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A B S T R A C T 

The creation of a dark hole (DH) region in the science image for exoplanet direct detection depends on deformable mirrors 
(DMs), where the imperfect control of DM limits the achie v able contrast. The mirror surface height resolution is set by the 
DM drive electronics, and the quantization errors in DM impact the contrast in the DH. Consequently, determining the optimal 
voltage value for the flattening map of DM is essential, as it involves balancing dynamic and accuracy considerations. We 
conduct a numerical study to examine the impact of these parameters on microelectromechanical DM within the high-contrast 
field of view of several DHs with various characteristics and optical configurations. Our analysis includes an exploration of 
their influence on both small and moderate angular separations. We compare our numerical results with a formula available in 

the literature that aims to capture the dependence of contrast on DM quantization errors. We show that the formula accuracy to 

predict the contrast limit when the DM deflection curves follow the as-manufactured quadratic power law is dependent on the 
DM flattening map voltage domain, regardless of DH size and angular separations. Further these results appear to be insensitive 
to factors such as actuator number, coronagraph type, set-up architecture, and science objective (small or moderate angular 
separations). We provide guidelines for determining the optimal voltage for the DM flattening map, discuss the domain validity 

of the formula used to predict DM quantization errors on the contrast, and provide insights into balancing DM actuator density 

and mirror surface height resolution. 

Key words: instrumentation: miscellaneous – methods: numerical – techniques: high angular resolution – techniques: miscella- 
neous. 
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.  I N T RO D U C T I O N  

he ultimate science case for observing Earth-like planets orbiting
tars in their habitable zone requires image contrast in visible
ight on the order of 10 −10 at short orbits from the host star. To
ddress this goal, a leading approach combines high-performance
oronagraphy and wavefront shaping to reduce starlight and generate
 dark region within the image, enhancing the exoplanet signal to
oise. Coronagraphs are designed to suppress diffracted light but
equire exquisite image quality. Wavefront errors in the telescope
nd instrument optics diffract starlight, and if left uncorrected, create
peckle noise in the focal plane, o v erwhelming the planet signal in
he coronagraphic image by order of magnitude. Active control of
he optical wavefront is essential, and deformable mirrors (DMs) are
ritical devices undergoing constant development for use in space-
ased coronagraph instruments and ground-based observatories.
ulti-DM control is e xtensiv ely tested worldwide across various

aboratory test-beds (e.g. THD—Galicher et al. 2014 , HCIT—Riggs
t al. 2013 , HCIL—Pueyo et al. 2011 ; Riggs et al. 2013 , HiCAT—
’Diaye et al. 20 13 , and SPEED—Martinez et al. 2014 ). A set of
 E-mail: patrice.martinez@oca.eu 
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Published by Oxford University Press on behalf of Royal Astronomical Socie
Commons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), whi
Ms corrects wavefront errors of imperfect optical surfaces and
hapes the wavefront to produce a dark zone, namely the dark
ole (DH), in the science image halo. Various successful laboratory
xperiments using either a single DM (e.g. Trauger & Traub 2007 ;
elikov et al. 2010 ; Guyon et al. 2010 ; Mazoyer et al. 2014 ; Delorme
t al. 2016 ) or two DMs (e.g. Kay, Pueyo & Kasdin 2009 ; Pueyo
t al. 2011 ; Riggs et al. 2013 ) have demonstrated the rele v ance
f the technique. Among the critical aspects of DM technologies,
he drive electronics are essential because they define the minimal
tep of DM surface motion and how well we can control them. In
his context, DM electronics have become a subject of study, with
everal authors (e.g. Trauger et al. 2007 ; Traub & Oppenheimer
010 ; Trauger et al. 2011 ; Bendek et al. 2020 ; Ruane et al. 2020 )
ttempting to predict the impact of DM quantization errors on
he contrast in the DH. Multiple studies provide predictions and
ecommendations for setting specifications on DM control electron-
cs (Ruane et al. 2020 ) to achieve the 10 −10 contrast requirement
or imaging Earth-like planets. Among the existing DM technolo-
ies, microelectromechanical systems (MEMS) are widely used in
round-based high-contrast imaging observatories and are being con-
idered for space missions. Further, MEMS DMs are the most com-
only used wavefront shaping solutions for laboratory coronagraph
est-beds. 

© 2024 The Author(s). 
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ch permits unrestricted reuse, distribution, and reproduction in any medium, 
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Robust requirements for the DM surface height resolution are 
andatory for future coronagraph instruments. A simple and widely 

sed approximate formula is available in the literature (Traub & 

ppenheimer 2010 ; Ruane et al. 2020 ) to capture the dependence
f contrast on DM quantization errors. While it is firmly established 
hat DM quantization errors can set the limit for achie v able contrast
n a DH region (Ruane et al. 2020 ), the equation’s domain of
alidity remains an open question. Specifically, the impact of DM 

uantization errors at small angular separations compared with 
oderate/large orbits is left unexplored to our knowledge. On the 

ther hand, while the DM drive electronics determine the minimal 
urface motion step achie v able in practice, the voltage value around
hich the flattening map of the DM is defined is also crucial. It defines

he available dynamic range and accuracy a DM can achieve because 
ctuators follow a quadratic power-law response with voltages. This 
s particularly critical when generating a DH region. The process 
f creating a DH in the science image relies on the DM and can
e generalized as a three-step procedure for generality: (i) The 
rst step involves flattening the DM, requiring a nominal voltage 
ap that mostly remo v es the natural defocus shape of the mirror

urface; (ii) the second step is flattening the wavefront entering the 
oronagraph (non-common path corrections); and (iii) finally, DH 

reation itself, including sensing methods (e.g. pair-wise probing; 
ive’on et al. 2007 ) to reconstruct the electric field and methods

e.g. electric field conjugation (EFC); Groff 2012 ; Riggs et al. 2013 ;
hn et al. 2023 ; Haffert et al. 2023 ) to cancel it. In all these steps,
ynamic range (stroke available) and accuracy (the smallest amount 
n actuator can be mo v ed) are of primary importance. Flattening
 DM to remo v e low-order aberrations that appear when the DM is
npowered requires a nominal voltage map ranging from 20 to 100 V
peak to valley; PV). It is commonly observed that after running the
FC algorithm to create the DH, the nominal voltage map changes 
y only a few volts. This highlights the importance of selecting the
ominal voltage value for the DM offset map. 
In a previous study (Beaulieu et al. 2017 ), we developed an end-

o-end simulator for a generic high-contrast architecture aimed at de- 
ermining the optimum wavefront control for high-contrast imaging 
t small separations. This involved the combination of coronagraphy 
nd wavefront shaping using two DMs. The generic set-up assumed 
 perfect coronagraph, a monolithic circular aperture without central 
bscuration or spiders, etc. The goal was to assess the impact of the
ocation of the two DMs on wavefront shaping, assuming Fresnel 
ropagation of standard aberrated optics. In a subsequent analysis 
Beaulieu et al. 2020 ), we impro v ed the realism of our instrument
et-up design to delve deeper into the assessment. This included an 
xamination of the relative impact of various set-up parameters, such 
s non-uniform source, residual pupil phasing aberrations, highly 
berrated optics, realistic DMs, and coronagraphs. The analysis was 
arried out with a segmented and obstructed pupil. 

The objective of this paper is to use our versatile end-to-end 
imulator to explore the impact of DM quantization errors and the 
oltage of DM flattening maps on the contrast in the DH. We compare
he contrast impact in scenarios ranging from a small field of view
FoV) at a small inner working angle (IWA) DH to moderate and/or
arge IWA with wide FoV DH situations. Our aim is to investigate
he dependence of quantization errors and initial voltage maps on 
mall/moderate angular separation DH. The obtained results are then 
ompared with predictions generated by a simple and widely used 
ormula proposed by several authors (Trauger et al. 2007 , 2011 ;
raub & Oppenheimer 2010 ; Ruane et al. 2020 ). This study is centred
round the SPEED test-bed (coronagraph, segmented/obstructed 
upil, optical design, etc.; Martinez et al. 2023 ). We use SPEED
s a typical instrument, ensuring that the results can be applied to
ther high-contrast test-beds due to the shared set-up parameters. To 
ur knowledge, the impact of DM quantization errors on contrast 
n a DH has not been systematically explored, particularly as a
unction of the initial DM flattening map voltage. Furthermore, the 
alidity of contrast predictions in a DH with DM quantization errors
as never been investigated for both in and out-of-pupil plane DM
onfigurations. This study considers a two-DM set-up architecture 
nd examines the impact of DH size. 

The general assumptions for the analysis, including DM drive 
lectronics theory, quantization errors, and the theoretical contrast 
imits, are detailed in Section 2 . Section 3 outlines the numerical
ssumptions of our end-to-end simulator, the SPEED test-bed, and 
he realistic assumptions and open parameters used for the analysis. 
ection 4 presents the results, and finally, we conclude with a
ummary. 

.  T H E O R E T I C A L  TREATMENT  

.1 DMs electronics 

arious DM technologies are routinely used or under development, 
ith one of the most common being MEMS (Bifano, Cornelissen &
ierden 2010 ; Bierden et al. 2011 ; Bierden, Cornelissen & Ryan
014 ; Morgan et al. 2019 ). MEMS DMs are metal-coated thin-
embrane mirrors whose shape is controlled by an array of elec-

rostatic actuators. The mirror comprises a membrane deformed by 
 specific number of actuators, each of which can be individually
ontrolled. The local surface displacement (mechanical displace- 
ent) is determined by the voltage applied to each actuator, where

hese actuators provide a displacement practically limited to a few 

icrometres (referred to as the stroke) o v er a compact area. In
ddition to the architecture of MEMS DMs, time-delay response 
nd precision are constrained by the electronics. Standard driver 
lectronics enable 14-bit control; ho we ver, increased resolution is 
ossible, particularly if impro v ed accurac y is desired. F or the sake of
larity and to illustrate the impact of DM drive electronics, we assume
he use of a specific DM in the SPEED experiment (Martinez et al.
023 ): the Boston Micromachines Kilo-C DMs. While the numerical 
alues may differ for other DM configurations, the reasoning is 
pplicable across different set-ups. 

The Kilo-C DM from the Boston Micromachines vendor (Bierden 
t al. 2011 ) has 952 actuators with an inter-actuator spacing of 300
m, providing a 1.5- μm stroke. The DMs are controlled using 14-bit
lectronics, with a precision of 14 bits o v er the full range of the
river (0–300 V) but truncated to the maximum mirror value of 195
. Scaling the value allows us to determine the number of steps in

his range. Scaling 2 14 o v er the full 300 V range and the truncated
alue of 195 V results in approximately 10 650 steps. Since DMs
ave a maximum displacement of 1.5 μm, the average step size is
round 0.1 nm. Ho we ver, the physical step size v alue depends on
here along the deflection curve the actuators are because MEMS- 
ased DMs have, approximately, a quadratic relationship between the 
oltage applied and its corresponding deflection (see Fig. 1 , obtained
rom a Kilo-C DM from Boston Micromachines manufacturer, which 
hows the deflection, denoted as δ, as a function of the voltages.).

hen the mirror is first deflected, the step size is minimal. As the
irror is deflected further, the size of the step increases as the mirror

eaches the middle range region of the curve. Then, at the high end of
he curve, the step size becomes larger until the range is exhausted.
n practice, it is mandatory to calculate the size of the step for each
MNRAS 532, 2892–2904 (2024) 
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M

Figure 1. The principle of the actuator deflection curve where the actuator’s 
physical displacement is expressed in nanometre as a function of the applied 
voltages. The deflection follows a quadratic power law with voltages. In 
Case 1 and 2, sharing the same voltage variation ( �V ), there is an unequal 
corresponding displacement of the actuators ( δ1 �= δ2 ). This discrepancy 
illustrates that the physical step size value depends on the position along 
the deflection curve where the actuators are located. 
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f these ranges using the DM data provided by the manufacturer, as
llustrated in Fig. 1 . 

Fig. 1 presents the basic principle where two situations with equal
oltage variations (denoted �V ) are compared at different locations
n the deflection curve: The corresponding actuator displacements
 δ1 and δ2 ) differ significantly. Equality of the displacement can only
e achieved ( δ1 = δ2 ) by assuming a hypothetical linear power law
f the displacement with voltages. We note that, aside from the
hallenge of achieving the minimal possible step, the stroke error (the
isparity between the specified and actual actuator position) can be
ubstantial and greatly influenced by the variability in the maximum
ange of the electronics amplifiers. This results in various amounts
f error at different points along the discussed curve. Addressing
he impact on actuator displacement would require measurement and
otential compensation, possibly involving the creation of individual
urves for each actuator. Ho we ver, this aspect is not considered in
ur study . Additionally , actuator stability (referring to the ability of
he actuators to hold their shape o v er time; Morzinski et al. 2006 )
nd repeatability (referring to the ability of the actuator to return
o the same position under the same applied voltage consistently;

orzinski et al. 2008 ) are critical but are beyond the scope of this
tudy. 

.2 Contrast in a DH 

 simple formula attempting to capture the impact of DM quan-
ization errors on the contrast in the DH has been proposed by
rauger et al. ( 2007 ) and is widely used (Trauger et al. 2011 ;
endek et al. 2020 ; Ruane et al. 2020 ). For clarity, we will discuss

ew of the assumptions behind this formula, while a complete
athematical/physical justification is provided in Appendix A . The

ormula relies on following main assumptions: 

(i) Assumption 1: A generic coronagraph instrument, which con-
ists of a DM in a pupil plane, a focal plane, a Lyot stop (LS) in a
ubsequent pupil plane, and finally a detector plane where the final
igh-contrast image is recorded. 
NRAS 532, 2892–2904 (2024) 
(ii) Assumption 2: There is a single and unique DM correction
t the pupil plane, with an entrance aperture A , an initial aberrated
eld φ (representing both phase and amplitude errors), and the DM
erturbation ψ DM 

. The electric field at the pupil plane is then given
y 

 p ( u, v ) = A ( u, v ) exp iφ exp iψ DM ( u,v ) , (1) 

here u and v are the spatial coordinates at the pupil plane. In these
ircumstances, the coronagraph is described as the linear operator C 

rom the pupil plane to the image plane, such that the final electric
eld is given by 

 f ( x , y ) = C 

[
E p ( u, v ) 

]
, (2) 

here x and y are the spatial coordinates at the image plane. For
mall aberration, the pupil electric field is defined as 

 p ( u, v ) = 1 + iAφ − 1 

2 
Aφ2 . (3) 

(iii) Assumption 3: Perfect coronagraph is assumed and it remo v es
he deterministic (constant) term but cannot correct for the linear term
Aφ nor for the quadratic amplitude term φ2 / 2 (it cannot correct for
he phase contribution). 

(iv) Assumption 4: It is also assumed that the DM is in a state
here the DH is created, minimizing the normalized intensity. 

Under these conditions (i, ii, iii, and iv), Trauger et al. ( 2007 )
roposed an analytical relation to quantify the required control
ccuracy on the DM for a given contrast ( C ) in terms of the reflected
avefront root mean square (RMS) error ( h rms ) by 

 = π

(
8 h rms 

Nλ

)2 

, (4) 

here, N represents the number of actuators on the DM e v aluated
cross the pupil diameter, and λ is the wavelength. The assumptions
ehind this equation are based on (i) the description of stellar intensity
n the presence of a coronagraph, assuming that the phase φ can be
epresented as the sum of many sinusoidal ripples (a sum of sine
nd cosine waves, as per the standard result from Fourier analysis);
ii) the small aberrations regime; and (iii) a modal argument on the
ontrol of scattered light with a DM. The complete deri v ation of
quation ( 4 ) under these assumptions (i, ii, and iii) is provided in
ppendix A . 
From equation ( 4 ), and by assuming that quantization errors are

niformly distributed, 

 rms = 

h min √ 

12 
, (5) 

e can derive the equation as proposed in Ruane et al. ( 2020 ) that
xpresses the contrast as 

 = 

16 π

3 

(
h min 

Nλ

)2 

. (6) 

t is important to note that this equation ignores factors such as DH
ize, multiple DM architecture, out-of-pupil plane DM configuration,
nd DM actuator shape or influence function, which may impact the
istribution of stellar intensity in the focal plane. The effect of the
ctuator influence function on equation ( 6 ) is, ho we ver, addressed in
uane et al. ( 2020 ), where the formalism is extended to this specific
ase. In this study, we aim to explore the accuracy and validity of their
redictions for both in and out-of-pupil plane DM configurations,
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Figure 2. The RMS of the DM surface shape during the flattening process was e v aluated for various voltage maps. The optimal set of flattening voltages was 
determined iteratively using a Zygo interferometer. From left to right, the images show the unpowered shape (RMS 107 nm), a 50 V flattening map (RMS 
10 nm), a 60 V flattening map (RMS 10 nm), and a 150 V flattening map (RMS 12 nm). The surface RMS is determined o v er the active area of the DM. 
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Figure 3. The image showcases a Kilo-C DM from Boston Micromachines, 
captured using a Zygo interferometer. The left image displays the surface of 
the entire reflective area with a diameter of 11.05 mm, while the right image 
zooms in to reveal the active area, which is restricted to 9.9 mm. 
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onsidering a two-DM set-up architecture and examining the impact 
f DH size. 
In the following, we propose a few adjustments or impro v ements

o equation ( 6 ) for practical reasons and to account for multiple DM
ituations. In practice, in equation ( 6 ) and subsequent equations, N 

ould be better defined as the number of actuator within the LS
e v aluated across its diameter). To account for the active actuators
ithin the LS, we express ρ as the ratio of the LS and the pupil

urfaces, such that 

= 

D LS 

D 

, (7) 

here D is the pupil diameter and D LS the LS diameter. Equation
 6 ) then becomes 

 = 

16 π

3 

(
h min 

ρNλ

)2 

. (8) 

e note that if the LS is very aggressive, it can introduce non-
inearities that might not be well captured by the former equation. 
ince our study emplo ys tw o DMs in series, ef fecti vely doubling

he total number of actuators within the LS, as a first approximation
e add a factor of two in equation ( 8 ) to account for our two-DM

onfiguration. There are likely limitations to this reasoning, and we 
ill confront and discuss our results with this aspect in Section 4 .
nder these considerations, the final equation is now 

 = 

16 π

3 

(
h min 

2 ρNλ

)2 

, (9) 

hich can be simplified to 

 = 

4 π

3 

(
h min 

ρNλ

)2 

. (10) 

inally, the equation can be generalized by defining γ as the number 
f DM used in series, so that equation ( 8 ) can be rewritten as 

 = 

16 π

3 

(
h min 

γ × ρNλ

)2 

. (11) 

.3 DM flattening maps 

lattening a DM involves adjusting its shape to eliminate low- 
rder aberrations that may be present when the DM is not actively
ontrolled or powered. The natural shape of DMs can exhibit 
ignificant PV and RMS v ariations within the acti ve aperture. To
chieve the flattest surface possible, a set of flattening voltages needs 
o be determined through an iterative process. The nominal voltage 
ap represents the voltages applied to the DM to bring the surface
s flat as possible, as measured by surface RMS. Typically, DM
anufacturers provide a flat map with a DM at roughly 50 per cent

eflection, as the flattening process reduces the stroke of the actuators
vailable to generate the required wavefront. This map serves as a
aseline or starting point for DM adjustments. It is observed that
fter running the EFC algorithm or similar to create the DH, the
ominal voltage map may only slightly change. This emphasizes the 
mportance of selecting the nominal voltage value for the DM offset
ap, as it determines the dynamic (stroke) and accuracy (minimal 

tep size) available. The required stroke for the DM is related to
he expected amplitudes of the errors the DM needs to correct in
he system, and the minimal step size is crucial for achieving high-
delity correction. 
As an illustration, in Fig. 2 , we present a series of flattening maps

or one of the SPEED DMs (Kilo-C DM from Boston Microma-
hines). These maps were obtained using a FIZEAU interferometer, 
pecifically the ZYGO Verifire XPZ from Zygo Corp, and were 
etermined through an iterative process where an image w as tak en at
ach step using the Zygo. In Fig. 3 , we illustrate the active area of the
M o v er which the RMS values are measured (952 actuators, white

ircle in the right image), while the entire reflective area is 11.05 mm
white circle in the left image). Our testing reveals that within the
oltage range of 40 to 180 V, a final RMS surface quality around
0 nm o v er the DM’s active area (9.9 mm) is achievable, regardless
f the targeted voltage level (see Fig. 4 ). Ho we ver, it is noticeable
n Fig. 2 that higher voltage maps result in stronger side effects at
he border of the DM’s active area, with increased tension observed
t the edges of the membrane. While these results are not at all
resented as the upper limit of what is achie v able in practice (Evans
MNRAS 532, 2892–2904 (2024) 
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Figure 4. The RMS of the DM surface shape is plotted as a function of 
the voltage maps. The actuator deflection curve is included to identify the 
typical DM manufacturer’s flat map voltage value, which is approximately at 
50 per cent deflection. 
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t al. 2006 ), they provide an argument that any voltage map could, in
rinciple, with equal surface RMS quality, be used as a starting point
or generating a DH, with potential side effects particularly evident
n very high-voltage cases. In low-voltage ranges, the dynamic might
e insufficient to adequately flatten the DM. In our case (see Fig. 4 ),
e cannot fairly discriminate between limitations in RMS resulting

rom a lack of dynamic range in the DM and limitations inherent
o our process set-up. The results presented in Fig. 4 are for purely
llustrative purposes. 

.  N U M E R I C A L  ASSUMPTIONS  

n this section, we outline the general assumptions of our numerical
odelling methodology and DH algorithm, following the same

ormalism as in Beaulieu et al. ( 2017 ) and Beaulieu et al. ( 2020 ). 

.1 Speckle distribution modelling 

n our study, the diffraction pattern in the science image arises
rom (i) a segmented and obstructed pupil, which corresponds to
he SPEED pupil (Martinez et al. 2023 ) mimicking the features
f the Extr emely Lar ge Telescope , and (ii) an optical set-up with
tatic aberrations. We specifically exclude quasi-static aberrations,
ssuming that the correction time-scale is shorter than structural
r thermal changes, as well as certain sources of noise (detector
oises, wavefront sensing errors, etc.). This simplification allows
s to focus on specific aspects of the optical system. For sim-
lating static aberrations, each optic is computed with random
tatic aberrations defined by their total amount of aberration (in
anometre RMS o v er the optic’s physical size) and their frequenc y
istribution [power law of the power spectral density (PSD)]. We
efine each paraxial lens with standard optic qualities, i.e. with 5-
m RMS aberration and a power law of the PSD in f −3 (typical
o current manufacturing errors). To ensure statistical robustness,
e generate 128 phase realizations per optic. The performance

s computed for each of these 128 cases. The choice of 128
ealizations has been validated for statistical reliability (Beaulieu
t al. 2017 ). 
NRAS 532, 2892–2904 (2024) 
.2 DH algorithm 

ur analytical approach, based on energy minimization, determines
he optimal settings for the DMs to minimize energy at the image
lane, resulting in the formation of a DH. Further details about the
athematical formalism, optimization criteria, and specific consid-

rations can be found in the literature for a more comprehensive
nderstanding (Give’on et al. 2007 ; Pueyo et al. 2009 ; Groff 2012 ;
eaulieu et al. 2017 ). 
We summarize the formalism for clarity: 

(i) E 0 as the initial aberrated field with its amplitude A and its
hase ϕ, 
(ii) C 1 as the linear operator from the pupil plane (where the first

M is located) to the focal plane, 
(iii) C 2 as the linear operator from the second DM (out-of-pupil

lane) to the image plane, 
(iv) C 12 as the linear operator from the first to the second DM

lane, 
(v) a as the DMs phases coefficients, and 
(vi) g and h as the influence functions of the first and second DM,

espectively. 

We assume that all the phases are small enough to approximate e iϕ 

y 1 + iϕ, and that C 12 [ E 0 .e 
iφ1 ] can be written in the form of Ae iφ

and thus can be approximated by A (1 + iφ)). The intensity inside
he DH can be written as 

 DH = 

t a M 0 a + 2 t a � ( b 0 ) + d 0 , (12) 
where M 0 = G 

∗G, 

G = [ G 1 , G 2 ] , 

G 1 = 

⎡ 

⎣ [ C 1 { Ag j } ] i 
⎤ 

⎦ , 

G 2 = 

⎡ 

⎣ [ C 2 { Ah j } ] i 
⎤ 

⎦ , 

b 0 = 

[ 

G 

∗
1 C 1 { E 0 } 

G 

∗
2 C 1 { E 0 } 

] 

, 

d 0 = 〈 C 1 { E 0 } , C 1 { E 0 }〉 . 
here M 0 represents the system response to each DM poke, b 0 

epresents the interaction between the DM and the aberration, and
 0 is the initial intensity with aberrations and flat DMs ( a = 0). The
olution 

 = −M 

−1 
0 � ( b 0 ) , (13) 

hat represents the DM coefficients, minimizes the energy inside
he DH. Other algorithms such as EFC (Give’on et al. 2007 ) and
he stroke minimization method (Pueyo et al. 2009 ) optimize the
ontrast ratio and limit large stroke excursion. Because our model
ses monochromatic light and assumes a perfect wavefront sensor,
n our analysis, we do not handle large stroke deviation. 

In practice, we compute the interaction matrix M 0 by first poking
ach DM actuator. Subsequently, we Fresnel-propagate the wavefront
rom the DM to the focal plane, recording the complex amplitude
ssuming a perfect wavefront sensor. The optimization process
nvolves an initial iteration to compute DM coefficients, addressing
hallenges posed by low singular values. Additionally, we employ an
terative process to optimize contrast, accounting for non-linearities
n the optical operators. As discussed in Beaulieu et al. 2017 (see
g. 9 in that paper), empirically setting the singular value threshold
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Table 1. Configuration tested in simulation listed by names and expressed 
as a function of the DM positioning ( DM 1 upstream of or in the pupil plane, 
DM 2 downstream the pupil plane) and DH configuration from small to 
moderate angular separations. 

Configuration DM 1 (mm) DM 2 (mm) DH size ( λ/D) 

Case 1A 0 1500 0 . 8 −4 
Case 1B 200 1500 0 . 8 −4 
Case 2A 200 600 3 −7 
Case 2B 200 1000 3 −7 
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nd carefully handling non-linearities contribute to achieving the best 
ontrast in the DH region. 

We use the PROPER code for Fresnel propagation between each 
ptical element (Krist 2007 ). The PROPER code and the DH algorithm
ere originally written in IDL but translated into C ++ . 

.3 Nominal and alternati v e high-contrast imaging set-ups 

nd-to-end simulators play a crucial role in advancing our under- 
tanding of coronagraph instrument performance in various scenarios 
nd for different purposes, such as technology demonstration for 
xoplanet missions (Krist et al. 2011 ), statistical analysis of budget 
rrors or system analysis (Beaulieu et al. 2017 ), and assessing the
mpact of telescope/instrument parameters on performance (Juanola- 
arramon et al. 2019 ). Each study addresses specific aspects and 
onditions rele v ant to its objecti ves, collecti vely contributing to
he broader field of exoplanet mission planning and coronagraph 
ptimization. 
This study offers insights into the relative impact of various set-

p parameters on the contrast in the DH when DM quantization 
rrors are involved. These parameters include the optical set- 
p configuration (DM positioning), DM characteristics (deflection 
urve, flattening map, and actuator number), and DH characteristics 
IWA, outer working angle (OWA), and FoV]. The comprehensive 
nalysis co v ers a range of errors, pro viding practical considerations
or realistic optical set-ups. We establish a nominal case as a basis
or comparison to assess the relative impact of each parameter. This
ase involves a set-up with 25 optics, including (i) an obscured mask
ith spiders located on to a tip-tilt mirror, (ii) a perfectly co-phased

egmented mirror with 163 segments, (iii) a theoretical PIAACMC 

oronagraph developed for SPEED (Martinez, P. et al. 2023 ), or
lternatively, an ideal perfect coronagraph (Cavarroc et al. 2006 ; 
auvage et al. 2010 , note that the perfect coronagraph is sensitive to
berrations and cannot correct for the phase contribution), and (iv) 
wo DMs with 34x34 actuators, and located at 1.5 and 0.2 m from
he pupil plane. When a DM is placed at the pupil plane, the beam
ootprint corresponds to 22x22 actuators (active actuator number at 
he pupil of 7.7 mm diameter). Ho we ver, for out-of-pupil plane DMs,
he Fresnel pattern is larger than the pupil size, and we extended the
ull DM range to 32x32 actuators of the 34x34 actuators available. 
s a consequence, unless specified otherwise, N = 32 in most of
ur simulations. 
The nominal case assumes 5-nm RMS aberration with a PSD 

n f −3 for each passive optic, including the dichroic and the DMs
indows. These parameters serve as the reference throughout the 
aper unless specified otherwise. 

Given that our simulations assume a perfect wavefront sensor 
nd exclude amplitude and temporal errors, the algorithm achieves 
ery high contrast, surpassing what real instruments can achieve. 
evertheless, such nominal contrast ratio serves as a reference, 
ighlighting that improperly set optical parameters can degrade the 
ontrast level to its limiting value. 

Our nominal case is versatile, allowing the optical configuration of 
he two DMs to be adjusted for optimal performance in various DH
cenarios (Beaulieu et al. 2017 ). This study considers various DM 

ptical set-ups to assess scenarios where both small and moderate 
ngular separations in DH are targeted. For comparison purposes, 
he e v aluation is not restricted to small angular separations. When
eferring to DM distances, DM 1 is consistently located upstream or 
n the pupil plane, while DM 2 is consistently downstream. 

We consider two science DH configurations: (i) a small angular 
eparation scenario (small IW A and OW A, and a small FoV), referred
o as Case 1, with a DH ranging from 0.8 λ/D to 4 λ/D, and (ii) a
oderate angular separation situation, referred to as Case 2, with 
 DH ranging from 3 λ/D to 7 λ/D. For both cases, we explore
wo optical configurations regarding DM positioning: Case 1A, 
here DM 1 is in the pupil plane and DM 2 is positioned 1500 mm
ownstream; Case 1B, where DM 1 is located 200 mm upstream from
he pupil plane and DM 2 is positioned 1500 mm downstream; Case
A, where DM 1 is situated 200 mm upstream from the pupil plane
nd DM 2 is positioned 600 mm downstream; and Case 2B, where
M 1 is located 200 mm upstream from the pupil plane and DM 2 

s positioned 1000 mm downstream. While all these configurations 
re optimized for DH characteristics based on a former analysis 
Beaulieu et al. 2017 ), the optical variations (A and B) in each case
Case 1 and 2) enable a thorough investigation of optical set-up
ependence and potential significance in the analysis, particularly 
y introducing a situation where a DM is in the pupil plane (Case
A). A summary of all these configurations is provided in Table 1 . 

.  N U M E R I C A L  RESULTS  

n this section, we present the results obtained from numerical 
imulations. The numerical pupil diameter size is 225 pixels for 
 grid size of 1024 pixels. The simulation is monochromatic, with a
avelength of 1.65 μm. Our performance criterion is defined as the
 σ contrast ratio histogram computed for each of the 128 random
ealizations. It represents the number of random realizations that 
chieve a given contrast ratio inside the defined DH. 

We present our results in two forms: histograms, as previously 
iscussed and used in Section 4.1 , and as the median contrast of
istograms, as used in Section 4.2 . Section 4.1 addresses the impact
f the DM flattening maps, where results in the form of histograms
re rele v ant to highlight dispersion in the contrast as a function
f phase realization, providing a statistical approach to assess the 
bility to sustain the contrast. On the other hand, Section 4.2
ddresses the impact of the stroke precision, where trends are sought,
nd a statistical approach is less rele v ant than a unique contrast
stimate defined as the median of the histogram of the 128 random
ealizations. 

In our simulation, as discussed and demonstrated in the lab (see
ection 2.3 ), the flattening maps of our DM ensure consistent RMS
urface quality regardless of the voltage applied to the map. The
esults presented in Section 2.3 were not intended to represent 
he maximum achie v able performance in practice. Therefore, we 
esigned our DM flattening maps to exhibit 5-nm RMS aberration, 
onsistent with passive optics as discussed in the previous section. 

.1 Impact of the DM flattening maps 

e first consider our nominal case, as defined in Beaulieu et al.
 2020 ), where DM positioning is optimized for a DH ranging from
MNRAS 532, 2892–2904 (2024) 
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Figure 5. 5 σ contrast ratio histogram for DH from 0.8 λ/D to 4 λ/D, 
assuming DM 1 at 200 mm and DM 2 at 1500 nm (Case 1A), as a function 
of various flattening voltage maps. The nominal case corresponds to no 
stroke limitation imposed by the flattening map. Simulation assumes a perfect 
coronagraph. 
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.8 λ/D to 4 λ/D, dedicated to small angular separations and FoV
Case 1B, DM 1 at 200 mm and DM 2 at 1500 nm), and in this case,
he coronagraph is a perfect coronagraph. 

In this configuration, we can assess the limitation imposed by the
troke limitation originating from the voltage of the DM flattening
ap around which the DH is started and is evolving, with no impact

rom the coronagraph (ideal case). The results of the simulation,
xploring the impact of flattening map voltage values ranging from
0 to 180 V, on the contrast in the DH, are presented in Fig. 5 .
ig. 5 shows following points: (i) The lower the voltage of the flat-

ening map, the better the results, which points out the interest of low
oltages in allowing higher DM step resolution; (ii) independently
rom the value of the voltage of the DM flattening map, departing
rom the ideal and nominal case with no stroke limitation does impact
he contrast on the DH (the nominal case, black line, leads to non-
ealistic contrast values); and (iii) the dispersion, as seen in the 20-V
ase (red histogram), indicates that at very low voltage, because the
troke dynamic is severely reduced, the probability of obtaining deep
ontrast is also reduced. 

In Fig. 6 , similar results are presented but extended to all the
M set-up scenarios and DH sizes, as discussed in the previous

ection and summarized in Table 1 (Case 1A and B, Case 2A and
), and when the coronagraph is a PIAACMC from the SPEED test-
ed. In these cases, the nominal scenario without stroke limitation is
mitted from presentation, as it consistently results in non-realistic
ontrast values, as illustrated in Fig. 5 (black histogram), ranging
rom 10 −13 to 10 −14 . The trend is similar, independently from the
H and DM configurations, and highlights that, in contrast to what

he manufacturer provides (flattening map at 50 per cent deflection),
ow-voltage maps are preferable, DH-wise. The coronagraph type
oes not either impact the results [perfect coronagraph (see Fig. 5 )
nd PIAACMC (see Fig. 6 )]. 

.2 Impact of the stroke precision 

n this part, we assess the impact of DM stroke precision on the
ontrast in the DH. The algorithm used for the DH is described in
eaulieu et al. ( 2020 ) and has been adapted to consider the smallest

tep an actuator can achieve by taking into account the quadratic
ower law of the actuator deflection curve, as well as the voltage of
NRAS 532, 2892–2904 (2024) 
he flattening map from which the DH is initiated. For simplicity, it
s assumed in the subsequent analysis that the stroke precision value
s the same for each actuator of the two DMs. In this section, special
ttention is given to comparing simulation results with predictions
erived from equation ( 11 ). In equation ( 11 ), the parameters used
re N = 32, λ = 1 . 65 μm, and γ = 2 in all cases, with ρ = 1 and
= 0 . 8 when a perfect coronagraph and PIAACMC are considered,

especti vely. The v alue of ρ = 0 . 8 for the PIAACMC has been
 v aluated by considering the impact of the PIAACMC LS on the
eometrically redistributed pupil from the PIAA stage. 
A first step in our analysis focuses on predictions from equation

 11 ) when a perfect coronagraph is considered and comparing a
niform with a quadratic power law for the actuator deflection curve.
he uniform case corresponds to a situation where the motion is
roportional to the voltage with uniform precision regardless of the
pplied voltage. This step is useful as a comparison basis to assess the
mpact of the actuator deflection curve power law on equation ( 11 ).
ig. 7 (left image) shows the contrast (median) in the DH as a function
f the stroke precision in nanometre for a perfect coronagraph and
 uniform case (black diamonds) or a quadratic actuator deflection
urve (red asterisks). Predictions from equation ( 11 ) are shown in a
olid black line. It is readily observable that when a uniform precision
s considered, the match between simulations and predictions is fairly
ood in both trend and in contrast level. When a quadratic power law
s considered, while the trend is similar to the prediction given by
quation ( 11 ) in mid- and high-level voltage ranges, a discrepancy is
bservable in the low-voltage range, below ∼50 V. This behaviour
ill be more visible in the results presented in Fig. 7 (right image). 
In Fig. 7 (right image), we present the same analysis but with a

IAACMC instead of a perfect coronagraph, a quadratic actuator
eflection curve only, and for multiple DH and DM configurations
s presented in Table 1 . Again, the trend of the contrast derived
rom simulations (asterisks, diamonds, triangles, and squares) is
imilar to the prediction given by equation ( 11 ) in mid- and high-
evel voltage ranges with a limited mismatch in terms of contrast
evel (see Table 2 for a quantitative evaluation restricted to Case
B and 2A that are representative as upper and lower limits in the
iscrepancy/dispersion), and a discrepancy is observable in the low-
oltage range. The discrepancy shows significant dispersion in the
ontrast levels. Comparing these results (Fig. 7 , right image) with
he previous ones (Fig. 7 , left image) demonstrates that the mismatch
ith equation ( 11 ) in the low-voltage regime occurs independently

rom the coronagraph type (perfect coronagraph or PIAACMC). In
he low-voltage domain, because the resolution gets higher, the
ynamic is lower, which might explain the discrepancy as well
s the dispersion in the contrast for various configurations. When
he quadratic power law is considered for the actuator deflection
urve, it induces a dependence on the minimal resolution step of
n actuator to the voltage, while the uniform precision case is
ree from this dependence. We note that the stroke levels on both
Ms at the end of the correction process to achieve the DH never

volve significantly or exhibit abnormal state, which cannot explain
he observed phenomenon. In the almost middle range regime of
he quadratic power law (mid-voltage range), the discrepancy is

inimal and can be as low as a factor of 1.2 (see Table 2 , where
 stands for the ratio of the contrast e v aluated in simulation to that

f the contrast derived from equation 11 ), and the trend predicted by
quation ( 11 ) is respected. In the high-v oltage domain, this beha viour
s consistent. Ho we v er, in this re gime, and because our simulations
o not account for side effects at the border of the DM’s active area,
ith increased tension applied at the edges of the membrane, we

xpect that dispersion should appear. 
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Figure 6. 5 σ contrast ratio histogram as a function of various flattening voltage maps for Case 1A (top-left image), Case 1B (top-right image), Case 2A 

(bottom-left image), and Case 2B (bottom-right image). The nominal case corresponds to no stroke limitation imposed by the flattening map. Simulations 
assume the SPEED PIAACMC. 

Figure 7. The left image shows the contrast (median of histograms) in the DH as a function of the stroke precision in nanometre for a perfect coronagraph 
and a uniform precision law. The right image shows the same for a PIAACMC and a quadratic actuator deflection curve. The simulation results (asterisks) are 
compared with predictions from equation ( 11 ) (full line) with ρ = 1 and γ = 2 (left image) and with ρ = 0 . 8 and γ = 2 (right image). The error bars represent 
the minimum and maximum contrast values achieved in the corresponding histogram. 
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Table 2. Summary of contrast (median of histograms) values obtained in the DH (PIAACMC and quadratic power-law actuator deflection curve) as a 
function of the stroke precision in nanometre (or initial DM flattening map voltages in V) for cases 1B and 2A, compared with prediction derived from 

equation ( 11 ). 

Voltage (V) 20 25 30 50 75 120 150 180 

h min (nm) 0.016 0.023 0.050 0.060 0.094 0.152 0.178 0.192 
C (equation 11 ) 6 . 6 × 10 −13 1 . 2 × 10 −12 5 . 9 × 10 −12 8 . 4 × 10 −12 2 × 10 −11 5 . 4 × 10 −11 7 . 5 × 10 −11 8 . 6 × 10 −11 

Case 1B 

C (simulation) 2 . 4 × 10 −11 2 . 5 × 10 −11 2 . 7 × 10 −11 3 . 2 × 10 −11 4 . 4 × 10 −11 9 × 10 −11 1 . 2 × 10 −10 1 . 3 × 10 −10 

R 36 20.8 4.6 3.8 2.2 1.6 1.6 1.5 

Case 2A 

C (simulation) 1 . 1 × 10 −11 8 . 4 × 10 −12 7 . 8 × 10 −12 1 . 3 × 10 −11 3 × 10 −11 6 . 5 × 10 −11 9 . 3 × 10 −11 1 . 0 × 10 −10 

R 16 7 1.3 1.5 1.5 1.2 1.2 1.2 
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Regarding our various DH and DM configurations, we notice that,
s presented in Fig. 7 (right image), the results are fairly similar,
hich further confirms that the DM positioning resulting from a

ormer analysis (as a function of the DH size, IWA, and OWA) is
orrect. We remind the reader that, complying with the specifications
f a given test-bed or instrument (FoV, targeted contrast, optics
ropagation distances, aberration types, etc.), Beaulieu et al. ( 2017 ,
020 ) have demonstrated that the optimal distances of the DMs
elative to the pupil plane are crucial and can be optimized. In
ther words, the condition for the location of the DMs is driven by
he ability of the DMs to get a balanced efficiency of correction
 v er the frequency range of the DH. Fig. 7 (right image) thus
ndicates that the comparison of simulation results to equation ( 11 )
s independent of the DH size and DM cases considered to a small
oefficient. We can conclude that equation ( 11 ) captures the impact
f DM quantization errors on the contrast in the DH similarly
hen small angular separations or moderate angular separations are

argeted. 
We note that equation ( 11 ) al w ays provides a best case contrast

imit in the DH compared with simulations, which is reassuring. We
ee two potential error sources that could explain the difference
n contrast levels between our simulations and predictions from
quation ( 11 ), even if limited in the mid-voltage regime: (i) Because
ur DMs are almost never in a pupil plane, it is questionable whether
onsidering that γ = 2 fairly describes the number of actuators in
he LS. While there are ef fecti vely two DMs in series and 2 × N 

ctuators in the LS, because DMs are out-of-pupil planes in most
f the cases studied, the number of fully efficient actuators in the
S might be lower when considering this parameter in equation
 11 ). Since the positioning of DMs varied from configuration to
onfiguration, it is challenging to define and optimize a parameter to
ccount for this effect. (ii) In order to add the continuous membrane
f the DM to our code, we treat our DM surface in simulation as a
inear superposition of actuators with an influence function using a
aussian-shaped fitting model, but equation ( 11 ) does not account

or that. These aspects (i) and (ii) (see the study described in Ruane
t al. 2020 , where the authors take into account the DM actuator
hape) degrade the contrast predicted in the DH by equation ( 11 ). 

In the low-voltage regime, where the most significant deviation
etween simulation and prediction occurs, the situation cannot be
xplained by the two aspects discussed previously. This rather
uggests that a lack of actuator stroke, rather than precision, is
t w ork. In f act, equation ( 11 ) does not account for the available
ctuator stroke, which depends on the voltages applied to the DMs
o make the surface as flat as possible before DH generation.
t low voltages, as seen in Figs 1 and 4 , below approximately
0 per cent of the maximum deflection (depending on whether
NRAS 532, 2892–2904 (2024) 
e consider a single actuator deflection curve or, for instance, a
x4 actuators region deflection curve), a MEMS DM system is
ominated by its quadratic relationship regime between deflection
nd the voltage applied, while from 20 per cent to 90 per cent of
he maximum deflection, it has a nearly linear relationship. Below
0 per cent, as the voltage decreases, the available stroke becomes
ncreasingly limited. Moreo v er, predictions pro vided by equation
 11 ), when stroke precision tends towards infinitely small precision,
oes not capture reality in the case of MEMS DMs. It tends towards
nfinite contrast levels, whereas the DM’s stroke range should tend
owards zero, as should the contrast. Therefore, extending the analytic
odel provided by equation ( 11 ) to account for this discrepancy is

ecessary. Further, it is worth noting that equation ( 11 ) is based on
tatistical and modal arguments, relying on the hypothesis that the
eaks and valleys of the ripple have values ±h 0 (see Appendix A ).
n the low-voltage regime, the PV symmetry of h 0 might no longer
e valid. 
To capture the deviation from the pure power law in the low-

oltage regime, we introduce an additional parameter, denoted as h 1 

n equation ( 11 ), balanced by a gain function ( g). The gain function
 (i) ensures that the correction applied by the term h 1 is not constant
 ut ev olves with the value of h min , thus depends on the voltage
or MEMS DMs, and (ii) describes the asymptotic behaviour of
he contrast in the DH for infinitively small stroke precisions. This
nsures it has a strong impact at very low voltages, with decreasing
mpact as the voltage increases, and limited or no impact at mid
nd high voltages. With these considerations, equation ( 11 ), can be
ritten as 

 = 

16 π

3 

(
h min + h 1 × g 

γ × ρNλ

)2 

, (14) 

here the gain function g is expressed as g = 

1 
δ
, and is defined

s the inverse of the deflection function curve (see Fig. 1 or 4 ,
hat shows δ as a function of the voltage for our Kilo-C DMs),
o that the correction is balanced by capturing the stroke dynamic
imitation behaviour ( g tends towards infinity at low values, and
ends towards zero at high values). Equation ( 11 ) corresponds to h 1 

 0 nm. The correction proposed in equation ( 14 ), using h 1 = 0 . 5
m, empirically determined so that the contrast floor nature of the
quation is preserved, can be compared with equation ( 11 ) in Fig. 7
left and right images) and is presented as a dashed black line. Fig.
 shows that when equation ( 14 ) is considered, (i) the discrepancy
n the low-voltage regime is reduced to reasonable values, (ii) the
ehaviour when the stroke precision tends towards zero is accounted
or, and (iii) predictions from equation ( 11 ) in the mid- and high-
oltage domains are respected. We note that the sampling of the curve
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Figure 8. Contrast (median of histograms) in the DH as a function of the 
stroke precision in nanometre for various actuator numbers ( N ) in the case 
of a perfect coronagraph and a uniform stroke precision law. The simulation 
results (asterisks) are compared with predictions from equation ( 11 ) (full line) 
with ρ = 1 and γ = 2. The error bars represent the minimum and maximum 

contrast values achieved in the corresponding histogram. 
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epresenting equation ( 14 ) in Fig. 7 is not as good as that of equation
 11 ) due to the gain function, which uses the deflection curve of
ur mirrors as provided by the manufacturer (see Fig. 1 ) and whose
ampling is much poorer. 

To generate the sinusoidal signals corresponding to the frequencies 
eeded for DH, both high and low voltages are required (in the sense
f peak and valley values). In the regime where the DM system is
ominated by its quadratic law, good precision is achie v able at the
inimum values of a given sinusoid, but the maximum values are 

ess precise. In addition, the available stroke disrupts the expected 
ymmetric actions capability of the mirror on the peak and valley 
alues. This leads to slower and less accurate convergence, as shown 
n Fig. 7 . If there are fewer aberrations to correct, the impact of
he function g should be less significant. Conversely, the effect 
an be much stronger when correcting significant aberrations. This 
iscrepancy is not captured by the gain function itself but is by the
mpirical adjustment using the h 1 parameter. 

.3 Impact of the actuator number 

n this section, we compare the contrast obtained in the DH when the
umber of DM actuators ( N ) is changed to predictions from equation
 11 ). Since we observed that predictions from equation ( 11 ) are
ndependent of the DH size and DM configuration (DM positioning), 
e restrict our analysis to Case 1B. For the same reason, we consider
 perfect coronagraph ( ρ = 1) and a uniform step accuracy for the
ctuator deflection curve to eliminate the discrepancy and dispersion 
t low voltages. The goal is to isolate the effect of N between
imulations and predictions ( γ = 2). In these conditions, we consider 
 arious N v alues to widely explore this parameter space: 16, 24, 32,
0, 60, 80, and 100, and the results are presented in Fig. 8 , where the
ontrast in the DH obtained from simulations is represented either by 
sterisks or plus signs, while predictions derived from equation ( 11 )
re shown as solid and dashed lines. We remind the reader that due
o the Nyquist criterion, the number of actuators N limits a DM’s
 v erall performance: It can correct up to a radius of λN 

2 D 

at the image
lane. Restricting the analysis to Case 1B (small FoV and IWA DH)
elps guarantee that for most of N values considered, the size of the
H is lower than the DM’s correction area. This ensures that aliased
peckles caused by a speckle whose central frequency is outside the
H but within the correction area can be mitigated. We note that for
 = 16 (cutoff frequency of 8 λ/D aliased speckles might still have

n effect) DH OWA is 4 λ/D. 
Fig. 8 displays the contrast (median) in the DH as a function of

he stroke precision in nanometre and the number of actuators ( N ).
he blue curve and asterisks are similar to the results presented
arlier in Fig. 7 (left image). For all N values, equation ( 11 )
onsistently predicts slightly better contrast than the values obtained 
n simulations. The origin of the discrepancy might be explained 
imilarly to the previous subsection (see Section 4.2 ). It is noteworthy
hat despite the limited discrepancy with predictions from equation 
 11 ), the trend in the dependence of the contrast in the DH on N 

btained from simulations is similar and is fairly captured by equation
 11 ). Furthermore, the number of actuators also impacts high-contrast
maging within the DM correction range: Performance depends on 
he DM’s capability to accurately reproduce a phase pattern, even for
patial frequencies less than λN 

2 D 

, and equation ( 11 ) might not be able
o account for that. This could explain why the dispersion around
he contrast value (median) represented with error bars is significant 
or N = 16, along with the potential impact of aliased speckles (as
lready discussed). 

Fig. 8 also suggests that smaller errors in actuator stroke is nearly
qui v alent to increasing the number of actuators: For instance at
.05-nm stroke precision, N = 24 provides better contrast level than
 = 40 at stroke precision of 0.1 nm. Similarly, at 0.05-nm stroke

recision, N = 60 provides better contrast level than N = 100 at
troke precision of 0.1 nm. In other words, improving the stroke
ccuracy of a factor of 2 is nearly equi v alent at doubling the number
f actuator. 
Fig. 9 shows similar results as in Fig. 8 , but this time it provides the

ontrast as a function of the square of the stroke precision divided by
he number of actuators. It further illustrates the proximity between 
imulation results and predictions derived from equation ( 11 ). 

.  C O N C L U S I O N S  

n our study, we investigate the dependence of MEMS DM quanti-
ation errors and initial voltage maps on small to moderate angular
eparation DHs. We compare our results with predictions generated 
MNRAS 532, 2892–2904 (2024) 
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y a simple and widely used formula proposed by several authors
Trauger et al. 2007 , 2011 ; Traub & Oppenheimer 2010 ; Ruane et al.
020 ). 
A by-product of our study is to determine the domain of validity

or equation ( 11 ) in expressing the relationship between DM quan-
ization error and DH image quality. This investigation specifically
ocuses on scenarios where (i) DMs are used in series, (ii) a quadratic
ower law defines the actuator deflection curve, and (iii) small
ngular separations are targeted. The examination of the impact
f the initial voltage value of the DM flattening maps serves as
 complementary aspect of the study. It is essential to emphasize
hat equation ( 11 ) was originally formulated without incorporating
actors such as DH size, multiple DM architecture, out-of-pupil plane
M configuration, and irrespective of specific science objectives,

uch as small FoV/IWA DH or wider FoV/IWA DH. Our study
rovides insights into these aspects. The domain of validity of
his formula is thoroughly studied, and the formula is subsequently
xtended to the case of a multi-DM architecture and to the case of
 quadratic relationship between the voltage applied to an actuator
nd its corresponding deflection. 

We demonstrate that the contrast limit in the DH due to DM
uantization, as predicted by equation ( 11 ), is generally valid when
 uniform stroke precision is sought. Ho we v er, a discrepanc y and
ispersion are observed at the low-voltage regime for a quadratic
ower law. In the case of the manufacturer’s quadratic power law,
quation ( 11 ) is found to be valid in the mid-voltage range but
nefficient in accurately predicting contrast in the low-voltage range
nd potentially in the high-voltage regime. Notably, the results are
ndependent of the coronagraph type, DH size, or DM configuration,
ith no observed dichotomy between small and moderate angular

eparation science cases. It is essential to recognize that equation ( 11 )
onsistently provides a best-case contrast limit in the DH, offering
 reference frame for assessing the rele v ance of contrast results.
evertheless, fine-tuning predictions based on equation ( 11 ) or its
 xtended v ersion (equation 14 ) is a challenging and likely futile task
ue to various factors, such as actuator stability, hysteresis, inter-
ctuator influence, etc., which are difficult to predict accurately for
ach actuator in a DM. 

When it comes to DM flattening map voltages, using the manu-
acturer flattening map defined at roughly 50 per cent deflection is
ot optimal in terms of DH performance. Lower voltage values are
referable, as they increase the DM minimal resolution step and,
onsequently , the accuracy . Ho we ver, we also demonstrate that in
he low-voltage domain, the risk of divergence in the DH algorithm
ncreases certainly due to a lack of dynamic range. To account for
his effect, we extend the analytic model proposed by equation ( 11 )
y incorporating a correction term as expressed in equation ( 14 ),
hich captures the actuator stroke range with voltages. 
Beyond the challenge of achieving and assessing the impact of the
inimal step, the stroke error (the difference between the specified

nd the real actuator position) is critical and largely dependent
n the variation in the maximum range of the amplifiers in the
lectronics. This leads to different amounts of error at different points
n the actuator deflection curve. Actuator stability (the ability of the
ctuators to hold their shape o v er time) and repeatability (the ability
f the actuator to return to the same position under the same applied
oltage consistently) are also crucial factors but are beyond the
cope of this study (Evans et al. 2006 ). Additionally, the continuous
hase-sheet MEMS DM stroke depends on the displacement of
djacent actuators (Bifano et al. 2010 ), necessitating a conserv ati ve
argin to be applied to equation ( 11 ), as discussed in Ruane et al.

 2020 ). 
NRAS 532, 2892–2904 (2024) 
Finally, while the most important DM properties for high-contrast
maging are the number of actuators, the surface height resolution,
nd the stability/repeatability of the mirror surface, we show that
maller errors in actuator stroke is nearly equi v alent to increasing the
umber of actuators, if one disregards FoV considerations (IWA and
WA are defined by the number of actuators). Because it might be

impler to enhance the precision of existing mirrors through DM con-
roller developments than to create new high-density actuator DMs,
his result could have implications for technological developments
or future projects (e.g. the Habitable World Observatory; Vaughan
t al. 2023 ), though a trade-off must be explored between contrast
nd FoV in the DH. 
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PPEN D IX  A :  C O N T R A S T  IN  A  D H  

n this appendix, we provide a justification to equation ( 6 ) following
he formalism and explanations provided in Trauger et al. ( 2007 ,
011 ) and Traub & Oppenheimer ( 2010 ). In particular, this ap-
endix is broadly inspired from the stellar intensity description in 
he presence of a coronagraph, and the formalism on the controlling 
f scattered light with DMs as proposed in Traub & Oppenheimer 
 2010 ). We thus follow the same formalism and these details
re presented here for pedagogical reasons and because they are 
onsidered as a basis for our work. 

Let us consider that E p ( u ) represents the amplitude of the electric 
eld in a one-dimensional telescope model of diameter D, with range 
 = ( −D / 2 , + D / 2 ) : 

 p ( u ) = A ( u ) exp iφ( u ) . (A1) 
y Fourier analysis, the phase φ ( u ) can be written as the sum of
any sinusoidal ripples (a disturbed wavefront across a pupil can be

epresented by a sum of sine and cosine). If we suppose a typical
ipple that has spatial period u 0 , the phase of the wavefront can be
ritten 

0 ( u ) = a cos ( 2 πu/u 0 + α) + ib cos ( 2 πu/u 0 + β) , (A2) 

here the imaginary part represents the spatial variation of amplitude 
nd the real part the spatial-variation of phase. Assuming that 
he peaks and valleys of the ripple have values ±h 0 , then the
orresponding amplitude of phase delay is 

 = 2 πh 0 /λ. (A3) 

n the focal plane, the complex amplitude, denoted as E f , is 

 f ( θ ) ≈
∫ 

D 

exp iφ0 ( u ) · exp −
i2 πθu 

λ d u, (A4) 

here θ is the radial angle from the optical axis. In the small aber-
ations regime where φ ( u ) << 1, the exponential can be expanded 
iving E p ( u ) ≈ A ( u ) × ( 1 + φ ( u ) ) , 

 f ( θ ) ≈
∫ 

D 

[ 1 + i ( a cos ( 2 πu/u 0 + α) + ib cos ( 2 πu/u 0 + β) ) ] 

· exp −
i2 πθu 

λ d u. (A5) 

y replacing cos ( z ) with ( exp iz + exp −iz ) / 2, each term can be 
ntegrated. Defining the well-known diffracted amplitude of a single 
tar as 

 0 ( θ ) = 

sin ( πθD/λ) 

πθD/λ
, (A6) 

e obtain that the diffracted amplitude is the sum of a main peak, at
he expected θ = 0 position of the star, plus two smaller peaks, one
n each side, at θs = ±λ/u 0 , where 

 f ( θ ) ≈ E 0 ( θ ) + 1 / 2 
(
ia exp iα −b exp iβ

)
E 0 ( θ + λ/u 0 ) 

+ 1 / 2 
(
ia exp −iα −b exp −iβ

)
E 0 ( θ − λ/u 0 ) . (A7) 

he final intensity I F ( θ ) =| E f ( θ ) | 2 has six terms: 

 F ( θ ) = I 0 + I −1 + I + 1 + I −2 + I + 2 + I 3 . (A8) 

n the last equation, I 0 is the main peak, the central star image. The
ext two terms are symmetrically placed speckles where 

 ±1 = 1 / 4 
[
a 2 + b 2 ± 2 ab sin ( α − β) 

]
I 0 ( θ ± λ/x 0 ) . (A9) 

heir intensities are equal only if either phase errors or amplitude
rrors dominate. If there is a mixture of these errors, the intensities
an be unequal. These intensity variations have the same shape as
ranslated copies of the central peak but are scaled down. The next two
erms correspond to pinned speckles, which are located at the same
ositions as the ordinary speckles but are scaled by the local intensity
f the diffraction pattern from the main peak, being anchored to the
re-existing diffraction rings (amplified by the coherent part of the 
ave). The last term, I 3 , is negligible and omitted as it represents a

ross product of the two speckles. 
When it comes to intensity in a DH, speckles are, to some

xtent, suppressed by a DM. In the following, dynamic and quasi-
tatic aberrations are omitted: Atmospheric errors are considered 
erfectly corrected by an upstream extreme adaptive optics system, 
nd the correction time-scale involved in the DH generation is 
onsidered shorter than structural or thermal changes. Under these 
ircumstances, we restrict our analysis to speckles described by 
quation ( A9 ). 
MNRAS 532, 2892–2904 (2024) 
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In the following, we assume that the DM is an N × N square array 
of actuators placed in a pupil plane. The telescope pupil is considered 
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apped on to the square DM by perfectly filling it, so that the ratio
f the pupil surface 

 p = π

(
N 

2 

)2 

, (A10) 

ssuming N actuators per diameter, by the DM square array surface 

 dm 

= N 

2 , (A11) 

s π
4 . Assuming that the DM can fit up to about N 

2 periods of a wave
ith N actuators in one dimension, so N 

2 waves per diameter, and

hus 
(

N 
2 

)2 
in two dimensions. By analogy, it is assumed that there

re as much as M modes in the full area of the pupil that the DM
an control, considering the active actuators over the pupil footprint
nly, so that 

 = 

π

4 

(
N 

2 

)2 

. (A12) 

y considering a unique mode of averaged amplitude h 0 , the speckle
roduced by this mode has relative intensity of a 2 / 4 by considering
esults from equation ( A9 ): 

 ±1 /I 0 = a 2 / 4 . (A13) 

sing the results given by equation ( A3 ), we finally obtain 

 ±1 /I 0 = ( πh 0 /λ) 2 . (A14) 

umming the contribution of multiple modes with random phases
equi v alent to summing M complex vectors of average length h 0 

ut with random phases) and by using the analogy and the well-
nown result from the random walk problem in two dimensions
which considers a sum of M two-dimensional vectors with random
rientations, the RMS distance after M unit steps of length l is given
NRAS 532, 2892–2904 (2024) 

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an 
( https://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reus
y d rms = l × M 

1 / 2 ; McCrea & Whipple 1940 ), we can express the
MS surface error in the DM actuator settings, denoted as h rms , from

he average amplitude, where 

 rms ≈ h 0 × M 

1 / 2 , (A15) 

here it can be rewritten as 

 rms = 

√ 

πNh 0 

4 
. (A16) 

ecause the DM is a reflective device, it must be controlled to a
urface error of h rms / 2 in practice, so that 

 rms = 

√ 

πNh 0 

8 
. (A17) 

rom this equation, we can extract h 0 as 

 0 = 

8 h rms √ 

πN 

. (A18) 

he average contrast, denoted as C , in the DH, using equation ( A14 )
an be written as 

 = π

(
8 h rms 

Nλ

)2 

. (A19) 

ssuming uniformly distributed errors (Ruane et al. 2020 ), we can
efine the minimum DM surface motion enabled, h min , such that 

 rms = h min / 
√ 

12 . (A20) 

he average contrast in the DH, is finally 

 = 

16 π

3 

(
h min 

Nλ

)2 

. (A21) 
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