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ABSTRACT

The creation of a dark hole (DH) region in the science image for exoplanet direct detection depends on deformable mirrors
(DMs), where the imperfect control of DM limits the achievable contrast. The mirror surface height resolution is set by the
DM drive electronics, and the quantization errors in DM impact the contrast in the DH. Consequently, determining the optimal
voltage value for the flattening map of DM is essential, as it involves balancing dynamic and accuracy considerations. We
conduct a numerical study to examine the impact of these parameters on microelectromechanical DM within the high-contrast
field of view of several DHs with various characteristics and optical configurations. Our analysis includes an exploration of
their influence on both small and moderate angular separations. We compare our numerical results with a formula available in
the literature that aims to capture the dependence of contrast on DM quantization errors. We show that the formula accuracy to
predict the contrast limit when the DM deflection curves follow the as-manufactured quadratic power law is dependent on the
DM flattening map voltage domain, regardless of DH size and angular separations. Further these results appear to be insensitive
to factors such as actuator number, coronagraph type, set-up architecture, and science objective (small or moderate angular
separations). We provide guidelines for determining the optimal voltage for the DM flattening map, discuss the domain validity
of the formula used to predict DM quantization errors on the contrast, and provide insights into balancing DM actuator density
and mirror surface height resolution.

Key words: instrumentation: miscellaneous — methods: numerical —techniques: high angular resolution — techniques: miscella-

neous.

1. INTRODUCTION

The ultimate science case for observing Earth-like planets orbiting
stars in their habitable zone requires image contrast in visible
light on the order of 10710 at short orbits from the host star. To
address this goal, a leading approach combines high-performance
coronagraphy and wavefront shaping to reduce starlight and generate
a dark region within the image, enhancing the exoplanet signal to
noise. Coronagraphs are designed to suppress diffracted light but
require exquisite image quality. Wavefront errors in the telescope
and instrument optics diffract starlight, and if left uncorrected, create
speckle noise in the focal plane, overwhelming the planet signal in
the coronagraphic image by order of magnitude. Active control of
the optical wavefront is essential, and deformable mirrors (DMs) are
critical devices undergoing constant development for use in space-
based coronagraph instruments and ground-based observatories.
Multi-DM control is extensively tested worldwide across various
laboratory test-beds (e.g. THD—Galicher et al. 2014, HCIT—Riggs
et al. 2013, HCIL—Pueyo et al. 2011; Riggs et al. 2013, HICAT—
N’Diaye et al. 2013, and SPEED—Martinez et al. 2014). A set of
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DMs corrects wavefront errors of imperfect optical surfaces and
shapes the wavefront to produce a dark zone, namely the dark
hole (DH), in the science image halo. Various successful laboratory
experiments using either a single DM (e.g. Trauger & Traub 2007;
Belikov et al. 2010; Guyon et al. 2010; Mazoyer et al. 2014; Delorme
et al. 2016) or two DMs (e.g. Kay, Pueyo & Kasdin 2009; Pueyo
et al. 2011; Riggs et al. 2013) have demonstrated the relevance
of the technique. Among the critical aspects of DM technologies,
the drive electronics are essential because they define the minimal
step of DM surface motion and how well we can control them. In
this context, DM electronics have become a subject of study, with
several authors (e.g. Trauger et al. 2007; Traub & Oppenheimer
2010; Trauger et al. 2011; Bendek et al. 2020; Ruane et al. 2020)
attempting to predict the impact of DM quantization errors on
the contrast in the DH. Multiple studies provide predictions and
recommendations for setting specifications on DM control electron-
ics (Ruane et al. 2020) to achieve the 10~'0 contrast requirement
for imaging Earth-like planets. Among the existing DM technolo-
gies, microelectromechanical systems (MEMS) are widely used in
ground-based high-contrast imaging observatories and are being con-
sidered for space missions. Further, MEMS DMs are the most com-
monly used wavefront shaping solutions for laboratory coronagraph
test-beds.

© 2024 The Author(s).
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Robust requirements for the DM surface height resolution are
mandatory for future coronagraph instruments. A simple and widely
used approximate formula is available in the literature (Traub &
Oppenheimer 2010; Ruane et al. 2020) to capture the dependence
of contrast on DM quantization errors. While it is firmly established
that DM quantization errors can set the limit for achievable contrast
in a DH region (Ruane et al. 2020), the equation’s domain of
validity remains an open question. Specifically, the impact of DM
quantization errors at small angular separations compared with
moderate/large orbits is left unexplored to our knowledge. On the
other hand, while the DM drive electronics determine the minimal
surface motion step achievable in practice, the voltage value around
which the flattening map of the DM is defined is also crucial. It defines
the available dynamic range and accuracy a DM can achieve because
actuators follow a quadratic power-law response with voltages. This
is particularly critical when generating a DH region. The process
of creating a DH in the science image relies on the DM and can
be generalized as a three-step procedure for generality: (i) The
first step involves flattening the DM, requiring a nominal voltage
map that mostly removes the natural defocus shape of the mirror
surface; (ii) the second step is flattening the wavefront entering the
coronagraph (non-common path corrections); and (iii) finally, DH
creation itself, including sensing methods (e.g. pair-wise probing;
Give’on et al. 2007) to reconstruct the electric field and methods
[e.g. electric field conjugation (EFC); Groff 2012; Riggs et al. 2013;
Ahn et al. 2023; Haffert et al. 2023) to cancel it. In all these steps,
dynamic range (stroke available) and accuracy (the smallest amount
an actuator can be moved) are of primary importance. Flattening
a DM to remove low-order aberrations that appear when the DM is
unpowered requires a nominal voltage map ranging from 20 to 100 V
(peak to valley; PV). It is commonly observed that after running the
EFC algorithm to create the DH, the nominal voltage map changes
by only a few volts. This highlights the importance of selecting the
nominal voltage value for the DM offset map.

In a previous study (Beaulieu et al. 2017), we developed an end-
to-end simulator for a generic high-contrast architecture aimed at de-
termining the optimum wavefront control for high-contrast imaging
at small separations. This involved the combination of coronagraphy
and wavefront shaping using two DMs. The generic set-up assumed
a perfect coronagraph, a monolithic circular aperture without central
obscuration or spiders, etc. The goal was to assess the impact of the
location of the two DMs on wavefront shaping, assuming Fresnel
propagation of standard aberrated optics. In a subsequent analysis
(Beaulieu et al. 2020), we improved the realism of our instrument
set-up design to delve deeper into the assessment. This included an
examination of the relative impact of various set-up parameters, such
as non-uniform source, residual pupil phasing aberrations, highly
aberrated optics, realistic DMs, and coronagraphs. The analysis was
carried out with a segmented and obstructed pupil.

The objective of this paper is to use our versatile end-to-end
simulator to explore the impact of DM quantization errors and the
voltage of DM flattening maps on the contrast in the DH. We compare
the contrast impact in scenarios ranging from a small field of view
(FoV) at a small inner working angle IWA) DH to moderate and/or
large IWA with wide FoV DH situations. Our aim is to investigate
the dependence of quantization errors and initial voltage maps on
small/moderate angular separation DH. The obtained results are then
compared with predictions generated by a simple and widely used
formula proposed by several authors (Trauger et al. 2007, 2011;
Traub & Oppenheimer 2010; Ruane et al. 2020). This study is centred
around the SPEED test-bed (coronagraph, segmented/obstructed
pupil, optical design, etc.; Martinez et al. 2023). We use SPEED
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as a typical instrument, ensuring that the results can be applied to
other high-contrast test-beds due to the shared set-up parameters. To
our knowledge, the impact of DM quantization errors on contrast
in a DH has not been systematically explored, particularly as a
function of the initial DM flattening map voltage. Furthermore, the
validity of contrast predictions in a DH with DM quantization errors
has never been investigated for both in and out-of-pupil plane DM
configurations. This study considers a two-DM set-up architecture
and examines the impact of DH size.

The general assumptions for the analysis, including DM drive
electronics theory, quantization errors, and the theoretical contrast
limits, are detailed in Section 2. Section 3 outlines the numerical
assumptions of our end-to-end simulator, the SPEED test-bed, and
the realistic assumptions and open parameters used for the analysis.
Section 4 presents the results, and finally, we conclude with a
summary.

2. THEORETICAL TREATMENT

2.1 DMs electronics

Various DM technologies are routinely used or under development,
with one of the most common being MEMS (Bifano, Cornelissen &
Bierden 2010; Bierden et al. 2011; Bierden, Cornelissen & Ryan
2014; Morgan et al. 2019). MEMS DMs are metal-coated thin-
membrane mirrors whose shape is controlled by an array of elec-
trostatic actuators. The mirror comprises a membrane deformed by
a specific number of actuators, each of which can be individually
controlled. The local surface displacement (mechanical displace-
ment) is determined by the voltage applied to each actuator, where
these actuators provide a displacement practically limited to a few
micrometres (referred to as the stroke) over a compact area. In
addition to the architecture of MEMS DMs, time-delay response
and precision are constrained by the electronics. Standard driver
electronics enable 14-bit control; however, increased resolution is
possible, particularly if improved accuracy is desired. For the sake of
clarity and to illustrate the impact of DM drive electronics, we assume
the use of a specific DM in the SPEED experiment (Martinez et al.
2023): the Boston Micromachines Kilo-C DMs. While the numerical
values may differ for other DM configurations, the reasoning is
applicable across different set-ups.

The Kilo-C DM from the Boston Micromachines vendor (Bierden
et al. 2011) has 952 actuators with an inter-actuator spacing of 300
pum, providing a 1.5-pum stroke. The DMs are controlled using 14-bit
electronics, with a precision of 14 bits over the full range of the
driver (0-300 V) but truncated to the maximum mirror value of 195
V. Scaling the value allows us to determine the number of steps in
this range. Scaling 2'# over the full 300 V range and the truncated
value of 195 V results in approximately 10650 steps. Since DMs
have a maximum displacement of 1.5 pum, the average step size is
around 0.1 nm. However, the physical step size value depends on
where along the deflection curve the actuators are because MEMS-
based DMs have, approximately, a quadratic relationship between the
voltage applied and its corresponding deflection (see Fig. 1, obtained
from a Kilo-C DM from Boston Micromachines manufacturer, which
shows the deflection, denoted as §, as a function of the voltages.).
When the mirror is first deflected, the step size is minimal. As the
mirror is deflected further, the size of the step increases as the mirror
reaches the middle range region of the curve. Then, at the high end of
the curve, the step size becomes larger until the range is exhausted.
In practice, it is mandatory to calculate the size of the step for each

MNRAS 532, 2892-2904 (2024)
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Figure 1. The principle of the actuator deflection curve where the actuator’s
physical displacement is expressed in nanometre as a function of the applied
voltages. The deflection follows a quadratic power law with voltages. In
Case 1 and 2, sharing the same voltage variation (AV), there is an unequal
corresponding displacement of the actuators (81 # &2). This discrepancy
illustrates that the physical step size value depends on the position along
the deflection curve where the actuators are located.

of these ranges using the DM data provided by the manufacturer, as
illustrated in Fig. 1.

Fig. 1 presents the basic principle where two situations with equal
voltage variations (denoted A V) are compared at different locations
on the deflection curve: The corresponding actuator displacements
(81 and §,) differ significantly. Equality of the displacement can only
be achieved (8; = 8,) by assuming a hypothetical linear power law
of the displacement with voltages. We note that, aside from the
challenge of achieving the minimal possible step, the stroke error (the
disparity between the specified and actual actuator position) can be
substantial and greatly influenced by the variability in the maximum
range of the electronics amplifiers. This results in various amounts
of error at different points along the discussed curve. Addressing
the impact on actuator displacement would require measurement and
potential compensation, possibly involving the creation of individual
curves for each actuator. However, this aspect is not considered in
our study. Additionally, actuator stability (referring to the ability of
the actuators to hold their shape over time; Morzinski et al. 2006)
and repeatability (referring to the ability of the actuator to return
to the same position under the same applied voltage consistently;
Morzinski et al. 2008) are critical but are beyond the scope of this
study.

2.2 Contrast in a DH

A simple formula attempting to capture the impact of DM quan-
tization errors on the contrast in the DH has been proposed by
Trauger et al. (2007) and is widely used (Trauger et al. 2011;
Bendek et al. 2020; Ruane et al. 2020). For clarity, we will discuss
few of the assumptions behind this formula, while a complete
mathematical/physical justification is provided in Appendix A. The
formula relies on following main assumptions:

(1) Assumption 1: A generic coronagraph instrument, which con-
sists of a DM in a pupil plane, a focal plane, a Lyot stop (LS) in a
subsequent pupil plane, and finally a detector plane where the final
high-contrast image is recorded.

MNRAS 532, 2892-2904 (2024)

(ii) Assumption 2: There is a single and unique DM correction
at the pupil plane, with an entrance aperture A, an initial aberrated
field ¢ (representing both phase and amplitude errors), and the DM
perturbation ¥py. The electric field at the pupil plane is then given
by

Ep(u,v) = Au,v) expid’ expi‘/’DM("’U>, (@))]

where u and v are the spatial coordinates at the pupil plane. In these
circumstances, the coronagraph is described as the linear operator C
from the pupil plane to the image plane, such that the final electric
field is given by

Ei(x,y) = C [Ep (u, )], @

where x and y are the spatial coordinates at the image plane. For
small aberration, the pupil electric field is defined as

Ep@hv)::1+iA¢-%A¢? 3)

(iii) Assumption 3: Perfect coronagraph is assumed and it removes
the deterministic (constant) term but cannot correct for the linear term
i A¢ nor for the quadratic amplitude term ¢? /2 (it cannot correct for
the phase contribution).

(iv) Assumption 4: It is also assumed that the DM is in a state
where the DH is created, minimizing the normalized intensity.

Under these conditions (i, ii, iii, and iv), Trauger et al. (2007)
proposed an analytical relation to quantify the required control
accuracy on the DM for a given contrast (%) in terms of the reflected
wavefront root mean square (RMS) error (/1,s) by

2
%:n(%?), )

where, N represents the number of actuators on the DM evaluated
across the pupil diameter, and A is the wavelength. The assumptions
behind this equation are based on (i) the description of stellar intensity
in the presence of a coronagraph, assuming that the phase ¢ can be
represented as the sum of many sinusoidal ripples (a sum of sine
and cosine waves, as per the standard result from Fourier analysis);
(i1) the small aberrations regime; and (iii) a modal argument on the
control of scattered light with a DM. The complete derivation of
equation (4) under these assumptions (i, ii, and iii) is provided in
Appendix A.

From equation (4), and by assuming that quantization errors are
uniformly distributed,

hmin
V12

we can derive the equation as proposed in Ruane et al. (2020) that
expresses the contrast as

16 hmin 2
%zgéz(Nx)' ©

&)

hrms =

It is important to note that this equation ignores factors such as DH
size, multiple DM architecture, out-of-pupil plane DM configuration,
and DM actuator shape or influence function, which may impact the
distribution of stellar intensity in the focal plane. The effect of the
actuator influence function on equation (6) is, however, addressed in
Ruane et al. (2020), where the formalism is extended to this specific
case. In this study, we aim to explore the accuracy and validity of their
predictions for both in and out-of-pupil plane DM configurations,
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Figure 2. The RMS of the DM surface shape during the flattening process was evaluated for various voltage maps. The optimal set of flattening voltages was
determined iteratively using a Zygo interferometer. From left to right, the images show the unpowered shape (RMS 107 nm), a 50 V flattening map (RMS
10 nm), a 60 V flattening map (RMS 10 nm), and a 150 V flattening map (RMS 12 nm). The surface RMS is determined over the active area of the DM.

considering a two-DM set-up architecture and examining the impact
of DH size.

In the following, we propose a few adjustments or improvements
to equation (6) for practical reasons and to account for multiple DM
situations. In practice, in equation (6) and subsequent equations, N
would be better defined as the number of actuator within the LS
(evaluated across its diameter). To account for the active actuators
within the LS, we express p as the ratio of the LS and the pupil
surfaces, such that

_ Dis
)

where D is the pupil diameter and Dy g the LS diameter. Equation
(6) then becomes

1 i\’
- (%4 ( hmm ) ) (8)
3 PNA

We note that if the LS is very aggressive, it can introduce non-
linearities that might not be well captured by the former equation.
Since our study employs two DMs in series, effectively doubling
the total number of actuators within the LS, as a first approximation
we add a factor of two in equation (8) to account for our two-DM
configuration. There are likely limitations to this reasoning, and we
will confront and discuss our results with this aspect in Section 4.
Under these considerations, the final equation is now

; @)

16 hmin :
c=—- : ©
3 2pNA
which can be simplified to
47 [ hpin \°
C=— . 10
3 ( PN A ) 1o

Finally, the equation can be generalized by defining y as the number
of DM used in series, so that equation (8) can be rewritten as

167 Bin )
= — | —_) . 11
3 (V X pN/\) (an

2.3 DM flattening maps

Flattening a DM involves adjusting its shape to eliminate low-
order aberrations that may be present when the DM is not actively
controlled or powered. The natural shape of DMs can exhibit
significant PV and RMS variations within the active aperture. To
achieve the flattest surface possible, a set of flattening voltages needs
to be determined through an iterative process. The nominal voltage

Figure 3. The image showcases a Kilo-C DM from Boston Micromachines,
captured using a Zygo interferometer. The left image displays the surface of
the entire reflective area with a diameter of 11.05 mm, while the right image
zooms in to reveal the active area, which is restricted to 9.9 mm.

map represents the voltages applied to the DM to bring the surface
as flat as possible, as measured by surface RMS. Typically, DM
manufacturers provide a flat map with a DM at roughly 50 per cent
deflection, as the flattening process reduces the stroke of the actuators
available to generate the required wavefront. This map serves as a
baseline or starting point for DM adjustments. It is observed that
after running the EFC algorithm or similar to create the DH, the
nominal voltage map may only slightly change. This emphasizes the
importance of selecting the nominal voltage value for the DM offset
map, as it determines the dynamic (stroke) and accuracy (minimal
step size) available. The required stroke for the DM is related to
the expected amplitudes of the errors the DM needs to correct in
the system, and the minimal step size is crucial for achieving high-
fidelity correction.

As an illustration, in Fig. 2, we present a series of flattening maps
for one of the SPEED DMs (Kilo-C DM from Boston Microma-
chines). These maps were obtained using a FIZEAU interferometer,
specifically the ZYGO Verifire XPZ from Zygo Corp, and were
determined through an iterative process where an image was taken at
each step using the Zygo. In Fig. 3, we illustrate the active area of the
DM over which the RMS values are measured (952 actuators, white
circle in the right image), while the entire reflective area is 11.05 mm
(white circle in the left image). Our testing reveals that within the
voltage range of 40 to 180 V, a final RMS surface quality around
10 nm over the DM’s active area (9.9 mm) is achievable, regardless
of the targeted voltage level (see Fig. 4). However, it is noticeable
in Fig. 2 that higher voltage maps result in stronger side effects at
the border of the DM’s active area, with increased tension observed
at the edges of the membrane. While these results are not at all
presented as the upper limit of what is achievable in practice (Evans

MNRAS 532, 2892-2904 (2024)
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Figure 4. The RMS of the DM surface shape is plotted as a function of
the voltage maps. The actuator deflection curve is included to identify the
typical DM manufacturer’s flat map voltage value, which is approximately at
50 per cent deflection.

et al. 2006), they provide an argument that any voltage map could, in
principle, with equal surface RMS quality, be used as a starting point
for generating a DH, with potential side effects particularly evident
in very high-voltage cases. In low-voltage ranges, the dynamic might
be insufficient to adequately flatten the DM. In our case (see Fig. 4),
we cannot fairly discriminate between limitations in RMS resulting
from a lack of dynamic range in the DM and limitations inherent
to our process set-up. The results presented in Fig. 4 are for purely
illustrative purposes.

3. NUMERICAL ASSUMPTIONS

In this section, we outline the general assumptions of our numerical
modelling methodology and DH algorithm, following the same
formalism as in Beaulieu et al. (2017) and Beaulieu et al. (2020).

3.1 Speckle distribution modelling

In our study, the diffraction pattern in the science image arises
from (i) a segmented and obstructed pupil, which corresponds to
the SPEED pupil (Martinez et al. 2023) mimicking the features
of the Extremely Large Telescope, and (ii) an optical set-up with
static aberrations. We specifically exclude quasi-static aberrations,
assuming that the correction time-scale is shorter than structural
or thermal changes, as well as certain sources of noise (detector
noises, wavefront sensing errors, etc.). This simplification allows
us to focus on specific aspects of the optical system. For sim-
ulating static aberrations, each optic is computed with random
static aberrations defined by their total amount of aberration (in
nanometre RMS over the optic’s physical size) and their frequency
distribution [power law of the power spectral density (PSD)]. We
define each paraxial lens with standard optic qualities, i.e. with 5-
nm RMS aberration and a power law of the PSD in f~3 (typical
to current manufacturing errors). To ensure statistical robustness,
we generate 128 phase realizations per optic. The performance
is computed for each of these 128 cases. The choice of 128
realizations has been validated for statistical reliability (Beaulieu
et al. 2017).

MNRAS 532, 2892-2904 (2024)

3.2 DH algorithm

Our analytical approach, based on energy minimization, determines
the optimal settings for the DMs to minimize energy at the image
plane, resulting in the formation of a DH. Further details about the
mathematical formalism, optimization criteria, and specific consid-
erations can be found in the literature for a more comprehensive
understanding (Give’on et al. 2007; Pueyo et al. 2009; Groff 2012;
Beaulieu et al. 2017).
We summarize the formalism for clarity:

(1) Ey as the initial aberrated field with its amplitude A and its
phase ¢,

(i) C; as the linear operator from the pupil plane (where the first
DM is located) to the focal plane,

(iii) C, as the linear operator from the second DM (out-of-pupil
plane) to the image plane,

(iv) Ci, as the linear operator from the first to the second DM
plane,

(v) a as the DMs phases coefficients, and

(vi) g and & as the influence functions of the first and second DM,
respectively.

We assume that all the phases are small enough to approximate e’¢
by 1 + igp, and that C15[Ej.e'®'] can be written in the form of Ae™®
(and thus can be approximated by A(1 + i¢)). The intensity inside
the DH can be written as

IDH = ’a MO a—+ 2 'a S(b()) + d(), (12)
where My = G*G,
G =[G, Gy,
G = | [Ci{Ag;}]i |,
Gy = | [Co{AR})i |,
_ G C{Eo}
G5 Cl{Eo} |

dy = (Ci{Eo}, C1{Eop}).

where M, represents the system response to each DM poke, by
represents the interaction between the DM and the aberration, and
dy is the initial intensity with aberrations and flat DMs (a = 0). The
solution

a = —My"'3(by), (13)

that represents the DM coefficients, minimizes the energy inside
the DH. Other algorithms such as EFC (Give’on et al. 2007) and
the stroke minimization method (Pueyo et al. 2009) optimize the
contrast ratio and limit large stroke excursion. Because our model
uses monochromatic light and assumes a perfect wavefront sensor,
in our analysis, we do not handle large stroke deviation.

In practice, we compute the interaction matrix M, by first poking
each DM actuator. Subsequently, we Fresnel-propagate the wavefront
from the DM to the focal plane, recording the complex amplitude
assuming a perfect wavefront sensor. The optimization process
involves an initial iteration to compute DM coefficients, addressing
challenges posed by low singular values. Additionally, we employ an
iterative process to optimize contrast, accounting for non-linearities
in the optical operators. As discussed in Beaulieu et al. 2017 (see
fig. 9 in that paper), empirically setting the singular value threshold
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and carefully handling non-linearities contribute to achieving the best
contrast in the DH region.

We use the PROPER code for Fresnel propagation between each
optical element (Krist 2007). The PROPER code and the DH algorithm
were originally written in IDL but translated into C++.

3.3 Nominal and alternative high-contrast imaging set-ups

End-to-end simulators play a crucial role in advancing our under-
standing of coronagraph instrument performance in various scenarios
and for different purposes, such as technology demonstration for
exoplanet missions (Krist et al. 2011), statistical analysis of budget
errors or system analysis (Beaulieu et al. 2017), and assessing the
impact of telescope/instrument parameters on performance (Juanola-
Parramon et al. 2019). Each study addresses specific aspects and
conditions relevant to its objectives, collectively contributing to
the broader field of exoplanet mission planning and coronagraph
optimization.

This study offers insights into the relative impact of various set-
up parameters on the contrast in the DH when DM quantization
errors are involved. These parameters include the optical set-
up configuration (DM positioning), DM characteristics (deflection
curve, flattening map, and actuator number), and DH characteristics
[IWA, outer working angle (OWA), and FoV]. The comprehensive
analysis covers a range of errors, providing practical considerations
for realistic optical set-ups. We establish a nominal case as a basis
for comparison to assess the relative impact of each parameter. This
case involves a set-up with 25 optics, including (i) an obscured mask
with spiders located on to a tip-tilt mirror, (ii) a perfectly co-phased
segmented mirror with 163 segments, (iii) a theoretical PIAACMC
coronagraph developed for SPEED (Martinez, P. et al. 2023), or
alternatively, an ideal perfect coronagraph (Cavarroc et al. 2006;
Sauvage et al. 2010, note that the perfect coronagraph is sensitive to
aberrations and cannot correct for the phase contribution), and (iv)
two DMs with 34x34 actuators, and located at 1.5 and 0.2 m from
the pupil plane. When a DM is placed at the pupil plane, the beam
footprint corresponds to 22x22 actuators (active actuator number at
the pupil of 7.7 mm diameter). However, for out-of-pupil plane DMs,
the Fresnel pattern is larger than the pupil size, and we extended the
full DM range to 32x32 actuators of the 34x34 actuators available.
As a consequence, unless specified otherwise, N = 32 in most of
our simulations.

The nominal case assumes 5-nm RMS aberration with a PSD
in f3 for each passive optic, including the dichroic and the DMs
windows. These parameters serve as the reference throughout the
paper unless specified otherwise.

Given that our simulations assume a perfect wavefront sensor
and exclude amplitude and temporal errors, the algorithm achieves
very high contrast, surpassing what real instruments can achieve.
Nevertheless, such nominal contrast ratio serves as a reference,
highlighting that improperly set optical parameters can degrade the
contrast level to its limiting value.

Our nominal case is versatile, allowing the optical configuration of
the two DMs to be adjusted for optimal performance in various DH
scenarios (Beaulieu et al. 2017). This study considers various DM
optical set-ups to assess scenarios where both small and moderate
angular separations in DH are targeted. For comparison purposes,
the evaluation is not restricted to small angular separations. When
referring to DM distances, DM, is consistently located upstream or
in the pupil plane, while DM, is consistently downstream.

We consider two science DH configurations: (i) a small angular
separation scenario (small IWA and OWA, and a small FoV), referred
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Table 1. Configuration tested in simulation listed by names and expressed
as a function of the DM positioning (D M upstream of or in the pupil plane,
DM, downstream the pupil plane) and DH configuration from small to
moderate angular separations.

Configuration D M;(mm) D M;(mm) DH size (/D)
Case 1A 0 1500 0.8—4
Case 1B 200 1500 0.8—4
Case 2A 200 600 3-7

Case 2B 200 1000 3-7

to as Case 1, with a DH ranging from 0.8A/D to 41/D, and (ii) a
moderate angular separation situation, referred to as Case 2, with
a DH ranging from 31/D to 71/D. For both cases, we explore
two optical configurations regarding DM positioning: Case 1A,
where DM, is in the pupil plane and DM, is positioned 1500 mm
downstream; Case 1B, where D M is located 200 mm upstream from
the pupil plane and DM, is positioned 1500 mm downstream; Case
2A, where DM, is situated 200 mm upstream from the pupil plane
and DM, is positioned 600 mm downstream; and Case 2B, where
DM, is located 200 mm upstream from the pupil plane and DM,
is positioned 1000 mm downstream. While all these configurations
are optimized for DH characteristics based on a former analysis
(Beaulieu et al. 2017), the optical variations (A and B) in each case
(Case 1 and 2) enable a thorough investigation of optical set-up
dependence and potential significance in the analysis, particularly
by introducing a situation where a DM is in the pupil plane (Case
1A). A summary of all these configurations is provided in Table 1.

4. NUMERICAL RESULTS

In this section, we present the results obtained from numerical
simulations. The numerical pupil diameter size is 225 pixels for
a grid size of 1024 pixels. The simulation is monochromatic, with a
wavelength of 1.65 um. Our performance criterion is defined as the
5o contrast ratio histogram computed for each of the 128 random
realizations. It represents the number of random realizations that
achieve a given contrast ratio inside the defined DH.

We present our results in two forms: histograms, as previously
discussed and used in Section 4.1, and as the median contrast of
histograms, as used in Section 4.2. Section 4.1 addresses the impact
of the DM flattening maps, where results in the form of histograms
are relevant to highlight dispersion in the contrast as a function
of phase realization, providing a statistical approach to assess the
ability to sustain the contrast. On the other hand, Section 4.2
addresses the impact of the stroke precision, where trends are sought,
and a statistical approach is less relevant than a unique contrast
estimate defined as the median of the histogram of the 128 random
realizations.

In our simulation, as discussed and demonstrated in the lab (see
Section 2.3), the flattening maps of our DM ensure consistent RMS
surface quality regardless of the voltage applied to the map. The
results presented in Section 2.3 were not intended to represent
the maximum achievable performance in practice. Therefore, we
designed our DM flattening maps to exhibit 5-nm RMS aberration,
consistent with passive optics as discussed in the previous section.

4.1 Impact of the DM flattening maps

We first consider our nominal case, as defined in Beaulieu et al.
(2020), where DM positioning is optimized for a DH ranging from
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Figure 5. 50 contrast ratio histogram for DH from 0.81/D to 4A/D,
assuming DM at 200 mm and DM, at 1500 nm (Case 1A), as a function
of various flattening voltage maps. The nominal case corresponds to no
stroke limitation imposed by the flattening map. Simulation assumes a perfect
coronagraph.

0.8%/D to 41/D, dedicated to small angular separations and FoV
(Case 1B, DM; at 200 mm and DM, at 1500 nm), and in this case,
the coronagraph is a perfect coronagraph.

In this configuration, we can assess the limitation imposed by the
stroke limitation originating from the voltage of the DM flattening
map around which the DH is started and is evolving, with no impact
from the coronagraph (ideal case). The results of the simulation,
exploring the impact of flattening map voltage values ranging from
20 to 180 V, on the contrast in the DH, are presented in Fig. 5.
Fig. 5 shows following points: (i) The lower the voltage of the flat-
tening map, the better the results, which points out the interest of low
voltages in allowing higher DM step resolution; (ii) independently
from the value of the voltage of the DM flattening map, departing
from the ideal and nominal case with no stroke limitation does impact
the contrast on the DH (the nominal case, black line, leads to non-
realistic contrast values); and (iii) the dispersion, as seen in the 20-V
case (red histogram), indicates that at very low voltage, because the
stroke dynamic is severely reduced, the probability of obtaining deep
contrast is also reduced.

In Fig. 6, similar results are presented but extended to all the
DM set-up scenarios and DH sizes, as discussed in the previous
section and summarized in Table 1 (Case 1A and B, Case 2A and
B), and when the coronagraph is a PIAACMC from the SPEED test-
bed. In these cases, the nominal scenario without stroke limitation is
omitted from presentation, as it consistently results in non-realistic
contrast values, as illustrated in Fig. 5 (black histogram), ranging
from 107'% to 10~'4. The trend is similar, independently from the
DH and DM configurations, and highlights that, in contrast to what
the manufacturer provides (flattening map at 50 per cent deflection),
low-voltage maps are preferable, DH-wise. The coronagraph type
does not either impact the results [perfect coronagraph (see Fig. 5)
and PIAACMC (see Fig. 6)].

4.2 Impact of the stroke precision

In this part, we assess the impact of DM stroke precision on the
contrast in the DH. The algorithm used for the DH is described in
Beaulieu et al. (2020) and has been adapted to consider the smallest
step an actuator can achieve by taking into account the quadratic
power law of the actuator deflection curve, as well as the voltage of
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the flattening map from which the DH is initiated. For simplicity, it
is assumed in the subsequent analysis that the stroke precision value
is the same for each actuator of the two DMs. In this section, special
attention is given to comparing simulation results with predictions
derived from equation (11). In equation (11), the parameters used
are N =32, A = 1.65 pm, and y = 2 in all cases, with p = 1 and
p = 0.8 when a perfect coronagraph and PIAACMC are considered,
respectively. The value of p = 0.8 for the PIAACMC has been
evaluated by considering the impact of the PIAACMC LS on the
geometrically redistributed pupil from the PIAA stage.

A first step in our analysis focuses on predictions from equation
(11) when a perfect coronagraph is considered and comparing a
uniform with a quadratic power law for the actuator deflection curve.
The uniform case corresponds to a situation where the motion is
proportional to the voltage with uniform precision regardless of the
applied voltage. This step is useful as a comparison basis to assess the
impact of the actuator deflection curve power law on equation (11).
Fig. 7 (left image) shows the contrast (median) in the DH as a function
of the stroke precision in nanometre for a perfect coronagraph and
a uniform case (black diamonds) or a quadratic actuator deflection
curve (red asterisks). Predictions from equation (11) are shown in a
solid black line. It is readily observable that when a uniform precision
is considered, the match between simulations and predictions is fairly
good in both trend and in contrast level. When a quadratic power law
is considered, while the trend is similar to the prediction given by
equation (11) in mid- and high-level voltage ranges, a discrepancy is
observable in the low-voltage range, below ~50 V. This behaviour
will be more visible in the results presented in Fig. 7 (right image).

In Fig. 7 (right image), we present the same analysis but with a
PIAACMC instead of a perfect coronagraph, a quadratic actuator
deflection curve only, and for multiple DH and DM configurations
as presented in Table 1. Again, the trend of the contrast derived
from simulations (asterisks, diamonds, triangles, and squares) is
similar to the prediction given by equation (11) in mid- and high-
level voltage ranges with a limited mismatch in terms of contrast
level (see Table 2 for a quantitative evaluation restricted to Case
1B and 2A that are representative as upper and lower limits in the
discrepancy/dispersion), and a discrepancy is observable in the low-
voltage range. The discrepancy shows significant dispersion in the
contrast levels. Comparing these results (Fig. 7, right image) with
the previous ones (Fig. 7, left image) demonstrates that the mismatch
with equation (11) in the low-voltage regime occurs independently
from the coronagraph type (perfect coronagraph or PIAACMC). In
the low-voltage domain, because the resolution gets higher, the
dynamic is lower, which might explain the discrepancy as well
as the dispersion in the contrast for various configurations. When
the quadratic power law is considered for the actuator deflection
curve, it induces a dependence on the minimal resolution step of
an actuator to the voltage, while the uniform precision case is
free from this dependence. We note that the stroke levels on both
DMs at the end of the correction process to achieve the DH never
evolve significantly or exhibit abnormal state, which cannot explain
the observed phenomenon. In the almost middle range regime of
the quadratic power law (mid-voltage range), the discrepancy is
minimal and can be as low as a factor of 1.2 (see Table 2, where
Z stands for the ratio of the contrast evaluated in simulation to that
of the contrast derived from equation 11), and the trend predicted by
equation (11) is respected. In the high-voltage domain, this behaviour
is consistent. However, in this regime, and because our simulations
do not account for side effects at the border of the DM’s active area,
with increased tension applied at the edges of the membrane, we
expect that dispersion should appear.
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Figure 6. 5o contrast ratio histogram as a function of various flattening voltage maps for Case 1A (top-left image), Case 1B (top-right image), Case 2A
(bottom-left image), and Case 2B (bottom-right image). The nominal case corresponds to no stroke limitation imposed by the flattening map. Simulations
assume the SPEED PIAACMC.
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Table 2. Summary of contrast (median of histograms) values obtained in the DH (PIAACMC and quadratic power-law actuator deflection curve) as a
function of the stroke precision in nanometre (or initial DM flattening map voltages in V) for cases 1B and 2A, compared with prediction derived from

equation (11).

Voltage (V) 20 25 30 50 75 120 150 180

Rmin(nm) 0.016 0.023 0.050 0.060 0.094 0.152 0.178 0.192

%lequation 11) 6.6x10713  12x10712 59x10712 84x10712 2x10°! 54x 10711 75x 1071 8.6 x 107!
Case 1B

%(simulation) 24x 1071 25x1071 27x1071 32x1071 4.4 %1071 9 x 1071 1.2 x 10710 1.3 x 10710

X 36 20.8 4.6 3.8 22 1.6 1.6 15
Case 2A

%(simulation) LIx107""  84x1072 78x10712 13x 107! 3 x 107! 6.5x 107" 93 x 107! 1.0 x 10710

Y4 16 7 13 15 15 12 12 12

Regarding our various DH and DM configurations, we notice that,
as presented in Fig. 7 (right image), the results are fairly similar,
which further confirms that the DM positioning resulting from a
former analysis (as a function of the DH size, IWA, and OWA) is
correct. We remind the reader that, complying with the specifications
of a given test-bed or instrument (FoV, targeted contrast, optics
propagation distances, aberration types, etc.), Beaulieu et al. (2017,
2020) have demonstrated that the optimal distances of the DMs
relative to the pupil plane are crucial and can be optimized. In
other words, the condition for the location of the DMs is driven by
the ability of the DMs to get a balanced efficiency of correction
over the frequency range of the DH. Fig. 7 (right image) thus
indicates that the comparison of simulation results to equation (11)
is independent of the DH size and DM cases considered to a small
coefficient. We can conclude that equation (11) captures the impact
of DM quantization errors on the contrast in the DH similarly
when small angular separations or moderate angular separations are
targeted.

We note that equation (11) always provides a best case contrast
limit in the DH compared with simulations, which is reassuring. We
see two potential error sources that could explain the difference
in contrast levels between our simulations and predictions from
equation (11), even if limited in the mid-voltage regime: (i) Because
our DMs are almost never in a pupil plane, it is questionable whether
considering that y = 2 fairly describes the number of actuators in
the LS. While there are effectively two DMs in series and 2 x N
actuators in the LS, because DMs are out-of-pupil planes in most
of the cases studied, the number of fully efficient actuators in the
LS might be lower when considering this parameter in equation
(11). Since the positioning of DMs varied from configuration to
configuration, it is challenging to define and optimize a parameter to
account for this effect. (ii) In order to add the continuous membrane
of the DM to our code, we treat our DM surface in simulation as a
linear superposition of actuators with an influence function using a
Gaussian-shaped fitting model, but equation (11) does not account
for that. These aspects (i) and (ii) (see the study described in Ruane
et al. 2020, where the authors take into account the DM actuator
shape) degrade the contrast predicted in the DH by equation (11).

In the low-voltage regime, where the most significant deviation
between simulation and prediction occurs, the situation cannot be
explained by the two aspects discussed previously. This rather
suggests that a lack of actuator stroke, rather than precision, is
at work. In fact, equation (11) does not account for the available
actuator stroke, which depends on the voltages applied to the DMs
to make the surface as flat as possible before DH generation.
At low voltages, as seen in Figs 1 and 4, below approximately
20 percent of the maximum deflection (depending on whether
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we consider a single actuator deflection curve or, for instance, a
4x4 actuators region deflection curve), a MEMS DM system is
dominated by its quadratic relationship regime between deflection
and the voltage applied, while from 20 percent to 90 percent of
the maximum deflection, it has a nearly linear relationship. Below
20 percent, as the voltage decreases, the available stroke becomes
increasingly limited. Moreover, predictions provided by equation
(11), when stroke precision tends towards infinitely small precision,
does not capture reality in the case of MEMS DM:s. It tends towards
infinite contrast levels, whereas the DM’s stroke range should tend
towards zero, as should the contrast. Therefore, extending the analytic
model provided by equation (11) to account for this discrepancy is
necessary. Further, it is worth noting that equation (11) is based on
statistical and modal arguments, relying on the hypothesis that the
peaks and valleys of the ripple have values 5 (see Appendix A).
In the low-voltage regime, the PV symmetry of #¢ might no longer
be valid.

To capture the deviation from the pure power law in the low-
voltage regime, we introduce an additional parameter, denoted as 4,
in equation (11), balanced by a gain function (g). The gain function
g (i) ensures that the correction applied by the term £, is not constant
but evolves with the value of h.;,, thus depends on the voltage
for MEMS DMs, and (ii) describes the asymptotic behaviour of
the contrast in the DH for infinitively small stroke precisions. This
ensures it has a strong impact at very low voltages, with decreasing
impact as the voltage increases, and limited or no impact at mid
and high voltages. With these considerations, equation (11), can be
written as

167 ( huin + h :
g O fmin + 1 X 8 , (14)
3 y X pNX
where the gain function g is expressed as g = é, and is defined

as the inverse of the deflection function curve (see Fig. 1 or 4,
that shows § as a function of the voltage for our Kilo-C DMs),
so that the correction is balanced by capturing the stroke dynamic
limitation behaviour (g tends towards infinity at low values, and
tends towards zero at high values). Equation (11) corresponds to £,
= 0 nm. The correction proposed in equation (14), using i; = 0.5
nm, empirically determined so that the contrast floor nature of the
equation is preserved, can be compared with equation (11) in Fig. 7
(left and right images) and is presented as a dashed black line. Fig.
7 shows that when equation (14) is considered, (i) the discrepancy
in the low-voltage regime is reduced to reasonable values, (ii) the
behaviour when the stroke precision tends towards zero is accounted
for, and (iii) predictions from equation (11) in the mid- and high-
voltage domains are respected. We note that the sampling of the curve
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Figure 8. Contrast (median of histograms) in the DH as a function of the
stroke precision in nanometre for various actuator numbers (N) in the case
of a perfect coronagraph and a uniform stroke precision law. The simulation
results (asterisks) are compared with predictions from equation (11) (full line)
with p = 1 and y = 2. The error bars represent the minimum and maximum
contrast values achieved in the corresponding histogram.

representing equation (14) in Fig. 7 is not as good as that of equation
(11) due to the gain function, which uses the deflection curve of
our mirrors as provided by the manufacturer (see Fig. 1) and whose
sampling is much poorer.

To generate the sinusoidal signals corresponding to the frequencies
needed for DH, both high and low voltages are required (in the sense
of peak and valley values). In the regime where the DM system is
dominated by its quadratic law, good precision is achievable at the
minimum values of a given sinusoid, but the maximum values are
less precise. In addition, the available stroke disrupts the expected
symmetric actions capability of the mirror on the peak and valley
values. This leads to slower and less accurate convergence, as shown
in Fig. 7. If there are fewer aberrations to correct, the impact of
the function g should be less significant. Conversely, the effect
can be much stronger when correcting significant aberrations. This
discrepancy is not captured by the gain function itself but is by the
empirical adjustment using the 4, parameter.

4.3 Impact of the actuator number

In this section, we compare the contrast obtained in the DH when the
number of DM actuators (N) is changed to predictions from equation
(11). Since we observed that predictions from equation (11) are
independent of the DH size and DM configuration (DM positioning),
we restrict our analysis to Case 1B. For the same reason, we consider
a perfect coronagraph (p = 1) and a uniform step accuracy for the
actuator deflection curve to eliminate the discrepancy and dispersion
at low voltages. The goal is to isolate the effect of N between
simulations and predictions (y = 2). In these conditions, we consider
various N values to widely explore this parameter space: 16, 24, 32,
40, 60, 80, and 100, and the results are presented in Fig. 8, where the
contrast in the DH obtained from simulations is represented either by
asterisks or plus signs, while predictions derived from equation (11)
are shown as solid and dashed lines. We remind the reader that due
to the Nyquist criterion, the number of actuators N limits a DM’s
overall performance: It can correct up to a radius of % at the image
plane. Restricting the analysis to Case 1B (small FoV and IWA DH)
helps guarantee that for most of N values considered, the size of the
DH is lower than the DM’s correction area. This ensures that aliased
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Figure 9. Same data sets and conditions as in Fig. 8, but now the contrast
(median of histograms) in the DH is expressed as a function of the square of
the stroke precision divided by the number of actuators (2 x N) considered.
The error bars represent the minimum and maximum contrast values achieved
in the corresponding histogram.

speckles caused by a speckle whose central frequency is outside the
DH but within the correction area can be mitigated. We note that for
N = 16 (cutoft frequency of 8A/D aliased speckles might still have
an effect) DH OWA is 4A/D.

Fig. 8 displays the contrast (median) in the DH as a function of
the stroke precision in nanometre and the number of actuators (N).
The blue curve and asterisks are similar to the results presented
earlier in Fig. 7 (left image). For all N values, equation (11)
consistently predicts slightly better contrast than the values obtained
in simulations. The origin of the discrepancy might be explained
similarly to the previous subsection (see Section 4.2). It is noteworthy
that despite the limited discrepancy with predictions from equation
(11), the trend in the dependence of the contrast in the DH on N
obtained from simulations is similar and is fairly captured by equation
(11). Furthermore, the number of actuators also impacts high-contrast
imaging within the DM correction range: Performance depends on
the DM’s capability to accurately reproduce a phase pattern, even for
spatial frequencies less than %, and equation (11) might not be able
to account for that. This could explain why the dispersion around
the contrast value (median) represented with error bars is significant
for N = 16, along with the potential impact of aliased speckles (as
already discussed).

Fig. 8 also suggests that smaller errors in actuator stroke is nearly
equivalent to increasing the number of actuators: For instance at
0.05-nm stroke precision, N = 24 provides better contrast level than
N = 40 at stroke precision of 0.1 nm. Similarly, at 0.05-nm stroke
precision, N = 60 provides better contrast level than N = 100 at
stroke precision of 0.1 nm. In other words, improving the stroke
accuracy of a factor of 2 is nearly equivalent at doubling the number
of actuator.

Fig. 9 shows similar results as in Fig. 8, but this time it provides the
contrast as a function of the square of the stroke precision divided by
the number of actuators. It further illustrates the proximity between
simulation results and predictions derived from equation (11).

5. CONCLUSIONS

In our study, we investigate the dependence of MEMS DM quanti-
zation errors and initial voltage maps on small to moderate angular
separation DHs. We compare our results with predictions generated

MNRAS 532, 2892-2904 (2024)

202 Joquieoaq £z uo 1senb Aq 6E0E | L/2682/2/Z€S/I01E/S UL W00 dNo01Wapede)/:Sdjy WOl PapEojuMod



2902 P Martinez et al.

by a simple and widely used formula proposed by several authors
(Trauger et al. 2007, 2011; Traub & Oppenheimer 2010; Ruane et al.
2020).

A by-product of our study is to determine the domain of validity
for equation (11) in expressing the relationship between DM quan-
tization error and DH image quality. This investigation specifically
focuses on scenarios where (i) DMs are used in series, (ii) a quadratic
power law defines the actuator deflection curve, and (iii) small
angular separations are targeted. The examination of the impact
of the initial voltage value of the DM flattening maps serves as
a complementary aspect of the study. It is essential to emphasize
that equation (11) was originally formulated without incorporating
factors such as DH size, multiple DM architecture, out-of-pupil plane
DM configuration, and irrespective of specific science objectives,
such as small FoV/IWA DH or wider FoV/IWA DH. Our study
provides insights into these aspects. The domain of validity of
this formula is thoroughly studied, and the formula is subsequently
extended to the case of a multi-DM architecture and to the case of
a quadratic relationship between the voltage applied to an actuator
and its corresponding deflection.

We demonstrate that the contrast limit in the DH due to DM
quantization, as predicted by equation (11), is generally valid when
a uniform stroke precision is sought. However, a discrepancy and
dispersion are observed at the low-voltage regime for a quadratic
power law. In the case of the manufacturer’s quadratic power law,
equation (11) is found to be valid in the mid-voltage range but
inefficient in accurately predicting contrast in the low-voltage range
and potentially in the high-voltage regime. Notably, the results are
independent of the coronagraph type, DH size, or DM configuration,
with no observed dichotomy between small and moderate angular
separation science cases. It is essential to recognize that equation (11)
consistently provides a best-case contrast limit in the DH, offering
a reference frame for assessing the relevance of contrast results.
Nevertheless, fine-tuning predictions based on equation (11) or its
extended version (equation 14) is a challenging and likely futile task
due to various factors, such as actuator stability, hysteresis, inter-
actuator influence, etc., which are difficult to predict accurately for
each actuator in a DM.

When it comes to DM flattening map voltages, using the manu-
facturer flattening map defined at roughly 50 per cent deflection is
not optimal in terms of DH performance. Lower voltage values are
preferable, as they increase the DM minimal resolution step and,
consequently, the accuracy. However, we also demonstrate that in
the low-voltage domain, the risk of divergence in the DH algorithm
increases certainly due to a lack of dynamic range. To account for
this effect, we extend the analytic model proposed by equation (11)
by incorporating a correction term as expressed in equation (14),
which captures the actuator stroke range with voltages.

Beyond the challenge of achieving and assessing the impact of the
minimal step, the stroke error (the difference between the specified
and the real actuator position) is critical and largely dependent
on the variation in the maximum range of the amplifiers in the
electronics. This leads to different amounts of error at different points
on the actuator deflection curve. Actuator stability (the ability of the
actuators to hold their shape over time) and repeatability (the ability
of the actuator to return to the same position under the same applied
voltage consistently) are also crucial factors but are beyond the
scope of this study (Evans et al. 2006). Additionally, the continuous
phase-sheet MEMS DM stroke depends on the displacement of
adjacent actuators (Bifano et al. 2010), necessitating a conservative
margin to be applied to equation (11), as discussed in Ruane et al.
(2020).

MNRAS 532, 2892-2904 (2024)

Finally, while the most important DM properties for high-contrast
imaging are the number of actuators, the surface height resolution,
and the stability/repeatability of the mirror surface, we show that
smaller errors in actuator stroke is nearly equivalent to increasing the
number of actuators, if one disregards FoV considerations (IWA and
OWA are defined by the number of actuators). Because it might be
simpler to enhance the precision of existing mirrors through DM con-
troller developments than to create new high-density actuator DMs,
this result could have implications for technological developments
for future projects (e.g. the Habitable World Observatory; Vaughan
et al. 2023), though a trade-off must be explored between contrast
and FoV in the DH.
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APPENDIX A: CONTRAST IN A DH

In this appendix, we provide a justification to equation (6) following
the formalism and explanations provided in Trauger et al. (2007,
2011) and Traub & Oppenheimer (2010). In particular, this ap-
pendix is broadly inspired from the stellar intensity description in
the presence of a coronagraph, and the formalism on the controlling
of scattered light with DMs as proposed in Traub & Oppenheimer
(2010). We thus follow the same formalism and these details
are presented here for pedagogical reasons and because they are
considered as a basis for our work.

Let us consider that E,, (1) represents the amplitude of the electric
field in a one-dimensional telescope model of diameter D, with range
u=(-=D/2,+D/2):

E,(u) = A (u)exp™. (A1)

2903

By Fourier analysis, the phase ¢ (1) can be written as the sum of
many sinusoidal ripples (a disturbed wavefront across a pupil can be
represented by a sum of sine and cosine). If we suppose a typical
ripple that has spatial period u, the phase of the wavefront can be
written

¢o () =acos Qru/ug+ ) +ibcos Qru/ug+ B), (A2)

where the imaginary part represents the spatial variation of amplitude
and the real part the spatial-variation of phase. Assuming that
the peaks and valleys of the ripple have values =4h, then the
corresponding amplitude of phase delay is

a = 2mho/A. (A3)
In the focal plane, the complex amplitude, denoted as Ey, is

2mbu

E; (0) ~ / exp™®® . exp~ " du, (A4)
D

where 6 is the radial angle from the optical axis. In the small aber-
rations regime where ¢ (1) << 1, the exponential can be expanded
giving Ep (u) ~ A (u) x (1 + ¢ (u)),

E: (0) ~ / [1+i(acosRru/ug+ o)+ ibcos2ru/ug+ B))]
D

cexp” T du. (A5)

By replacing cos(z) with (expiz + exp —iz) /2, each term can be
integrated. Defining the well-known diffracted amplitude of a single
star as
sin (k60D /L)
Ey(0) = 7/ (A6)
0D /A

we obtain that the diffracted amplitude is the sum of a main peak, at
the expected & = 0 position of the star, plus two smaller peaks, one
on each side, at 6, = X /ug, where

E;(9) ~ Eo(0)+ 1/2 (iaexp™ —bexp”) Eq (0 + A /up)

+1/2 (iaexp™™ —bexp ) Eo (60 — A/uo). (A7)
The final intensity It (6) =| E; () |? has six terms:
@) =h+1 1+ 11 +1o2+ 1+ (A8)

In the last equation, Iy is the main peak, the central star image. The
next two terms are symmetrically placed speckles where

Iy = 1/4 [a® 4+ b* £ 2absin (@ — B)] 1o (6 = 1/xo). (A9)

Their intensities are equal only if either phase errors or amplitude
errors dominate. If there is a mixture of these errors, the intensities
can be unequal. These intensity variations have the same shape as
translated copies of the central peak but are scaled down. The next two
terms correspond to pinned speckles, which are located at the same
positions as the ordinary speckles but are scaled by the local intensity
of the diffraction pattern from the main peak, being anchored to the
pre-existing diffraction rings (amplified by the coherent part of the
wave). The last term, /3, is negligible and omitted as it represents a
cross product of the two speckles.

When it comes to intensity in a DH, speckles are, to some
extent, suppressed by a DM. In the following, dynamic and quasi-
static aberrations are omitted: Atmospheric errors are considered
perfectly corrected by an upstream extreme adaptive optics system,
and the correction time-scale involved in the DH generation is
considered shorter than structural or thermal changes. Under these
circumstances, we restrict our analysis to speckles described by
equation (A9).
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In the following, we assume that the DM isan N x N square array
of actuators placed in a pupil plane. The telescope pupil is considered
mapped on to the square DM by perfectly filling it, so that the ratio
of the pupil surface

N 2
Sp=m (?) , (A10)

assuming N actuators per diameter, by the DM square array surface
Sam = N7, (A1D)

is %. Assuming that the DM can fit up to about % periods of a wave

with N actuators in one dimension, so % waves per diameter, and
2. . . .

thus (%) in two dimensions. By analogy, it is assumed that there

are as much as M modes in the full area of the pupil that the DM

can control, considering the active actuators over the pupil footprint

only, so that

T (N\*

By considering a unique mode of averaged amplitude /4, the speckle
produced by this mode has relative intensity of a?/4 by considering
results from equation (A9):

L/ = a%/4. (A13)
Using the results given by equation (A3), we finally obtain
Lsi/lo = (Tho/A)*. (Al4)

Summing the contribution of multiple modes with random phases
(equivalent to summing M complex vectors of average length A
but with random phases) and by using the analogy and the well-
known result from the random walk problem in two dimensions
(which considers a sum of M two-dimensional vectors with random
orientations, the RMS distance after M unit steps of length / is given

by dims = 1 x M'/?; McCrea & Whipple 1940), we can express the
RMS surface error in the DM actuator settings, denoted as /.y, from
the average amplitude, where

Boms & ho x M'/2, (A15)

where it can be rewritten as

_ JmNh

hrms - 4

Because the DM is a reflective device, it must be controlled to a
surface error of h,s/2 in practice, so that

VAN

(A16)

hrms = ] (A] 7)
From this equation, we can extract kg as

8h
ho - (A18)

= 7N

The average contrast, denoted as %, in the DH, using equation (A14)
can be written as

2
C=m <8h“‘“> } (A19)

NA

Assuming uniformly distributed errors (Ruane et al. 2020), we can
define the minimum DM surface motion enabled, /;,, such that

Rims = hmin/ V12 (A20)
The average contrast in the DH, is finally
167 [ in \°
C=— . A21
- () @b
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