initial data points
for the dual core and halo electron populations in accordance
with their operational range in the relatively high-beta regime.
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As with Figure 1, we choose one particular combination of
initial ensemble points among many, where the core and halo
electron data points are arranged in a manner that reflects a
systematic repeating pattern. Specifically, for case 1, we place
both the core and halo electron initial states to occupy
the upper-left corner points in the high-beta regime corresp-
onding to β∥c= 10−0.25, T⊥c/T∥c= 100.2, and β∥h= 10−0.75,
T⊥h/T∥h= 100.2, followed by case 2, which is the same except
for the temperature ratio, T⊥c/T∥c= 100.15, T⊥h/T∥h= 100.15,
etc., until we reach case 9. We then repeat the pattern with
a slightly higher value of parallel betas, namely, β∥c= 100 and
β∥h= 10−0.5, so on and so forth, in a systematic manner, until
case 81. This pattern is analogous to Figure 1, except that these
points occupy the high-beta regime. Figure 3 displays this
particular arrangement with each case indicated by the
corresponding case number. As with Figure 1, one could
reshuffle the relative initial positions of core and halo electrons
in any arbitrary arrays, but we will choose this specific initial
ensemble arrangement for the sake of convenience.

We have solved the dynamical Equations (15a) and (15b),
together with the wave kinetic equation. In solving for these
equations one is faced with a vastly different timescale
associated with the underlying instabilities. For EMEC
instability (which operates for those initial ensemble points
located in the region characterized by T⊥> T∥), the growth rate
is on the order of electron–cyclotron frequency, while the EFH
instability (which pertains to those ensemble points character-
ized by T∥> T⊥) growth rate is basically dictated by the proton
cyclotron frequency—see Appendix B for examples of EMEC
and EFH instability growth rates as well as the behavior
associated with their real frequencies. Thus, one must choose a
relatively short time step for the time integration of quasilinear
equations that pertain to unstable EMEC mode. Specifically,
we found that a normalized time step of dτ= 10−3 is required
for a stable numerical integration. On the other hand, a
substantially longer time step can be taken to be for the EFH
case. It turns out that dτ= 10−2 is an optimal choice.
Consequently, instead of solving the equations up to a fixed
maximum normalized time maxt , we have instead made a
different choice for dτ depending on whether the EMEC or
EFH mode is unstable, and simply solved Equations (15a) and
(15b) up to a fixed maximum number of iterations, that is,

#iterations=Niteration. Specifically, we have made an arbitrary
choice of Niteration= 600. The maximum computational time is,
of course, determined by N dmax iterationt t= .
Figure 4 plots the result of numerical computation. As noted,

in the case of EMEC instability, the quasilinear relaxation
proceeds extremely fast (in the electron–cyclotron timescale),
which required dτ= 10−3. Thus, the maximum number of
iteration Niteration= 100 translates to 0.6maxt = , or
t 0.6 pmax

1= W- . For EFH instability, on the other hand, for
which the growth rate is much lower, we made the choice of
dτ= 10−2, meaning that the maximum computational period in
this situation is equivalent to 6maxt = , or t 6 pmax

1= W- . In the
left-hand panel of Figure 4, which shows the core electron
dynamics, it is seen that the initial ensemble points for the core
electrons have either all moved close to the marginally unstable
states for EMEC or EFH instability, or, for those ensemble
points that are below the marginal states, they remain
unchanged. The final states are marked with black dots, while
the intermediate dynamic paths are plotted with magenta-
colored dotted lines.
The right-hand panel of Figure 4 plots the same result for the

halo electrons. Again, it is seen that the initially EMEC
unstable halo electron data points have moved close to the
instability threshold curve. As for those halo electron ensemble
points that are initially unstable to the (parallel) electron
firehose (EFH) instability, we observe an interesting behavior
that is somewhat different from that of the core electron.
Instead of these points gradually moving close to the marginal
firehose state and settling down, they move past the marginal
stability threshold curve and settle down in the vicinity defined
by an isotropic condition, β⊥h; β∥h. However, those halo
electrons that are initially stable to the EFH instability
excitation, that is, those electrons that are already located
within the stability boundary, hardly move. Of course, the
present instability-induced relaxation mechanism made a
simplifying assumption of parallel propagation. In particular,
obliquely propagating modes excited by the electron temper-
ature anisotropy, namely, the electron mirror-mode (N. Noreen
et al. 2017a; P. Hellinger & v. Štverák 2018; M. Sarfraz et al.
2022) and the oblique electron firehose mode (X. Li &
S. R. Habbal 2000; E. Camporeale & D. Burgess 2008;
P. Hellinger et al. 2014; M. E. Innocenti et al. 2019; R. A.

Figure 3. (Left) Initial ensemble positions in the case of collective instability saturation, for core electrons plotted against the backdrop of core electron data
distribution. (Right) The same for the halo electrons, plotted against the backdrop of halo electron 2D distribution.
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Lopez et al. 2019) may be important, which we ignored.
However, these are also expected to be operative under
conditions characterized by our choice of initial ensemble
points. The impact of these unstable modes on the quasilinear
dynamics is unknown at this point, and the subject is for future
consideration. In spite of this, Figure 4 does provide a first-cut
confirmation that the relaxation by parallel instability excitation
and saturation is indeed important. As such, the instability-
induced relaxation mechanism is an adequate explanation for
the existence of the boundary associated with the solar wind
electron data distribution on the high-beta regime, as observed
in the near 1 au region of the heliosphere. This is, of course, to
be expected to a certain extent, but the significance of the
present work is that we have concretely demonstrated such a
process. We also include a video that accompanies this article
where the entire dynamics of ensemble evolution over the

iterations corresponding to#iterations= 10, 20, ..., 600, can be
seen. Specifically, the ensemble trajectories from their initial
positions are displayed for every 10 iteration interval, with the
normalized time step in the case of EFH instability chosen as
dt 10 p

2 1= W- - , while for the EMEC instability, the same is
chosen as dt 10 p

3 1= W- - , until the final number of iterations
corresponds to 600. The traces of the animated ensemble
trajectories are the magenta-colored curves in the inline figure.

4. Summary

By way of summarizing our findings, we now combine the
ensemble calculation results for both collisional relaxation and
instability relaxation. The result is displayed in Figure 5, where
we have plotted only the final states with dots, against the
backdrop of the solar wind electron data distributions. To

Figure 4. (Left) Initial ensemble of core electron data points in the case of collective relaxation is plotted with open circles; the dynamic paths in (β∥c, T⊥c/T∥c) space
are indicated with magenta curves; and the final states at t 10pmax max

2t = W = are marked with black dots, against the background of core electron data distribution.
(Right) The same for the halo electrons. In the accompanying animation, the entire dynamics paths for the ensemble points that are subject to instability excitation and
quasilinear relaxation, can be seen. Specifically, the ensemble trajectories from their initial positions are displayed for every 10 iteration interval, with the normalized
time step in the case of EFH instability chosen as dt 10 p

2 1= W- - , while for the EMEC instability, the same is chosen as dt 10 p
3 1= W- - , until the final number of

iterations corresponding to 600. The traces of the animated ensemble trajectories are the magenta-colored curves in the inline figure. The real-time duration of the
animation is 62 s.
(An animation of this figure is available in the online article.)

Figure 5. Combined results of combined dynamical ensemble calculation where the final states, plotted with black dots, are displayed against the backdrop of 2D solar
wind electron frequency distribution. The final states are the same as those shown in Figures 2 and 4.
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reiterate, in the case of collisional relaxation, the computation is
carried out up to Ωpt= 5× 104—see Figure 2, while for the
collective (instability-induced quasilinear) relaxation, we have
iterated the computation up to the maximum number corresp-
onding to #iterations= 600, which corresponds to maximum
computational time of Ωpt= 0.6 for EMEC instability and
Ωpt= 6 for EFH instability—see Figure 4. This is done
particularly for the sake of visualization of the accompanying
animation file. If we adopt the maximum computational time
instead, then those ensemble points corresponding to EMEC
instability will evolve too quickly. Besides, once the fast-
evolving EMEC instability reaches saturation, the ensemble
points do not further evolve anyway, so adopting two different
time steps does not affect the final outcome. The choice of the
maximum number of iterations facilitates the visualization of
the ensemble evolution. As is apparent, the final set of
ensemble points largely overlap the actual core and halo
electron data distributions. The present result complements the
earlier work on the protons (P. H. Yoon et al. 2024).

In the present paper, we have paid attention to the
temperature anisotropies associated with the core and halo
electrons, but as we have noted previously, the core and halo
electrons are frequently observed to possess a finite relative
drift, as well as a net drift with respect to the background
protons. For the sake of simplicity, we have not taken such
features into account, but in the future, such properties should
be taken into consideration. Of course, doing so will inevitably
involve higher-dimensional representations of the electron (and
proton) velocity distributions, involving relative drifts, betas,
and temperature anisotropies. This will complicate the situa-
tion, but the present beta-anisotropy space is a first-cut useful
construct that enables the physical interpretation of statistical
volumes of spacecraft data. As such, the present paper, in and
of itself, will not solve all of the problems associated with the
expanding solar wind, but this work represents a useful
summary on the issue of beta-temperature anisotropies for the
solar wind electrons.

Another limitation relates to the fact that the halo electron
population is ubiquitously characterized by nonthermal tail,
which is often modeled with the bi-Kappa VDF. The present
paper, on the other hand, modeled both the core and halo
electrons by the bi-Maxwellian distributions. The impact of
suprathermal bi-Kappa halo electrons must be investigated in
the future. In this regard, some works have already addressed
this issue as it relates to the regulation by instability
excitation, see, e.g., M. Lazar et al. (2015). However, the
collisional relaxation of bi-Kappa halo electrons in the
present context, namely, the core and halo electron temper-
ature relaxation problem, is yet to be addressed, although we
should point out that some authors, including M. Maksimovic
et al. (1997) and V. Pierrard et al. (1999), for instance, have
already carried out the kinetic theory of collisional processes
in the context of the exospheric model, and showed that the
influence of Kappa populations leads to a decrease in
collision frequency and an increase in the mean free path
for the electrons.

Another caveat as it relates to the basic assumption in our
paper is that we treat the electron core and halo as two
distinguishable populations, although some studies imply that
some of the “halo” electrons may migrate to “core” population
and vice versa as the system evolves (V. Pierrard et al. 2022).

We do not include such a feature in our study, but it seems to
be intuitively clear that this process, even if it is present at some
point, cannot be abundant enough to significantly alter the
electron VDFs, and this process is difficult to quantify. One
possible approach to incorporating this feature is to consider
the velocity moments of the entire electron VDF and compute
the relaxation processes, but such an endeavor requires a new
set of data analyses.
Another relevant issue is that we have ignored the “strahl”

component altogether in our study. The observational data
(e.g., Figure 1) do not differentiate between the slow and fast
solar wind, but it is known that the strahl component is
generally more prominent in the fast wind (W. G. Pilipp et al.
1987b, 1987; C. S. Salem et al. 2023). Moreover, some
observations imply that the strahl electrons scatter into the halo
population as the solar wind expands (Š. Štverák et al. 2009).
The present work does not consider any of these higher-order
aspects associated with the solar wind electrons, and thus, is
limited in this sense as well.
We also remind the reader that our baseline model

computation does not take into account other higher-order
effects such as the radial expansion. Finally, in the present
simplified approach, we have restricted ourselves to the
instabilities propagating in directions parallel (and anti-parallel)
to the ambient magnetic field. The influence of the obliquely
propagating modes on the quasilinear dynamics is an important
subject matter, which deserves a thorough consideration in the
future.
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Appendix A
Collisional Relaxation of the Anisotropic Temperatures

The formulation of core–halo electron collision problem
starts from the same Balescu–Lenard–Guernsey kinetic
equation, which we have employed in our previous paper
(P. H. Yoon et al. 2024). The basic form of the collisional
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kinetic equation is given by
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Note that if we replace the dielectric constant by unity (ò→ 1),
then we have the Landau collision integral, which formed the
basis of earlier works (V. I. Kogan 1961; P. Hellinger & P. M.
Travnicek 2009, 2010; W. Jubeh & I. A. Barghouthi 2017). Here,
fa(v) is the VDF (with the normalization, ∫dvfa(v)= na, where na is
the ambient density); ea and ma stand for the electric charge and
mass for charged-particle species labeled a; Ek,

2
w is the square of

the steady-state electric field spectral amplitude; and ò(k, ω)
denotes the dielectric constant. From here, we take the
same procedure as in our previous paper, namely, we take the
velocity moments of the collisional kinetic Equation A1,
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the ⊥and ∥ denote directions with respect to the direction of the
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temperatures. Under the assumption of bi-Maxwellian VDF,
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and parallel thermal speeds, respectively, we may derive the
governing dynamical equations that describe the evolution of
T⊥a and T∥a. The detailed steps are already outlined in our
previous paper, and the result is given by
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together with the expressions for the steady-state wave
spectrum, Ek,

2
w, and the dielectric constant, ò(k, ω)
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where ζb is defined exactly as in Equation (A2), except for the
label b, and ( ) ( )Z z dte t zt1 2 12
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¥ - - , ( )zIm 0>
represents the plasma dispersion (or Fried–Conte) function.
Up to this point, the results are identical to that already
discussed in our previous paper, where we also discuss that
upon approximating the dielectric constant via
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2 2 2 2w l» + - , and subsequently approx-

imating the integration over the modulus of the wavevector by
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2 2l p= is the square of the Debye length,

Te= (T⊥e+ 2T∥e)/3 being the electron temperature, and
n4 D

3p lL = , then the remaining ω integral and the integration
over the wavevector polar angle can be carried out exactly.
This was true, particularly for the case of proton–proton
collisions. However, for a general situation that involves like-
particle collisions as well as collisions among different
charged-particle species, the general result is rather cumber-
some, and the final result customarily involves mathematical
representation in terms of the generalized hypergeometric
functions. The purpose of the present analysis is to derive
sufficiently accurate and useful forms of various collision
frequencies without going through laborious mathematical
manipulations.
For this purpose, it is instructive to define a quantity
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where we have carried out the ω integration. Aside from the
approximation for ò(k, ω), this result is exact. At this stage of
the formalism, it is appropriate to introduce a useful
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approximation, that is, we simplify the following object of
interest:
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remaining k integral with an appropriate upper limit cutoff
leads to the so-called Coulomb logarithm, as already explained.
The resulting approximate form of the collisional temperature
relaxation equation is as shown below,
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and we find that this set of equations provides a convenient
platform for calculating various collisional relaxation frequen-
cies for plasmas that comprise multiple charged-particle
species. One can easily verify that Equation (A7) reduces to
the correct proton–proton collisional temperature relaxation
equation derived in our previous paper. As the purpose of the
present paper is to discuss the collisional relaxation of solar
wind electrons, which are customarily treated as being made of
the core and halo components, we subsequently restrict our
analysis to such a problem. The dominant core (c) population is
made of denser, colder electrons, while the tenuous halo (h)
electron component is described by a much higher temperature.
Applying the density conservation np= n= nc+ nh and
explicitly writing out the equations for each species (protons,
p, core and halo electrons, c and h), we arrive at the set of
equations introduced in the main body of the text, that is,
Equations (1a)–(2f).

Appendix B
Approximate Analysis of Dispersion Relation

In the quasilinear theory of electromagnetic electron–
cyclotron (EMEC) and (parallel) electron firehose (EFH)
instabilities it is necessary to solve the instantaneous dispersion
relation (11) at each time during the numerical integration of
the velocity moment Equations (15a)–(15c). The dimensionless
form of (11) is given by
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where nT B8p p 0
2b p= is the proton beta, and other quantities,

namely, ζc, ηc, ζh, and ηh are defined in Equation (15c). The
EMEC instability operates on a timescale of the inverse

electron gyro period, while the EFH mode timescale is defined
by the proton cyclotron period. As a result of these vastly
different instability timescales, the numerical integration of
velocity moment Equations (15a) and (15b) becomes time
consuming. To simplify the numerical efforts we have devised
an efficient approximate analytical method to determine the
instantaneous roots. For the EMEC mode, we find that the
resonant wave-particle approximation combined with the weak
growth rate formalism is applicable. Under such a scheme, the
real frequency of the EMEC mode is determined by
approximating the Z function by its asymptotic form,

( )Z i e1 1 2 2z z p» - + z- - , and by retaining only the real part
thereof. The growth rate is determined by the textbook
approach of balancing the imaginary part of Equation (B1)
under the Z function expansion, combined with the Taylor
series expansion of the remaining term, the so-called Landau
formalism. The resulting real frequency and the growth rate for
the EMEC instability is given in normalized form by
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where z= ωr/Ωp, γ= ωi/Ωp, κ= ck/ωpp, and M=mp/me are
already introduced in Equation (14), and Gp, Gc, and Gh

represent the contribution to the wave growth/damping rate
from the protons and core and halo electrons, respectively
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with ζp being defined in Equation (B1), and ζc and ζh being
defined in Equation (15c). We found that this form of wave
dispersion relation and growth rate quite accurately approx-
imates the actual numerical roots corresponding to the unstable
EMEC mode, provided the maximum growth rate is slightly
adjusted by a multiplicative scale factor, that is, by adjusting
the analytical growth rate, γ→ fscaleγ. Note that a similar
procedure was first introduced in a recent pair of papers
(R. A. López et al. 2023; P. H. Yoon et al. 2023), where by
adjusting the analytical growth rate with an empirical scaling
factor, an excellent agreement between the fully numerical
complex roots and analytical formulae are obtained for the
proton cyclotron and mirror-mode instabilities. Moreover, a
similarly excellent agreement was achieved between the
quasilinear theory with the scaling factor and the hybrid
particle-in-cell code simulation.
As for the EFH mode, we found that the nonresonant

instability approximation is applicable. In this approach, the Z
function is approximated by its asymptotic form, but the
expansion is kept up to the second order while ignoring the
imaginary part, Z(ζ)≈−1/ζ−1/(2ζ3). This is done for the
core and halo linear responses. For the isotropic protons, only
the leading order expansion is necessary. After inserting these
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approximate forms of relevant Z functions, we then retain the
resonant denominators of order (z−M)−1, which leads to
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Among the complex roots of this cubic equation, the solution
corresponding to the positive imaginary part represents the
unstable EFH mode. As with the resonant EMEC instability,
however, we also found that it is necessary to adjust the
maximum growth rate of the unstable root by an appropriate
scaling factor, γ→ fscaleγ. By trial and error, we have compiled
the list of scale factors, fscale, for each case, and displayed the
result in Table 1. The number enclosed by the bracket is the

Figure 6. Examples of exact vs. approximate dispersion relations. (Top) Real frequency and growth rate for EMEC instability (case 21). Solid curves are exact
numerical solutions based upon Equation (B1), while the dashed curves are approximate solutions, Equation (B2), except that γ is multiplied with fscale = 0.625.
(Bottom) Real frequency and growth rate for EFH instability (case 71). Solid curves are exact numerical solutions based upon Equation (B1), while the dashed curves
are approximate solutions based on Equation (B4), except that γ is multiplied with fscale = 0.95.

Table 1
List of Empirical Scale Factor fscale for Adjusting the Maximum Growth Rate

fscale

(1) 0.64C (10) 0.6C (19) 0.64C (28) 0.64C (37) 0.69C (46) 0.78C (55) 0.925C (64) 1.13C (73) 1.41C

(2) 0.69C (11) 0.625C (20) 0.61C (29) 0.61C (38) 0.65C (47) 0.73C (56) 0.86C (65) 1.03C (74) 1.28C

(3) 0.93C (12) 0.7C (21) 0.625C (30) 0.6C (39) 0.61C (48) 0.67C (57) 0.765C (66) 0.915C (75) 1.12C

(4) 0.95C (13) 0.94C (22) 0.92C (31) 0.655C (40) 0.595C (49) 0.59C (58) 0.64C (67) 0.73C (76) 0.88C

(5) S (14) S (23) S (32) S (41) S (50) S (59) S (68) S (77) S
(6) S (15) S (24) S (33) S (42) S (51) 0.55F (60) 0.8F (69) 0.88F (78) 0.92F

(7) S (16) S (25) S (34) S (43) 0.65F (52) 0.85F (61) 0.9F (70) 0.94F (79) 0.96F

(8) S (17) S (26) S (35) 0.35F (44) 0.81F (53) 0.88F (62) 0.925F (71) 0.95F (80) 0.97F

(9) S (18) S (27) S (36) 0.65F (45) 0.85F (54) 0.9F (63) 0.935F (72) 0.96F (81) 0.965F

Note. Numbers within the bracket correspond to positions of initial ensemble points as indicated by Figure 1. Those cases that are stable are indicated by S. Ensemble
points unstable to EMEC or EFH instability are denoted by superscript C or F, respectively.
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initial ensemble point as indicated by Figure 1. Of all the cases,
those corresponding to stable initial states are indicated by S.
Those initial states that are unstable to either EMEC or EFH
instability excitation are indicated by the superscript C or F.

To illustrate the present scheme, we plot in Figure 6, the
comparison between the exact and approximate dispersion
relations for cases 21 and 71, which are chosen randomly. For
both cases, the analytical growth rates are adjusted with the
respective scale factor listed in Table 1. As is apparent, the
comparisons are quite reasonable. Other cases also show good
agreements. It is also apparent that while the EMEC mode is
controlled by the electron dynamics (with high normalized
wave frequency and growth rate), the EFH mode is essentially
a proton mode with both the real frequency and growth rate
lying in the vicinity of the proton gyrofrequency.
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