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Abstract Saturn Kilometric Radiation (SKR), being the dominant radio emission at Saturn, has been
extensively investigated. The low-frequency extension of SKR is of particular interest due to its strong
association with Saturn's magnetospheric dynamics. However, the highly anisotropic beaming of SKR poses
challenges for observations. In most cases, the propagation of SKR is assumed to follow straight-line paths. We
explore the propagation characteristics of SKR across different frequencies in this study. An extended equatorial
shadow region for low-frequency SKR is identified, resulting from the merging of the Enceladus plasma torus
and the previously known equatorial shadow zone. Ray-tracing simulations reveal that low-frequency

(5100 kHz) SKR is unable to enter the shadow region and is instead reflected toward high latitudes. In contrast,
high-frequency SKR (=100 kHz) generally propagates without hindrance. Observations suggest that some low-
frequency SKR can enter the shadow region through reflection by the magnetosheath or leakage from the
plasma torus.

Plain Language Summary Saturn Kilometric Radiation (SKR) is a natural electromagnetic wave
generated in Saturn's high-latitude region along its magnetic field lines. Variations in SKR frequency could offer
insights into Saturn's magnetic conditions, especially its interaction with the solar wind. However, the observed
frequency characteristics of SKR depend on viewing geometry due to its directional nature. While past studies
assumed SKR travels in straight lines, this may not hold true for low-frequency SKR. These emissions can
change direction when they encounter dense plasma, similar to light reflecting off a mirror or bending when
entering water. At Saturn's equatorial region, the plasma torus created by Enceladus, one of Saturn's moons,
contains dense plasma and significantly affects radio wave propagation. Our study investigates the distribution
of SKR at different frequencies and identifies a shadow region where low-frequency SKR emissions are rarely
seen. Using numerical simulations of ray propagation paths, we discover that low-frequency SKR emissions
cannot reach these shadow regions because they are reflected by the dense plasma torus. However, occasionally,
we observe low-frequency SKR in the shadow region, suggesting the possibility of reflection by Saturn's
magnetosheath or leakage through the plasma torus.

1. Introduction

Saturn's Kilometric Radiation (SKR) was first detected during the Voyager Saturn approach in the 1980s (Kaiser
et al., 1980) and was extensively investigated by the subsequent Cassini mission (Cecconi et al., 2009; Fischer
et al., 2009; Lamy, Zarka, Cecconi, Hess, & Prangé, 2008; Lamy, Zarka, Cecconi, Prangé, et al., 2008, Lamy
et al., 2009, 2011, 2013, 2018; Taubenschuss et al., 2021; Wu et al., 2022a) as summarized by Lamy (2017).
Saturn Kilometric Radiation spans a frequency range from a few kilohertz (kHz) to one megahertz (MHz) and
primarily manifests as Right-Hand Extraordinary (R-X) mode, occasionally accompanied by weaker Left-Hand
Ordinary (L-O) mode emission (Lamy, Zarka, Cecconi, Prangg, et al., 2008). The source region of SKR displays
shell electron distributions, and the generation mechanism is attributed to the cyclotron maser instability along
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auroral field lines above Saturn's polar regions (Kurth et al., 2011; Lamy et al., 2018; Wu & Lee, 1979;
Zarka, 1998).

The CMI-generated emissions beam at large angles along a thin hollow cone whose axis is aligned with the local
magnetic field in the source (Hess et al., 2008; Mutel et al., 2010). This beaming pattern is responsible for a highly
anisotropic emission with strong visibility effects, so the observed SKR time-frequency features strongly depend
on the observer's location (Cecconi et al., 2009; Lamy, Zarka, Cecconi, Hess, & Prangé, 2008, Lamy et al., 2013).
While theory favors perpendicular propagation inside the source region due to shell electron distributions (Lamy
et al., 2011), the apparent beaming angles of SKR observed at some distance to the source are smaller than
predicted (Cecconi et al., 2009; Lamy, Zarka, Cecconi, Prangé, et al., 2008; Lamy et al., 2018), implying re-
fractions and reflections during the outward propagation from the source region. The highly oblique SKR
beaming leads to an equatorial shadow zone (ESZ) formed at small radial distances (Cecconi et al., 2009; Lamy,
Zarka, Cecconi, Hess, & Prangé, 2008; Lamy et al., 2010). The ESZ extends around 5 Saturn Radii (Rs) at the
equator, with its shape varying with emission frequencies (Lamy, Zarka, Cecconi, Hess, & Prangé, 2008).
Enceladus plasma torus (EPT), formed by the cryovolcanic activity of Saturn's icy moon Enceladus, and centered
at 4 Rs at the equator (Persoon et al., 2020), may cause significant refraction of the low-frequency SKR
(5100 kHz), while high-frequency SKR (2100 kHz) propagates through it (Lamy et al., 2010). However, no
dedicated propagation study has been carried out so far.

The low-frequency extensions (LFE) of SKR serve as an important indicator for reconnection events and
compression-induced hot plasma injections at Saturn (Bunce et al., 2005; Cecconi et al., 2022; Jackman
etal., 2009, 2010, 2023; Reed et al., 2018). Understanding their propagation is crucial for uncovering their further
magnetospheric implications. Some low-frequency SKR exhibit unique time-frequency morphologies and are
identified as “caterpillar” emissions (Fischer et al., 2022; Fischer et al., 2023; O'Dwyer et al., 2023). These
emissions, typically observed near 10 kHz, often display depolarization features (low polarization degree of the
Stokes parameters) whose generation mechanisms remain unknown but may involve refractions and reflections
during propagation. This study examines SKR propagation, particularly its low-frequency emissions by both
data-based statistics and ray-tracing simulations.

2. Data and Methodology
2.1. Cassini Data

The wave data were collected by the Cassini Radio and Plasma Wave Science (RPWS) High Frequency Receiver
(Gurnett et al., 2004). The circular polarization parameters were obtained using the approach outlined by Cecconi
and Zarka (2005). The electron cyclotron frequency f, (proportional to the local magnetic field amplitude B) and
the electron plasma frequency f,, (proportional to the square root of the electron density n.) were computed based
on magnetic field data from Cassini's magnetometer (Dougherty et al., 2004) and electron moments data from the
CAPS instrument (Young et al., 2004).

We conducted a comprehensive analysis of the SKR distribution across various frequencies by applying a data
cleaning process to the Cassini RPWS spectrograms covering the period from 2004 DOY (day of year) 001 to
2017 DOY 258. The selected frequency range encompasses the full SKR frequency spectrum, spanning from
3.68 kHz to 1 MHz. For the high-frequency part (2100 kHz), the spectrograms predominantly contained SKR
emissions, simplifying the processing. Other emissions likely occur in the high-frequency range of SKR include
Solar type III bursts, often unpolarized, and sporadic Saturn Electrostatic Discharges, occasionally reaching down
to 800 kHz. In the lower frequency range, SKR emissions often coexisted with other signals, including L-O mode
5 and 20 kHz Saturn Narrowband (NB) emissions (Wu et al., 2021; Ye et al., 2009), L-O mode Saturn Anomalous
Myriametric (SAM) radiation (Wu et al., 2022c) and sporadic electrostatic emissions like electron cyclotron
harmonics (ECH, Long et al., 2021). To isolate SKR signals, we utilized event lists provided by Wu et al. (2021,
2022b) to remove NB and SAM emissions. Additionally, we filtered out ECH by discarding spectrogram pixels
exceeding the local f, up to 7/2 f, values, as recommended by Long et al. (2021).

The processed SKR spectra were subjected to a 2D median filter using a (3 channels * 3 channels) kernel (across
time and frequency) to remove isolated pixels. We also excluded emissions that were weak (<20 dB, with a
background level of 107'7 V?Hz™") and unpolarized (Il < 0.3, with V the Stokes parameter for circular polar-
ization). The later criterion typically eliminates sporadic Solar type III bursts. Notably, certain non-SKR
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emissions, including R-X mode harmonics of NB emissions (Ye et al., 2011), residual NB emissions, and specific
electrostatic noise, were present in the data but challenging to remove entirely. However, their impact on our
results is minimal due to their lower occurrence compared to SKR. To further mitigate their influence, the final
statistical analysis concentrated on the frequency range above 6 kHz. Additionally, data from 2017 was excluded
due to substantial electrostatic noise in the low-frequency range.

2.2. ARTEMIS-P Simulations

The ray-tracing method utilized here is the ARTEMIS-P algorithm (Anisotropic Ray Tracer for Electromagnetics
in Magnetosphere, lonosphere, and Solar Wind, including Polarization; Gautier, 2013; Gautier et al., 2013), as
used in Wu et al. (2024). Calculations incorporate Saturn's magnetic field model (Dougherty et al., 2018) and EPT
model (Persoon et al., 2006). SKR rays are launched at frequencies [1,000, 500, 200, 100, 80, 60, 40, 30, 20, 10,
6] kHz along L-shell = 15 (corresponding to invariant latitude 75°, roughly the SKR source latitude; Cecconi
et al., 2009; Lamy et al., 2009), at positions having local f, values of [990, 490, 190, 95, 75, 55, 35, 28, 19, 9,
5] kHz. Launching the rays with wave frequencies close to and slightly higher than the local £, in the determined
source positions is due to the technical limitation of the ray-tracing algorithm, which adheres to the cold plasma
dispersion relation and precludes initiation of R-X mode rays at positions with wave frequencies equal to or below
the local f, values (Lamy et al., 2010, 2018). Therefore, the rays are launched at positions with the wave fre-
quencies close to and slightly higher than the local f, values, as also adapted in the previous studies (Hashilnoto
et al., 1998a; Hashimoto et al., 1998b; Ladreiter & Leblanc, 1990). The initial beaming angle of SKR is set to be
90° according to the previous studies (Lamy et al., 2011, 2018).

3. Observations of SKR Near the Enceladus Plasma Torus and Magnetosheath
Figure 1 presents SKR observations potentially indicating refractions and reflections near the EPT and magne-

tosheath. The R-X mode SKR displays a low-frequency cutoft at the frequency fx = %)ﬁe +4/ ];28 +j% Elevated

plasma densities at the EPT boundary lead to a sufficiently high fx for SKR reflection. Panels (a)—(b) of Figure 1
reveal variations in the low-frequency limits of SKR, consistent with Cassini's proximity to the EPT. These low-
frequency SKR emissions might be reflected in other directions at the EPT boundary, thereby evading Cassini's
detection. The intricate circular polarization pattern in panel (b) within the equatorial region results from the
superposition of SKR emissions originating from both hemispheres, which exhibit right-hand circular polari-
zation (~—1, in red) at the northern hemisphere and exhibit left-hand circular polarization in the southern
hemisphere (~1, in blue).

The second case in panel (c)—(d) provides a clearer demonstration of SKR cutoff at the EPT. The intensified “line”

emissions correspond to local upper hybrid waves at f;;, (upper hybrid frequency, f,;, = ];26 + ffe). Notably, the fy

frequency at the EPT boundary closely aligns with the local f,, resulting in a distinct cutoff pattern of SKR along
this “line.” These cutoff emissions exhibit reduced intensity, while higher-frequency emissions experience minor
attenuation upon entering the EPT. Additionally, panel (d) reveals depolarization characteristics of these cutoff
emissions (Stokes V ~ 0, the linear and total polarization degree (not shown) are also lower). The partial absence
of SKR around the center of panel (c) is likely to be due to the ESZ as Cassini gets as close as ~4 Rs.

Panels (e)—(f) reveal distinctive cutoff patterns as the spacecraft traverses the EPT and progresses outward to
larger radial distances in the equatorial region. The EPT obstructs SKR below approximately 100 kHz. Notably, a
sudden occurrence of the emission below 100 kHz at 08-04 10:00 UT in panel (e) is evident, suggesting potential
“leakage” from the EPT or distant reflection (magnetosheath reflection) of these low-frequency emissions. At that
time Cassini was positioned 25 Rs from Saturn, near the dayside magnetopause at noon local time. The “leaked”
or reflected low-frequency SKR displays attenuation and depolarization similar to that seen in panel (c), possibly
due to refractions and reflections caused by the EPT or magnetosheath.

Panels (g)—(h) exhibit a clear cutoff pattern of the low-frequency SKR below ~10 kHz within the magnetosheath,
implying its potential for reflecting such frequencies, akin to the reflection observed in the 5 kHz NB emissions
(Wu et al., 2022b). The pink line represents the local f,, which is nearly identical to the local fx within the
magnetosheath due to the weak magnetic field. Note that the emission around 10 kHz in Figure 1 panel (e) at
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Figure 1. Observations of Saturn Kilometric Radiation near the Enceladus plasma torus (EPT) and within the magnetosheath. Panel (a) shows the wave electric field
spectrogram. Panel (b) displays the circular polarization. Vertical red lines indicate the approximate location of the EPT. The white and black dashed lines highlight low-
frequency variations. Panels (c)—(h) present three additional observations in the same format as panels (a)—(b). The black vertical lines in panels (g)—(h) delineate the
magnetosheath, and the pink line represents the local f,, frequency in the magnetosheath, which roughly equals the local f, frequency due to the weak magnetic field (see
text).

10:00 SCET on 08-04 2011 and the enduring emission in Figure 1 panel (g) just above the magnetosheath cutoff
are recognized as caterpillar emissions.

4. Statistical Distribution of SKR at Different Frequencies

Figure 1 displays observations suggesting potential refractions and reflections of low-frequency SKR near the
EPT. To explore SKR propagation at various frequencies, we present statistical occurrence rates in Figure 2,
segmented into frequency bands. High-frequency SKR (panels (a)-(c), >100 kHz) can propagate across the
region near Saturn, forming a small ESZ denoted by the triangular area between two pink lines, with lower
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occurrence rates at the equator (Lamy, Zarka, Cecconi, Hess, & Prangé, 2008). Additionally, high-frequency SKR
exhibits higher occurrence rates compared to low-frequency SKR.

In panels (a)—(d), the ESZ region expands radially, as indicated by the dark blue area. For SKR frequencies above
~80 kHz, the fx contour lines (red lines in panels (a)—(d)) lie within the ESZ region. However, in panel (e), the fyx
contours at ~60 kHz suddenly protrude, forming a boundary around the inner part of the EPT due to the higher
plasma density there. The R-X mode SKR cannot propagate in regions where the wave frequency is less than f.
Consequently, the shadow region becomes a combination of the triangular ESZ shape and a torus-shaped region
for the low-frequency SKR below ~60 kHz. For convenience, we refer to these fy encircled regions as the R-X
mode Forbidden Zone (FZ). As the SKR wave frequency decreases and as depicted in panels (e) to (j), the FZ
region expands. The lower occurrence rates within this FZ region indicate that low-frequency SKR cannot
propagate into these areas and are likely reflected to other directions. Note that the merging of ESZ and the torus-
shaped FZ region appears to start within the 80-100 kHz frequency range and not the 60 kHz, as depicted in panel
(d), which we attribute to the uncertainties in the EPT density model and magnetic field model. There are still
some emissions observed inside the ESZ and FZ, for example, light blue patches inside the red contour in panel
(1), these are due to the uneliminate NB emissions and ECH waves at the lower frequencies.

5. Merging of the Equatorial Shadow Zone and the R-X Mode Forbidden Zone

The low-frequency SKR distributions in Figure 2 exhibit regions of low occurrence rates, indicating an extension
of the shadow region that is further explored in Figure 3, panels (a)-(b). This analysis employs the magnetic field
model by Dougherty et al. (2018) and the EPT electron density model by Persoon et al. (2006). Panel (a) depicts
the theoretical beaming pattern of SKR in both hemispheres, with a fixed beaming angle of 90° and no refraction
effects. The ESZ forms at the equator and expands away from Saturn as SKR frequencies decrease, which covers
aradial distance within 6 Rs. In panel (b), the contour lines of fy illustrate the shape of the R-X mode FZ. The fx
at the EPT is at approximately f;y = 60 kHz as derived from the analytical models, but may be as high as 100 kHz
as suggested by the observation in Figure 2 panel (d). The FZ extends to ~12 Rs when fy is 6 kHz. The actual
shadow region for SKR at a specific frequency combines the corresponding areas shown in panels (a) (ESZ) and
(b) (FZ) of Figure 3. At higher frequencies, the shadow region primarily aligns with the ESZ since f;x contours fall
within it. Conversely, at lower frequencies (fsggr < 100 kHz), the ESZ expands and merges with the region
defined by the fy contours, eventually becoming enclosed by the FZ. Consequently, low-frequency SKR en-
counters reflections at the FZ boundary, explaining the absence of low-frequency SKR within the FZ region in
Figure 1. Moreover, this implies the potential existence of an extended shadow zone beyond the FZ or the EPT at
larger radial distance due to the blocking effect.

For a clearer SKR propagation illustration, we conducted ray-tracing calculations using Saturn's plasma envi-
ronment as shown in Figure 3 panel (c). Rays of varying frequencies were launched from the designated sources.
The EPT electron density is color-coded in the background. Panel (c) illustrates that high-frequency SKR can freely
traverse the dense EPT. Conversely, frequencies below approximately 100 kHz lead to pronounced refraction (rays
being bent, e.g., rays at 100 kHz) and reflection (rays being reflected to other directions, e.g., rays at 20 kHz) by the
EPT, causing rays to bend toward higher latitudes. This creates an extended shadow zone from ESZ + FZ to beyond
the EPT, outlined by the shaded box in panel (c). We then refer to the extended ESZ as extended equatorial shadow
zone (EESZ), which roughly covers aradial distance from ~12 Rs and beyond. However, the EESZ beyond the EPT
is not observed in the actual distribution in Figure 2. Surprisingly, low-frequency emissions are detected in this
area, especially at larger radial distances as shown in Figure 2. This raises questions about the propagation of SKR
and how it manages to reach these regions. For high-frequency SKR, the absence of blockage by the FZ allows the
waves to traverse the EPT, the emissions observed in the EESZ can be simply explained by the movement of source
field lines, altering the initial beaming angle of SKR, or simply due to the 3D hollow cone beaming of SKR, thus
parts of it are beamed out of the meridian plane into the EESZ. Indeed, various direction-finding studies show that

Figure 2. Statistical distribution of Saturn Kilometric Radiation (SKR) in the meridian plane separated in different frequency bands. Panel (a) displays the occurrence
rates distribution of SKR ranging from 1,000 to 500 kHz. Pink and blue arrows indicate two SKR rays with beaming angles of 90° and wave frequencies of 500 kHz,
originating from the L = 15 magnetic field line (black solid line). The red contour line near the planet represents the R-X mode cutoff frequency: gy = 500 kHz, derived
using the Enceladus plasma torus model (Persoon et al., 2006) and magnetic field model (Dougherty et al., 2018). Panels (c)—(j) illustrate the distribution of SKR at the
other frequency bands. Panel (k) shows the corresponding Cassini observation time.
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Figure 3. Merging of the equatorial shadow zone and R-X mode Forbidden Zone (FZ). Panel (a) displays the beaming pattern of Saturn Kilometric Radiation (SKR) at
various frequencies without refraction effects. The beaming angle is chosen to be 90°. The source locations are along the L = 15 magnetic field line. Panel (b) illustrates
the contours of fy at different frequencies, calculated using the Dougherty et al. (2018) magnetic field model and Persoon et al. (2006) Enceladus plasma torus model.
These fy contours define the boundaries of the FZ. Panel (c) presents the ray-tracing calculation of SKR propagation with the electron density presented by the background

color-code.

the SKR sources are not located at the central meridian where the spacecraft resides, but rather on the east and west
side of the planet, with respect to the position of the observer (e.g., Cecconi et al., 2009; Lamy et al., 2009, 2013).
However, for low-frequency SKR, these emissions would be expected to be reflected at the FZ boundary, with no
rays able to penetrate the dense EPT regardless of the movement of source field lines and the 3D geometry of their
beaming pattern. Note that the possible refraction of the rays near the source region is not considered in the
simulations, which may lead the initial beaming angle of the rays to be smaller than 90°. This scenario is also tested
in the ray-tracing calculations (see Figure S1), which give consistent pattern with the results presented here. The
size of EESZ will shrink if we consider smaller beaming angles.

6. Reflection by Magnetosheath and Leakage Through the EPT

Figure 4 panel (a) provides a clearer illustration of the low-frequency emissions observed in the EESZ based on
2011 RPWS data. Cassini's orbits during 2011 were primarily within the equatorial latitude range of —0.83°—
0.38°. The measured wave electric field was stacked and averaged to create a frequency versus radial distance
spectrum, representing observations within the EESZ. Panel (a) reveals that emissions below 100 kHz are
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Figure 4. Reflected and leaked low-frequency Saturn Kilometric Radiation (SKR) emissions. Panel (a) displays the stacked wave spectrogram measured near the equator
during 2011. The pink line represents the fy frequency as a function of radial distance, calculated using the modeled magnetic field and plasma density along the
equatorial radial direction. Low-frequency emissions below 10 kHz are labeled as noise due to NB emissions or electrostatic noise that couldn't be fully eliminated. Panel
(b) illustrates a possible gap within the Enceladus plasma torus (EPT), while panel (c) depicts a shape change in the EPT. The colored lines correspond to the rays shown in
Figure 3 panel (c). The red lines represent three L-shells at L = 15. The white arrow lines are manually drawn to indicate possible ray paths of the leaked SKR.

frequently observed, with some extending to frequencies below 20 kHz, indicating a “filling” of the EESZ by low-
frequency SKR. This filling phenomenon is reminiscent of the 5 kHz Saturn NB emissions, where L-O mode NB
emissions are reflected by the EPT toward high latitudes, creating an ESZ that is later filled by reflected emissions
from the magnetosheath (Wu et al., 2021, 2022b).

We propose that the magnetosheath of Saturn may also be capable of reflecting low-frequency SKR, the reflected
emissions will propagate toward the EESZ, which potentially explains their presence in the EESZ. When the
magneosheath-reflected rays propagate toward the EPT, they could be reflected at the EPT boundary again.
However, based on statistical studies of the magnetosheath electron density at Saturn (Sergis et al., 2013), the
maximum frequency of waves reflected by the magnetosheath should be less than a certain frequency threshold:
assume the maximum magnetosheath electron density to be 2 cm™ and the magnetic field to be 5 nT (Sergis
etal., 2013), the calculated fyy =~ 12.7 kHz. The statistical distribution of the 20 kHz Saturn NB emissions suggests
that the 20 kHz L-O mode emissions are rarely reflected by the magnetosheath. Therefore, magnetosheath
reflection may only account for SKR emissions observed in the EESZ below ~20 kHz (or even below 12.7 kHz).
Panel (a) also indicates that emissions below 20 kHz, that is, the possible sheath-reflected emissions, are not
observed at small radial distance close to the EPT.
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Emissions observed in the EESZ with frequencies above 20 kHz may be leaked from the EPT. The leaked emissions
are observed near or even inside the EPT, for example, at 10 Rs as shown by Figure 4 panel (a) and as visible by the
SKR lower-frequency cutoff in Figure 1 panels (c)—(d). Note that the emissions below 20 kHz may also leak from
the EPT. The leakage of low-frequency SKR from the EPT can occur due to spatial changes, such as density gaps,
shape variations, or density asymmetries (Holmberg et al., 2014; Schippers et al., 2013), as well as temporal
changes, like periodic variations of the EPT (Khurana et al., 2009). These factors enable the passage of low-
frequency SKR, leading them to eventually reach the EESZ, as depicted in Figure 4 panels (b)—(c). The propa-
gation of low-frequency SKR through the EPT may involve multiple reflections and refractions as depicted in panel
(b), which can result in attenuation and depolarization of the emissions, as observed in Figure 1 panels (¢)—(d). Note
that it seems that the most “smoothed” torus-leaked emissions are observed within 40 Rs as shown in panel (a).

7. Discussion and Summary

The impact of radio emission propagation by the “plasma torus” or the “plasma disk” at Jupiter has been pre-
viously documented (Boudjada et al., 2001; Desch et al., 1994; Gurnett et al., 1998; Higgins et al., 1999; Kaiser
etal., 1996; Louarn et al., 1998, 2000, 2001), which underscore the significance of activities and structures within
the Io plasma torus. At Saturn, not many investigations focus on the dynamics of the EPT, but rather delve into the
activities of the Enceladus plume (neutrals and water ions), encompassing variations across different timescales
(Hansen et al., 2017; Ingersoll & Ewald, 2017). The longitudinal modulation of the inner plasma disk (Gurnett
et al., 2007), dayside/nightside asymmetry (Holmberg et al., 2014; Schippers et al., 2013), flapping of the plasma
disk (Khurana et al., 2009), and plasma evacuation events (Louarn et al., 2007) have also been observed.
Consequently, the actual propagation characteristics of the SKR may exhibit more complexity than discussed in
this study. It's also important to consider refraction near the radio source region alongside torus dynamics as
suggested by beaming angle studies (Cecconi et al., 2009; Lamy, Zarka, Cecconi, Hess, & Prangé, 2008). While
no clear electron cavity is observed in the SKR source region, emissions could still be refracted when the wave
frequency approaches the fy frequency (Lamy et al., 2018). Similar ray-tracing calculations (Figure S1)
considering this effect yielded consistent results as presented here.

The EPT plays a crucial role in impeding radio wave propagation at Saturn, creating challenges for low-frequency
radio emission observations (Wu et al., 2022b; Ye et al., 2010). In the equatorial region outside the EPT, the
merging of the ESZ and FZ results in the formation of an extended shadow region for low-frequency SKR. This
discovery provides an initial understanding of the favorable observation geometry for low-frequency SKR,
especially for LFE events that are usually used as indicators of magnetospheric dynamics (Jackman et al., 2009).
The “filling” of the shadow region suggests the involvement of magnetosheath reflection and EPT leakage,
presenting an opportunity to investigate the dynamics of the magnetosheath and EPT using low-frequency SKR
observations in the shadow region. Moreover, this work offers plausible explanations for the propagation char-
acteristics of the recently reported caterpillar emissions (Fischer et al., 2023; Fischer et al., 2022). The smooth
time-frequency features and depolarization exhibited by the caterpillar emissions can be qualitatively attributed to
multiple reflections within the EPT or the magnetosheath.

Data Availability Statement

The Cassini MAG data and CAPS data were downloaded from the Planetary Data System at (MAG: Dougherty
et al., 2019; CAPS: Waite & Furmanm, 2013). The Cassini RPWS data used in this work were downloaded from
the LESIA/Kronos collection with n2 level data (Cecconi et al., 2017a) and n3d data (Cecconi et al., 2017b;
goniopolarimetric data obtained using the method Cecconi & Zarka, 2005). The Artemis-P source code can be
found at Gautier, Baskevitch and Cecconi. (2023).
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