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Abstract
Predicting Earth Orientation Parameters (EOP) is crucial for precise positioning and navigation both on the Earth’s surface
and in space. In recent years, many approaches have been developed to forecast EOP, incorporating observed EOP as well
as information on the effective angular momentum (EAM) derived from numerical models of the atmosphere, oceans, and
land-surface dynamics. The Second Earth Orientation Parameters Prediction Comparison Campaign (2nd EOP PCC) aimed
to comprehensively evaluate EOP forecasts from many international participants and identify the most promising prediction
methodologies. This paper presents the validation results of predictions for universal time and length-of-day variations
submitted during the 2nd EOPPCC, providing an assessment of their accuracy and reliability.We conduct a detailed evaluation
of all valid forecasts using the IERS 14 C04 solution provided by the International Earth Rotation and Reference Systems
Service (IERS) as a reference and mean absolute error as the quality measure. Our analysis demonstrates that approaches
based on machine learning or the combination of least squares and autoregression, with the use of EAM information as an
additional input, provide the highest prediction accuracy for both investigated parameters. Utilizing precise EAM data and
forecasts emerges as a pivotal factor in enhancing forecasting accuracy. Although several methods show some potential to
outperform the IERS forecasts, the current standard predictions disseminated by IERS are highly reliable and can be fully
recommended for operational purposes.

Keywords Earth Orientation Parameters (EOP) · Length-of-day (LOD) · UT1–UTC · Prediction

1 Introduction

Time-variable Earth Orientation Parameters (EOP) serve as
an essential link between the celestial and terrestrial refer-
ence frames, allowing for the transformation of coordinates
between them (Petit and Luzum 2010). This connection
has a wide range of applications in modern geodesy (pre-
cise positioning and navigation on the Earth’s surface and
in space, and determining orbits of satellites), astronomy
(astronomical instruments orientation), and in the operation

Extended author information available on the last page of the article

of space missions. EOP comprise polar motion (PM), dif-
ferences between universal time and coordinated universal
time (UT1–UTC), or its time-derivative length-of-day (LOD)
variations, and corrections to the conventional precession-
nutation model, i.e., celestial pole offsets (CPO). EOP are
routinely determined with high accuracy with the means of
Global Navigation Satellite Systems (GNSS, Ferland et al.
2009; Steigenberger et al. 2006; Zajdel et al. 2020), Satel-
lite Laser Ranging (SLR, Bloßfeld et al. 2018; Glaser et al.
2015; Sośnica et al. 2019), Very Long Baseline Interferome-
try (VLBI, Karbon et al. 2017; Robertson et al. 1985; Schuh
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and Böhm 2013; Sovers et al. 1998), and Doppler Orbitog-
raphy and Radiopositioning Integrated by Satellite (DORIS,
Moreaux et al. 2023).

The International Earth Rotation and Reference Sys-
tems Service (IERS) is a widely recognized institution that
is responsible for the regular delivery of the EOP series
(Bizouard and Gambis 2009). The monitoring and sharing
of daily, monthly, and long-term EOP data, as well as leap
second announcements, are the responsibilities of the Earth
Orientation Center hosted by the Paris Observatory that acts
under the auspices of IERS (Bizouard et al. 2019; Gambis
2004; Gambis and Luzum 2011). The former version of the
final EOP series provided by IERS, i.e., IERS EOP 14 C04,
was consistent with the conventional International Terrestrial
Reference Frame 2014 (ITRF 2014) and the Second Interna-
tional Celestial Reference Frame (ICRF2) (Bizouard et al.
2019). The latest implementation of the C04 series, namely
IERS EOP 20 C04, aligned with the most recent interna-
tional terrestrial reference frame ITRF 2020 (Altamimi et al.
2023) and celestial reference frame ICRF3 (Charlot et al.
2020), was made available in February 2023 (IERSMessage
No. 471 distributed by the IERS Central Bureau: https://da
tacenter.iers.org/data/2/message_471.txt). The formal errors
associated with the final IERS EOP 20 C04 data delivered by
the IERS currently indicate an uncertainty level of approxi-
mately 10 microseconds (μs) for UT1–UTC, while rapidly
processed observations may have errors several times higher.

Many operational applications require the knowledge of
EOP in real time. However, the complexity of computations
and the processing of data from various observational tech-
niques, each characterized by different levels of accuracy,
stability, availability, and temporal resolution, increase the
processing time required for the EOP determination. As a
result, rapidly processed but less precise EOP datasets are
provided once per day, while the most accurate solutions
are delivered with delays of 30 days and longer. Conse-
quently, most real-time applications exploit short-term EOP
predictions, which are currently processed by institutions
around the world. For example, the U.S. Naval Observa-
tory (USNO) routinely issues forecasts that are subsequently
officially disseminated by the IERS (Luzum et al. 2001).
In addition, Deutsches GeoForschungsZentrum (GFZ; Dill
et al. 2019), Eidgenössische Technische Hochschule (ETH,
Kiani Shahvandi et al. 2022a; Soja et al. 2022), Jet Propul-
sion Laboratory (JPL; Gross et al. 1998), and the European
Space Agency (ESA; Bruni et al. 2021) deliver EOP fore-
casts on a regular basis. The latter two institutes provide truly
independently processed series of EOP based on data from
various observational techniques (Bruni et al. 2021; Ratcliff
and Gross 2019), whereas other groups such as ETH and
GFZ partly rely on IERS input data (Kiani Shahvandi et al.
2022a; Dill et al. 2019).

For most real-time applications, such as precise position-
ing and navigation, it is sufficient to have an EOP forecast
for the next few days. EOP predictions for a duration of at
least 1 year into the future might be utilized for climate fore-
casting and long-term satellite orbit prediction (Lei et al.
2023). In terms of required EOP prediction accuracy, the
current accuracy of predictions (below 1 ms for UT1–UTC
ultra-short-termpredictions disseminatedby IERS)meets the
needs for ephemerides or pointing astronomical instruments
(Luzum 2010). For the purpose of tracking and navigating
interplanetary spacecraft, forecast accuracy requirements of
approximately 10 mas for PM and 0.65 ms for UT1–UTC
have been formulated (Oliveau and Freedman 1997). Even
higher accuracy of EOP predictions is essential for real-time
satellite orbit determination and VLBI analysis. Given the
broad range of possible future satellite applications related
to, e.g., the monitoring of precipitable water vapor, tsunamis,
and earthquakes, the demand for accurate estimates and pre-
dictions of EOP might even increase further.

In addition to the observed EOP values, contemporary
Earth orientation predictions commonly incorporate analyses
and forecasts of effective angular momentum (EAM). In the-
ory, changes in the rotation of the solidEarth can be examined
by employing the principle of conserving angular momen-
tum within the Earth system, including the surrounding fluid
layers (atmosphere, oceans, continental hydrosphere) (Gross
2007). According to this principle, the rotation of the solid
Earth is altered by external torques, internal redistribution
of mass, and the exchange of angular momentum between
the solid Earth and the adjacent fluid layers. EAM functions
describe the excitation of Earth orientation changes caused
by the sum of atmospheric, oceanic, and hydrospheric mass
redistributions (Barnes 1983; Brzeziński 1992). In particu-
lar, the axial component (χ3) of EAM excites UT1–UTC.
Previous works (e.g., Gross et al. 2004) have shown that
atmospheric and oceanic effects can explain up to 90% of
observed UT1–UTC variation. Such relationships between
modelled EAM and the EOP have prompted the adoption of
EAM forecasts for predicting Earth rotation especially for
shorter time horizons (Dobslaw and Dill 2018; Freedman
et al. 1994).

Between2006 and2008, a comprehensive comparison and
evaluation of different EOP forecasts was carried out as part
of the EOP Prediction Comparison Campaign (EOP PCC)
organized by Vienna University of Technology and Centrum
Badań Kosmicznych Polskiej Akademii Nauk (CBK PAN)
with the support of the IERS (Kalarus et al. 2010). The pri-
mary objectives of this initiative were to identify the optimal
methods for EOP forecasting and to eventually develop a
combined series of EOP predictions. The EOP PCC yielded
valuable insights into various prediction techniques under
consistent rules and conditions. The benefits of combining
submitted solutions were demonstrated, and it was shown

123

https://datacenter.iers.org/data/2/message_471.txt


Assessment of length-of-day and universal time predictions based … Page 3 of 34 22

that incorporating atmospheric angular momentum (AAM)
forecast data as an input improves EOP prediction accuracy.
However, the choice of the best prediction technique was
shown to be dependent on the selected EOP and the targeted
prediction horizon, indicating that no single technique out-
performed all the others (Kalarus et al. 2010).

Since the completion of the EOP PCC in 2008, con-
siderable progress has been made in the development of
observational data, the advancement of new forecasting
methods, and the understanding of the role of EAM in EOP
variations. There has also been a substantial increase in the
number of teams involved in EOP prediction, with different
teams applying various inputs, forecasting algorithms, and
prediction horizons. Consequently, there are clear differ-
ences in the accuracy of the resultant individual predictions.
As a result of the progress in the field of EOP forecasting, the
IERS has established a dedicated working group (Working
Group on the 2nd EOP PCC, for details see https://www.
iers.org/IERS/EN/Organization/WorkingGroups/Prediction
Comparison/predictionComparison.html) with the primary
objective of conducting a new comprehensive reassessment
of the current capabilities of EOP forecasting. The 2nd EOP
PCC was handled in collaboration between CBK PAN and
GFZ. The EOP PCC Office, established at CBK PAN, was
responsible for routinely collecting and evaluating forecasts
submitted by registered campaign participants (Śliwińska
et al. 2022). The operational phase of the 2nd EOP PCC
lasted 70 weeks from September 1, 2021, until December 31,
2022, involving 18 active teams from 23 institutes around the
world, who routinely provided predictions of all EOP based
on 50 different methods distinguished with individual IDs.
During the campaign, 7327 individual predictions of any
EOP were collected. A summary of the most relevant events
related to the 2nd EOP PCC and some technical aspects,
such as file format requirements and data submission rules,
as well as more detailed statistics, can be found in Śliwińska
et al. (2022).

Although only the values of PM, UT1–UTC, and
precession-nutation are sufficient to perform coordinate
transformations between the celestial and terrestrial refer-
ence frames, the 2nd EOP PCC Office also collected and
analyzed LOD predictions, even though LOD is not directly
included in the transformation matrix. LOD can be defined
as the first negative derivative of UT1–UTC with respect to
time, which means LOD is equal to the rate of change of
UT1–UTC over time, expressed as:

LOD � −d(UT1 − UTC)

dt
(1)

In turn, UT1–UTC can be estimated from LOD by inte-
grating LOD values and adding the value of UT1–UTC at
zero epoch (Mikschi et al. 2019). Estimation of LOD is

important because of the inherent disturbances arising from
GNSS data in the case of UT1–UTC, as it is challenging to
reliably distinguish between linear drifts in the satellite con-
stellation and changes in the Earth’s rotational angle. LOD
remains unaffected by this issue, making it feasible to esti-
mate accurately using GNSS alone, without the requirement
of a consistent combination with VLBI. LOD can be there-
fore used to densify and predict UT1–UTC (Senior et al.
2010).

In the current study, we present a scientific summary of
the 2nd EOP PCC results focusing on a thorough assess-
ment of predictions of UT1–UTC and LOD submitted by the
campaign participants. Our goal is to provide an objective
analysis of a wide variety of UT1–UTC and LOD forecasts
developed using diverse approaches, predictionmethods, and
input data. We intend to determine the current forecasting
capabilities for these parameters and offer recommenda-
tions on the most effective methodologies for this purpose.
No such comprehensive analysis of multiple UT1–UTC and
LOD forecasts has been conducted since the conclusion of
the 1st EOP PCC. Section 2 of this paper provides a brief
overview of prediction methodologies and input data used
by contributors, along with statistics regarding the num-
ber of valid files received and the most popular prediction
horizons. Section 3 describes the methodology for predic-
tion evaluation. Section 4 presents a thorough evaluation of
the predictions, divided into a general overview of predic-
tions without distinguishing specific IDs (Sect. 4.1) and a
detailed assessment of all predictions (Sect. 4.2). Section 5.1
presents an analysis of the dependence of prediction accuracy
on the considered time period, whereas Sect. 5.2 deals with
the transformation between LOD and UT1–UTC. Section 6
includes a ranking of allmethods based on previously applied
criteria, and finally, Sect. 7 summarizes all the results and
provides concluding remarks.

2 Overview of UT1–UTC and LOD predictions

2.1 Predictionmethods and input data exploited
by participants

During the 2nd EOP PCC, UT1–UTC was predicted by
15 participants using 25 different combinations of methods
and inputs (indicated with individual IDs), while LOD pre-
dictions were performed by 12 teams with the use of 25
approaches (Table 1). 15 of the IDs provided forecasts for
both parameters, which makes a total of 35 IDs providing
UT1–UTC and/or LOD predictions. In total, the EOP PCC
Office received 1399 files for UT1–UTC and 1226 files for
LOD predictions. A summary of the prediction methods and
input data used by the participants to predict UT1–UTC and
LOD is presented in Table 2 and a full description of the
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Table 1 Summary of the number of all registered participants, methods, and prediction files involved in the 2nd EOP PCC compared with the 1st
EOP PCC.

1st EOP PCCa 2nd EOP PCC

All parameters UT1–UTC LOD All
parameters

UT1–UTC LOD

Number of registered
participants

11 7 8 18 15 12

Number of institutes 11 7 8 23 19 16

Number of countries of
participant origin

8 6 7 8 8 7

Total number of team
members

12 7 9 55 41 34

Number of registered
methods (IDs)

20 (+ 1 combined
prediction series)

13 (+ 1 combined
prediction series)

14 (+ 1 combined
prediction series)

50 25 25

Number of predictions 6176 861
(ultra-short-term)
493 (short-term)
238
(medium-term)b

808
(ultra-short-term)
548 (short-term)
268
(medium-term)

7327 1399 1226

The table only contains information relating to active participants of the campaign (i.e., those who have submitted their forecasts at least once)
A participant is an institute or a consortium of several institutes that work together on a given forecast and have a common ID or several common
IDs. An institute is a single research center that either acts as a participant in developing its own forecasts or cooperates with other institutes
aBased on Kalarus et al. (2010)
bUltra-short-term < 10 days, short-term < 30 days, medium-term < 500 days

groups is provided in “Appendix 1”. A wide variety of meth-
ods are exploited, but algorithms based on least squares (LS)
and their modifications and approaches based on machine
learning (ML), were most popular among all IDs. However,
only two institutes used ML-based methods for UT1–UTC
and LOD forecasting. ML has been declared in 14 different
IDs, 13 of which were developed by one group (ETH) (see
Table 2 and “Appendix 1” for more details). The LSmethods
are usually combined with autoregression (AR), autoregres-
sive integratedmoving average (ARIMA), convolution, local
approximation (LA), or krigingmethods. Of themethods that
do not belong to the two most popular groups (ML and LS),
the most noteworthy are Kalman filtering, adaptive polyhar-
monic models, normal time–frequency transform (NTFT),
singular spectrum analysis (SSA), and Copula approaches
(Table 2).

The input data exploited are more homogeneous than
methods of prediction as almost all participants use the EOP
14 C04 series provided by the IERS, usually supplemented
with daily datasets from the IERS Rapid Service/Prediction
Center at USNO. Only two IDs use the EOP final series from
other data sources. A total of 23 IDs declared the use of
EAM data as an additional input and most of these exploit
EAM series provided by GFZ (Dill et al. 2013, 2019, 2022).
Although GFZ routinely delivers data and 6-day forecasts
for atmospheric, oceanic, hydrological, and sea-level angular

momentum (AAM, OAM, HAM, and SLAM, respectively),
not all participants used each of the four components.

2.2 Submissions of UT1–UTC and LOD predictions

Figure 1 presents statistics of submitted files for UT1–UTC
and LOD predictions, specifically the number of files sub-
mitted by each ID throughout the entire campaign period
(Fig. 1a), the total number of all prediction files received on
individual submission days (Fig. 1b), and the most common
prediction lengths (Fig. 1c). Figure 1a shows that only two
IDs (IDs 100 and 126) provided valid predictions of UT1–
UTC in all 70 weeks of the campaign, but another 10 out
of the 25 total IDs involved in UT1–UTC prediction pro-
vided more than 60 UT1–UTC forecasts. The IDs for which
we received the lowest number of predictions (IDs 146–149)
were registered around halfway through the 2nd EOP PCC
operation. Even though as manymethods were used for LOD
forecasting as for UT1–UTC prediction, there are over 170
fewer files submitted for LOD (Table 1, Fig. 1). This is partly
because in the case of LOD there were more methods reg-
istered later in the campaign (IDs 141–145, 156, 157), and
some participants stopped (e.g., ID 108) or started (ID 117)
forecasting LOD a few weeks after initiating active partic-
ipation. Over 60 LOD predictions were sent by 10 out of
the 25 IDs, of which only 2 provided files in all weeks of
the campaign duration. The least active participant (ID 157)
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Table 2 Summary of prediction
methods and input data used by
participants to predict UT1–UTC
and LOD

ID Predicted
parameters

Prediction method Input data

100 UT1–UTC;
LOD

LS + AR IERS 14 C04;
IERS finals.daily

101 UT1–UTC;
LOD

LS + AR with piecewise parameter
optimization

IERS 14 C04;
IERS finals.daily;
GFZ AAM + OAM + HAM +
SLAM data and 6-day predictions

102 UT1–UTC;
LOD

LS + AR IERS 14 C04;
GFZ AAM 6-day predictions

103 UT1–UTC Adaptive polyharmonic models with
infrequent components

IERS 14 C04

104 UT1–UTC;
LOD

Kalman filter EOP data from IGS, ILRS, JPL,
GSFC;
NCEP/NCAR (before 9/26/21)
and GFZ (after 10/19/21) AAM
data and 6-day predictions

105 UT1–UTC;
LOD

LS + AR IERS 14 C04;
IERS finals.daily;
GFZ AAM + OAM + HAM data
and 6-day predictions

107 UT1–UTC Differential LS + AR IERS 14 C04;
IERS finals.daily

108 UT1–UTC;
LOD

LS + multi-elements AR (LS +
MAR)

EOP 14 C04 IERS;
GFZ AAM data

112 UT1–UTC;
LOD

LS + Convolution IERS 14 C04;
IERS finals.daily;
GFZ AAM + OAM + HAM +
SLAM data

113 UT1–UTC;
LOD

LS + AR IERS 14 C04

114 UT1–UTC;
LOD

LS collocation IERS 14 C04

115 UT1–UTC;
LOD

Neural networks IERS 14 C04

116 UT1–UTC LS + AR ESA ERP estimates based on data
from GNSS Rapid and Final,
SLR, DORIS, VLBI intensive
sessions, VLBI rapid turnaround
sessions;
GFZ AAM + OAM + HAM data
and 6-day predictions

117 UT1–UTC;
LOD

SSA + Copula IERS 14 C04;
IERS Bulletin A;
GFZ AAM + OAM + HAM +
SLAM data and 90-day
predictions

118 UT1–UTC Local approximation (LA) + LS IERS 14 C04

121 UT1–UTC;
LOD

Normal time–frequency transform
(NTFT)

IERS 14 C04

122 UT1–UTC;
LOD

Weighted LS + ARIMA IERS 14 C04;
IERS finals.daily

123 UT1–UTC;
LOD

Unknown IERS 14 C04;
GFZ AAM + OAM data
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Table 2 (continued)
ID Predicted

parameters
Prediction method Input data

124 LOD Encoder–decoder long short-term
memory (LSTM)

IERS finals.daily;
GFZ AAM data and 6-day
predictions

125 LOD LSTM auto-encoder stacking
augmented with residual learning
and attention mechanism

SYRTE EOP seriesa; GFZ AAM
data and 6-day predictions

126 UT1–UTC First-order neural ordinary
differential equations (ODEs)

SYRTE EOP series;
GFZ AAM data and 6-day
predictions

129 LOD First-order neural (ODEs) SYRTE EOP series;
GFZ AAM data and 6-day
predictions

130 UT1–UTC First-order neural (ODEs) SYRTE EOP series;
GFZ AAM + HAM + OAM +
SLAM data and 6-day predictions

136 UT1–UTC;
LOD

LS + AR IERS 14 C04;
IERS finals.daily;
GFZ AAM + OAM + HAM data
and 6-day predictions

141 LOD LS + kriging IERS 14 C04;
IERS finals.daily

142 LOD Encoder–decoder LSTM IERS finals.daily;
GFZ AAM + HAM + OAM +
SLAM data and 6-day predictions

143 LOD Revised multilayer perceptron IERS finals.daily;
GFZ AAM data and 6-day
predictions

144 LOD First-order neural (ODEs) IERS finals.daily;
GFZ AAM data and 6-day
predictions

145 LOD First-order neural (ODEs) SYRTE EOP series;
GFZ AAM data and 6-day
predictions

146 UT1–UTC First-order neural (ODEs) SYRTE EOP series;
GFZ AAM + HAM + OAM +
SLAM data and 6-day predictions

147 UT1–UTC First-order neural ODEs with
Residual modelling

SYRTE EOP series;
IERS finals.daily predictions;
GFZ AAM + HAM + OAM +
SLAM data and 6-day predictions

148 UT1–UTC First-order neural ODEs with
Residual modelling

IERS finals.daily data and
predictions;
GFZ AAM + HAM + OAM +
SLAM data and 6-day predictions

149 UT1–UTC First-order neural ODEs with
Residual modelling

SYRTE EOP series;
GFZ AAM + HAM + OAM +
SLAM data and 6-day predictions

156 LOD LS + ARIMA IERS 14 C04;
IERS finals.daily

157 LOD Dynamic mode decomposition
(DMD)

IERS 14 C04;
IERS finals.daily

A full description of the groups is provided in “Appendix 1”
aSYRTEEOP series are the eopc04_extended files provided by Sytèmes deRéférence TempsEspace (SYRTE)
of Paris Observatory. SYRTE EOP are based on rapid data only and does not exploit the final post-processed
solution which is typically available 4 weeks later
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Fig. 1 a Number of UT1–UTC
and LOD predictions submitted
by each ID during the whole
campaign duration, b number of
all UT1–UTC and LOD
predictions submitted on
individual submission days, and
c number of IDs providing
UT1–UTC and LOD predictions
for the specified prediction
horizon

registered only in November 2022 and sent just 7 LOD fore-
casts.

For about the first 7 months of the campaign, apart from
a few occasional drops, the number of valid UT1–UTC
and LOD forecasts received each Wednesday by the EOP
PCC Office was relatively stable (around 20 predictions of
UT1–UTC and 16 predictions of LOD) (Fig. 1b). After a
noticeable decrease at the end of March 2022, the quantity
of submitted files increased (around 25 for UT1–UTC and
22 for LOD) because of the registration of several newmeth-
ods by one of the participants. These numbers eventually
diminished in September 2022 to reach 18 or 19 for both
parameters.

The 2nd EOP PCC participants had full freedom in terms
of the forecast horizon, with the only condition that the pre-
dictions could not be longer than 365 days into the future.
A histogram of the prediction horizons used in the 2nd EOP
PCC is shown in Fig. 1c. The most popular forecast length
for both UT1–UTC and LOD was 90 days into the future
and the second most popular was the prediction for 365 days
ahead. In contrast, in the 1st EOP PCC, the most frequently
submitted prediction lengths were ultra-short-term forecasts
(predictions for up to 10 days into the future) (Kalarus et al.
2010).

3 Prediction evaluationmethodology

Because of the large number of IDs predicting both param-
eters, we decided to present detailed results in groups of
contributions. As stated in Sect. 2.1, the exploited input data
were rather homogeneous, so we formed the groups manu-
ally based on the prediction method used. The most popular
approach among participants was exploiting LS in combina-
tion with AR and with possible modification of the method,
so we decided to distinguish two groups based on this group
of methods. The first group, “LS + AR”, includes IDs that
do not use EAM data, while the second, “LS + AR + EAM”,
includes IDs that additionally use EAMdata. The third group
(“ML”) includes ML approaches, most of which use EAM
data as well (only for one ID, i.e., ID 115, we do not have
a clear information whether this type of data was used or
not). The last group, “Other”, contains more unique methods
that cannot be included in the previous three groups. In this
group, 4 out of 8 IDs declared the use of EAM data (IDs 102,
104, 117, and 123). Every group contains between 5 and 8
IDs. A summary of the method clustering with information
on the assignment of IDs to the groups is shown in Table 3.

Following the previous campaign, we use the mean abso-
lute error (MAE) as a basic parameter for EOP prediction
evaluation (Kalarus et al. 2010; Kur et al. 2022; Śliwińska
et al. 2022):

123
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Table 3 ID assignment to groups
according to prediction method
and EAM usage

LS + AR LS + AR + EAM ML Other

UT1–UTC 100, 107, 113, 114,
118, 122

101, 105, 108, 112,
116, 136

115, 126, 130, 146,
147, 148, 149

102, 103, 104, 117,
121, 123

LOD 100, 113, 114, 122,
156

101, 105, 108, 112,
136

115, 124, 125, 129,
142, 143, 144,
145

102, 104, 117, 121,
123, 141, 157

MAEi � 1

n p

np∑

j�1

∣∣∣xobsi − xpredi , j

∣∣∣, i � 1, 2, . . . , I , (2)

where n p is the number of valid prediction files submitted
by a campaign participant under a single ID, xobsi is the EOP

reference data for the i th day of reference series, xpredi , j is the
predicted value for the i th day of the j th prediction, and I is
the forecast horizon. In this study, we use I � 10 days and
I � 30 days.

As reference data, we use the IERS 14 C04 series. How-
ever, some forecasts evaluated in this study are predicted
from other input data (e.g., IDs 104, 116, see Table 2). Since
prediction algorithms are typically optimized with respect
to the underlying input data, this could potentially result in
increased MAE for forecasts based on the data other than the
official IERS solution. Some insights regarding the differ-
ences between individual reference EOP series are included
in Śliwińska et al. (2022), where the IERS 14 C04 solution
was compared with other combined EOP data (e.g., SPACE,
Bulletin A), as well as with the single-technique series based
on GNSS, SLR and VLBI measurements. It was found that
forUT1–UTC, theRMSof differences between IERS14C04
and other solutions ranged from 0.019 to 0.212 ms, while for
LOD, these values ranged from 0.010 and 0.098 ms. Hence,
the choice of reference data for assessing EOP prediction
may be important in individual cases.

The results for UT1–UTC from each of the group are
also compared with predictions disseminated by the IERS,
which are produced by USNO for 90 days into the future.
The IERS forecasts for UT1–UTC rely on observations
from VLBI, GNSS, and SLR, alongside AAM analysis and
prediction data. The AAM data utilized for UT1–UTC pre-
dictions are sourced from a combination of the operational
National Centers for Environmental Prediction (NCEP) and
Navy Global Environment Model (NAVGEM) (IERS 2023).
USNO employs AAM-based projections to determine UT1–
UTC forecasts for a period extending up to 7.5 days ahead.
For longer-term predictions, LOD excitations are combined
smoothly with the longer-term UT1–UTC predictions. The
method for predicting UT1–UTC beyond 7.5 days utilizes a
straightforward approach known as differencing (McCarthy
and Luzum 1991). Details on the computation are provided
in IERS Annual Report (IERS 2023).

The IERS forecasts were taken from daily updated
files finals.2000A.daily (https://www.iers.org/IERS/EN/Da
taProducts/EarthOrientationData/eop.html—accessed 2023-
05-01). The ID 200 was assigned for these predictions. Note
that LOD forecasts are not provided by IERS. However, to
relate the LOD predictions provided by campaign partici-
pants to the forecasts delivered by IERS, we converted the
UT1–UTC predictions from ID 200 into LOD values.

During routine checking of prediction files, the EOP PCC
Office detected some erroneous predictions. Sometimes out-
liers were caused by problems in input preparation resulting
from availability issues with the most recent EOP or EAM
data, defects in the software, or data errors in the files (e.g.,
predictions provided for the wrong days) (personal commu-
nication with participants). Incorrect predictions may affect
the objective assessment of the accuracy of a given forecast-
ing method, which is undesirable; however, the EOP PCC
Office had to avoid interfering with the supplied files or any
manual modification of the submissions. To solve the prob-
lem of erroneous predictions, we decided to incorporate a
two-step screening process.

In the first step of data selection, called “σ criterion”,
we computed the standard deviation S j of the differences

between reference andprediction (xobsi −xpredi , j ) for all submit-
ted predictions separately, and then, the standard deviation of
differences was computed for all submissions (Stotal). Indi-
vidual predictions with S j > Stotal were eliminated from
further processing. This step removes highly inaccurate pre-
dictions whose values significantly differ from observational
data and other predictions, which could have been caused by
factors such as incorrect units.

In the second step, called “β criterion”, we considered
each ID individually to eliminate those single predictions
of a given participant that noticeably differ from the other
predictions by the same provider. To achieve this, following
Kalarus et al. (2010), we determined a threshold indepen-
dently for each ID using the β parameter, the value of which
depends on themedian of differences between an observation
and a prediction (median absolute error, MDAE):

β j �
I∑

i�1

(
α · MDAEi −

∣∣∣xobsi − xpredi , j

∣∣∣
)
, (3)

123

https://www.iers.org/IERS/EN/DataProducts/EarthOrientationData/eop.html


Assessment of length-of-day and universal time predictions based … Page 9 of 34 22

MDAEi � median
(∣∣∣xobsi − xpredi , 1

∣∣∣, . . . ,
∣∣∣xobsi − xpredi , n p

∣∣∣
)
,

(4)

where the α value was chosen subjectively to preserve a rep-
resentative number of predictions. In this study, we used α �
3. All predictions with β j < 0 were eliminated from further
processing.

Table 4 provides the number of UT1–UTC predictions
eliminated by the σ and β criteria for each ID for the 10-
and 30-day prediction horizon as well as the ratio of rejected
files to all submitted files. The use of the σ condition resulted
in the elimination of nine files for ID 102 (for both predic-
tion horizons), whereas no gross errors were detected for the
other IDs. Indeed, for ID 102, we noticed some problems
mainly in October 2021 and again between September and
November 2022. The participant reported that gross errors in
the first period might have resulted from the use of UT1–TAI
difference instead of UT1–UTC, while the GFZ AAM fore-
casts (upon which those predictions are based for the first
7 days) were not downloaded correctly in the second period
(personal correspondence with Christian Bizouard). Some of
the participantswith the largest number of rejections reported
problems with the availability of the most recent EOP val-
ues from the IERS EOP Rapid solution, using observational
data from wrong days, or unintentional lack of use of daily
IERS EOP Rapid data. In general, after applying σ and β cri-
teria, 6.0% of UT1–UTC predictions for the 10-day horizon
and 4.8% of UT1–UTC predictions for the 30-day prediction
horizon were eliminated.

The number of LOD predictions eliminated by the σ and
β criteria are presented in Table 5. Again, the use of the
σ criterion eliminated several files for ID 102, which was
probably related to the problem with the download of the
AAM predictions. In addition, two files for ID 129 were
eliminated and this participant reported a few problems with
the availability of EAM forecasts delivered by GFZ. The
largest number of rejections for β was detected for ID 105.
This was caused mainly by improper accounting for long-
periodic ocean tides at the beginning of the campaign. This
problem was then traced back and solved by the participant
(the details of this issue are described in Kur et al. 2022). In
general, after the applying σ and β criteria, 4.7% of LOD
predictions for 10-day horizon and 2.2% of LOD predictions
for 30-day prediction horizon were eliminated.

As mentioned above, one of the reasons for the reduction
in the accuracy of 10-day forecasts that were eliminated from
further processing may be problems with the availability of
EAM data and their 6-day forecasts provided by GFZ, which
are routinely used by participants, especially for the LOD
forecasting. Therefore, in Tables 4 and 5, we also included
the number of rejections for days in which the GFZ EAM
predictions were unavailable. According to GFZ (personal

correspondence with Robert Dill), we learned that in the
operational phase of the campaign, in 11 out of 70 weeks
there were problems with the availability of EAM forecasts
on the day of submitting the EOP forecasts to the EOP PCC
Office (Wednesday) or on the day before. However, the elimi-
nation of outlier predictions coincides with the unavailability
of EAM predictions only in some cases (for LOD 13 dele-
tions out of a total of 52 occurred on days when GFZ EAM
predictions were inaccessible) (Table 5), indicating that there
is no single reason for all the identified problems. It is also
worth mentioning that the lack of EAM forecasts not only
on the day of submission or the day before may reduce the
accuracy of the predictions.When participants use the full set
of daily EAM forecasts in their algorithm, missing values on
any other day are essential. The most critical effect of EAM
data unavailability is for those predictions where the lack of
EAM caused an error, but the error was not large enough so
that the prediction was eliminated. Those submissions with
errors due to a lack of EAM, but not eliminated, can cause
the average performance to degrade significantly.

4 Evaluation of UT1–UTC and LOD
predictions

4.1 General overview of predictions

We will begin the assessment of UT1–UTC and LOD
predictions with a general overview of forecasts (without
distinguishing individual IDs) to study the overall accu-
racy achieved during the campaign. Boxplots of differences
between reference and predicted values for the 1st, 5th, 10th,
15th, 20th, 25th, and 30th day into the future are shown in
Fig. 2 (for UT1–UTC) and Fig. 3 (for LOD). Statistics for
the differences between reference and predicted values for
the 10- and 30-day horizons are given in Table 6.

In the case of UT1–UTC, the lowest inter-quartile range
(IQR, range between the first quartile (Q1) and the third quar-
tile (Q3) of the data) of differences and the fewest outlier
values were detected for the LS +AR+EAMandML groups
(Fig. 2). However, for the LS + AR + EAM group only, the
most extreme data points that are not indicated as outliers
(outliers defined as data points that fall below Q1−1.5 · IQR
or above Q3 + 1.5 · IQR), are within the range of ± 10 ms
for the 30-day prediction horizon. A gradual increase in the
range of differences can be observed as the prediction length
increases. For all considered prediction days in the “Other”
group and starting from the 20th prediction day for the LS
+ AR group, there is a clear asymmetry in the distribution
of differences (there are more positive differences), indicat-
ing that the predictions underestimate the observed values in
these cases.
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Table 4 Number of UT1–UTC
predictions rejected after
applying σ and β criteria,
number of σ and β rejections for
days when EAM GFZ
predictions were unavailable, and
percentage (%) of rejected
predictions in relation to the
number of all submitted files

Group ID Number of predictions
rejected by σ | Number
of σ rejections for
days when EAM GFZ
predictions were
unavailable

Number of predictions
rejected by β | Number
of β rejections for
days when EAM GFZ
predictions were
unavailable

% of rejection for
σ + β

10 days 30 days 10 days 30 days 10 days 30 days

LS + AR 100 – – 7|1 5|0 10.0 7.1

107 – – 2|0 2|0 2.9 2.9

114 – – 7|0 4|0 16.3 9.3

118 – – – 5|1 0.0 9.8

122 – – 2|0 2|0 3.3 3.3

LS + AR + EAM 101 – – 5|1 – 9.1 0.0

105 – – 3|0 3|0 4.4 4.4

108 – – 6|0 2|0 9.1 3.0

112 – – 2|1 2|0 2.9 2.9

116 – – – 2|1 0.0 2.9

136 – – 4|0 – 7.7 0.0

ML 126 – N/Aa 7|2 N/A 10.0 NA

130 – N/A 5|2 N/A 7.8 NA

146 – – 2|1 1|1 5.3 2.6

147 – – 3|1 1|1 8.1 2.7

148 – – – 3|1 0.0 8.1

149 – – 2|1 3|0 5.3 7.9

Other 102 9|1 9|1 5|1 5|1 21.2 21.2

103 – – 2|0 1|0 3.6 1.8

104 – – 3|0 2|0 4.3 2.9

117 – – 6|0 4|0 13.0 8.9

121 – – 2|1 2|0 3.0 3.0

123 – – 1|0 – 2.3 0.0

IERS 200 – – 2|0 5|0 2.9 7.2

Total 9|1 9|1 78|12 54|6 6.0 4.8

For IDs not listed (IDs 113, 115), none of the files was removed. Note that the prediction horizon for IDs 126
and 130 is shorter than 30 days, therefore the 30-day prediction horizon values are not provided for those IDs
aN/A not applicable

Figure 3 shows that in the case of LOD predictions, except
for the ML group, the highest number of outlier values is
received for the initial prediction days (1st and 5th). Unlike
UT1–UTC forecasts, there is no clear increase in the range
of differences with increasing day of forecast.

The IQR for all UT1–UTCpredictions for both the 10- and
30-day prediction horizons are 0.575 and 2.031 ms, respec-
tively, which is around twice that of the ID 200 (Table 6).
It is worth noting that despite eliminating outlier predic-
tions, the range between the minimum and maximum values
is prominent (83.523 and 106.902 ms for the 10- and 30-day
prediction horizon, respectively), which was mainly influ-
enced by outlier values of differences for just a few IDs (IDs

102, 122, and 126). Even though the difference values for
EOP PCC contributors’ predictions were generally consid-
erably greater than those of the forecasts from ID 200, mean
and median values for predictions from the campaign par-
ticipants are lower than corresponding values for ID 200,
especially for the 30-day prediction horizon. For both ID
200 and 2nd EOP PCC predictions, the differences between
observed and predicted values as well as their statistics (min,
max, median, mean, root-mean-square (RMS), range, IQR)
are greater for the 30-day than for the 10-day prediction hori-
zon, which shows that the error of UT1–UTC forecast grows
as the prediction horizon increases.
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Table 5 Number of LOD
predictions rejected after
applying σ and β criteria,
number of σ and β rejections for
days when EAM GFZ
predictions were not available,
and percentage (%) of rejected
predictions in relation to the
number of all submitted files

Group ID Number of predictions
rejected by σ | Number
of σ rejections for
days when EAM GFZ
predictions were
unavailable

Number of predictions
rejected by β |Number
of β rejections for
days when EAM GFZ
predictions were
unavailable

% of rejection for
σ + β

10 days 30 days 10 days 30 days 10 days 30 days

LS + AR 100 – – 1|0 1|0 1.4 1.4

122 – – 1|0 – 1.6 0.0

156 – – 2|0 1|0 6.5 3.2

LS + AR + EAM 105 – – 13|3 – 19.1 0.0

108 – – 1|0 – 5.9 0.0

112 – – 1|0 1|0 1.4 1.4

ML 115 – – 4|0 5|0 9.3 11.6

124 – N/A 4|3 N/A 6.0 N/A

125 – N/A 4|2 N/A 5.7 N/A

129 2|1 N/A 2|0 N/A 6.5 N/A

142 – N/A 2|1 N/A 5.3 N/A

143 – – 2|1 2|1 5.3 5.3

144 – – 3|1 2|1 7.9 5.3

145 – – 2|1 1|1 5.3 2.6

Other 102 6|1 6|1 – – 9.1 9.1

104 – – 3|1 1|0 4.3 1.4

117 – – 3|0 – 7.0 0.0

121 – – 1|0 1|0 1.5 1.5

123 – – 2|0 – 4.7 0.0

141 – – 1|0 1|0 2.7 2.7

IERS 200 – – 1|0 1.4 1.4

Total 8|2 6|1 53|13 17|3 4.7 2.2

For IDs not listed (IDs 101, 113, 114, 136, 157), none of the files was removed. Note that the prediction
horizon for IDs 124, 125, 129 and 142 is shorter than 30 days, therefore the 30-day prediction horizon values
are not provided for those IDs

For statistics of differences computed for LOD predic-
tions, there is less difference between the 10-day and 30-day
horizon than in the case of UT1–UTC (Table 6). The IQR for
all LOD predictions for the 10- and 30-day prediction hori-
zon are 0.138 and 0.245 ms, respectively, while the range
between the minimum and maximum values are as high as
9.445 and 9.718 ms for 10- and 30-day predictions, respec-
tively. The comparison of statistics of differences obtained
for LOD between ID 200 and 2nd EOP PCC participants
shows that in both cases, the IQR is at a similar level for
both time horizons. In turn, the differences received in the
campaign exhibit higher extreme values than in the case of
ID 200, but the mean and median values are lower for the
campaign participants than for ID 200.

4.2 Detailed assessment of predictions

We further assess the quality of UT1–UTC and LOD predic-
tions by specifically studying MAE for the 10- and 30-day
horizons. Analysis is performed for the groups described in
Sect. 3. Figure 4 presents MAE plots for UT1–UTC for the
10-day prediction horizon for each group compared with
the mean MAE for the group and the mean MAE for all
IDs. The plots also contain MAE values for Day 0, which is
the submission day (i.e., Wednesday, the last day for which
observational data are available). By showing this value, we
can verify whether a given participant had errors at the stage
of preparing observational data, which could later reduce the
accuracy of the forecast itself. Except for IDs 112 (Fig. 4b),
148 (Fig. 4c), 117 and 121 (Fig. 4d), there were no major
issues at the data preparation stage for most participants,
since MAE for Day 0 is usually very low. The providers of
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Fig. 2 Boxplot of differences
between reference and predicted
values for UT1–UTC for 1st, 5th,
10th, 15th, 20th, 25th, and 30th
day into the future for groups
a LS + AR, b LS + AR + EAM,
c ML, and d Other

Fig. 3 Boxplot of differences
between reference and predicted
values for LOD for the 1st, 5th,
10th, 15th, 20th, 25th, and 30th
day into the future for groups
a LS + AR, b LS + AR + EAM,
c ML, and d Other
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Table 6 Statistics (min, max, mean, root-mean-square (RMS), median, range, and inter-quartile range (IQR)) for the differences between reference
and predicted values for UT1–UTC and LOD for predictions from all participants (Total) and for prediction from ID 200 for prediction horizons
of 10 and 30 days into the future

UT1–UTC [ms] LOD [ms]

ID 200 (IERS) Total ID 200 (IERS) Total

10 days 30 days 10 days 30 days 10 days 30 days 10 days 30 days

Min − 1.444 − 12.084 − 11.309 − 16.523 − 0.204 − 0.627 − 7.857 − 7.857

Max 0.762 8.258 72.215 90.378 0.406 0.965 1.588 1.860

Mean − 0.093 − 0.274 0.098 − 0.047 0.052 0.050 0.008 0.018

RMS 0.298 1.987 1.945 3.429 0.112 0.222 0.231 0.251

Median − 0.045 − 0.111 − 0.012 − 0.032 0.049 0.047 0.008 0.014

Range 2.205 20.342 83.523 106.902 0.609 1.591 9.445 9.718

IQR 0.240 0.960 0.575 2.031 0.134 0.227 0.138 0.245

Fig. 4 MAE for UT1–UTC for up to 10 days into the future for groups a LS + AR, b LS + AR + EAM, c ML, and d Other. The thick black line
represents the mean MAE for the group, and the thick magenta line represents the mean MAE for all IDs (the same for all subplots)
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prediction with ID 117 performed a thorough analysis and
validation of their methodology to uncover the source of the
offset observed on Day 0. They discovered that the issue
was caused by an error in input data for several submissions.
Typically, ID 117 used a combination of IERS 14 C04 (with
a 30-day delay) and Bulletin A (with a 2-day delay) as an
input. However, it appeared that for a few submissions, inad-
vertently, only IERS 14 C04 was used (omitting Bulletin A).
Due to the latency of IERS 14 C04, predictions for UT1–
UTC (but also for LOD and PM) pertained to the last month
rather than the current day and the subsequent days. These
discrepancies ultimately impacted theMAEvalues. The fore-
cast group identified sessions with incomplete input data that
relied solely on C04 data with a 30-day lag as MJD submis-
sion dates, i.e. 59,528, 59,535, 59,542, 59,556, 59,591, and
59,899 (personal communicationwith SadeghModiri). Theσ

and β criteria utilized by the EOP PCC Office indicated only
the dates 59,528, 59,535, and 59,556 as outliers. The par-
ticipant also indicated the inconsistent combination of two
distinct input time series (IERS 14 C04 and Bulletin A) as
potential reason for the offset observed on Day 0.

For ID 108, the MAE for Day 0 is close to the rest of the
participants, but starting from Day 1 of prediction, the MAE
increases rapidly, which might suggest some weaknesses of
the prediction method. The comparison of MAE plots for
individual groups (Fig. 4a–d) shows that the IDs from the LS
+ AR + EAM group had the lowest forecasting errors (the
mean for this group is lower than for the other groups, and
as many as 5 out of 6 IDs in this group achieve results better
than the mean for all methods). Most IDs from theML group
show a similar MAE change with increasing prediction day,
with values congruous with those obtained in the LS + AR
+ EAM group (Fig. 4c). However, IDs 115 and 148 differ
notably from the other participants in the ML group. Results
for ID 115 are characterized by a much more rapid increase
in the MAE with the length of prediction, and ID 148 suffers
from high error at Day 0. Group LS + AR presents consistent
results for all IDs (except for the more rapid MAE growth
observed in ID 122); however, all submissions are character-
ized by the largest errors compared with participants from
other groups (the mean MAE for this group is higher than
for other groups and all IDs from the LS + AR group present
results with lower accuracy than the mean for all IDs). This
suggests that not including EAM data in the prediction pro-
cedure can deteriorate forecast quality. As the Other group
contains several unique forecasting methods, results for indi-
vidual IDs differ from each other both in the MAE values on
particular prediction days and in the MAE increase rate.

To quantitively assess the accuracy of UT1–UTC predic-
tions for the 10-day prediction horizon, we show in Table 7
numerical values of MAE for two cases: MAE for the 10th
day of prediction (MAE[10]) and mean MAE for the whole
10-day horizon, i.e., mean of MAE for the days from 0 to

10 (MAE[0–10]). While we initially focus only on errors for
the last day of the considered prediction horizon, in the sec-
ond case, we examine the performance of the method for the
entire prediction horizon. Table 7 includes the highest, low-
est, and mean values of MAE[10] and MAE[0–10] for each
group in comparison with quantities received for ID 200.
The results confirm the findings from Fig. 4 that methods
from the LS + AR + EAM group are most reliable for UT1–
UTC prediction as MAE[10] and MAE[0–10] for this group
are 0.57 and 0.29 ms, respectively. The lowest MAE[10]
and MAE[0–10] values were received for ID 136 (0.27 and
0.12 ms, respectively). It should be noted that IDs 136 and
105 are the only methods that perform better than ID 200
for the 10-day prediction horizon and both were submitted
by the same team (GFZ). The only difference between the
IDs is that in the case of ID 136, the last observed UT1–
UTC value is taken from the Bulletin A only after its last
update around 19:00 UTC, while the prediction from ID 105
is processed earlier in the day, which means that the initial
value from Bulletin A of the day before is used (the value for
Day 0 provided by ID 105 is actually a prediction and not
an observed quantity). The analyses have shown that waiting
for the most recent observed value can slightly improve the
accuracyof theUT1–UTCprediction at the 10-dayprediction
horizon, which is plausible in view of the additional geodetic
data incorporated. However, relying on additional input that
is not available until late afternoon generally increases the
risk that the forecast will not be provided in time.

MAE plots for UT1–UTC for the 30-day prediction hori-
zon for each group are given in Fig. 5, while statistics of
MAE for UT1–UTC for the Day 30 of prediction and for the
whole 30-day forecast horizon are given in Table 8. Figure 5
shows that IDs 102, 113, 115, 121, and 122 suffer from
an exceptionally sharp MAE increase starting from the first
days of the prediction, while for many other methods (IDs
105, 116, 136, 146, 147, 149, 200) the MAE value starts
to increase after about Day 10 into the future. Again, fore-
casts from the LS + AR + EAM group are characterized by
the smallest prediction error (MAE[30] and MAE[0–30] of
3.21 and 1.29 ms, respectively), while the LS + AR group
generally performsworst (MAE[30] andMAE[0–30] of 4.86
and 2.33ms, respectively). This underlines the importance of
using EAM information in improving the accuracy of UT1–
UTC forecasting. Indeed, the best IDs in groups ML and
Other are also those that exploit EAM data. Nevertheless,
although several participants almost approach the accuracy
of forecasts to that obtained for ID 200 (IDs 103, 104, 105,
116), only ID 105 achieves a MAE slightly lower than that
obtained for forecasts from ID 200. Notably, starting from
aroundDay12,MAE for ID136becomes slightly higher than
for ID 105, even though the former uses the most up-to-date
observational data. It can also be observed from Fig. 5 that
for the first days of prediction, the MAE values for most ML
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Table 7 Statistics (maximum, minimum, and mean) of MAE for UT1–UTC for the 10th day of the prediction and for the whole 10-day forecast
horizon

LS + AR LS + AR + EAM ML Other ID 200 (IERS)

ID MAE [ms] ID MAE [ms] ID MAE [ms] ID MAE [ms] MAE [ms]

MAE for 10th day of forecast horizon (MAE [10])

Max 122 3.15 112 1.08 115 1.61 102 1.98 0.37

Min 100 1.03 136 0.27 146, 147 0.43 104 0.50

Mean 1.54 0.57 0.80 1.07

Mean MAE for 10-day forecast horizon (MAE[0–10])

Max 122 1.42 112 0.55 148 0.77 121 0.90 0.17

Min 107 0.51 136 0.12 147 0.16 104 0.21

Mean 0.72 0.29 0.37 0.54

Fig. 5 MAE for UT1–UTC for up to 30 days into the future for groups a LS + AR, b LS + AR + EAM, c ML, and d Other. A thick black line
represents the mean MAE for the group, whereas a thick magenta line represents the mean MAE for all IDs (the same for all subplots)
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Table 8 Statistics (maximum, minimum, and mean) of MAE for UT1–UTC for the 30th day of the prediction and for the whole 30-day forecast
horizon

LS + AR LS + AR + EAM ML Other ID 200 (IERS)

ID MAE
[ms]

ID MAE
[ms]

ID MAE
[ms]

ID MAE
[ms]

MAE
[ms]

MAE for the 30th day of forecast horizon (MAE[30])

Max 122 6.78 101 3.44 115 7.53 102 8.74 2.79

Min 100 3.40 105 2.77 148 3.22 123 2.80

Mean 4.86 3.21 4.32 4.57

Mean MAE for the 30-day forecast horizon (MAE[0–30])

Max 122 3.81 112 1.67 115 3.14 102 3.89 1.00

Min 100 1.62 105 0.97 147 1.31 104 1.13

Mean 2.33 1.29 1.78 2.01

methods are close to theMAEobserved for ID 200.However,
starting from around the Day 10 of prediction, the MAE val-
ues for IDs 146, 147, and 149 begin to noticeably vary from
the MAE observed for ID 200, which suggests that these
submissions are most effective for ultra-short-term horizons.

Table 8 shows that for the group of most promising pre-
diction methods for UT1–UTC (LS + AR + EAM), the mean
MAE[30] and MAE[0–30] are 3.21 and 1.29 ms, respec-
tively, while the corresponding values for ID 200 are 2.79
and 1.00 ms, which indicates there is still some room for
improvement for groups dealingwithUT1–UTC forecasting.
For ID 105, which has been identified as the most promis-
ing method, these values are only slightly lower (2.77 and
0.97 ms for MAE[30] and MAE[0–30], respectively) than
for the forecast disseminated by IERS.

The MAE plots for UT1–UTC predictions reveal a grad-
ual increase inMAE alongwith the day of prediction, and the
growth starts to accelerate within 10 days (Figs. 4, 5). Only
ID 122 shows a reverse trend (after an initial rapid surge, the
rate of MAE change slows after Day 10). An important indi-
cator of the accuracy of a given forecasting algorithm is not
only the error for a given day of prediction but also the rate of
this error increase. Therefore, to study the growth rate of the
MAE, we determined the mean MAE increase per day by
differentiating the MAE values for consecutive prediction
days within non-overlapping time intervals (i.e., 0–5 days,
6–10 days, 11–15 days, 16–30 days, and the 30-day predic-
tion horizon (0–30 days)). These values were computed for
each group along with ID 200 and all IDs together and are
presented in Fig. 6.Methods from the LS +AR+EAMgroup
show the least rapid increase in MAE. Apart from the LS +
AR group, the mean MAE increase is lowest for the 0–5-day
interval and highest for the 16–30 day-interval. Although the
MAE increase for all groups is generally greater than that for
ID 200, if we take into account individual submissions, some

of them (IDs 105 and 136) are characterized by a slightly
lower MAE growth rate than for ID 200.

We now move on to a detailed assessment of the LOD
predictions. The MAE plots for a 10-day horizon (Fig. 7)
indicate certain issues with the MAE on Day 0 for several
submissions (IDs 100, 108, 112, and 117). It is worth not-
ing that while we observe a significant error on Day 0 for
ID 101, the MAE values are much lower for the follow-
ing prediction days. This discrepancy could suggest that the
incorrect observed LOD value on Day 0 was included only
in the file sent to the EOP PCC Office, rather than the uti-
lization of erroneous observations in the forecasting process
itself. The MAE results are most uniform for the ML group,
withmeanMAE[10] andMAE[0–10] of 0.102 and 0.064ms,
respectively (Table 9). Similar to UT1–UTC predictions, for
LOD, the most promising methodology for a 10-day pre-
diction horizon is that utilized by ID 136 (MAE[10] and
MAE[0–10] are equal to 0.072 and 0.040 ms, respectively).
The other submission from the same participant (ID 105)
exhibits only slightly higher errors. The corresponding val-
ues received for ID 200 (LOD predictions transformed from
UT1–UTC predictions) are 0.104 and 0.083ms forMAE[10]
and MAE[0–10], respectively. Notably, the mean MAE for
the LS + AR and LS + AR + EAM groups is distorted by a
few individual submissions, where high errors are observed
starting from the submission day. This naturally impacts the
overall performance of these groups. If we take into account
the mean MAE for the whole 10-day prediction horizon
(MAE[0–10]) for the entire group, ML methods turn out
to provide lowest errors. However, it is worth mentioning
that the use of EAM data may be important in this case, not
only the method itself. Indeed, in the ML group almost all
participants use EAM data (note that we have not obtained
information about whether EAM was used for ID 115). The
LS + AR group is the only one in which none of the methods
use EAMdata, which may be the reason for the highest mean
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Fig. 6 Mean MAE increase per
day for UT1–UTC prediction for
each group, all predictions
together (Total), and ID 200

Fig. 7 MAE for LOD for up to 10 days into the future for groups a LS + AR, b LS + AR + EAM, cML, and d Other. The thick black line represents
the mean MAE for the group, and the thick magenta line represents the mean MAE for all IDs (the same for all subplots)

MAE values in this group. The impact of EAM inclusion on
prediction accuracy improvement should be dominant for 10-
day predictions, since their forecasts are only available for
6 days into the future.

The results presented in Fig. 8 and Table 10 indicate that
the ML methods perform best in the case of LOD for a 30-
day horizon (mean MAE[30] and MAE[0–30] of 0.161 and
0.119 ms, respectively). However, if we take into account
individual approaches, it turns out that the most promising

results were recorded for ID 157 (Table 10). Nevertheless,
this finding should be treated with caution, as this participant
registered relatively late (November 2022) in the campaign,
and therefore the MAE was determined on the basis of only
seven submissions. To evaluate thismethod objectively,more
predictions from this participant should be assessed.

Table 11 summarizes the performance of methods devel-
oped by the EOP PCC participants compared with the
algorithmexploited for ID200, giving the number of IDswith
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Table 9 Statistics (maximum, minimum, and mean) of MAE for LOD for the 10th day of the prediction and for the whole 10-day forecast horizon

LS + AR LS + AR + EAM ML Other ID 200 (IERS)

ID MAE
[ms]

ID MAE
[ms]

ID MAE
[ms]

ID MAE
[ms]

MAE
[ms]

MAE for 10th day of forecast horizon (MAE[10])

Max 100 0.217 108 0.167 124 0.107 102 0.292 0.104

Min 122 0.124 136 0.072 125, 144 0.098 104 0.087

Mean 0.161 0.107 0.102 0.151

Mean MAE for 10-day forecast horizon (MAE[0–10])

Max 100 0.200 108 0.198 115 0.072 102 0.200 0.083

Min 122 0.082 136 0.040 143, 145 0.058 104 0.058

Mean 0.120 0.095 0.064 0.111

Fig. 8 MAE for LOD for up to 30 days into the future for groups a LS + AR, b LS + AR + EAM, cML, and d Other. The thick black line represents
the mean MAE for the group and the thick magenta line represents the mean MAE for all IDs (the same for all subplots)
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Table 10 Statistics (maximum, minimum, and mean) of MAE for LOD for the 30th day of prediction and for the whole 30-day forecast horizon

LS + AR LS + AR + EAM ML Other ID 200 (IERS)

ID MAE
[ms]

ID MAE
[ms]

ID MAE
[ms]

ID MAE
[ms]

MAE
[ms]

MAE for 30th day of forecast horizon (MAE[30])

Max 114 0.271 108 0.315 145 0.174 117 0.414 0.230

Min 122 0.192 112 0.199 143 0.153 157 0.097

Mean 0.238 0.243 0.161 0.229

Mean MAE for 30-day forecast horizon (MAE[0–30])

Max 100 0.227 108 0.213 145 0.125 102 0.274 0.158

Min 122 0.137 136 0.130 143 0.115 157 0.102

Mean 0.183 0.159 0.119 0.175

Table 11 Number of IDs in each group with MAE[10], MAE[0–10], MAE[30], and MAE[0–30] of UT1–UTC and LOD prediction equal to or
lower than corresponding MAE values for ID 200 in relation to the number of all IDs in the group that predict UT1–UTC and LOD

UT1–UTC LOD

LS + AR LS + AR + EAM ML Other All groups LS + AR LS + AR + EAM ML Other All groups

MAE[10] 0/6 2/6 0/7 0/6 2/25 0/5 3/5 6/8 2/7 11/25

MAE[0–10] 0/6 2/6 2/7 0/6 4/25 1/5 3/5 8/8 2/7 14/25

MAE[30] 0/6 1/6 0/5 1/6 2/23 2/5 2/5 4/4 5/7 13/21

MAE[0–30] 0/6 1/6 0/5 0/6 1/23 1/5 3/5 4/4 4/7 12/21

MAE[10], MAE[0–10], MAE[30], andMAE[0–30] equal to
or below the corresponding MAE values obtained from the
IERS forecasts. Of the 25 different approaches that apply
UT1–UTC, only a few achieve accuracies that match ID 200.
In contrast, for LOD predictions, about half of the IDs fore-
cast with an error lower than that for ID 200.

5 Dependence of prediction accuracy
on selected factors

5.1 Evolution of prediction accuracy

This part of our analysis focuses on how the accuracy of indi-
vidual predictions has evolved over time and aims to verify
whether the improvements made by the participants during
the campaign were effective. To do so, we analyze MAE
for a 10-day horizon in eight consecutive two-month peri-
ods named P1–P8, whose start and end dates are shown in
Table 12.

Figure 9 shows MAE for UT1–UTC for up to 10 days
into the future for consecutive 2-month periods. It can be
seen that for many participants prediction errors were not
stable throughout the duration of the campaign. For example,
ID 117 experienced some difficulties on Day 0 between the

Table 12 Two-month periods (P1–P8) considered in the analysis of
forecast evolution over time and their start and end dates

Period Start date End date

P1 September 1, 2021 October 31, 2021

P2 November 1, 2021 December 31, 2021

P3 January 1, 2022 February 28, 2022

P4 March 1, 2022 April 30, 2022

P5 May 1, 2022 June 30, 2022

P6 July 1, 2022 August 31, 2022

P7 September 1, 2022 October 31, 2022

P8 November 1, 2022 December 31, 2022

beginning of November 2021 and the end of February 2022,
which affected the overall accuracy of the forecast. Visible
offsets at Day 0 for this submission were primarily related
to problems at the data preparation stage (see Sect. 4.2. for
more details). However, starting in March 2022, the issue
was resolved, and the participant visibly reduced the errors
in the forecast. Periodic reduction in forecast accuracy was
also observed for several IDs. During the initial period of
the campaign, the accuracy of the method exploited by ID
102 was high but notably larger errors were recorded for
some months, especially between September 1 and October
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Fig. 9 MAE for UT1–UTC for up to 10 days into the future for consecutive 2-month periods (a–h). The thick black line represents the mean MAE
for the period and the thick magenta line represents the mean MAE for the whole campaign (the same for all subplots)

31, 2022. Another participant with ID 148 started submitting
forecasts in April 2022 with relatively high MAE, but then
managed to reduce the errors in the following months.

We are unable to identify a single ID for which errors
consistently decreased from period to period, which would
indicate continuous improvement of the method. Instead, we
observe periodic increases and decreases in MAE for indi-
vidual participants. In general, the methods that exhibited
the lowest errors throughout the entire campaign period (IDs
104, 105, 116, 136, 146, 147, and 149, seeFig. 4) demonstrate
visibly greater stability in terms of MAE across individual
periods than other submissions.Comparing the averageMAE

for a given period with the average MAE for the entire oper-
ational phase of the campaign allows us to conclude that the
period between March and May 2022 had the highest num-
ber of forecasts with errors below the overall average. It is
worth noting that at the end of the campaign (in the four last
months), the majority of methods exhibited low errors, and
the mean MAE for those periods were only disrupted by a
few individual submissions.

When considering LOD, it becomes apparent that during
the first 2 months, the MAE values for IDs 105 and 117
exhibit a distinct sinusoidal fluctuation that is not present in
any of the other submissions (Fig. 10). This problem was
thoroughly discussed in Kur et al. (2022), who provided a
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Fig. 10 MAE for LOD for up to 10 days into the future for consecutive two-month periods (a–h). The thick black line represents the mean MAE
for the period and the thick magenta line represents the mean MAE for the whole campaign (the same for all subplots)

preliminary evaluation of LOD predictions collected during
the 2nd EOP PCC. It was concluded that the issuewas caused
by incorrect handling of impact from long-period ocean tides
(Bizouard et al. 2022). In subsequent periods, the oscillation
vanished,which is considered an effective intermediate result
of the preliminary evaluations by the EOP PCCOOffice (Kur
et al. 2022). There was a notable enhancement of accuracy
when comparing MAE results for ID 108 for Period P1 with
MAE for Period P2; however, starting from December 22,
2021, this participant stopped providingLOD forecastswhile
continuing to predict UT1–UTC and PM. Figure 10 shows
that the issue with incorrect value at Day 0 for ID 101 dis-
cussed in the previous section (Fig. 7) became apparent from
May 2022 and was not solved until the end of the 2nd EOP

PCC. Similar to the results for UT1–UTC, MAE for almost
all predictions after July 2022 are below the mean for the
whole campaign duration and only individual methods (IDs
100 and 102) have MAE visibly higher than the mean MAE
computed for the whole 2nd EOP PCC period.

To study the time evolution of prediction accuracy inmore
detail, for each ID, we computed a percentage change (PCh)
of MAE for a given 2-month period compared with the pre-
ceding period:

PCh � mean

(
MAEi (n) − MAEi (n + 1)

MAEi (n)

)
· 100%, (5)
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where MAEi is the value for ith point of the prediction com-
puted for the nth period (n � 1, . . . , 7). If PCh > 0, the
preceding period has lower MAE (prediction accuracy has
improved), if PCh < 0, the preceding period has higher MAE
(prediction accuracy has deteriorated).

Values of PCh for UT1–UTC and LOD prediction from
each participant are displayed in Fig. 11. The figure confirms
that practically no method exhibits a continuous improve-
ment in accuracy, but there are also no instances in which
the quality consistently declines. Rather, we observe alter-
nating periods of better and worse prediction performance.
Forecasts from ID 200 also demonstrate such tendencies.
This may not necessarily be linked to modifications of the
method itself but perhaps to the temporal occurrence of cer-
tain phenomena affecting LOD and UT1–UTC, which may
be more challenging to forecast.

The PCh statistics presented in Table 13 indicate a notice-
able decrease in accuracy for several campaign participants
and for ID 200 as well (minimum PCh values), which could
have been caused by periodic errors in data preparation, lack
of observational EOP data and EAM predictions or delays in
access to the data, as discussed before. Both for UT1–UTC
and LOD, the number of positive and negative values of PCh
is similar, which, combined with a median value close to
zero, allows us to conclude that the majority of predictions
on a global scale were rather stable over time.

5.2 Transformation between LOD and UT1–UTC

In this section, we analyzeMAE values received for the orig-
inal UT1–UTC and LOD predictions, as well as the MAE
of these parameters transformed from the respective LOD
and UT1–UTC forecasts. Figure 12 presents MAE for up
to 10 days into the future for original and transformed UT1–
UTC and LOD predictions as well as the differences inMAE
between the original and transformed predictions. The results
are provided only for IDs who forecast both UT1–UTC and
LOD. In general, for the methods that performed equally
well (or poorly) for both UT1–UTC and LOD predictions
(e.g., IDs 104, 105, 112, 117, and 136), the differences in
MAE before and after transformation are relatively small.
However, in cases where there are large prediction errors
for one parameter and small errors for the second parameter,
the corresponding difference becomesmore pronounced. For
example, ID 108 predicts LOD with a relatively large error
compared with other participants, while UT1–UTC forecasts
provided by this participant are accurate. Consequently, it
turns out that transformed UT1–UTC predictions from ID
108 exhibit higher MAE than the original UT1–UTC predic-
tions, but the transformed LOD shows a lower MAE than the
original LOD forecasts. In other words, for this method, it is
better not to forecast LOD but to transform it from the UT1–
UTC predictions. The reverse applies to the method from

ID 122, which poorly predicts UT1–UTC but has a more
accurate prediction of LOD. This analysis demonstrates the
influence of differences in accuracy between UT1–UTC and
LODpredictions on the results of the transformation between
these parameters, rather than the impact of the transforma-
tion itself on the accuracy of the transformed predictions.
The forecasting method also seems to have little influence,
as the IDs with the smallest differences in MAE before and
after transformation belong to different groups.

6 Ranking of prediction approaches

Although it is not possible to identify a single ID that would
provide the highest prediction accuracy for all EOP and for
different forecast horizons, we attempted to find the most
universal and reliable combination of prediction methodol-
ogy and input data. To do so, we have developed a ranking
of all IDs based on the following criteria:

(A) percentage of rejected submissions—to assesses the
credibility of predictions for a given algorithm;

(B) range of differences between prediction and refer-
ence—to evaluate predicting repeatability (accurate
predictionswith high stability over time should be char-
acterized by a small range of differences);

(C) values of MAE[1], MAE[6], MAE[7], and
MAE[10]—to check the quality of predictions at
the beginning, middle, and end of the 10-day predic-
tion horizon. To include all IDs in the ranking, we do
not consider the prediction for 30 days into the future;

(D) median of PCh—to assess the stability of the accuracy
of the method.

Each ID has been assigned points equal to its position
in the classification, assuming that the lower the number of
points, the higher place in the classification is reached. The
ranking for UT1–UTC is shown in Table 14, and the rank-
ing for LOD is in Table 15. Overall, the prediction from ID
200 (IERS) is placed 2nd for UT1–UTC and 10th for LOD
predictions transformed from UT1–UTC predictions, which
confirms the reliability of the algorithm performed at USNO.
For both UT1–UTC and LOD, the highest places are domi-
nated by IDs exploiting EAM data mostly from groups LS +
AR + EAM and ML. The leader for both parameters turned
out to be ID 136 with the LS + AR + EAMmethod exploited
by GFZ.

7 Summary and conclusions

The main objective of this research was to conduct a thor-
ough evaluation of multiple predictions of UT1–UTC and
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Fig. 11 Percentage change (PCh)
of MAE of a UT1–UTC and
b LOD predictions in individual
analysis periods (P2–P8) in
relation to the previous periods
(P1–P7)

Table 13 Statistics (min, max,
mean, RMS, median) for PCh for
predictions of UT1–UTC and
LOD for ID 200 and predictions
from all participants together
(Total), and number of positive
and negative values of PCh

UT1–UTC LOD

ID 200 (IERS) Total ID 200 (IERS) Total

Min (%) − 101 − 9465 − 69 − 2266

Max (%) 46 74 40 80

Mean (%) − 21 − 87 − 7 − 35

RMS (%) 50 775 31 212

Median (%) − 19 − 1 − 2 0

Number of PCh > 0 2 75 3 66

Number of PCh < 0 5 77 4 65

LOD obtained during the 2nd EOP PCC, using the IERS
14 C04 solution as a reference. The primary goal of the
campaign was to assess the current potential of EOP pre-
diction, which encompassed exploring new methodologies
such as ML methods that have been rapidly evolving in
recent years, along with studying the contribution of input
data (both EOP observations and EAM data and predic-
tions) on forecast performance. The 2nd EOP PCC provided
an objective evaluation platform for scientists from differ-
ent countries and institutions to collaborate and compete in
enhancing EOP predictions. Thanks to the effort and expe-
rience of the 23 participating institutions from around the
world, an unprecedented set of EOP forecasts was gathered
during an operational phase spanning 70 weeks.

Since the conclusion of the 1st EOP PCC, there has been
an increased interest in EOP forecasts, which was evident
in the considerably larger number of teams participating

in the most recent EOP PCC. Lessons from the first cam-
paign have been learned in the sense that, as recommended
in the conclusions of the 1st EOP PCC, there has been an
increased interest in utilizing EAM when predicting EOP in
order to enhance forecasting algorithms. In the case of UT1–
UTC and LOD, 23 out of 35 IDs exploited such data. While
the focus in the first campaign was primarily on utilizing
AAM, in the current campaign, OAM, HAM, and SLAM
data and their predictions were also incorporated. However,
at present, EAMpredictions developedbyGFZare accessible
for a maximum of 6 days ahead, and this notably influences
the outcomes obtained by 2nd EOP PCC participants who
utilized these data. Extending the length of EAM predic-
tions could potentially help to reduce the prediction errors
for longer prediction horizons. The only center, apart from
GFZ, that currently provides EAMpredictions is ETHZurich
(Kiani Shahvandi et al. 2022a, 2023; Soja et al. 2022). Daily
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Fig. 12 MAE for up to 10 days into the future for a UT1–UTC, b LOD,
c UT1–UTC transformed from LOD, d LOD transformed from UT1–
UTC, e difference betweenMAE of UT1–UTC andMAE of UT1–UTC

transformed from LOD, and f difference between MAE of LOD and
MAE of LOD transformed from UT1–UTC

forecasts of all four EAM components from ETH are avail-
able for up to 14 days ahead; however, these predictions are
generated through the utilization ofML techniques applied to
data sourced fromGFZ, so they are not entirely independent.
Nevertheless, their utilization has the potential to enhance the
accuracy of EOP predictions for a maximum forecast hori-
zon of about two weeks. Future research aiming to improve
EOP predictions should encompass the development of new
EAMdata and longer-term EAM forecasts, by making use of

even longer prediction runs that are now being performed by
various numerical weather prediction centers (Scaife et al.
2022).

Regarding the best methods for predicting UT1–UTC and
LOD, the Kalman filter (with AAM forecast from NCEP
used),wavelet decomposition+ autocovariance, and adaptive
transformation from AAM to LOD residuals (LODR) were
identified as the most effective approaches in the 1st EOP
PCC (Kalarus et al. 2010). In the current campaign, LS +
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Table 14 Ranking of IDs according to the adopted criteria and the number of points awarded to each ID in individual categories for UT1–UTC

Rank ID Group Total % of rejected
predictions

Range MAE[1] MAE[6] MAE[7] MAE[10] Median
PCh

1 136 LS + AR + EAM 23 10 1 2 1 1 1 7

2 200 IERS 26 2 4 3 5 5 3 4

3 116 LS + AR + EAM 39 0 2 7 7 7 4 12

4 105 LS + AR + EAM 41 8 3 9 3 2 2 14

5 146 ML 43 9 5 6 4 4 6 9

5 147 ML 43 12 6 5 2 3 5 10

7 104 Other 57 7 11 1 8 9 8 13

8 149 ML 63 9 9 10 6 6 7 16

9 103 Other 70 6 7 4 10 10 9 24

10 130 ML 79 11 10 8 9 8 10 23

11 123 Other 85 1 8 26 19 15 14 2

12 101 LS + AR + EAM 88 13 12 12 11 11 11 18

13 126 ML 93 14 26 11 12 12 12 6

14 112 LS + AR + EAM 102 2 14 21 16 17 17 15

14 115 ML 102 0 18 15 22 23 23 1

16 113 LS + AR 105 0 16 16 21 22 22 8

17 107 LS + AR 108 3 22 13 14 16 19 21

18 148 ML 112 0 17 25 23 21 21 5

19 108 LS + AR + EAM 115 13 13 24 13 13 13 26

20 118 LS + AR 117 0 15 17 20 20 20 25

21 117 Other 119 15 21 22 17 18 15 11

22 100 LS + AR 120 14 23 20 15 14 16 18

23 114 LS + AR 128 16 19 18 18 19 18 20

24 102 Other 132 17 25 14 24 24 25 3

25 121 Other 143 4 20 23 25 25 24 22

25 122 LS + AR 143 5 24 19 26 26 26 17

The result for prediction from IERS is shown in bold

AR with EAM data and predictions and ML with EAM data
and predictionswere found to achieve the highest accuracy. It
should be noted that althoughMLmethods have been rapidly
developing in recent years, and the ML groups considered in
this article were the largest in terms of the number of IDs,
the majority of these methodologies were developed by a
single participant (ETH). Therefore, it would be beneficial
for other teams to join in the exploitation of this promising
new technology.AllMLmethods that achievedhigh accuracy
utilized EAM as an additional data source and the usage of
these data seems to be crucial in improving the accuracy
of UT1–UTC and LOD predictions. The source of the EOP
observations used appears to play a secondary role. However,
proper implementation of input data is crucial, as errors for
the submission day resulting from issues such as the limited
availability of EOP and/or EAM data, or internal problems
with the data retrieval algorithm, contribute to a bias specific
to each method.

When it comes to the numbers, for the best predic-
tion methodologies chosen for UT1–UTC, MAE[10] was
0.27 ms, while MAE[30] was 2.77 ms. For forecasts from ID
200 those quantities were only slightly larger, i.e., 0.37 ms
and 2.79 ms for MAE[10] and MAE[30], respectively. In
turn, during the 1st EOP PCC, the best UT1–UTC prediction
methods ensured MAE[10] of around 0.60 ms and MAE[30]
as high as 3.80 ms. In the case of LOD, the best achieve-
ments from the 2nd EOP PCC were 0.072 ms for MAE[10]
and 0.097 ms for MAE[30], while in the 1st EOP PCC, opti-
mal values were around 0.130ms and 0.220ms forMAE[10]
and MAE[30], respectively. There has clearly been consid-
erable progress made in EOP forecasting over the past years.
Nevertheless, there remains room for improvement for teams
predicting UT1–UTC as only 2 (in the case of MAE [10]
and MAE[30]) out of the 25 IDs revealed slightly higher
prediction accuracy than official forecasts disseminated by
IERS (ID 200).
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Table 15 Ranking of IDs according to the adopted criteria and the number of points awarded to each ID in individual categories for LOD

Rank ID Group Total % of rejected
predictions

Range MAE[1] MAE[6] MAE[7] MAE[10] Median
PCh

1 136 LS + AR + EAM 18 0 3 1 1 1 1 11

2 101 LS + AR + EAM 35 0 2 9 3 3 4 14

3 105 LS + AR + EAM 51 17 22 2 2 2 2 4

4 145 ML 54 8 6 3 8 11 8 10

5 104 Other 55 6 11 6 6 4 3 19

5 157a Other 55 0 1 4 4 5 15 26

7 143 ML 56 8 8 7 5 6 7 15

8 125 ML 61 9 9 11 7 7 5 13

9 142 ML 63 8 4 5 9 9 10 18

10 200 IERS 70 2 7 20 13 8 11 9

11 144 ML 77 14 12 8 10 10 6 17

12 122 LS + AR 90 4 13 13 15 16 17 12

12 124 ML 90 11 10 12 11 12 14 20

14 113 LS + AR 94 0 16 15 17 19 19 8

15 121 Other 95 3 15 19 19 18 16 5

16 123 Other 101 7 5 21 16 15 12 25

17 114 LS + AR 102 0 14 17 22 22 21 6

18 112 LS + AR + EAM 103 2 18 23 18 17 18 7

19 115 ML 107 16 17 14 14 13 9 24

20 129 ML 109 12 26 10 12 14 13 22

21 156 LS + AR 121 12 25 18 21 20 22 3

22 141 Other 122 5 19 16 20 21 20 21

23 108 LS + AR + EAM 129 10 20 26 24 24 23 2

24 102 Other 137 15 21 22 26 26 26 1

25 100 LS + AR 141 1 24 25 25 25 25 16

26 117 Other 153 13 23 24 23 23 24 23

The result for prediction from IERS is shown in bold
aID 157 submitted only seven predictions

To summarize the achievements of the 2nd EOP PCC
and provide some perspectives, it should be stated that cur-
rently, the most important factor in improving the accuracy
of UT1–UTC and LOD forecasts is the use of precise and
reliable EAM data and predictions. Therefore, the first step
in this regard should be the development of EAM fore-
casts for longer horizons. It has also been demonstrated
that modern ML-based algorithms have tremendous poten-
tial and should continue to be developed, although classical
approaches based on LS + AR (with added EAM informa-
tion) have also proven to be reliable.
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Appendix 1

Description of each ID predicting UT1–UTC and/or LOD as
provided by 2nd EOP PCC participants.

100
Authors with affiliations:
Xueqing Xu
CAS Key Laboratory of Planetary Sciences, Shanghai

Astronomical Observatory, Chinese Academy of Sciences,
Shanghai 200030, China

Method description:
As complex variations of the Earth’s rotation, there are

commonly relative regular and irregular signals coupling
in EOP data series, such as the trend, annual, Chandler
terms, and high frequency trembles in polar motion; and the
trend, interannual, seasonal and sub-seasonal oscillations in
LOD changes. For the predictions of these stable signals, we
adopt the LS model expressed by polynomial trend and har-
monic oscillations; and a stochastic process AR model can
be employed for the predictions of irregular variations (Xu
et al. 2015, 2012).

101
Authors with affiliations:
Yuanwei Wu, Xin Zhao, Xinyu Yang
National Time Service Center of Chinese Academy of

Sciences, Xi′an, China

Method description:
The C04 14 and the latest IERS daily files are combined

as EOP inputs.
The GFZ EAM products, including 6 days predictions are

used as EAM inputs.

The method we used to predict PM coordinates (PMx, PMy),
LOD, and UT1 is similar to Dill et al. (2019) but with some
revisions:

(a) given the 1 day delay to GFZ’s EAM prediction, the
6 days of prediction is adjust of 5 days.

(b) in the step of LS and AR, the parameter is optimized
but evaluations day for different parameters at different
time scale, details of the optimization are given in the
proceeding paper Wu et al. (2022).

102
Authors with affiliations:
Christian Bizouard
Observatoire de Paris, SYRTE, Paris, France
Method description:
For all predicted EOP parameters, the past data allowing

to build the prediction are the daily operational IERS 14 C04
series up to the current date. The predicted values are given
for each day of the interval [MJD0,MJD0 + 365] at 0 h UTC.
Notation: MJD0 is a current date at 0 h UTC.

UT1–UTC & LOD: Considering UTR–TAI and LOD
residuals (LODR): (1) LS fit of a degree 2 polynomial trend,
365.242 day and 182.26 day terms over the last 433 days. (2)
Autoregressive modelling of the residuals (3) The 6 first days
of theUT1 prediction fromMJD0 toMJD0 + 6 are calculated
by integrating the atmospheric angular momentum forecast
of theGFZ (the LODprediction is directly given by theAAM
forecasted values to a constant factor and a bias) (4) The LS
+ AR model is extrapolated from the last day (MJD0 + 6)
of the predicted values from AAM (5) Zonal tide effects are
added back.

104
Authors with affiliations:
Richard Gross, Dale Boggs, Mike Chin, Todd Ratcliff
Jet Propulsion Laboratory, California Institute of Technol-

ogy, Pasadena, USA
Method description:
A Kalman filter is used to combine independent measure-

ments of the Earth’s orientation taken by the space-geodetic
observing techniques of Satellite Laser Ranging, Very Long
Baseline Interferometry, and the Global Navigation Satellite
System. In order to improve the predicted EOPs, atmospheric
and oceanic angular momenta analyses, and forecasts are
used as proxy length-of-day and polarmotion excitationmea-
surements. Prior to their combination, the data series are
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adjusted to have the same bias and rate, the stated uncer-
tainties of the measurements are adjusted, and data points
considered to be outliers are deleted (Freedman et al. 1994;
Gross et al. 1998).

105
Authors with affiliations:
Robert Dill, Henryk Dobslaw, Jan Saynisch-Wagner,

Christopher Irrgang, Maik Thomas
Department 1: Geodesy, Deutsches GeoForschungsZen-

trum GFZ, Potsdam, Germany
Method description:
EOP prediction is based on the GFZ EAM Predictor (Dill

et al. 2019). The sum of EAM (4 years of model-based
effective angularmomentum functions includingEAM6-day
forecasts) and the residual of geodetic angular momentum
(GAM) (4 years of geodetic angularmomentumderived from
IERS 14 C04), extrapolated for the last ~ 30 days up to the
end of the EAM 6-day forecasts by a 1st LS + AR step, is
predicted into the future by a 2nd LS + AR step. GFZ uses
this two-step GFZ EAM Predictor to provide daily updated
EAM predictions from -90 days in the past to + 90 days
into the future with 3-hourly sampling (http://esmdata.gfz-
potsdam.de:8080/). The submitted EOP prediction #105 is
generated as soon as the EAM prediction is available (~ 11
UTC). Using the latest available EOP coordinates from IERS
rapid EOPs (finals.daily) from the day before as initial values
for the Liouville equation a 90-day EOP prediction is derived
from the EAM prediction. The predicted 3-hourly EOPs are
re-sampled to daily time intervals and the first day is cut off
to start the time series at the actual day of submission.

107
Authors with affiliations:
Zhijin Zhou, Lue Chen, Weitao Lu, Songtao Han
National Key Laboratory of Science and Technology on

Aerospace Flight Dynamic, Beijing Aerospace Control Cen-
ter, Beijing, China

Method description:
First determine the length of the training data and reads

the raw data, preprocessing according to its type, then the
least square fitting, calculating the residuals between the data
and the LS model, the residual prediction data is obtained
by autoregressive modeling, and the least square model is
extrapolated. The two are added together and post-processed
to obtain the prediction product (Chen et al. 2014).

108
Authors with affiliations:
Weitao Lu, Lue Chen, Zhijin Zhou, Songtao Han
National Key Laboratory of Science and Technology on

Aerospace Flight Dynamic, Beijing Aerospace Control Cen-
ter, Beijing, China

Method description:

The prediction method is LS + MAR, in which LS means
difference LS, and MAR means Multi-elements AR. The
inputs including EOP data released by IERS and AAM data
released by GFZ. The prediction parameters include both
PM components and UT1–UTC; the longest prediction day
is 365.

112
Authors with affiliations:
Xueqing Xu
CAS Key Laboratory of Planetary Sciences, Shanghai

Astronomical Observatory, Chinese Academy of Sciences,
Shanghai 200030, China

Method description:
In thismethod, theEAMfrom theEarth SystemModelling

Group of GeoForschungsZentrum Potsdam (ESMGFZ) are
selected as the input excitation series. Afterward, the interan-
nual, seasonal and sub-seasonal terms of EOP are calculated
from the EAM predictions by the Liouville convolution
equation. Meanwhile, the rest of the EOP trend terms are
extrapolated by the polynomial LS model. Finally, the total
EOP predictions are combined with the excitation calcula-
tions and trend extensions (Xu et al. 2023).

116
Authors with affiliations:

Erik Schoenemann (1), Sara Bruni (2), Michiel Otten (2),
Volker Mayer (3)

(1) ESA/ESOC, Robert-Bosch-Straße 5, Darmstadt, Ger-
many

(2) PosiTim UG at ESA/ESOC, Robert-Bosch-Straße 5,
Darmstadt, Germany

(3) LSE Space GmbH at ESA/ESOC, Robert-Bosch-Straße
5, Darmstadt, Germany

Method description:
ESA’s contribution to the second IERS EOP PCC was

based on the output of the ESA ERP Service (http://naviga
tion-office.esa.int/products/erp/) generated from September
2021 to December 2022. The Service provides daily updates
of ERP estimates and the relevant predictions for 119 days in
the future. The estimation phase is based on a rigorous com-
bination at the normal equation level of different geodetic
solutions. The combination takes into account the full cor-
relation matrices, and realizes a seamless transition between
ERP estimates based on final and rapid input products. For
the IERS EOP PCC, the combination included ESA’s GNSS,
SLR and DORIS official products submitted to the rele-
vant International Association of Geodesy (IAG) Services,
as well as BKG and Deutsches Geodätisches Forschungsin-
stitut (DGFI) solutions for intensive and rapid-turnaround
VLBI sessions, respectively.
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Concerning the prediction phase, the software implements
a combination of least-square fitting and autoregressive
modelling based on the whole history of ESA ERP esti-
mates to characterize the deterministic part of the ERP
variability and the high-frequency variability induced by
non-tidal atmospheric and oceanic dynamics. Then, the
short-range (6 days) EAM forecasts provided by GFZ are
used to predict the irregular variations generated by the
atmospheric, oceanic and hydrological dynamics. In order to
stabilize the short-term predictions, EAM forecasts are also
combined in the excitation domain with an additional signal
extrapolating the difference between the geodetic excitation
necessary to generate the observed history of ERP variations
and the corresponding excitation extracted from geophysical
models.

Additional details on the ESA ERP Service can be found
in (Bruni et al. 2021); the ESA ERP Software is described in
(Kehm et al. 2023).

117
Authors with affiliations:

Sadegh Modiri (1), Daniela Thaller (1), Santiago Belda (2),
Sonia Guessoum (2), JoseMFerrandiz (2), Shrishail Raut (3,
4), Sujata Dhar (3), Robert Heinkelmann (3), Harald Schuh
(3, 4)

(1) Federal Agency for Cartography and Geodesy BKG,
Frankfurt am Main, Germany

(2) UAVAC, University of Alicante, Alicante, Spain
(3) Department 1: Geodesy, Deutsches Geo-

ForschungsZentrum GFZ, Potsdam, Germany
(4) Institute for Geodesy and Geoinformation Science,

Technische Universität Berlin, Berlin, Germany

Method description:
We used two different approaches for Earth Rotation

Parameters (ERP) and celestial pole offsets (CPO) predic-
tion. The proposed algorithm for predicting the ERP is called
SSA + Copula-based analysis (Modiri et al. 2018, 2020;
Modiri 2021). The algorithm splits the observed PM time
series into periodic terms and anomalies, which are mod-
elled usingSSAandCopula-based analysis, respectively. The
SSA periodic terms estimation involves selecting a window
parameter, forming a trajectory matrix, performing singular
value decomposition, selecting a proper group of singular
values and corresponding singular vectors, and calculating
the trend. The Copula anomaly modelling involves forming
the trajectory matrix of residual time series, computing the
marginal distribution, transforming data to the rank space,
computing the empirical and conditional Copula, and sam-
pling random data from the conditional Copula cumulative
distribution function (CDF). The final predicted PM data is

the sum of the predicted periodic terms using SSA and the
predicted anomaly using the Copula-based model.

124
Authors with affiliations:
Mostafa Kiani Shahvandi, Matthias Schartner, Junyang

Gou, Benedikt Soja
Institute of Geodesy and Photogrammetry, ETH Zurich,

Zurich, Switzerland
Method description:
This method focuses on the 10-day prediction of LOD

using a hybridmodeling approach, which combines physical,
statistical, and encoder-decoder LSTM (EDLSTM) network
while considering geophysical excitations. We first remove
the secular trend and known signals from theLOD time series
by combining the Savitzky–Golay filter (Savitzky and Golay
1964), tidal corrections (Petit and Luzum 2010) and least-
squares adjustment (Brockwell and Davis 2002) to generate
the LOD residuals (LODR). The GFZ AAM data (Dobslaw
and Dill 2018) and corresponding 6-day forecasts are also
preprocessed using least-squares adjustment to obtain AAM
residuals (AAMR).

Then, the LODR, AAMR, and 6-day forecasts of AAMR
are concatenated and considered as input features. The final
dimension of the input tensors is 30× 8 sincewe consider the
previous 30 days as the input sequence. Thenwe feed this ten-
sor into the EDLSTMnetwork (Hochreiter and Schmidhuber
1997, Nayak and Ng 2020) to predict LODR for the next ten
days. In order to restore the full LOD, we should also predict
the previously removed components. The tidal and seasonal
signals can be easily predicted since they are estimated using
deterministic models. The long-term trend will be predicted
using PCHIP (Piecewise Cubic Hermite Interpolating Poly-
nomial) extrapolation (Fritsch and Carlson 1980).

For more details, please refer to Gou et al. (2023).

125
Authors with affiliations:
Mostafa Kiani Shahvandi, Matthias Schartner, Junyang

Gou, Benedikt Soja
Institute of Geodesy and Photogrammetry, ETH Zurich,

Zurich, Switzerland
Method description:
This architecture is designed (Kiani Shahvandi and Soja

2022a) to extract meaningful information even from the
scarce data. The elements of this architecture are as follows:
(1) residual learning; (2) attentionmechanism; (3) long short-
term memory (LSTM). Several consecutive blocks of the
mentioned elements are stacked together in an auto-encoder
manner. Each of these blocks are pretrained using the so-
called greedy-layer wise pretraining in order to facilitate the
main training phase. Similar to the studies (Kiani Shahvandi
and Soja 2021) on Transformer architecture, number of the
blocks depends on the accuracy obtained on the validation
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set during training, but for the prediction of LOD there are
usually two blocks in the architecture. It is also important
to note that the architecture of LSTM element is similar
to the one used in Gou et al. (2023). The input and output
sequence lengths to this architecture are 30 and 12, respec-
tively. The loss function ismean absolute error. The algorithm
is retrained at each prediction epoch to take advantage of the
new EOP and EAM data being available. This architecture
is trained on LOD residuals (i.e., after the removal of secular
trends, tidal effects, and seasonal signals) having the AAM
and its 6-day forecasts as additional features (seasonal sig-
nals are removed from AAM). The final prediction is the
summation of output of the architecture and the prediction
of secular trends, tides, and seasonal signals of the LOD.

126, 129, 130, 144–146
Authors with affiliations:
Mostafa Kiani Shahvandi, Matthias Schartner, Junyang

Gou, Benedikt Soja
Institute of Geodesy and Photogrammetry, ETH Zurich,

Zurich, Switzerland
Method description:
The architecture used is based on the first-order neural

ordinary differential equations (Neural ODEs). In this archi-
tecture the hidden state in the hidden layer should follow
a differential equation. To apply this concept to the EOPs,
it is assumed that EOPs follow first-order differential equa-
tions the exact form of which should be determined by fitting
neural networks to the observations. The general approach
of Neural ODE differential learning (Kiani Shahvandi et al.
2022a) is modified (i.e., in a way that does not require using
the rates of EOPs) and used as the primary architecture. A
variation of this architecture is the so-called simple recur-
sive method (Kiani Shahvandi et al. 2022b), in which an
attempt is made to incorporate the uncertainties in the obser-
vational data in the training for a more reliable estimation
of parameters of the neural networks (Kiani Shahvandi and
Soja 2022b). As the result, the loss function here is the mean
squared error. The architecture does not require any pre-
processing of the input features. However, in case of LOD
prediction it is used on the LOD residuals after the removal of
secular trends, tides, and seasonal signals (Gou et al. 2023).
The forecasting horizon of the architecture contains both 10
and 30 days. The input sequence length to the architectures
is 10 days. The architectures are trained at each prediction
epoch to take advantage of the most recent available EOP
and EAM data.

136
Authors with affiliations:
Robert Dill, Henryk Dobslaw, Jan Saynisch-Wagner,

Christopher Irrgang, Maik Thomas
Department 1: Geodesy, Deutsches GeoForschungsZen-

trum GFZ, Potsdam, Germany

Method description:
EOP prediction is based on the GFZ EAM Predictor (Dill

et al. 2019). The sum of EAM (4 years of model-based
effective angular momentum functions including EAM 6-
day forecasts) and the residual of GAM (4 years of geodetic
angular momentum derived from IERS 14 C04), extrapo-
lated for the last ~ 30 days up to the end of the EAM 6-day
forecasts by a 1st LS + AR step, is predicted into the future
by a 2nd LS + AR step. GFZ uses this two-step GFZ EAM
Predictor to provide daily updated EAM predictions from
− 90 days in the past to + 90 days into the future with 3-
hourly sampling (http://esmdata.gfz-potsdam.de:8080/). The
submitted EOP prediction #136 is generated as soon as the
rapid EOP solution for the actual day is available (~ 17:15
UTC). The latest non-predicted EOP coordinates from IERS
rapid EOPs (finals.daily) are taken as initial values for the
Liouville equation to derive a 90-day EOP prediction from
the EAM prediction. The predicted 3-hourly EOPs are re-
sampled to daily time intervals.

141
Authors with affiliations:
Maciej Michalczak, Marcin Ligas
AGH University of Krakow, Adama Mickiewicza 30,

30–059 Kraków, Poland
Method description:
Ordinary kriging belongs to a broad family of geostatis-

tical methods of prediction, and is optimal in the sense of
Best Linear Unbiased Prediction (BLUP) if the mean value
of a random function is an unknown constant. Prediction by
means of kriging requires a structure function that describes
continuity and variability of a random process. A semivar-
iogram, due to its advantage over a covariance function, is
used to describe a structure hidden in the residual series,
that is obtained after the removal of a linear trend, periodic
components and periodicity associatedwith solid Earth tides.
Among theoretical semivariogram models the best perform-
ing one turned out to be exponential model. The final forecast
consists of extrapolated deterministic part combined with the
predicted (kriged) stochastic part. The entire process is pre-
sented in Michalczak and Ligas (2021, 2022).

142
Authors with affiliations:
Mostafa Kiani Shahvandi, Matthias Schartner, Junyang

Gou, Benedikt Soja
Institute of Geodesy and Photogrammetry, ETH Zurich,

Zurich, Switzerland
Method description:
This method focuses on the 10-day prediction of LOD

using a hybridmodeling approach, which combines physical,
statistical, and encoder-decoder LSTM (EDLSTM) network
while considering geophysical excitations. We first remove
the secular trend and known signals from the LOD time
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series by combining the Savitzky–Golay filter (Savitzky and
Golay 1964), tidal corrections (Petit and Luzum 2010), and
least-squares adjustment (Brockwell andDavis 2002) to gen-
erate the LOD residuals (LODR). The GFZ EAM (AAM +
OAM+HAM)data (DobslawandDill 2018) and correspond-
ing 6-day forecasts are also preprocessed using least-squares
adjustment to obtain EAM residuals (EAMR).

Then, the LODR, EAMR, and 6-day forecasts of EAMR
are concatenated and considered as input features. The final
dimension of the input tensors is 30× 8 sincewe consider the
previous 30 days as the input sequence. Thenwe feed this ten-
sor into the EDLSTMnetwork (Hochreiter and Schmidhuber
1997, Nayak and Ng 2020) to predict LODR for the next ten
days. In order to restore the full LOD, we should also predict
the previously removed components. The tidal and seasonal
signals can be easily predicted since they are estimated using
deterministic models. The long-term trend will be predicted
using PCHIP (Piecewise Cubic Hermite Interpolating Poly-
nomial) extrapolation (Fritsch and Carlson 1980).

For more details, please refer to Gou et al. (2023).

143
Authors with affiliations:
Mostafa Kiani Shahvandi, Matthias Schartner, Junyang

Gou, Benedikt Soja
Institute of Geodesy and Photogrammetry, ETH Zurich,

Zurich, Switzerland
Method description:
The basis of this architecture is the multilayer perceptron.

However, in order to use several hidden layers and overcom-
ing the problems with deep neural networks, we have added
the residual learning blocks to this architecture, similar to
Kiani Shahvandi and Soja (2022a). Therefore, we name this
architecture the revisedmultilayer perceptron. The activation
functions for the hidden layers are tangent hyperbolic, except
for the last layer which is linear. Number of hidden layers is
three. The input sequence length in this algorithm is 10.How-
ever, the output sequence length is either 12 or 32 depending
on the forecasting horizon, both of which are provided. The
architecture is used for LOD prediction in the same manner
as Gou et al. (2023). The inputs to this algorithm are prepro-
cessed, i.e., in the case of LOD the trends, tides, and seasonal
signals are removed, while for EAM functions the seasonal
signals are subtracted from the observations and forecasts.
The mentioned subtracted signals are subsequently added to
the predictions of the architecture in order to give the final
value of LOD prediction.

147, 148, 149
Authors with affiliations:
Mostafa Kiani Shahvandi, Matthias Schartner, Junyang

Gou, Benedikt Soja
Institute of Geodesy and Photogrammetry, ETH Zurich,

Zurich, Switzerland

Method description:
This architecture is based on the first-order neural ordinary

differential equations (Neural ODEs). The general Neural
ODEdifferential learning architecture (Kiani Shahvandi et al.
2022a) ismodified in away that does not incorporate the rates
of EOPs into the architecture. A simplified form of this archi-
tecture is also used (referred to as simple recursive) (Kiani
Shahvandi et al. 2022b) inwhich the uncertainties in the input
data are used toweigh the loss function (Kiani Shahvandi and
Soja 2022b) (the loss function here is themean squared error)
for a more reliable estimation of the parameters of the neu-
ral networks. However, investigating the residuals of training
phase reveals that some signals in the observations are not
well captured by the Neural ODEs. Therefore, an attempt is
made to model these residuals by Long Short-Term Mem-
ory (LSTM) neural networks in the same manner suggested
by Gou et al. (2023). First, Neural ODEs are trained and
then the fitted values are subtracted from the observations in
order to compute the residuals. Subsequently these residuals
are modelled by LSTM. The input to the LSTM architecture
is only the past values of residuals of training of the Neural
ODEs architecture. The input sequence length here is 10 and
the loss function is mean absolute error. For this purpose,
the predictions of IERS are also incorporated into the algo-
rithm in order to predict the residuals at each training epoch
(retraining is required).

156
Authors with affiliations:
Maciej Michalczak, Marcin Ligas
AGH University of Krakow, Adama Mickiewicza 30,

30–059 Kraków, Poland
Method description:
The deterministic part, i.e., estimated linear trend, peri-

odic components and tidal effects, is first removed from
raw times series. ARIMA model is then used to predict
the residual part. Autoregressive integrated moving average
ARIMA(p, d, q) model is a combination of autoregres-
sive model (p), moving average model (q) and differencing
process (integrated part; d) that accounts for a potential
non-stationarity of a residual process. The deterministic com-
ponent is extrapolated for future time instances and then
combined with ARIMA-based predicted stochastic part. The
best set of parameters p and q is selected by means of
corrected Akaike Information Criterion (AIC). Parameter d
determines a degree of differencing to be applied in order
to transform a non-stationary time series into a stationary
one in the mean sense. Stationarity of the residual pro-
cess is checked using Kwiatkowski–Phillips–Schmidt–Shin
(KPSS) test. The entire prediction procedure is described in
Michalczak et al. (2022).

157
Authors with affiliations:
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Maciej Michalczak, Marcin Ligas
AGH University of Krakow, Adama Mickiewicza 30,

30–059 Kraków, Poland
Method description:
Dynamic mode decomposition (DMD) is a relatively new

technique of data decomposition that emerged in the field of
fluid dynamics due to work by Schmid (2010). It is described
as an ideal marriage of data decomposition methods (e.g.,
principal component analysis) and Fourier transform (Kutz
et al. 2016). It is a data-driven, equation-free technique with
the only assumption that some dynamics is present in data.
It has the ability to reconstruct and forecast data in a single
numerical procedure.DespiteDMDis of spatio-temporal ori-
gin with a slight modification it can be used to univariate time
series by splitting an input time series of length T into L sub-
series (shifted by one time step ahead) of lengthK (Tirunagari
et al. 2017). This generates a trajectory matrix known from,
e.g., singular spectrum analysis (SSA). The main goal of the
method is to capture a low rank structure of the analyzed
dynamical system, i.e., to decompose it into the most dom-
inant components (trends, harmonics) that may be used for
a future state prediction later on. Due to numerical feasibil-
ity, during the 2nd EOP PCC the method was used without
dimensionality reduction step (no low rank approximation
involved).
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