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Abstract Growing interest in Earth Orientation Parameters (EOP) resulted in various approaches to the
EOP prediction algorithms, as well as in the exploitation of distinct input data, including the observed EOP
values from various operational data centers and modeled effective angular momentum functions. Considering
these developments and recently emerged new methodologies, the Second Earth Orientation Parameters
Prediction Comparison Campaign (2nd EOP PCC) was pursued in 2021–2022. The campaign was led by
Centrum Badań Kosmicznych Polskiej Akademii Nauk in cooperation with Deutsches GeoForschungsZentrum
and under the auspices of the International Earth Rotation and Reference Systems Service. This paper provides
the analysis and evaluation of the polar motion predictions submitted during the 2nd EOP PCC with the
prediction horizons between 10 and 30 days. Our analysis shows that predictions are highly reliable with only a
few occasional discrepancies identified in the submitted files. We demonstrate the accuracy of EOP predictions
by (a) calculating the mean absolute error relative to polar motion observations from September 2021 through
December 2022 and (b) assessing the stability of the predictions in time. The analysis shows unequal results for
the x and y components of polar motion (PMx and PMy, respectively). Predictions of PMy are usually more
accurate and have a smaller spread across all submitted files when compared to PMx. We present an analysis of
similarity between the participants to indicate what methods and input data give comparable output. We also
prepared the ranking of prediction methods for polar motion summarizing the achievements of the campaign.

Plain Language Summary Polar motion consists of two time‐variable angles that characterize the
orientation of the Earth's rotational axis with respect to a terrestrial reference frame attached to the surface of the
solid Earth. It can be measured by space geodetic techniques, like Global Navigation Satellite Systems or Very
Long Baseline Interferometry (VLBI). However, the final VLBI solutions used by geodetic processing centers to
provide the values of polarmotion have a latency of around 1month. Therefore, predicted values are necessary for
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operational applications such as spacecraft navigation. To assess currentmethods of predicting polarmotion time
series, the Second EOP Prediction Comparison Campaign was pursued under the auspices of the International
Earth Rotation andReference Systems Service. The campaign aimed to test current achievements in polarmotion
predictions obtained with a variety of computational methods (including least squares, machine learning, and a
Kalman filter) under realistic conditions. By evaluating the results of the campaign, we show that some of the
prediction methods utilized do indeed reduce prediction errors and enhance prediction accuracy by using
geophysical information from the fluid Earth's layers: Atmosphere, oceans, and terrestrial hydrosphere.

1. Introduction
Earth Orientation Parameters (EOP) comprise polar motion, differences between universal time and coordinated
universal time (UT1‐UTC), its time‐derivative Length‐of‐Day (LOD) change, and nutation. EOP are routinely
determined by advanced space geodetic techniques, that is, Global Navigation Satellite System (GNSS, Byram &
Hackman, 2012), Very Long Baseline Interferometry (VLBI, Schuh & Böhm, 2014), and Satellite Laser Ranging
(SLR, Coulot et al., 2010). EOP are computed sequentially, using the next available solutions from each space
geodetic technique. All geodetic techniques provide data with different accuracies, stabilities, and latencies. Due
to the delay caused by the time needed to collect and process input data from various sources, the final estimated
EOP parameters cannot be made available in real‐time. Instead, short‐term predictions are utilized for real‐time
applications like tracking and navigating interplanetary spacecrafts. EOP predictions are computed by several
prediction centers for example, the U.S. Naval Observatory (USNO, Luzum et al., 2001), Jet Propulsion Labo-
ratory (JPL) of the National Aeronautics and Space Administration (NASA, Gross et al., 1998), and the European
Space Agency (ESA, Bruni et al., 2021; Kehm et al., 2023).

The International Earth Rotation and Reference Systems Service (IERS) regularly provides EOP in the form of
time series derived from a combination of various measurement techniques (Bizouard & Gambis, 2009). The
Earth Orientation Center, established by the IERS and hosted by the Paris Observatory, is responsible for
operational EOP monitoring and the delivery of daily, monthly, and long‐term EOP data, the release of time
dissemination (UT1‐UTC), and leap second announcements (Bizouard et al., 2019; Gambis, 2004; Gambis &
Luzum, 2011). The IERS 14 C04 series is aligned to conventional reference frames (International Terrestrial
Reference Frame ITRF 2014 and International Celestial Reference Frame ICRF2) and has been the de‐facto
standard for EOP solutions for many years (Bizouard et al., 2019). The newest EOP IERS 20 C04 series,
available since 14 February 2023, is aligned to the ITRF 2020 (Altamimi et al., 2023, IERS Message No. 471
distributed by the IERS Central Bureau).

The Earth Orientation Department at the USNO is hosting the IERS Rapid Service/Prediction Center, which
operates as a product center within the IERS. Its main task is to deliver EOP by gathering relevant geodetic
observations and conducting data analyses to determine and predict the continuously changing orientation of the
terrestrial reference frame within the quasi‐inertial celestial reference frame. The service is primarily utilized by
real‐time users requiring high‐quality EOP information within 30 days, which is the nominal latency of the IERS
final series provided by the Paris Observatory. EOP is essential in applications such as precise navigation and
positioning, particularly for real‐time purposes. The service provides daily Bulletin A EOP solutions and other
Earth orientation results. Daily EOP solutions (including finals.daily, finals2000A.daily, and gpsrapid.daily) are
usually uploaded at 18:00 UTC each day. Bulletin A EOP data is available every Thursday by 20:00 UTC.

Interest from various scientific institutions concerned with EOP forecasting led to the initiation of the first Earth
Orientation Parameters Prediction Comparison Campaign (1st EOP PCC), which was carried out between 2005
and 2008 to compare various prediction methodologies and to identify the most promising strategies for EOP
predictions (Kalarus et al., 2010). The campaign was prepared jointly by Vienna University of Technology and
Centrum Badań Kosmicznych Polskiej Akademii Nauk (CBK PAN). One of the main conclusions from the 1st
EOP PCC was that no single prediction technique worked best for all EOP components and every prediction
horizon. It has also been demonstrated that incorporating data on Atmospheric Angular Momentum (AAM) into
the forecasting process generally enhances the accuracy of EOP predictions.

Since that time, scientists have been constantly seeking new forecasting methods to ensure the best possible EOP
prediction accuracy. This growing interest eventually resulted in the establishment of the 2nd EOP PCC by a
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working group of IERS. The 2nd EOP PCC was organized in 2021 to specifically assess machine learning (ML)
approaches for EOP prediction that have matured substantially in the most recent past. In addition, the knowledge
about the role of geophysical fluid layers in exciting Earth rotation variations relevant to short‐term predictions
has improved after the first campaign (e.g., Afroosa et al., 2021; Bizouard & Seoane, 2010; Dill et al., 2019;
Harker et al., 2021; Kiani Shahvandi, Gou, et al., 2022). A growing number of teams have begun to utilize
Effective Angular Momentum (EAM) data for forecasting EOP, which is likely one of the factors contributing to
the improvement in the accuracy of EOP forecasting in recent years. The second campaign was again run by CBK
PAN in close cooperation with Deutsches GeoForschungsZentrum (GFZ). The operational part of the 2nd EOP
PCC ended on 31 December 2022. The EOP PCC Office established at CBK PAN coordinated participants'
efforts and compared their predictions using well‐defined rules. The campaign is an international initiative with
23 registered institutions from 8 different countries, involving a total of over 50 people who regularly delivered
predictions based on sometimes very different methods, each assigned with an individual ID number (Kur
et al., 2022; Śliwińska et al., 2022; Śliwińska‐Bronowicz et al., 2024). Forecasts of all EOP were submitted by
participants every Wednesday, and predictions were evaluated as soon as the geodetic final EOP observations of
the forecasted period eventually became available. A more comprehensive description of the EOP PCC Office's
preparations for the campaign and the activities undertaken throughout is provided in Śliwińska et al. (2022). Data
from the 2nd EOP PCC are publicly available at GFZ Data Services (Śliwińska et al., 2023).

This paper gives an insight into the polar motion predictions submitted during the 2nd EOP PCC with a focus on
forecast horizons at 10 and 30 days. Short descriptions of the different prediction methods, together with eval-
uation methodology and a summary of submissions, are provided in Section 2. In Section 3, the accuracy of the
predictions and performance of various combinations of methods and input data are investigated. In Section 4, we
assess the relationship between various prediction approaches. Finally, Section 5 summarizes all the results and
provides concluding remarks.

2. Overview of Submissions and Analysis Approaches
2.1. Description of Registered Prediction Methods

During the 2nd EOP PCC, 33 participant IDs were registered for the purposes of predicting polar motion.
Essential information about each ID's prediction method is presented in Table 1. The full description of the IDs'
prediction methodology given by participant is attached in Appendix A. The most common prediction methods
were LS and autoregression methods (LS + AR) as well as ML, which should be understood here in the widest
possible sense. These prediction methods were based typically on IERS 14 C04. Additionally, 19 IDs use EAM
analysis and forecast data as provided by GFZ (Dill et al., 2019, 2022; Dobslaw & Dill, 2018). Effective Angular
Momentum consists of AAM, Oceanic Angular Momentum (OAM), Hydrospheric Angular Momentum (HAM),
and SLAM (Sea‐Level Angular Momentum). However, some IDs use only selected components of EAM (e.g.,
AAM and OAM) as input to their prediction algorithm.

The relevance of different excitation mechanisms for polar motion prediction was recently assessed by Kiani
Shahvandi, Gou, et al. (2022), Kiani Shahvandi, Gou, et al. (2022). Those authors exploited Neural Ordinary
Differential Equations (ODE) Differential Learning to predict polar motion and demonstrated that using OAM,
HAM, and SLAM improves the prediction accuracy more than twice compared to the case of not using EAM.
Atmospheric AngularMomentum contributes the least to the prediction and reduces the forecasting error by about
20%. The lowest prediction errors in Kiani Shahvandi, Gou, et al. (2022), Kiani Shahvandi, Gou, et al. (2022)
were achieved with the use of AAM + OAM + HAM and AAM + OAM + HAM + SLAM—mean sum squared
(mean sum squared (MSS)) equal to 1.19 and 1.21 mas2, respectively compared to a reference solution without
EAM with MSS = 4.81 mas2. The research suggests that the optimal combinations of EAM for linear models
consist of AAM + OAM + HAM or AAM + OAM + HAM + SLAM. Notably, these combinations are closely
comparable. Atmospheric Angular Momentum alone does not contribute substantially to performance
improvement, underscoring the limited utility of AAM as a standalone feature for predicting polar motion. HAM
and SLAM exhibit lower importance compared to OAM. Overall, utilizing EAM enhances prediction perfor-
mance compared to models without EAM.
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Table 1
Summary of Prediction Methods and Input Data Used for Polar Motion Prediction

Group members ID Prediction method Input data References

Xueqing Xu 100 LS + AR IERS 14 C04; IERS finals.daily X. Xu et al. (2022), X. Q. Xu
et al. (2012), X. Xu and Zhou (2015)112 LS + convolution IERS 14 C04; IERS finals.daily; GFZ

AAM, OAM, HAM, SLAM

Yuanwei Wu, Xin Zhao, Xinyu Yang 101 LS + AR with piecewise parameter
optimization

IERS 14 C04; IERS daily; GFZ AAM,
OAM, HAM, SLAM
(data + predictions)

Wu et al. (2022)

Christian Bizouard 102 LS + AR IERS 14 C04 X

Richard Gross, Dale Boggs, Mike Chin,
Todd Ratcliff

104 Kalman filter EOP data from IGS, ILRS, JPL, GSFC;
GFZ AAM and OAM forecasts

Freedman et al. (1994), Gross
et al. (1998)

Robert Dill, Henryk Dobslaw, Maik
Thomas, Jan Saynisch‐Wagner,
Christopher Irrgang

105 LS + AR IERS 14 C04; IERS finals.daily; GFZ
AAM, OAM, HAM
(data + predictions)

Dill et al. (2019)

136 LS + AR IERS 14 C04; IERS finals.daily; GFZ
AAM, OAM, HAM
(data + predictions)

Dill et al. (2019)

Weitao Lu, Lue Chen, Zhijin Zhou,
Songtao Han

107 LS + AR IERS 14 C04; IERS finals.daily Chen et al. (2014)

108 LS + multiscale AR IERS 14 C04; GFZ AAM X

137 Artificial neural network + AR IERS 14 C04 X

Erik Schoenemann, Sara Bruni, Michiel
Otten, Volker Mayer

116 LS + AR ESA GNSS rapid; ESA GNSS final;
ESA SLR; ESA DORIS; BKG VLBI
intensive sessions; DGFI VLBI rapid
turnaround sessions; GFZAAM, OAM,

HAM (data + predictions)

Bruni et al. (2021), Kehm et al. (2023)

Sadegh Modiri, Daniela Thaller,
Shrishail Raut, Sujata Dhar, Robert
Heinkelmann, Harald Schuh,
Santiago Belda, Sonia Guessoum,
Jose M. Ferrandiz

117 singular spectrum analysis
(SSA) + copula

IERS 14 C04; IERS Bulletin A Belda et al. (2016, 2018),
Modiri (2021), Modiri et al. (2018,

2020)

Lintao Liu, Xiaoqing Su, Guocheng
Wang

121 Normal time‐frequency transform
(NTFT)

IERS 14 C04 X

Jia Li 122 Weighted least
squares + autoregressive integrated
moving average (WLS + ARIMA)

IERS 14 C04; IERS finals.daily X

Matthias Schartner, Mostafa Kiani
Shahvandi, Junyang Gou, Benedikt
Soja

128 First order neural ordinary
differential equations

JPL EOP2 series; GFZ AAM
(data + predictions)

Gou et al. (2023), Kiani Shahvandi,
Gou, et al. (2022), Kiani Shahvandi,
Schartner, and Soja (2022), Kiani

Shahvandi and Soja (2022)
131 IERS finals.daily; GFZ AAM, OAM,

HAM, SLAM (data + predictions)

132 JPL EOP2 series; GFZ AAM, OAM,
HAM, SLAM (data + predictions)

133 SYRTE EOP series; GFZ AAM, OAM,
HAM, SLAM (data + predictions)

150 First‐order neural ordinary
differential equations with residual

modeling

IERS finals.daily; GFZ AAM, OAM,
HAM, SLAM (data + predictions)

Gou et al. (2023), Kiani Shahvandi,
Gou, et al. (2022), Kiani Shahvandi,
Schartner, and Soja (2022), Kiani

Shahvandi and Soja (2022)

151

152

153 Physics‐constrained neural networks IERS finals.daily; GFZ AAM
(data + predictions)

Gou et al. (2023), Kiani Shahvandi,
Dill, Dobslaw, Kehm, et al. (2023),
Kiani Shahvandi, Dill, Dobslaw,
Mishra, and Soja (2023), Kiani

Shahvandi, Schartner, and Soja (2022)

ChengLi Huang, PengShuo Duan,
CanCan Xu

138 Deconvolution + LS, AR, fast
Fourier transform + convolution

IERS finals.daily; GFZ AAM, OAM,
HAM, SLAM (data + predictions)

Dill et al. (2019), Dobslaw and
Dill (2018)
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2.2. Statistics on Polar Motion Predictions Submission

During 70 weeks of the campaign duration, the EOP PCC Office received 3,414 valid files with predictions for
both components of polar motion. Figure 1a shows the number of files submitted by each campaign participant
during the 2nd EOP PCC. Only two participants (with ID 100 and 128) provided their predictions every week
throughout the campaign duration, while the last registered method (ID 157) only delivered 7 predictions.
Figure 1b shows the number of prediction files with PMx and PMy submitted every submission day (Wednesday).
We can distinguish three periods with visibly varying numbers of submitted files: the initial stage from September
2021 to April 2022, where the submission numbers were slowly increasing, a middle period from April 2022 to
September 2022, with the highest number of submitted files, and a slight decline in participation toward the end of
the campaign from September 2022 to December 2022. Figure 1c demonstrates the continuity of submission for
all IDs predicting polar motion. The EOP PCC Office received almost 74% of all potential files, with a mean of
24 ± 4 files per submission day.

In Table 2, we report the number of files submitted with the maximum prediction forecast lengths equal to 10, 30,
90, 120, 180, and 365 days. The most popular forecast horizons were 90 and 365 days (1,052 and 964 files,
respectively). That makes short‐term predictions from 10 to 30 days the least chosen length of the horizon, as only
986 files were submitted for both. During the 1st EOP PCC, which lasted over 2 years, the campaign office
received 2240 ultra short‐term predictions (<10 days, 21 predictions were rejected), 1,840 short‐term predictions
(<30 days, 17 predictions were rejected), and 1,350 for medium‐term (<500 days, 60 predictions were rejected)
from 13 participants for both PMx and PMy. The relation of the number of files to the length of prediction is
therefore reversed between the campaigns.

2.3. Clustering of IDs

According to the large number of IDs predicting polar motion, we manually divided campaign participants'
approaches into groups based on methodology and the use of EAM input data. We do not consider geodetic input
data explicitly because it turned out this was too uniform among the participants to be a distinguishing feature. We
created four groups: (a) LS+ AR contains prediction methods based on the least squares with autoregression only;
(b) LS+ AR+ EAM consists of IDs with LS and autoregression, but with the use of EAM as an additional data set;
(c)ML + EAM contains ML‐based approaches where most of the participants also use EAM (only ID 137 do not
exploit it, but here ML was the key parameter). The final group (d) Other is formed from all other IDs, which
mostly use methods unique in the campaign, that is, none of the other participants decided to exploit it, for
example, the Kalman filter. Complete information on the IDs' assignment to the groups is shown in Table 3. Each
group is additionally compared with ID 200, which is the official IERS prediction from the finals.2000A.daily file

Table 1
Continued

Group members ID Prediction method Input data References

Maciej Michalczak, Marcin Ligas,
Jacek Kudrys

141 LS + ordinary kriging prediction IERS 14 C04; IERS finals.daily Michalczak and Ligas (2021, 2022)

156 LS + ARIMA IERS 14 C04; IERS finals.daily Michalczak et al. (2022)

157 LS + vector autoregressive
prediction

IERS 14 C04; IERS finals.daily X

Anonymous 103 adaptive polyharmonic models with
infrequent components

IERS X

113 LS + AR IERS 14 C04

114 Least squares collocation IERS 14 C04

115 Neural networks IERS 14 C04

118 Local approximation technique
(LA) + LS

IERS

123 Undisclosed GFZ AAM, OAM

135 LS + AR IERS

Note. Full descriptions provided by campaign participants can be found in Appendix A.
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Figure 1. (a) Number of files submitted by campaign participants between 1 September 2021 and 28 December 2022.
(b) Number of submitted files from all IDs containing PMx and PMy predictions between 1 September 2021 and 28
December 2022. (c) PMx and PMy submissions made by participants every week during the campaign.
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saved by the EOP PCC Office upon the deadline set for the weekly submissions (i.e., on Wednesdays at 20:00
UTC) (https://www.iers.org/IERS/EN/DataProducts/EarthOrientationData/eop.html—accessed 1.05.2023).

2.4. General Evaluation Methodology

The mean absolute error (MAE, Kalarus et al., 2010; Kur et al., 2022; Śliwińska et al., 2022) was used as an
objective parameter to evaluate predictions with respect to the IERS 14 C04 series:

MAEi =
1
np
∑

np

j=1

⃒
⃒xobsi − xpredi,j

⃒
⃒,i = 1,2, ...,I (1)

where np is the number of predictions related to the same ID, xobsi is the observed EOP data for the i th day, xpredi,j is
the value for the i th day of the j th prediction, and I is the forecast horizon (i.e., the time period predicted into the
future). The evaluation of the predictions is performed for forecast horizons equal to 10 and 30 days with dif-
ferentiation into groups as defined in Section 2.3.

A few predictions submitted to the campaign are affected by gross errors, which cannot be entirely avoided in an
operational setting. Since gross errors adversely affect the objective assessment of the accuracy of a given
forecasting method, we attempted to identify and remove them. This was achieved by incorporating a two‐step
algorithm to reject prediction outliers based on statistical values computed with the same rules for all participants.
The first step of data selection, called σ‐criterion, includes computation of standard deviation Sj for xobsi − xpredi,j for
all individual predictions submitted. The values obtained are compared with the standard deviation Stotal for all
forecasts. All predictions with Sj > Stotal are rejected. This method is a simple and efficient way to remove
predictions with highly inaccurate values introduced during data preparation considering the general accuracy of
all predictions. However, each ID is characterized with different accuracy during the campaign. Thus, in the
second step of data selection, we also evaluated predictions by using thresholds computed individually for each
ID by determining a β‐parameter:

βj =∑
I

i=1
(α ·MDAEi −

⃒
⃒xobsi − xpredi,j

⃒
⃒), (2)

MDAEi = median(
⃒
⃒xobsi − xpredi,1

⃒
⃒,
⃒
⃒xobsi − xpredi,2

⃒
⃒,…,

⃒
⃒xobsi − xpredi,np − 1

⃒
⃒,
⃒
⃒xobsi − xpredi,np

⃒
⃒). (3)

If βj < 0, the prediction is not considered further. The α‐value is deduced empirically to preserve a representative
set of data (Kalarus et al., 2010). We applied the β‐parameter with an α‐value equal to 4. Table 4 summarizes the
number of rejected files at each step of the data selection process. We can notice that (a) LS + AR and (b)

Table 2
Number Of Files According to the Prediction Horizon

Prediction horizon 10 days 30 days 90 days 120 days 180 days 365 days

Number of files 536 450 1,052 138 274 964

Table 3
ID Assignment to Groups According to Main Prediction Method and Effective Angular Momentum Usage

Group IDs

(1) LS + AR 100; 107; 113; 114; 118; 122; 135; 156; 157

(2) LS + AR + EAM 101; 105; 108; 112; 116; 136; 138

(3) ML + EAM 115; 123a; 128; 131; 132; 133; 137; 150; 151; 152; 153

(4) Other 102; 103; 104; 117; 121; 141
aMethod description was not provided, assignment made by the EOP PCC Office based on evaluation results (see details in
Sections 3 and 4).
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LS + AR + EAM have the lowest number of rejected predictions, while (c) ML + EAM and (d) Other have
relatively more predictions with gross errors. In the case of ML + EAM, most IDs delivered predictions up to
10 days. These groups have the highest number of identified instances. In the case of (d) Other, most erroneous
predictions were detected for the 30‐day forecast horizon with the σ‐criterion. The detailed description of the data
selection step is given in the Supporting Information S1.

3. Predictions Quality Assessment
Figure 2 shows the boxplots of differences between IERS 14 C04 and all predictions fulfilling the accuracy
requirements for 10‐ and 30‐day prediction horizons. The plots indicate that all predictions with huge errors were
successfully rejected. Boxplots are ordered according to the clusters presented in Table 3. For both prediction
horizons considered, PMy predictions are more consistent than PMx forecasts across all participants. The range of
differences for PMx is also visibly higher than for PMy. Only a few participants obtained results that were better
or comparable to those processed at the USNO and published by IERS (ID 200) for PMx for 10‐ and 30‐day
horizons. For PMy, this number is substantially higher, indicating room for improvement in the USNO
approach, particularly for this component. Data points beyond the whiskers are outliers computed as 3 times
interquartile range (IQR) obtained for data after two‐step selection. From Figure 2, we can observe that results for
some IDs are notably asymmetric, for example, for IDs 131, 132, and 133 for PMx for 10 days, where outliers
appear mostly below the minimum value. This might suggest that forecasts are severely underestimated for in-
dividual submission days. On the contrary, outliers for ID 104 for both parameters and forecast horizons are
almost perfectly symmetric. This indicates a lack of long‐term stability of differences between reference and
forecast. For most participants, however, values of IQR are relatively small, as the mean difference between the
3rd and 1st quartile for PMx (10 days) is equal to 2.7 mas, while for PMy (10 days) it is 1.8 mas. For the 30‐day
forecast horizon, these values are equal to 6.7 and 4.3 mas, respectively. On the other hand, minimum and
maximum values of differences can sometimes exceed ±10 mas and ±20 mas for 10‐ and 30‐day horizons,
respectively (e.g., for IDs 121 and 137).

We further analyzed the quality of the predictions by reporting MAE values for 10 and 30 days into the future in
reference to IERS 14 C04. Results are grouped into four clusters as introduced in Section 2.3. In addition, we
always show the mean value computed for each group, the mean value of all predictions from all groups, and the
results for ID 200 to also allow for cross‐comparisons. In Figure 3, we compare the values of MAE with respect to
the mean value for all IDs and the mean value for each cluster for a 10‐day prediction horizon. Day 0 in each plot
represents submission day (the last day for which observational data is available). Higher discrepancies between
IDs are obtained for PMx, while MAE for PMy is more consistent across participants, as already recognized in the
previous section. IDs 121 and 135 visibly suffer from poor data preparation as the temporal variation of the MAE
is substantially biased. For ID 137, MAE for day zero is close to the rest of the participants in the group, but it
seems that predictions from the 2nd day onwards are notably different from predictions of other IDs, which
suggests some kind of systematic error in the case of ID 137. For both PMx and PMy in the groups (a) LS + AR

Table 4
Summary of the Number of Files Rejected in Each Step of Data Selection

(1)
LS + AR

(2)
LS + AR + EAM

(3)
ML + EAM

(4)
Other Total

PMx

10 days σ‐criterion 0 0 3 0 3

β‐parameter 4 2 18 2 26

30 days σ‐criterion 2 0 1 8 11

β‐parameter 5 4 2 1 12

PMy

10 days σ‐criterion 1 0 3 1 5

β‐parameter 3 2 11 0 16

30 days σ‐criterion 1 0 1 15 17

β‐parameter 1 1 1 2 5
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and (d) Other, most IDs do not perform better than the predictions provided by IERS. On the contrary, groups (b)
LS + AR + EAM and (c) ML + EAM, which use EAM, mostly provide better results than the IERS. However,
group (b) LS+ AR+ EAM is also characterized by the largest difference between mean values for the group (black
thick line in Figure 3c) and for all (magenta thick line in Figure 3c) for PMx caused by two IDs performing worse
than ID 200. It suggests that participants may not always incorporate EAM forecasts in an optimal manner.
Groups (b) LS + AR + EAM and (c) ML + EAM consist of IDs that exploit EAM predictions until day 6, which
becomes somewhat apparent for PMx between 7th and 10th day when MAE grows more rapidly than for initial
days (see the “elbow” characteristic in the course of the line, which is more visible for (b) LS + AR + EAM group
but also for ID 104 using Kalman filter with EAM). PMy is characterized by smaller values of MAE on the 10th
day than PMx for all the clusters. Comparison with IERS predictions for the 10‐day forecast horizon shows that 13
IDs for PMx and 13 IDs for PMy (out of 33 in total) have a lower MAE than ID 200. This clearly indicates room
for improvements within the polar motion prediction algorithm implemented at the USNO.

Figure 4 demonstrates MAE values for 30‐day predictions. IDs with shorter prediction horizons are not included.
For most of the predictions MAE linearly increases, but in group (d)Otherwe can see an inflation of error for IDs
104 and 141 for PMx. Generally, group (d) Other is characterized by rather more dispersed results for 30 days

Figure 2. Boxplot for differences between IERS 14 C04 and predictions for each ID: (a) PMx with the 10‐day horizon,
(b) PMy with the 10‐day horizon, (c) PMx with the 30‐day horizon, (d) PMy with the 30‐day horizon. The vertical dotted line
represents each cluster. The horizontal dotted line represents the maximum and minimum values of prediction released by
IERS. Data points beyond the whiskers are outliers computed as 3 times IQR.
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than it was found for MAE for 10 days. Groups (a) LS + AR, (b) LS + AR + EAM, and (c)ML + EAM are rather
stable on consecutive days during a forecast. Generally, most predictions for PMy are more accurate than
forecasts from ID 200, but for PMx there are only a few that perform better than IERS and most of them are part of
the group (b) LS + AR + EAM. Comparison with IERS predictions for the 30‐day forecast horizon shows that 9
IDs for PMx and 20 IDs for PMy out of 29 have lower MAE than ID 200. Comparing the number of IDs with
mean values of MAE lower than the mean for IERS, as reported in Table 5, we can clearly see the advantage of
using EAM functions in predictions. The exceptions are predictions for PMx for 30 days computed with ML
(group (c) ML + EAM), where only two IDs are better than the official IERS product.

To summarize MAE evaluation, we show minimum, maximum, and mean values of MAE for both PMx and PMy
for the 1st, 10th and 30th day of prediction (MAE[1], MAE[10] and MAE[30], respectively) in Table 6. Addi-
tionally, values for ID 200 are reported to compare campaign results with the IERS predictions. It can be noticed
that most of the IDs are repeated between PMx and PMy. Usually, IDs from the (b) LS + AR + EAM group have
lower MAE values than the IERS predictions. The highest MAE ratio obtained for participant to MAE for IERS
prediction is almost 9 for PMx and ID 135 in the case of MAE[1]—2.2 mas (MAE[1] for ID 135) to 0.25 mas
(MAE[1] for ID 200). (b) LS + AR + EAM group provides the lowest mean values of MAE in all cases, per-
forming better than IERS, especially for MAE[10] and MAE[30]. For each group, in most cases, the maximum
values of MAE for respective days are higher for PMx than for PMy, while for IERS, this difference is smaller
than for campaign participants.

Figure 3. Mean absolute error for PMx and PMy computed for 10 days into the future relative to IERS C04: (a, b) for group
(1) LS+ AR, (c, d) for group (2) LS+ AR+ EAM, (e, f) for group (3)ML+ EAM, (g, h) for group (4)Other.Mgroup means the
mean for each cluster and Mall represents the mean for all predictions.
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One rule adopted for the 2nd EOP PCCwas the free choice of input data, allowing each participant to decide about
the use of EOP from different sources and epochs. Consequently, participants did not always utilize the latest
solutions for polar motion. For instance, longer processing times for specific methods could cause delays, pre-
venting timely submission by the ID. These inhomogeneities in the input data (in particular, the date of the last
observed value) may partly explain discrepancies between submissions from different IDs that declared the use of
the same data for their predictions. Conversely, a crucial aspect of the campaign was identifying the most accurate
prediction methodology under realistic conditions. This involved testing not only the algorithm but also the

Figure 4. Mean absolute error for PMx and PMy computed for 30 days into the future relative to IERS C04: (a, b) for group
(1) LS + AR, (c, d) for group (2) LS + AR+ EAM, (e, f) for group (3)ML+ EAM, (g, h) for group (4)Other.Mgroup indicates
the mean for each cluster and Mall represents the mean for all predictions.

Table 5
The Number of IDs in Each Group With Mean Mean Absolute Error (MAE) From 10 to 30 Days of Prediction Lower Than the Mean MAE Received for IERS Prediction
(ID 200), and Respective Mean MAE Values for ID 200, for Example, 1/9 Means That One ID Out of Nine in the Group Meets the Condition

Group (1)
LS + AR

Group (2)
LS + AR + EAM

Group (3)
ML + EAM

Group (4)
Other Total Mean MAE for ID 200

PMx (10 days) 0/9 5/7 6/11 2/6 13/33 1.6 mas

PMy (10 days) 1/9 5/7 5/11 2/6 13/33 1.1 mas

PMx (30 days) 1/9 5/7 2/7 1/6 9/29 4.0 mas

PMy (30 days) 6/9 5/7 5/7 4/6 20/29 3.3 mas
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selection of data and the necessary preparations to ensure a reliable prediction. From our analysis, we conclude
that the pure choice of input data from available EOP series is not the most important variable determining the
accuracy of the prediction. The combined information in Table 1 and related figures of MAE (Figures 3 and 4)
fails to pinpoint any particular data as an essential choice for highly accurate EOP forecasting. However, most
methods utilized past epochs of the IERS 14 C04 data, which were also employed as the reference series in our
study. All methods also used good quality geodetic data, either from IERS or official analysis centers of the
different services of the International Association of Geodesy (IAG) like IDs 104 and 116. Our results suggest that
the choice of the geodetic input data does not matter as long as certain quality levels are reached.

The last analysis in this section concerns changes of MAE in separate time periods to investigate the stability of
predictions. This analysis was done for the 10‐day forecast horizon. First, we computedMAE for data in 5 periods
for visualization purposes (4 periods are 12 weeks long: September 2021–November 2021; December 2021–
February 2022; March 2022–May 2022 June 2022–August 2022; the last period covers 16 weeks: September
2022–December 2022). Then, in a separate analysis, we computed percentage change (PCh) for each month of the
2nd EOP PCC campaign to analyze how prediction certainty was changing during the campaign:

Table 6
Statistics (Minimum, Maximum, Mean) of Mean Absolute Error for PMx and PMy in Each Group for the 1st, 10th, and 30th
Day of the Prediction

LS + AR LS + AR + EAM ML + EAM Other

ID MAE [mas] ID MAE [mas] ID MAE [mas] ID MAE [mas] MAE [mas]

PMx

MAE for 1st day of forecast horizon MAE[1]

Min 156 0.12 136 0.29 152 0.36 104 0.20 200 (IERS) 0.25

Max 135 2.20 108 1.17 137 1.39 121 1.51

Mean – 0.71 – 0.54 – 0.59 – 0.71

MAE for 10th day of forecast horizon MAE[10]

Min 107 3.35 138 1.68 153 1.79 104 2.86 200 (IERS) 3.01

Max 114 4.68 108 3.83 128 4.72 121 6.19

Mean – 3.86 – 2.58 – 3.20 – 4.04

MAE for 30th day of forecast horizon MAE[30]

Min 157 5.15 105 5.46 152 6.50 103 6.33 200 (IERS) 6.97

Max 156 12.25 108 7.52 151 11.91 141 15.58

Mean – 8.76 – 6.28 – 9.00 – 10.96

PMy

MAE for 1st day of forecast horizon MAE[1]

Min 157 0.23 136 0.17 115 0.31 104 0.18 200 (IERS) 0.22

Max 135 1.14 108 0.86 137 1.40 121 1.39

Mean – 0.48 – 0.40 – 0.47 – 0.59

MAE for 10th day of forecast horizon MAE[10]

Min 156 1.78 105 1.19 152 1.69 104 1.56 200 (IERS) 2.00

Max 157 2.76 112 2.73 137 3.39 121 5.63

Mean – 2.22 – 1.73 – 2.11 – 2.65

MAE for 30th day of forecast horizon MAE[30]

Min 135 4.70 136 3.17 115 3.72 117 5.37 200 (IERS) 6.84

Max 157 11.87 112 7.48 150 8.98 121 12.24

Mean – 6.63 – 4.43 – 6.20 – 6.97
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PCh = mean(
MAEi(n) − MAEi(n + 1)

MAEi(n)
) · 100%, (4)

whereMAEi(n) is the value for ith day of the prediction computed for nth group. While PCh > 0 it means that the
next period has a lower MAE.When PCh < 0 it means the next period has higher MAE and predictions are worse.

Figures 5 and 6 show values of MAE for the previously selected periods for PMx and PMy, respectively. For the
PMx, changes of MAE values between consecutive periods are not dependent across groups or time. For instance,
the initial prediction submitted by ID 137 has better accuracy than others from the group (c)ML+ EAM, but since
March 2022 results are worse than for other IDs. For ID 128, 131, 132, and 133 which were submitted by the same
institution, all predictions have problems after the 5th day in the time frame December 2021–February 2022.
Since March, only ID 128 still had a visibly lower accuracy than other IDs from the group, whereas the other IDs

Figure 5. Change of mean absolute error for PMx in consecutive periods.M(g) means the mean for each cluster and investigated period andM(a) represents the mean for
all predictions from four clusters for the whole campaign duration. White means no solution was provided in the period.
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improved remarkably. Generally, more predictions sustain MAE less than 1 mas for the first 2–3 days, and below
2 mas for the next 3 days. In some cases, using EAM helps achieve more days with better accuracy, but that is not
always the case. Results of MAE for consecutive periods for PMy shown in Figure 6 are much more stable for
most IDs. ID 121 has an error pattern not observed elsewhere, that is, MAE is growing significantly at about the
5th day, which might suggest systematic errors in this implementation. The error is growing temporarily for other
IDs, probably caused by some internal issues. We would like also to highlight ID 135, which started with very
erroneous predictions for both PMx and PMy but the participant was able to substantially improve the predictions
during the course of the campaign.

To investigate the change of prediction accuracy (per ID) in time, we also computed MAE for each month and
then we calculated PCh for each day of prediction. Statistical results for the 1st, 6th, 7th, and 10th days of
prediction are displayed in Table 7. The minimum values of PCh for PMx show some severe accuracy degradation
for several IDs. According to information provided to the EOP PCC Office by participants, most problems were

Figure 6. Change of mean absolute error for PMy in consecutive periods.M(g) means the mean for each cluster and investigated period andM(a) represents the mean for
all predictions from four clusters for the whole campaign duration. White means no solution was provided in the period.
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caused in the data preparation step by utilizing wrong input or sometimes due to lack of external data used for
algorithms (or delays in its delivery). Similar values are also noticed for PMy. In the case of PMx, the number of
negative PCh is slightly higher or almost equivalent to the number of negative PCh, while for PMy positive PCh is
more frequent, but still the difference in the count is negligible. More promising evidence is found in values of
median values, which are in the range of − 1.7%–5.0%. This suggests that predictions are generally relatively
stable in time, as neither high degradations nor relevant improvements are apparent.

4. Relations Between IDs
We also investigate the relations between the 2nd EOP PCC participants' prediction methodology used for in-
dividual PM forecasts. In the previous sections, we used clusters of participants selected a priori based on pre-
diction algorithm characteristics. In the following, we also use empirical evidence from the submissions
themselves to quantify levels of similarity across submissions from different participants.

We start with an analysis of the correlation for the 5th, 6th, and 7th day of predictions between all participants
(Figure 7). One of the most distinctive characteristics between different IDs is the usage of EAM predictions,
which are provided up to 6 days into the future (Dill et al., 2019, 2022). By computing correlations, we aimed to
check potential dependencies one day before and after the EAM forecast cutoff. For unrelated IDs, that is,
computed by different teams, correlation coefficients are usually between − 0.2 and 0.2. Higher correlation co-
efficients are found for predictions from the same a priori group. For most participants, correlation values thus
depend on the institution rather than on the day of forecast or EAM data utilization. However, for quite a number
of pairs, we note a visible change of prediction characteristics, for example, in PMx the correlations of ID 157
with IDs 105, 135, and 138 for the day 5th and 6th are higher than 0.2, while for the day 7th correlation coefficient
are < − 0.7. Interestingly, the feature does not emerge for PMy for this ID. Comparing the correlation in each
cluster of IDs, there is no pattern in any of them that might suggest a specific impact of the method. Moreover,
between PMx and PMy there is some agreement in the values for most pairs of IDs, which probably points to the
fact that both polar motion components are typically predicted in combination.

To further extend the analysis related to the similarity of different forecasting methods we adopted unsupervised
ML algorithms dedicated to clustering samples to classify the IDs. It allows us to make a more objective com-
parison of the results obtained by each ID, deprived of the cognitive bias that might be inherent in our manual
grouping, which was applied before. Also, it might help to reveal connections between IDs that have been missed
in the analysis presented so far. To perform clustering, we exploited the scikit‐learn package for Python
(Pedregosa et al., 2011). Before starting, we define parameters describing each ID. For this, we used the prediction
method, input data, values of RMS and bias computed against EOP 14 C04, correlation with IERS predictions,
and finally MAE for 0th, 1st, 7th, and 10th day of prediction for both PMx and PMy. That gives 16 parameters to
describe each ID, which is a more detailed parametrization than the one used for manual grouping based only on

Table 7
Statistics and Number of Positive and Negative Values of Percentage Change Computed for 1st, 6th, 7th, and 10th Day of
Prediction for All IDs Together

Mean [%] Std [%] Min [%] Max [%] Median [%] PCh > 0 PCh < 0

PMx

Day 1 − 48.4 170.4 − 1,456.2 96.7 1.1 154 148

Day 6 − 47.1 182.7 − 1,350.6 95.9 3.3 158 144

Day 7 − 60.1 269.0 − 2961.5 94.6 0.7 152 149

Day 10 − 40.3 159.9 − 1,699.3 85.4 − 1.7 149 153

PMy

Day 1 − 87.1 557.7 − 6,633.4 95.8 2.7 156 146

Day 6 − 30.3 133.7 − 1,536.7 94.6 5.0 159 143

Day 7 − 30.1 121.7 − 893.2 90.7 4.2 162 140

Day 10 − 40.3 134.7 − 751.6 95.3 2.1 155 147
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method and input data. According to the clustering algorithms requirements for non‐numerical input, we applied a
one‐hot encoder (OHE) and term‐frequency times inverse document‐frequency (tf‐idf). One‐hot encoder is the
process by which categorical data are converted into numerical as binary features, that is, a feature is represented
by a column and receives a “1” if used by ID otherwise it receives a “0”. Tf‐idf works in a similar manner to OHE
but additionally re‐weights the count feature into float values. For more details, we refer to Pedregosa et al. (2011)
and the scikit‐learn webpage (scikit‐learn.org—accessed on 14.04.2023). Out of the many methods implemented
in the package we performed Monte Carlo analysis, usually with their initial settings, to find out the most
representative results. We applied only two criteria: the number of determined groups should be between 3 and 6
and the number of IDs assigned to each cluster should not be lower than 3. These conditions allowed for direct
comparison with manual grouping. Eventually, we arrived at 10 clustering methods (CM, Table 8) that met the
requirements. 6 of them returned three groups, 3 of them had four groups, and only one method led to five groups.

Figure 7. Correlation between participants for (a) PMx and 5th day, (b) PMy and 5th day, (c) PMx and 6th day, (d) PMy and 6th day, (e) PMx and 7th day, (f) PMy and
7th day. Thick black lines represent clusters on the x and y axis.
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Figure 8 provides the number of common occurrences for each pair of IDs in the same group across different
clustering algorithms including manual clustering. The highest value of common assignment is seen for the group
(c)ML+ EAM consisting ofMLwith EAM, whichmakes this group the most comprehensive cluster of individual
prediction approaches. Instances that are part of this group have visibly less in common with other clusters (i.e.,
more white fields in Figure 8 when compared with other groups). Predictions from the group (a) LS + AR are the

Table 8
Clustering Algorithms That Fulfilled the Requirements (i.e., the Number of Determined Groups Should Be Between 3 and 6
and the Number of IDs Assigned to Each Cluster Should Not Be Lower Than 3) Which Were Then Used to Classify Prediction
Approaches

Clustering method Non‐numerical conversion type Number of groups

CM‐1 Affinity propagation OHE 3

CM‐2 Affinity propagation Tf‐idf 3

CM‐3 Agglomerative clustering OHE 3

CM‐4 Agglomerative clustering Tf‐idf 3

CM‐5 MiniBatch KMeans Tf‐idf 3

CM‐6 K‐means Tf‐idf 3

CM‐7 K‐means Tf‐idf 4

CM‐8 Affinity propagation OHE 4

CM‐9 Agglomerative clustering OHE 4

CM‐10 K‐means Tf‐idf 5

Note. CM, cluster method; OHE, a one‐hot encoder; TF‐IDF, term‐frequency times inverse document‐frequency.

Figure 8. The number of common occurrences of IDs across all clustering approaches (including manual clustering). Black
thick lines delineate groups obtained from manual allocation. IDs are grouped by the predicting team and are not sorted in
ascending order. White color means no common occurrences.
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most variable within the clusters, that is, the prediction method is not shaping the outcome as much as for
example, ML. Other criteria like input data or algorithm settings appear to be of minor influence only. Groups
based on (a) LS + AR have varying internal consistency as most of the IDs from these clusters are not assigned to
the same group in this evaluation. Interesting results were obtained for the group (d) Other, which collects all
remaining IDs that do not suit groups (a) LS + AR, (b) LS + AR + EAM, and (c) ML + EAM. In fact, these IDs
could be split into two groups consisting of IDs 102, 103, 104, and 117 (which have much resemblance to group
(b) LS + AR), and the second cluster could be composed of IDs 121 and 141 (which behave more like group (c)
ML + EAM based methods). Figure 8 also reveals that IDs 101, 102 and 118 do not have many connections with
other IDs, which makes these approaches somewhat one‐of‐a‐kind. On the other hand, IDs 108, 114, or 137 have
much in common with many other IDs. IDs 115, 123, and 137 are the only ML‐based IDs that are more like (a)
LS + AR‐based approaches than other IDs from the group (c) ML + EAM.

5. Discussion and Conclusions
After completion of the operational phase of the 2nd EOP PCC, we evaluated predictions of the x and y com-
ponents of polar motion submitted by all participants against the IERS 14 C04 solution. The main aim of the
campaign was to analyze current prospects of EOP predictions, including new methods, that is, dynamically
evolving ML with its wide range of approaches, as well as input data such as EAM predictions. New computation
algorithms might help to fill gaps when modeling of physical phenomena is not readily available. After the end of
the first campaign, essential improvements were also made in space geodetic techniques, including new GNSS
constellations like Galileo and BeiDou. More advanced observation and computation possibilities result in data
processing capabilities with higher accuracy. The conclusions from the 1st EOP PCC indicated the necessity of
better modeling EAM, particularly AAM, OAM, and HAM. Currently, predictions of EAM are available for up to
6 days into the future, which clearly impacts the results obtained for 2nd EOP PCC participants using these data,
as evident from the increase of MAE after the 7th day of the prediction. Thus, extension of the EAM prediction
lengths would potentially allow for lowering polar motion prediction errors for forecast horizons longer than a
week. Another point that should be mentioned is the dependence of campaign participants on GFZ EAM data and
predictions. During the course of the campaign, ETH also launched an EAM prediction service (https://gpc.ethz.
ch/EAM/ ‐ accessed 19.04.2023 (Kiani Shahvandi, Gou, et al., 2022; Soja et al., 2022), but again relying on GFZ
EAM. It is thus obvious that any disruption or even discontinuation of the GFZ service might critically impact the
community's ability to predict polar motion, particularly at forecast horizons between two and 7 days.

In total 33 different methods were used for polar motion prediction by 18 campaign participants, which gave us an
opportunity to evaluate a rich ensemble of different approaches. To indicate the most valuable connection of
prediction methodology and input data we prepared a ranking of the IDs based on the following criteria: (a)
Percentage of rejected submissions; (b) range of differences between predicted and observed values; (c) MAE on
1st, 6th, 7th, 10th forecast day; and (d) median of PCh. We assigned points equal to the place in the classification
for each ID, which means that the lower the number of points, the higher the place reached in the classification.
Criterium (A) assesses the reliability of the prediction of the algorithm. Criterium (B) helps to evaluate predicting
repeatability—small values of range characterize accurate prediction with high stability in time. Criterium (C)
intends to check the quality of predictions on the 1st and 10th day, while MAE for the 6th and 7th might help to
assess or justify the use of the EAM predictions. Criterium (D) judges the tolerance of the method on the external
data sets and their current quality with respect to the official IERS reference series. These criteria do not evaluate
just prediction accuracy. Some IDs submit highly accurate predictions for selected periods rather than for the
whole course of the campaign.We also limited ourselves to a 10‐day forecast horizon for the ranking, as the short‐
term predictions are the most needed for many practical applications.

Ranking for PMx is shown in Table 9, and for PMy in Table 10. Overall, the official IERS prediction processed by
USNO is placed 11th and 13th for PMx and PMy, respectively. The results also confirm the previous under-
standing that PMy predictions are generally more accurate than PMx forecasts. Thus, it might be useful to predict
both parameters separately with differently configured methods for the highest accuracy. Another option is that
PMx requires more accurate determinations of geophysical properties as the change of MAE shown in Figure 5
varies more than for PMy as given in Figure 6. This deviation for PMx is rather independent from the group and is
present across various methods, so it is likely that the land‐sea distribution (and its varying impact on PMx and
PMy) is more important than the actual method employed. Atmospheric and oceanic effects also contribute
differently to PMx and PMy changes, just as to the polar motion excitation (Harker et al., 2021). In addition,
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estimates for AAM wind term contributions over oceanic areas are generally more uncertain than those over land
(e.g., Masaki, 2008).

Figure 9 displays the distribution of total points for each ID in both polar motion components, including group
assignment. The figure shows differences in prediction methods efficiency used for PMx and PMy, also indi-
cating some inclination of certain methods toward either PMx or PMy. A visible inclination (difference between
number of points for PMx and PMy larger than 10) is found for almost 50% of IDs, reaching up to 60 points

Table 9
Ranking of IDs Sorted by Number of Points and Number of Points Reached for Each Criterium (the Less Points the Better the Method) for PMx on 10‐Day Forecast
Horizon

Rank ID Group Total % Of rejected predictions Range MAE[1] MAE[6] MAE[7] MAE[10] Median PCh

1 136 LS + AR + EAM 24 0 2 6 1 1 3 11

2 138 LS + AR + EAM 29 0 1 8 4 2 1 13

3 153 ML + EAM 36 3 3 10 6 4 2 8

4 105 LS + AR + EAM 45 0 4 14 5 3 4 15

5 104 Other 52 0 9 3 7 7 8 18

6 116 LS + AR + EAM 52 0 6 7 3 5 5 26

7 152 ML + EAM 59 7 5 11 11 11 11 3

8 151 ML + EAM 66 0 7 17 8 8 12 14

9 157a LS + AR 72 0 8 2 17 19 24 2

10 101 LS + AR + EAM 74 0 24 9 2 6 6 27

11 200 IERS 80 0 14 5 16 14 10 21

12 156 LS + AR 81 0 17 1 14 16 21 12

13 150 ML + EAM 87 0 10 18 13 13 14 19

14 133 ML + EAM 89 8 13 13 9 9 7 30

15 103 Other 98 0 18 4 15 15 13 33

16 132 ML + EAM 101 10 15 16 10 10 9 31

17 115 ML + EAM 102 0 16 20 22 22 18 4

18 122 LS + AR 103 0 11 15 20 18 16 23

19 107 LS + AR 108 4 21 22 18 17 17 9

20 118 LS + AR 109 0 19 28 21 21 19 1

21 131 ML + EAM 117 11 12 23 12 12 15 32

22 102 Other 118 0 23 19 19 20 20 17

23 141 Other 130 0 33 12 24 25 29 7

24 113 LS + AR 135 0 26 21 27 28 28 5

25 112 LS + AR + EAM 146 1 22 27 23 23 22 28

26 123 ML + EAM 146 0 25 24 26 26 25 20

27 100 LS + AR 150 0 20 29 25 24 23 29

28 137 ML + EAM 161 0 31 31 30 29 30 10

29 108 LS + AR + EAM 163 2 27 30 29 27 26 22

30 128 ML + EAM 166 6 28 26 28 30 32 16

31 114 LS + AR 175 0 32 25 31 31 31 25

32 117 Other 176 0 29 32 32 32 27 24

33 121 Other 179 5 34 33 33 34 34 6

34 135 LS + AR 207 9 30 34 34 33 33 34
aOnly seven predictions were submitted by ID 157. The result for prediction from IERS is shown in bold.
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collected during the assessment, as can be deduced from the deviation from the dashed line that represents a
perfectly balanced method for both polar motion components.

To conclude this research on polar motion predictions from the 2nd EOP PCC, the most promising methods
typically exploit LS + AR or ML both in combination with EAM forecasts. The EOP input source seems to be of
lesser importance as long as certain quality levels are reached. All methods of prediction evaluation demonstrate
that many prediction approaches share common features, and the decisive factor is the proper method parame-
terization, which needs to be compatible with the input data. In some respects, however, ML‐based computations

Table 10
Ranking of IDs Sorted by Number of Points and Number of Points Reached for Each Criterium (the Less Points the Better the Method) for PMy on 10‐Day Forecast
Horizon

Rank ID Group Total % Of rejected predictions Range MAE[1] MAE[6] MAE[7] MAE[10] Median PCh

1 136 LS + AR + EAM 17 0 5 1 3 3 1 4

2 116 LS + AR + EAM 23 0 4 3 1 1 3 11

3 105 LS + AR + EAM 34 2 7 8 4 4 2 7

4 104 Other 45 0 12 2 2 2 4 23

5 101 LS + AR + EAM 53 0 9 9 5 5 7 18

6 152 ML + EAM 58 0 2 14 8 8 6 20

7 103 Other 61 0 11 4 13 11 10 12

8 151 ML + EAM 61 0 10 17 6 7 18 3

9 138 LS + AR + EAM 64 0 3 12 7 6 5 31

10 156 LS + AR 66 0 6 7 10 9 9 25

11 115 ML + EAM 73 0 14 11 16 14 8 10

12 153 ML + EAM 90 0 13 21 9 10 11 26

13 200 IERS 104 1 19 5 14 15 17 33

14 132 ML + EAM 110 7 27 20 11 12 12 21

15 133 ML + EAM 110 8 24 16 12 13 13 24

16 100 LS + AR 111 0 15 27 23 22 16 8

17 102 Other 115 0 22 18 18 16 14 27

18 131 ML + EAM 115 9 18 24 15 20 20 9

19 123 ML + EAM 118 0 23 19 20 19 15 22

20 107 LS + AR 119 3 29 15 17 17 19 19

21 150 ML + EAM 119 0 8 23 22 23 27 16

22 141 Other 120 0 16 26 25 26 25 2

23 113 LS + AR 126 0 30 10 24 25 24 13

24 122 LS + AR 127 0 26 13 19 18 23 28

25 157a LS + AR 130 0 1 6 27 30 32 34

26 118 LS + AR 146 5 20 28 21 21 22 29

27 108 LS + AR + EAM 147 4 25 31 29 27 26 5

28 128 ML + EAM 154 11 17 25 26 24 21 30

29 135 LS + AR 158 10 21 32 32 32 30 1

30 112 LS + AR + EAM 165 0 28 29 31 31 31 15

31 137 ML + EAM 170 0 31 34 33 33 33 6

32 114 LS + AR 171 0 32 22 28 28 29 32

33 117 Other 173 6 33 30 30 29 28 17

34 121 Other 183 0 34 33 34 34 34 14
aOnly seven predictions were submitted by ID 157. The result for prediction from IERS is shown in bold.
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are considered as unique approaches in comparison to the LS‐based methods. There are promising ready‐to‐use
prediction methods already operating more accurately than the official IERS predictions. On the other hand, still
more analysis concerning the use of a full set of EOP should be done for example, in orbit determination of GNSS
satellites or in VLBI solution. On another note, predictions submitted to the 2nd EOP PCC are more accurate in
the short term than those published by the IERS, while IERS performs with higher quality in mid‐term forecasts. It
remains an open question how longer EAM prediction might affect EOP prediction, or how EAM computed by
different institutes would improve forecasts. It might therefore be advantageous to continue the evaluation of
operational polar motion predictions in the future after the end of the 2nd EOP PCC in order to continue fostering
exchange among the various international research groups involved, and maybe even arrive at some combination
product with value to routine users of EOP forecasts.

Appendix A: ID Descriptions
Description of Each ID as Provided by 2nd EOP PCC Participants.

A1. ID 100

There are both regular and irregular signals in EOP data series, such as the trend, annual, Chandler terms, and high
frequency trembles in polar motion. For the predictions of the regular signals, we adopt the LS model expressed
by polynomial trend and harmonic oscillations. For the irregular part, a stochastic autoregressive (AR) process
model is employed (X. Q. Xu et al., 2012; X. Xu & Zhou, 2015).

Figure 9. The distribution of total points for PMx and PMy for each ID, also considering the group assignment presented in
Section 2.3.
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A2. ID 101

The method utilizes EOP 14 C04 and the latest IERS finals.daily files are combined as the EOP inputs. Addi-
tionally, the GFZ EAM products, including 6 days predictions are utilized. The method we used to predict PMx
and PMy is based on (Dill et al., 2019) with some revisions: given the 1‐day delay to GFZ's EAM prediction, the
6 days of prediction is adjusted to 5 days. In the step of LS and AR, the parameter is optimized but the evaluation
day for different parameters at different time scales.

A3. ID 102

Past data allowing to build the prediction are the EOP 14 C04 and finals.daily series up to the current date. The
predicted values are given for 365 days into the future. The polar motion components are predicted individually
using a least squares (LS) method to determine a harmonic model spanning the last 59 years. This model in-
corporates a second‐degree polynomial trend, seasonal terms of 365 and 182 days, and the Chandler wobble of
433 days. Additionally, it includes side oscillations to account for the long‐term modulation of the Chandler
wobble over 23‐year and 46‐year periods. Residuals are modeled by an auto‐regressive (AR) model of which the
degree is calculated according to the values of the partial autocorrelation coefficients. LS and the AR results are
extrapolated for up to 365 days.

A4. ID 104

A Kalman filter is used to combine independent measurements of the Earth's orientation taken by the space‐
geodetic observing techniques of SLR, VLBI, and the GNSS. In order to improve the predicted EOPs, AAM,
and OAM analyses and forecasts are used as proxy polar motion excitation measurements. Prior to their com-
bination, the data series are adjusted to have the same bias and rate, the stated uncertainties of the measurements
are adjusted, and data points considered to be outliers are deleted (Freedman et al., 1994; Gross et al., 1998).

A5. ID 105

EOP prediction is based on the GFZ EAM Predictor (Dill et al., 2019). The sum of EAM (4 years of model‐based
EAM functions including EAM6‐day forecasts) and the residual of GAM (4 years of geodetic angular momentum
derived from IERS 14 C04), extrapolated for the last ∼30 days up to the end of the EAM 6‐day forecasts by a first
LS+AR step, is predicted into the future by a second LS+AR step. GFZ uses this two‐step GFZ EAM Predictor
to provide daily updated EAM predictions from − 90 days in the past to +90 days into the future with 3‐hourly
sampling (http://esmdata.gfz‐potsdam.de:8080/). The submitted EOP prediction #105 is generated as soon as the
EAM prediction is available (∼11 UTC). Using the latest available EOP coordinates from IERS rapid EOPs
(finals.daily) from the day before as initial values for the Liouville equation a 90‐day EOP prediction is derived
from the EAM prediction. The predicted 3‐hourly EOPs are re‐sampled to daily time intervals and the first day is
cut off to start the time series on the actual day of submission.

A6. ID 107

First, we determine the length of the training data and read the raw data, preprocessing according to its type. Then
we perform the least square fitting, calculate the residuals between the data and the LS model, the residual
prediction data is obtained by autoregressive modeling, and the least square model is extrapolated. The two
signals are added together and post‐processed to obtain the prediction product (Chen et al., 2014).

A7. ID 108

Our prediction method is LS +MAR, in which LS means difference least‐squares adjustment, and MAR means
Multi‐elements autoregressive modeling. The inputs include EOP 14 C04 data released by the IERS and AAM
data released by GFZ. The prediction parameters include both PM components and the longest prediction day
is 365.
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A8. ID 112

For our LS+Convolution method, the EAM from ESMGFZ are selected as the input excitation series. Afterward,
the interannual, seasonal, and sub‐seasonal terms of EOP are calculated from the EAM predictions by the
Liouville equation. Meanwhile, the rest of the EOP trend terms are extrapolated by the polynomial least‐square
(LS) model. Finally, the total EOP predictions are combined with the excitation calculations and trend extensions
(X. Xu et al., 2022).

A9. ID 116

ESA's contribution to the second IERS EOP PCC was based on the output of the ESA ERP Service (http://
navigation‐office.esa.int/products/erp/) generated from September 2021 to December 2022. The Service pro-
vides daily updates of ERP estimates and the relevant predictions for 119 days in the future. The estimation phase
is based on a rigorous combination at the normal equation level of different geodetic solutions. The combination
takes into account the full correlation matrices and realizes a seamless transition between ERP estimates based on
final and rapid input products. For the IERS EOP PCC, the combination included ESA's GNSS, SLR, and DORIS
official products submitted to the relevant IAG Services, as well as BKG and DGFI solutions for intensive and
rapid‐turnaround VLBI sessions, respectively.

Concerning the prediction phase, the software implements a combination of least‐square fitting and autore-
gressive modeling based on the whole history of ESA ERP estimates to characterize the deterministic part of the
ERP variability and the high‐frequency variability induced by non‐tidal atmospheric and oceanic dynamics. Then,
the short‐range (6 days) EAM forecasts provided by GFZ are used to predict the irregular variations generated by
the atmospheric, oceanic, and hydrological dynamics. In order to stabilize the short‐term predictions, EAM
forecasts are also combined in the excitation domain with an additional signal that extrapolates the difference
between the geodetic excitation necessary to generate the observed history of ERP variations and the corre-
sponding excitation extracted from geophysical models.

Additional details on the ESA ERP Service can be found in Bruni et al. (2021); the core routines of the ESA ERP
Software are described in Kehm et al. (2023).

A10. ID 117

Our algorithm for predicting the ERP is called singular spectrum analysis (SSA) + Copula‐based analysis
(Modiri, 2021; Modiri et al., 2018, 2020). The algorithm splits the observed PM time series into periodic terms
and anomalies, which are modeled using SSA and Copula‐based analysis, respectively. The SSA periodic terms
estimation involves selecting a window parameter, forming a trajectory matrix, performing singular value
decomposition, selecting a proper group of singular values and corresponding singular vectors, and calculating
the trend. The Copula anomaly modeling involves forming the trajectory matrix of residual time series,
computing the marginal distribution, transforming data to the rank space, computing the empirical and conditional
Copula, and sampling random data from the conditional Copula CDF. The final predicted PM data is the sum of
the predicted periodic terms using SSA and the predicted anomaly using the Copula‐based model.

A11. ID 128, ID 131, ID 132, ID 133

Our methods are based on first‐order neural ODE (Neural ODEs) that implicitly assumes that the hidden state in
the hidden layer should follow a differential equation. To apply this concept to the EOPs, it is assumed that EOPs
follow first order differential equations the exact form of which should be determined by fitting neural networks to
the observations. The general approach of Neural ODE differential learning (Kiani Shahvandi, Schartner, &
Soja, 2022) is modified (i.e., in a way that does not require using the rates of EOPs) and used as the primary
architecture. A variation of this architecture is the so‐called simple recursive method (Kiani Shahvandi, Gou,
et al., 2022), in which an attempt is made to incorporate the uncertainties in the observational data in the training
for a more reliable estimation of parameters of the neural networks (Kiani Shahvandi & Soja, 2022). As a result,
the loss function here is the mean squared error. The architecture does not require any preprocessing of the input
features. However, in case of LOD prediction it is used on the LOD residuals (after the removal of secular trends,
tides, and seasonal signals (Gou et al., 2023)). The forecasting horizon contains both 10 and 30 days. The input
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sequence length is 10 days. The architectures are trained at each prediction epoch to take advantage of the most
recently available EOP and EAM data.

A12. ID 135

We utilize here PMx, PMy and also PMy‐PMx series, and the final forecasts of each method were chosen to be
combined according to the mathematical relationship between the PMy‐PMx, PMy and PMx series. The com-
bination that minimizes the forecast error, that is, the optimal forecast of the PMx series is obtained by combining
the PMy‐PMx forecast of the traditional method and the PMy forecast of the first‐order difference method; the
optimal forecast of the PMy series is obtained by combining the PMx forecast of the traditional method and the
PMy‐PMx forecast of the first‐order difference method.

A13. ID 136

EOP prediction is based on the GFZ EAM Predictor (Dill et al., 2019). The sum of EAM (4 years of model‐based
EAM functions including EAM6‐day forecasts) and the residual of GAM (4 years of geodetic angular momentum
derived from IERS 14C04), extrapolated for the last ∼30 days up to the end of the EAM 6‐day forecasts by a first
LS+AR step, is predicted into the future by a second LS+AR step. GFZ uses this two‐step GFZ EAM Predictor
to provide daily updated EAM predictions from − 90 days in the past to +90 days into the future with 3‐hourly
sampling (http://esmdata.gfz‐potsdam.de:8080/). The submitted EOP prediction #136 is only generated once the
rapid EOP solution for the actual day is available (typically around ∼17:15 UTC), and it thereby sometimes
deviates from submission ID 105 by utilizing more recent (and thus more accurate) EOP data for the day zero. The
latest non‐predicted EOP coordinates from IERS rapid EOPs (finals.daily) are taken as initial values for the
Liouville equation to derive a 90‐day EOP prediction from the EAM prediction (Dill et al., 2022). The Liouville
equation utilized at GFZ follows Brzeziński (1992) with the numerical values as reported in Dill and Dob-
slaw (2010). The predicted 3‐hourly EOPs are re‐sampled to daily time intervals.

A14. ID 137

The prediction method is ANN (Artificial neural network) and autoregressive (AR) modeling. We adopt the
wavelet function in ANN to predict the polar motion. A three‐layer network is constructed, and the wavelet
function is utilized in the mid‐layer to approximate the non‐linear relationship between the input and output, and
finally to make a high‐resolution prediction of polar motion. The inputs just contain the EOP 14 C04 data released
by IERS, and the prediction parameters include both PM components, the longest prediction day is 365.

A15. ID 138

Our method for predicting polar motion was inspired by Dill et al. (2019) and Dobslaw and Dill (2018), which we
enhance here in two ways: (a) Improve the deconvolution and convolution techniques to recalculate the geodetic
residuals and lower the PM errors that were reproduced, (b) Develop some new algorithms that utilize the LS, AR,
Fast Fourier Transform (FFT), and other methods to further reduce the EAM prediction errors.

A16. ID 141

Ordinary kriging belongs to a broad family of geostatistical methods of prediction and is optimal in the sense of
Best Linear Unbiased Prediction (BLUP) if the mean value of a random function is an unknown constant. Pre-
diction by means of kriging requires a structure function that describes the continuity and variability of a random
process. A semivariogram, due to its advantage over a covariance function, is used to describe a structure hidden
in residual series. Residual series are obtained after the removal of a linear trend and periodic components. Among
theoretical semivariogram models, the best performing one turned out to be the Radon transform of the expo-
nential model of order 2 (Markov 2nd order model). The final forecast consists of an extrapolated deterministic
part combined with the predicted (kriged) stochastic part. The entire process is presented in Michalczak and
Ligas (2021, 2022).
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A17. ID 150, ID 151, ID 152

This method is based on the first order neural ODE (Neural ODEs). The general Neural ODE differential learning
architecture (Kiani Shahvandi, Schartner, & Soja, 2022) is modified in a way that does not consider the rates of
EOPs. A simplified form of this architecture is also used (referred to as simple recursive) (Kiani Shahvandi &
Soja, 2022) in which the uncertainties in the input data are used to weigh the loss function (Kiani Shahvandi &
Soja, 2022) (the loss function here is the mean squared error) for a more reliable estimation of the parameters of
the neural networks. However, investigating the residuals of the training phase reveals that some signals in the
observations are not well captured by the Neural ODEs. Therefore, an attempt is made to model these residuals by
Long Short‐Term Memory (LSTM) neural networks in the same manner suggested by Gou et al. (2023). First,
Neural ODEs are trained and then the fitted values are subtracted from the observations to compute the residuals.
Subsequently, these residuals are modeled by LSTM. The input to the LSTM architecture is only the past values
of residuals of training of the Neural ODEs. The input sequence length here is 10 and the loss function is MAE.
For this purpose, the predictions of IERS are also incorporated into the algorithm for predicting the residuals at
each training epoch (retraining is required).

A18. ID 153

This method is based on a modification of the differential form of neural ODE (Kiani Shahvandi, Schartner, &
Soja, 2022) in which the Liouville equation for polar motion is incorporated into the algorithm as a geophysical
constraint (Kiani Shahvandi, Dill, Dobslaw, Mishra, & Soja, 2023). This means that the input, that is, polar
motion observations and EAM functions, are primarily used as features, while simultaneously being connected to
each other via the Liouville differential equation to account for the rotational dynamics of the Earth. As such, this
method is a simple physics‐constrained neural network, introduced in a more general and rigorous form for the
prediction of EOPs in Kiani Shahvandi, Dill, Dobslaw, Kehm et al. (2023). An attempt is also made to model the
residuals of training using the LSTM neural networks similar to Gou et al. (2023). The inputs to the LSTM
architecture are the residuals of the physics‐constrained neural network during the training phase, with the input
sequence length being 10.

A19. ID 156

The deterministic part, that is, estimated linear trend and periodic components are first removed from the raw
times series. An autoregressive integrated moving average (ARIMA) model is then used to predict the residual
part of the time series. ARIMA(p, d, q) model is a combination of autoregressive model (p), moving average
model (q), and differencing process (integrated part; d) that accounts for a potential non‐stationarity of a residual
process. The deterministic part is extrapolated for future time instances and then combined with the ARIMA‐
based predicted stochastic part. The best set of parameters p and q is selected by means of the corrected
Akaike Information Criterion (AIC). Parameter d determines a degree of differencing to be applied in order to
transform a non‐stationary time series into a stationary one in the mean sense. The stationarity of each residual
ERP time series is checked using the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test. The entire process is
described in Michalczak et al. (2022).

A20. ID 157

Vector autoregression of order p VAR(p) is a multivariate counterpart of an autoregressive model AR(p) that
describes evolution and coevolution of variables in time. It was applied to a joint prediction of residual polar
motion series (PMx‐res, PMy‐res) that were obtained after removing linear trend and periodic components (fitted
by LS to the input polar motion series; separately for x and y). Finally, all components, that is, extrapolated linear
trends, periodicities and predicted residuals were added together to generate the final forecast. The prediction
procedure depends on a set of parameters involving input time series length for trend and periodic components
estimation, length of subseries for autoregression parameters estimation, order of autoregression, and number of
periodic components. Since one of the variables in a joint forecast is usually predicted better, two separate
bivariate predictions were applied, one for x and one for y component of polar motion.
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Data Availability Statement
All predictions submitted to the EOP PCC Office in the frame of the 2nd EOP PCC can be accessed from the GFZ
Data Services (https://doi.org/10.5880/GFZ.1.3.2023.001). Predictions developed by IERS/USNO as well as the
IERS 14 C04 solution used in this study to validate EOP predictions are available at https://www.iers.org/IERS/
EN/DataProducts/EarthOrientationData/eop.html.
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