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Abstract

Astronomical time series often have non-uniform sampling in time, or irregular cadences, with long gaps
separating clusters of observations. Some of these data sets are also explicitly non-Gaussian with respect to the
expected model fit, or the simple mean. The standard Lomb–Scargle periodogram is based on the least squares
solution for a set of test periods and, therefore, is easily corrupted by a subset of statistical outliers or an
intrinsically non-Gaussian population. It can produce completely misleading results for heavy-tailed distribution of
residuals. We propose a robust 1-norm periodogram technique, which is based on the principles of robust statistical
estimation. This technique can be implemented in weighted or unweighted options. The method is described in
detail and compared with the classical least squares periodogram on a set of astrometric VLBI measurements of the
ICRF quasar IERS B0642+449. It is uniformly applied to a collection of 259 ICRF3 quasars each with more than
200 epoch VLBI measurements, resulting in a list of 49 objects with quasi-periodic position changes above the 3σ
level, which warrant further investigation.

Unified Astronomy Thesaurus concepts: Astrometry (80); Lomb-Scargle periodogram (1959); Astronomy data
analysis (1858); Algorithms (1883); Quasars (1319); Very long baseline interferometry (1769); Period
search (1955)

1. Introduction

The Lomb–Scargle periodogram calculation is a powerful
technique designed to reveal and characterize the periodic
components in observational data sequences, which finds a
wide scope of applications. For a review of its properties and
underlying assumptions from the user’s perspective, see
VanderPlas (2018). The need for this technique arises from
the character of astronomical data (observational measure-
ments), which are practically never evenly sampled in time.
This makes the standard Fourier power spectrum analysis
inapplicable for astronomical time series. Detection of orbiting
exoplanets from precision radial velocities of host stars is one
of the well-known use cases for the Least-Squares (LS)
periodogram method (Hara & Ford 2023). The periodic
component of the measured radial velocity sequence is caused
by the reflex orbital motion of the host star orbiting the
system’s barycentre. The period of the main sinusoidal mode in
the computed periodogram in this case estimates the orbital
period of the planet, which often cannot be directly observed.

The periodogram method finds a somewhat less known
application in precision astrometry of celestial bodies’ posi-
tions. Binary stars with unresolved or dim companions have
periodic signals, which are the harmonics of the orbital
frequency, in either of the sky coordinates referenced to a
fixed celestial frame. Given a significantly long and precise
cadence of position measurements covering at least one orbital
period, the more general approach is to directly fit a set of
Kepler elements of the emerging explicitly nonlinear 2D
model, which proves a daunting and ambiguous task in the
presence of even a small admixture of statistical outliers
(Goldin & Makarov 2006). A robust and reliable periodogram
decomposition is a welcome alternative when a large amount of
observational data has to be processed with a low output of true
positives. The need for a resilient periodogram algorithm,
which can produce meaningful results outside of the normal
distribution of data points, also emerges in the interpretation of
high quality photometric time series. Magnetically active stars,
for example, often manifest complex structures of signals in
their light curves with periodic modulation mixed with
stochastic, unpredictable bursts of radiation (Makarov &
Goldin 2017).
Our main goal for this study is to develop and test a

modification of the classical 2-norm periodogram algorithm
(also known as the Lomb–Scargle periodogram) based on the
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principles of robust statistical estimation. This algorithm is
intended to be used for processing of a massive data base that
includes single-epoch astrometric measurements of thousands
of radio-emitting quasars with the geodetic Very Long Baseline
Interferometry (VLBI) world-wide facility. The system of
accurate positions of these sources constitutes the fundamental
International Celestial Reference Frame (ICRF3, Charlot et al.
2020), which underpins all other derivative celestial and
geodetic reference frames. The astrometric stability of the
most frequently observed quasars is of crucial importance for
the overall accuracy and stability of ICRF3. We therefore
develop a method to determine if some of the ICRF3 sources
manifest periodic signals in their celestial positions, which
could emerge from dual orbiting black holes in their centers, as
well as a number of other effects in the extended structures and
jets (Makarov et al. 2012).

The need for robust statistical estimation techniques
generally arises in astronomical data processing when the
available data are ridden with a large fraction of outliers outside
of the commonly assumed Gaussian distribution of errors,
representing a heavy-tailed sample distribution. Examples of
critically important applications can be found in the mutual
orientation alignment of different celestial reference frames
(Malkin 2021; Frouard 2023; Lambert & Malkin 2023), where
common object show a high rate of position offsets with
extremely low formal probabilities.

2. The Least-squares (2-norm) Periodogram

In the most general setup of the problem, our task is to
mathematically analyze a given time series (observations) d(ti),
where periodic sinusoidal signals may be hidden. The data is
discretized on a sequence of specific times of measurement ti,
i= 1, 2,..., N. When the measurements are taken on a regular,
equally spaced grid with time step Δt, the problem is solved by
the direct Fourier transform and subsequent computation of the
Fourier power spectrum. The spectrum is quantified on a grid
of angular frequencies fk= 2 π/(kΔt), k= 2, 3,K, N, where the
highest non-degenerate frequency f2= π/Δt is the angular
Nyquist frequency. This set of frequencies is complete, because
all other signals within the functional space spanned by the
Fourier basis functions are not independent. In other words, the
fitting function

åº = +
=

d t d c f t s f tcos sin 1i i
k

N

k k i k k i
2

ˆ ( ) ˆ ( ( ) ( )) ( )

is the exact and unique representation of any sequence di with a
zero mean. This is no longer true if the cadence {ti} is irregular.
The Fourier harmonics are not orthogonal if sampled on an
irregular cadence. In principle, this difficulty can be bypassed
by constructing an ad hoc orthogonal basis from the Fourier
harmonics using, for example, the Gram-Schmidt process, but
the practical value of such representation is dubious, because

the emerging fitting functions do not find a simple interpreta-
tion. However, we can disregard the issue of nonorthogonality
and seek a solution to Equation (1) for a chosen fk. Under this
generalization, the classical periodogram analysis is equivalent
to the LS fitting of model (1) for a grid of trial periods
pk= 2 π/fk (Scargle 1982). The emerging LS problems, for a
specific pk, can be written as

=A x d, 2· ( )

where the design matrix A has two columns with calculated
sequences of f tcos k i( ) and f tsin k i( ) values, and the number of
its rows is equal to the number of data points N. The right-hand
part vector d is the vector of centralized observations, and the
vector of unknowns x comprises the two coefficients ck and sk.
Standard LS algorithms can quickly solve this system to obtain
the solution vector

= -x A A A d. 3T T1ˆ ( ) · ( )

Any standard LS algorithms can be used to solve this system.
This has to be done for each trial period pk≡ 2π/fk separately,
including the setup of the design matrix A. In the example used
in our paper, the number of trial periods Np= 1000, but in other
applications, it can be up to O(105). This is not a problem for
modern computers and LS algorithms, but in the 1970-ies,
when the periodogram method started to attract astronomers’
attention, the speed of computation was a crucial consideration.
This motivated Lomb (1976) to propose a modification where
the design matrix A is orthogonalized by introducing a phase
shift τk in each of the fitting functions in (1), to the effect that
the normal matrix AT A becomes diagonal. This modification
has little practical advantage now but it brings in additional
restrictions precluding necessary extensions of the model, as
we will now discuss. Lomb’s modification is therefore not
recommended. A more accommodating and rigorous way of
orthogonalization, if such a technical action is deemed
desirable, was proposed by Ferraz-Mello (1981). Scargle
(1982) also mentions that the spectral power of a pure noise
data has a more predictable statistical distribution, but this
argument is only valid for Gaussian noise with equal variances,
which is never the case in practice.

3. Extended Periodogram Models

Astronomical data series d often include non-periodic
components. Using the archetypical example of detection of
exoplanet signals in precision radial velocity measurements of
host stars, the expected additional terms include a constant
offset (the systemic radial velocity of the exoplanet system) and
possibly a linear trend from perspective acceleration or a distant
binary companion. It is not recommended to estimate these
terms separately and prior to the periodogram solution and
subtract them from the original data, which, unfortunately, is
often done in practice. The reason why this pre-processing
leads to an error in the periodogram is that these terms are not
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orthogonal to the fitted sine functions on a non-uniform
cadence of data points. Unlike the regular Fourier transform,
the trial frequencies are not integer multiples (harmonics) of the
time interval. If a sinusoidal signal is present in the data, its
estimated amplitude or power will be affected by the biased
estimate of the constant term. The only correct and consistent
way of dealing with additional terms is to include them in the
fitting model (Ferraz-Mello 1981; Cumming et al. 1999). For
example, the fitting model suitable for exoplanet detection can
be

p p= + - + +d x x t t x t p x t pcos 2 sin 2

4
i i i k i k0 1 0 2 3

ˆ ( ) ( ) ( )
( )

for each trial period pk. Note that a separate constant term x0
and a linear slope x1 are obtained for each trial period, and they
are not equal for different trial periods. The variation of these
terms with the trial period reflects the error introduced into the
periodogram by subtracting the common terms a priori.

The periodogram estimate can be the amplitude of the fitted
sinusoid

= +a p x x , 5k 2
2

3
2 1

2( ) ( ) ( )

or the power

= +s p x x . 6k 2
2

3
2( ) ( )

As discussed above, we are using the amplitude periodogram in
this paper, which has a more intuitive interpretation as the
amplitude of the periodic signal in the same units as the
measurements. The linear condition equations still take the
form (2), but the design matrix A now has four columns, and
vector x includes four unknowns x0, x1, x2, and x3. The solution
vector x̂ is obtained from the LS solution, Equation (3). If a
significant signal a(pk) is detected, the corresponding values
x0(pk), x1(pk) provide the best estimates of the constant term
and the linear trend.

4. Statistical Uncertainties

What is the confidence level of a detected signal in the LS
periodogram? This is an estimate of crucial importance,
because the probability of the null hypothesis (that the detected
feature is just a random fluke), also known as the false alarm
probability (FAP), determines if we can believe the result.
Traditionally, a high formal confidence is desired in astronom-
ical applications such as detection of exoplanet signals, the
recommended value being 0.997 (the 3σ level for a normal
distribution). A robust method of estimating the FAP is the
bootstrap simulation, which is also extendable to non-Gaussian
distributions of measurement error. This is the method of “last
resort” when the signal-to-noise ratio (S/N) of the detected
signal leaves room for a catastrophic false positive. It is
computationally expensive, however, and requires a suffi-
ciently large number of data points. Monte Carlo methods,

which are also computationally expensive, can be efficient
when the statistical distribution of the observational noise is
known. A random number generator is used to construct a
sequence of synthetic measurements on the given sequence of
times ti, then a periodogram solution is obtained for each
realization of noise, and the signal amplitude +c sk k

2 2 1
2( ) is

computed. Repeating this process multiple times (O(103) is
usually required for an accurate estimation) allows us to
estimate the cumulative distribution function (CDF) of the
posterior distribution of the periodogram amplitude at any trial
period, and hence, the p-value of the null hypothesis (or FAP).
Here we describe a computationally efficient and direct

method of confidence estimation for LS periodograms in the
extended form (Equation (4)). Noting that the standard
periodogram solution obtained from the LS adjustment per
Equation (3) is already based on the assumption that the
measurement error is normally distributed, a direct computation
of the periodogram CDF can be performed. If the covariance
matrix Cd≡ E[d · dT] is known or assumed, the corresponding
covariance of the solution vector is

º =C x x C A C A CE , 7x
T T

d[ ˆ ˆ ] ( )

where = -C A AT 1( ) . It is often assumed that the measurements
d are statistically independent, in which case the matrix Cd is
diagonal. If the errors also have the same variance σ2, this
equation further simplifies to Cx= σ2C.
The solution covariance Cx is a 4× 4 symmetric matrix,

which is computed for each trial period pk. We are mostly
interested in the a(pk) statistics per Equation (5). The two
involved statistics x2 and x3, in accordance with the assumed
normal distribution s0, i( ) for each data point, are binormal
variates, whose covariance matrix Ca is the corresponding
2× 2 block of Cx. The estimated vector =y x x, T

2 3[ ] can be
standardized to obtain

= -y C y, 8a
1
2¯ ( )

so that ȳ is a binormal uncorrelated variate of unit variance.
This is equivalent to determining the error ellipse for binormal
variates. The components of ȳ can be interpreted as the upper
and lower S/N of the given periodogram result. Consequently,
the quadratic form

y = = -y y y C y 9T T
a

1¯ ¯ ( )

is a χ2-distributed variate with 2 degrees of freedom. The
corresponding confidence of rejecting the null hypothesis can
be computed from the CDF of the distribution χ2[2] for each
periodogram value. For a graphical representation of perodo-
gram results, it is convenient to compare the confidence levels
to specific points, which correspond to the ±1σ, ±2σ, and ±3σ
intervals of the normal distribution, which have the cumulative
probabilities of 0.683, 0.955, and 0.997, respectively. The
corresponding levels of ψ (computed as CDF c- 21 2[ [ ]]) are
2.296, 6.180, and 11.829. Periodogram amplitudes with ψ-
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values above 11.829 can then be regarded as highly confident
positive detections at a confidence level above 0.997.

In the exoplanet detection literature, an alternative method of
FAP-estimation is often used, developed by Baluev (2008). It is
also based on the assumption that the signal contains only a
finite set of model (base) functions, and the random component
of the data vector is pure Gaussian noise with the known
standard deviations σi. The statistical significance of a single
periodogram value can then be naturally estimated from the
properly normalized difference of the reduced χ2 statistic of
residuals with and without the corresponding harmonic terms
(e.g., Equation (6) in Cumming et al. 1999), which follows the
F-distribution (or beta-distribution if two or more specific
periodogram frequencies are considered). However, while we
have in practice a large number of periodogram value
realizations, only the maximum value and the corresponding
trial period are of interest. Even in the absence of detectable
signal, given a large number of trials, it is probable that the
highest significance value exceeds the threshold confidence
level. This probability can be estimated within the extreme
value statistic of an F-distributed homoscedastic random
process assuming that the periodogram values are independent.
This method is vulnerable to aliasing, which is caused by the
limited spectral window of the given data series. The adjacent
periodogram values are not independent, and periodogram
features become increasingly wider “window functions”
toward the longest trial periods. Non-uniform cadences with
long gaps can also generate aliasing, spectral leakage, and
spurious periodogram peaks. The extreme-value distribution
fitting method (Süveges 2014) is more general for non-
Gaussian processes, but it still refers to the null hypothesis of
uncorrelated white noise in the data, which is inaccurate for the
specific applications in this paper, or the spectroscopic
detection of exoplanets (Makarov et al. 2009).

5. To Weight or not to Weight?

Astronomical time series often have unequal formal errors of
individual data points. The formal error represents the expected
standard deviation of the measurement, which can vary in a
wide range because of observational conditions, instrument
setup, etc. The LS solution in Equation (3), on the other hand,
is unweighted, because it does not involve the estimated formal
errors. The standard way of dealing with processing data of
non-uniform precision is to use weighted LS fitting. It can be
applied to LS periodogram analysis too in the framework of
weighted periodogram solution. The basic equation replacing
(2) becomes

=W A x W d, 10· ( )

where the weight matrix = -W Cd

1
2 . The covariance of the

right-hand part is now the identity. The formal covariance of
the periodogram coefficients of interest transforms from

Equation (7) into

= -C A W A . 11x
T 2 1( ) ( )

The subsequent analysis of periodogram uncertainties is the
same as described in Section 4.
We performed limited experiments using the formal weights

on the example described in Section 6 to estimate the impact of
this additional modification. We found rather limited changes
in the computed periodogram amplitudes with the unweighted
and weighted LS options. The most prominent features
indicating possible signals have approximately the same shape
and location. The greatest difference is found in the estimation
of the 1σ and 3σ confidence intervals. The weighted
covariance of the periodogram coefficients Ca is generally
much smaller for the weighted solution than for the unweighted
solution. This is caused by a large spread of individual formal
errors, and the fact that the weighted LS solution is optimal. If
all the formal errors are equal, the periodogram covariances and
the derived amplitudes become equivalent in the two solutions.
Thus, the weighted covariance Ca is the global minimum of all
possible unweighted counterparts. The lower covariances result
in narrower confidence intervals, and the net result is that most
of the periodogram solution becomes a highly confident
positive detection. This result is completely misleading for
the given example, because, as we will see in the next Section,
the formal errors of the data points have little bearing on the
actual dispersion and statistical distribution of the data.

6. Why Do we Need Something Else?

Let us summarize the implicit assumptions involved in the
LS periodogram method.

1. The data vector is a composition of random uncorrelated
noise and a single monochromatic sinusoidal signal,
whose amplitude and period are to be determined.

2. The measurement noise is Gaussian.
3. The data sequence is centralized, i.e., has a zero mean—

unless the extended version of the method is employed.

An example when the second assumption is violated can be
found in (Makarov et al. 2010). The astrometric position
(photocenter) of the Sun as measured by a distant observer is
subject to stochastic variations caused by the presence of
sunspot groups and bright plage areas on the rotating surface.
Each photometric feature generates a time-variable shift of the
unresolved disk on the timescale of days, which is not periodic
because of the phase scrambling. The composition of such
stochastic signals is an unpredictable “jitter.” The measured
shifts from the mean photocenter show an utterly non-Gaussian
distribution because the intrinsic distributions of the sunspot
sizes, lifetimes, and positions within the disk are not normal. In
this case, the nominal LS periodogram, as well as the
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traditional FAP estimation, are likely to produce misleading
and inaccurate results.

Figure 1 shows the observed time series used in this paper to
illustrate the application of the proposed 1-norm periodogram
analysis. It shows the high-accuracy astrometric data collected
by geodetic VLBI for the ICRF3 source IERS B0642+449 for
nearly 40 yr of continuous observations. Each data point
corresponds to a one-day “session” with multiple delay
measurements of this source together with a number of other
ICRF3 sources. The observational data are represented as
coordinate offsets a a d= -x cosobs mean mean( ) (left panel) and
y= δobs− δmean (right panel) in mas, where {αmean, δmean} are
the weighted mean coordinates for this source in the equatorial
coordinate system. The formal errors for each observation are
shown as error bars. This enigmatic high-redshift (z= 3.41)
gamma-ray blazar is obviously one of the astrometrically
unstable ICRF3 sources with shifting position mostly in the
R.A. component. The origin of the position variations is
outside of the topic of this paper, but we briefly note the study
by Xu et al. (2016), who detected a dual structure of IERS
B0642+449 from a closed delay analysis of a high-intensity
geodetic VLBI session. The detected separation of the dual
components is approximately 0.46 mas and the position angle
is 262°.2. One of the interesting applications of sub-mas
astrometry with VLBI is the possibility of detection of orbiting
dual AGNs. With an estimated scale of 7.6 pc mas−1 at this
redshift, a binary black hole with a total mass of 1010M☉ and a
period of 40 yr may have an angular separation of about 10 μas,
which may be within the reach with this type of data. Central
engine binarity may be one of the explanations for the observed
quasi-periodic modulation of some gamma-ray blazars’ light
curves (Ackermann et al. 2015).

Both coordinate trajectories in Figure 1 appear to include
long-term variations and, possibly, periodic components on the
timescale of a few hundred days. Are they statistically
significant? We begin with the standard LS periodogram
analysis using the extended model Equation (4). The need to

include the linear terms, in particular, comes from the
possibility of a “secular” proper motion in the data, which is
not part of the astrometric model used in the VLBI data
reduction pipeline. We compute the periodogram fitting
coefficients {x0,K, x3} for an exponential grid of 1000 trial
periods, pk= p0 dex(q k), with the exponent step q=
(3652.5− p0)/1000 in days. The longest trial period is then
10 yr, which is practically limited by the time span of the
available data.
The results are shown in the upper row plots of Figure 2 for

the two coordinate components. The periodogram amplitude
estimates are connected with a black line to aid the eye. The
significance of each periodogram point is also computed for
this unweighted solution according to Section 4. We color-
coded the significance by the normalized confidence level, so
that estimates below the 1σ level are marked with blue dots,
and estimates above the 3σ level are marked with red dots. A
large number of values appear to be highly significant with
periods across the entire range, including some short periods
below 100 d, which obviously cannot be physical. This result,
with a jungle of sharp peaks in the short-period domain and a
few prominent features in the long-period domain, is typical of
LS periodograms for “noisy” data. The inference is completely
false, and we will now reveal why that happens.
The single-epoch positions measured with VLBI are two-

dimensional, and each position determination {x, y} comes
with a formal covariance G, which is a 2 by 2 matrix. It is
convenient to consider the normalized and centralized single-
epoch position offset

= - - - --GD x x y y x x y y, , , 12T1( ¯ ¯) ( ¯ ¯) ( )

because it is a scalar variate, which is expected to follow a
Rayleigh distribution with scale 1, reducing the dimensionality
of statistical analysis to 1. The true coordinates x y,{ ¯ ¯} are not
known, but they can be separately estimated as the weighted
mean position. Note that even the well-known formula for
covariance G is based on the underlying assumption of

Figure 1. Astrometric offsets from the mean position of the ICRF3 source IERS B0642+449 measured by VLBI over 30 yr. Left plot: right ascension tangential
component (x) in mas. Right plot: declination tangential components (y) in mas. Each data point is shown with its formal ±1σ error bar.

5

Publications of the Astronomical Society of the Pacific, 136:054503 (11pp), 2024 May Makarov et al.



normally distributed random errors. The variate D allows us to
test this basic assumption. The histogram of D values computed
for the example data set in Figure 1 is shown in Figure 3. For
reference, the expected Rayleigh[1] distribution (normalized to
the same area) is shown with the blue line. We can see that the
actual distribution of astrometric offsets is very far from the
expectation, and the difference cannot be fixed just by scaling
the formal errors. Although the mode of the empirical
distribution is approximately where it is expected to be (at
1), a long and powerful tail stretching far beyond the Rayleigh
[1] curve indicates that nearly half of the available measure-
ments have values associated with nil probabilities of
occurrence within the assumed statistical model.

The heavy-tailed nature of the data distribution invalidates
the LS periodogram method. The data points with large
deviations from the mean should not be called outliers in this

case, because they represent a large part, if not the majority, of
the population. Simple fixes such as clipping the data outside
the 3σ threshold are not justified. The numerous deviant data
points corrupt any LS estimation, and generate bogus signals in
this periodogram analysis. Methods of robust estimation are
designed to handle heavy-tailed data in a more consistent way.
In particular, the 1-norm estimation seeks to minimize the sum
of absolute values of residuals rather than the sum of their
squares:

åL º - =d d d min. 13
i

i i( ˆ) ∣ ˆ ∣ ( )

This merit function diminishes the impact of large deviants
and permits a meaningful solution for any intrinsically
symmetric populations. It is robust with respect to the
subsample containing high normalized offsets, because each

Figure 2. Periodograms calculated for the astrometric time series shown in Figure 1. Left column: right ascension components in mas. Right column: declination
components in mas. Upper row: the classic (2-norm) unweighted LS periodogram. Lower row: the proposed robust 1-norm periodogram. In all graphs, the thin black
curves represent computed periodogram amplitudes, the blue dots show the values below the 1σ confidence level, the red dots show the values above the 3σ
confidence level.
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individual data point has an effectively lower weight in the
solution, irrespective of its value.

7. Implementation of 1-norm Periodograms

The same periodogram models (Equations (1) and (4)) can
be used as in the classical LS method. The main differences in
implementation are of the technical character. The main
optimization problem is no longer linear, and it cannot be
formalized as Equation (2). Consequently, there is no direct
calculation of the associated covariance matrix of the period-
ogram coefficients. This can still be done numerically using
Monte Carlo simulations. The solution itself is implemented
with one of the existing global nonlinear optimization methods
with vector-valued arguments, such as the Nelder-Mead
(simplex downhill), differential evolution, or simulated anneal-
ing methods.3 These methods are computationally much more
expensive than the regular LS periodogram. However, we
achieved a computing time of about 1 minute on a regular
laptop for the given example with 1668 data points and 1000
trial periods for the two time series.

The resulting 1-norm periodograms for the given data sets
are shown in Figure 2, lower row. They are expressed in the
same values (amplitudes, per Equation (5)) and units as the LS
periodograms in the upper row, so that they can be directly
compared. Formal confidence levels cannot be directly
computed for the 1-norm solutions, because the population
distribution is non-Gaussian. We reproduce, however, the re-
normalized confidence intervals 1σ and 3σ from the LS
solution to emphasize the significance of the results.

Quite clearly, the robust 1-norm periodograms paint a
different picture about the temporal variations of the given data.
The amplitude values dropped by half or more, and most of the
estimated values are now below the 1σ-interval. The largest
reduction is seen in the high-frequency domain. Given the
nature of the object under investigation, the low-frequency
features are of special interest. We find the main features at
different locations than with the LS method, and for the R.A.
component, they clearly dominate the spectral power distribu-
tion. Intriguingly, there is a compact location around 1730 days
with periodogram amplitudes above 3σ, which was completely
insignificant in the LS solution. To test if this point is indeed
associated with a high level of confidence, a much more
extensive bootstrapping or Monte Carlo simulations are
required.
We performed a non-parametric bootstrap by producing 100

data samples from the original time series by randomly
permuting its elements but keeping the fixed cadence of
epochs, thus inheriting the same distribution of the uncorrelated
noise component as the original data. Then, for each data
sample, we computed the LS and 1-norm periodograms. The
bootstrap distribution appears reasonably symmetric. For each
period, the N% confidence interval (0�N� 100) is given by
the non-parametric percentile bootstrap interval contained
between the (N/2) th and (100− N/2) th percentiles. For
verification purposes, the periodogram analysis and the boot-
strapping estimation was independently implemented by two
authors using different computer languages, on the same data
set. Figure 4 displays the obtained results where the grey lines
represent the difference between the upper and lower bounds of
the confidence intervals, respectively for N= 68.3% (dotted
line), N= 95.5% (dashed line), and N= 99.7% (solid line). In
the case of the 2-norm implementation, the bootstrap provides a
confidence interval consistent with results shown in Figure 2.
For the 1-norm spectrum, the confidence interval is lower than
for the 2-norm, reflecting the robustness of the 1-norm
estimation, which is less sensitive to the data points in the
extended tail of the distribution. The amplitudes reach highest
significant values, with a significance level well higher than
99.7%, for the right ascension suggesting that the bump
observed at a period of ∼1700 days is not due to chance and
the secondary peak at ∼2800 days should also be considered
for further investigations. We note, however, that the bootstrap-
estimated confidence only refers to the random uncorrelated
noise in the data (of arbitrary PDF). The data may include a
time-correlated component of physical or instrumental origin.
Broad periodogram features seen in Figure 4 may require
additional analysis using, e.g., structure functions of first or
second order, which also incorporate periodic components with
time-variable phase (Rutman 1978; Simonetti et al. 1985;
Rutman & Walls 1991).

Figure 3. Distribution of standardized astrometric deviations for the data set
shown in Figure 1. The expected distribution, which is Rayleigh[1], is shown
with the blue curve. The red curve is the empirical best-fitting distribution,
which is LogNormal [0.484, 0.779].

3 See a useful summary in https://reference.wolfram.com/language/tutorial/
ConstrainedOptimizationGlobalNumerical.html.
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8. A Search for Periodic Modulation in Observed
Positions of ICRF3 Sources

Diurnal geodetic VLBI sessions have been regularly
scheduled over nearly 40 yr, using networks of stations
separated by baselines of hundreds to thousands of kilometers
long. Within each daily session, a number of widely separated
radio sources are observed multiple times over the course of 24
hours. The resulting data are processed in a few data analysis
centers, including the U.S. Naval Observatory. In this paper,
we use a global solution for two-dimensional coordinates of
epoch calculated at USNO (2022a) in the standard S/X band
setup. This data product includes astrometric time series from
more than 6000 diurnal sessions. The total number of sources is
5153 in this data set, but here we only consider 259 of them
with more than 200 single-epoch measurements.

The 1-norm periodogram computation was uniformly
applied to each of the frequently observed ICRF3 sources,
separately for R.A. and decl. offsets from the weighted mean
positions. These mean positions are specifically computed for
the given data set and the solution version, so they may slightly
differ from the published ICRF3 mean positions. The purpose
of this numerical experiment was to identify sources with
possible sinusoidal variations in the observed positions on the
sky. The results are presented in a compact form in Table 1 for
49 quasars where the formal significance criterion ψ> 11.829,
from Equation (9), is triggered in either of the coordinates for at
least one trial period. The table provides IERS names of the
sources (which should be prepended with letter B to match
Simbad identification), our computed mean R.A. and decl.
coordinates in degrees, the total number of diurnal sessions,
and the significant trial periods.

Figure 4. Periodograms calculated for the astrometric time series shown in Figure 1. Left column: right ascension components in mas. Right column: declination
components in mas. Upper row: the classic (2-norm) unweighted LS periodogram. Lower row: the proposed robust 1-norm periodogram. In all graphs, the thin black
curves represent computed periodogram amplitudes, the blue dots show the values below the 68% confidence level, the red dots show the values above the 99%
confidence level.
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The main result of this computation is that there seems to be
no isolated single-frequency sinusoidal signals in the observa-
tional data similar to those that are found for astrometric
binaries. Instead of well defined peaks in the periodograms, we

find “packages” of trial periods with elevated amplitudes and
significance levels. The emerging picture is more consistent
with an ensemble of small vaguely periodic modes of non-
commensurate frequencies. One-fifth of the detections have a

Table 1
ICRF3 Quasars with Quasi-periodic Signals

IERS id R.A. Decl. nobs Periods R.A. Periods Decl.
(°) (°) (days) (days)

0003-066 1.5578870361 −6.3931487242 1648 1760
0014+813 4.2853121110 81.5855934649 1272 >3652
0016+731 4.9407765018 73.4583382213 1214 1520, 1850, >3652
0119+041 20.4869237314 4.3735373041 1717 >3652
0119+115 20.4233126885 11.8306703578 1673 1670, 2640
0131-522 23.2740104059 −52.0010959196 628 830
0202+149 31.2100578951 15.2364009985 963 2940
0300+470 45.8968425830 47.2711876296 825 1030 multiple 946–3652
0308-611 47.4837464402 −60.9775156729 1292 800, 2070
0322+222 51.4033931446 22.4001015605 872 1660, >3652
0336-019 54.8789074465 −1.7766122761 2403 1820
0537-286 84.9761728366 −28.6655411473 556 2750
0537-441 84.7098398243 −44.0858164005 2315 2760
0607-157 92.4206230931 −15.7112979835 873 870, 1160
0637-752 98.9437829129 −75.2713376525 607 990, 1110, 1550, 1970
0642+449 101.6334416364 44.8546083651 1668 1690
0735+178 114.5308072908 17.7052772667 502 >3652
0748+126 117.7168572399 12.5180078358 942 1590, >3652
0749+540 118.2557690371 53.8832325243 1167 >3652
0955+476 149.5819651824 47.4188451163 2879 1320
1030+415 158.2654494235 41.2683980499 310 multiple 2230–3580
1039+811 161.0960939470 80.9109564077 239 1240, 2060, 2770
1123+264 171.4737996602 26.1722163092 345 3460
1213-172 183.9447990581 −17.5292786545 373 >3652
1308+326 197.6194327218 32.3454952446 2165 2920
1451-375 223.6142072756 −37.7925402884 384 920, 1310, 1900, 2470 1030, 1310, 1900, 2530
1546+027 237.3726535376 2.6169897834 619 1980, 2180
1548+056 237.6469551807 5.4529023152 313 2380, 3180
1611+343 243.4211010163 34.2133080213 2058 3410
1617+229 244.8117691700 22.7966252695 442 3500
1639-062 250.5090738210 −6.3565819658 738 910
1639+230 250.3551148643 22.9511202107 619 2360
1739+522 265.1540743749 52.1953909459 2222 1350 2610
1846+322 282.0920357219 32.3173899470 872 955, 1430, 3170 1370
1849+670 282.3169678649 67.0949111894 469 1390, 1680
2007+777 301.3791605043 77.8786798684 263 1325
2128-123 322.8969239777 −12.1179989354 890 1890
2136+141 324.7554552901 14.3933311595 1146 3240
2145+067 327.0227444590 6.9607233849 2182 3460
2201+315 330.8123991110 31.7606305396 948 2015
2214+350 334.0833745874 35.3039388710 750 3430
2216-038 334.7168238499 −3.5935776334 435 2420
2223-052 336.4469137221 −4.9503863240 1758 2290 1770
2227-088 337.4170180620 −8.5484543301 812 2690 >3652
2229+695 337.6519572538 69.7744658067 964 745, 1110, >3652
2232-488 338.8051524303 −48.5996651465 209 540
2234+282 339.0936285247 28.4826147730 2265 1435, 2275 2275
2243-123 341.5759665538 −12.1142437955 1004 1270, 1730
2318+049 350.1869024698 5.2305423851 1230 2430 2430

Note. IERS source names in column (1) preappend letter B to the codes as given. R.A. and decl. coordinates in columns (2) and (3) are the weighted mean positions
calculated from the given data, not the published ICRF3 coordinates. Periods in columns 5 and 6 are approximate local peaks in periodograms.
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rising periodogram amplitude toward the upper limit of this
analysis (10 yr). The significant periods are mostly longer than
2 yr, although much shorter trial periods have been tested. Only
19% of the sample show periodic variations above the 3σ
level. The typical peak amplitudes are in the range
100–200 μas.

We note that the robust periodograms were computed
separately for the R.A. and decl. coordinates of epoch positions.
In the case of Keplerian motion in a binary system, the detectable
signal may be present in both coordinates with the same principal
period (and its harmonics) but with different phase and amplitude.
The probability density of the angle i between the line of sight and
the vector of orbital angular momentum is proportional to isin∣ ( )∣.
Therefore, nearly face-on projected orbits are less likely than
nearly edge-on orbits. For marginally detectable trajectories, the
detactable signal is mostly present in one dimension, which is
uniformly distributed with respect to the local north direction. The
largest extent of the projected orbit can be aligned with one of the
coordinate axes with the same probability as a tilt of 45° or 135°.
In the latter case, the detectable signal is split between the
coordinates, and it should be harder to find it with confidence.
Possible ways to deal with this problem include rotating the R.A.-
decl. measurements on a grid of position angles to find a preferred
direction maximizing the signal amplitude from a 1D period-
ogram. Technically, if a significant single-period signal is detected
in both R.A. and decl. coordinates, a 2D version of robust
periodogram can be implemented. The available coordinate
measurements are combined in a single LS adjustment, but the
number of unknown terms per trial period increases to a minimum
of 8 because of the unknown phase. This may erode the
confidence level of the signal, if the projected orbit is strongly
elongated due to the geometric orientation or large eccentricity.
Quasars IERS B1451−375, 2234+282, and 2318+049 are
attractive targets for further investigation, because they show
coherent periodicities in both coordinates from our results in
Table 1.

9. Summary and Discussion

We have shown in this paper that the classical LS
periodogram method is firmly based on strong and restrictive
assumptions about the distribution of post-fit residuals (which
is assumed to be Normal) and the character of physical signals
in the data. It provides an optimal, unbiased, and unique
solution for periodogram power or amplitude only under these
conditions. Whenever the sample distribution shows significant
departures from the Gaussian PDF, or more complex signals
are present that are not captured in the model, the LS method
becomes corrupted and can produce absolutely misleading
results.

We have considered a specific observational data set for a
moderately variable ICRF3 source collected over >30 yr by
the global geodetic VLBI system. The distribution of

astrometric positional offsets with respect to the mean
position on the sky is explicitly non-Gaussian when scaled
with the given 2D formal covariances or in absolute values.
The normalized offsets are well represented by a log-normal
distribution with a tighter mode and a heavy tail extending
to high values. Nearly half of the measurements are way
outside of the expected distribution. As a result, the
traditional 2-norm (LS) periodogram produces a complex
structure with multiple features that are formally above the
3σ confidence interval across the spectrum of trial periods.
This result is completely bogus. The robust 1-norm period-
ogram method, when applied to the same data, produces
amplitudes that are smaller by half or more. Ranked by the
same previously estimated single-point confidence, the
1-norm values are all insignificant except for a single point
in the R.A. component with a period of 1730 days and
amplitude 72 μas, which appears to be above 3σ. Is this
periodic signal real? The best way to find out is to continue
taking high-precision measurements of this source with
VLBI for a few yr. A stable sinusoidal signal, which could be
produced by an orbiting binary black hole, for example,
would emerge more strongly on the longer timescale.
Alternatively, physical models could be tested, where
transient periodic signals wax and wane in segments of the
data due to phase scrambling. This new method provides the
opportunity to more reliably and extensively search for
periodic signals in non-Gaussian time series at the margin of
available accuracy.
The 1-norm periodogram computation was performed for

259 ICRF3 sources with more than 200 diurnal sessions
collected over nearly 40 yr. These measurements are character-
ized by heavy-tailed sample distributions of residuals. We
identified 49 objects (19%), which have at least one statistically
significant periodogram value in either coordinate component.
Short periods are never found, indicating a possible physical
mechanism of these signals in the transient structure of the
radio-emitting sources. The signals are not consistent with
clean sinusoidal variation at a specific frequency, which would
emerge for an orbiting binary black hole. Rather, the pattern is
that of “vague periodicity” represented by packages of sine
waves with a distribution of frequencies. A possible physical
model is a source that moves in loops on the sky returning to
the vicinity of the initial position after some characteristic time,
which may also vary with time. The estimated amplitude of
these vaguely periodic excursions is 70 μas and higher. About
one-fifth of the detected signals are truncated by the upper
boundary of our periodograms (10 yr). Further investigation of
these astrometric wobbles and continuous daily measurements
will refine the models and allow us to understand the nature of
the phenomenon.

Facility: VLBI.
Software:Wolfram Mathematica.
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