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carbon cycle dynamics compatible with 1.5 and 2 °C
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Abstract. While international climate policies now focus on limiting global warming to well below 2 °C or
pursuing a 1.5 °C level of global warming, the climate modelling community has not provided an experimental
design in which all Earth system models (ESMs) converge and stabilize at the same prescribed global warming
levels. This gap hampers accurate estimations based on comprehensive ESMs of the carbon emission pathways

Published by Copernicus Publications on behalf of the European Geosciences Union.



1592 Y. Silvy et al.: AERA-MIP: a multi-model analysis

and budgets needed to meet such agreed warming levels and of the associated climate impacts under temperature
stabilization. Here, we apply the Adaptive Emission Reduction Approach (AERA) with ESMs to provide such
simulations in which all models converge at 1.5 and 2.0 °C warming levels by adjusting their emissions over
time. These emission-driven simulations provide a wide range of emission pathways and resulting atmospheric
CO2 projections for a given warming level, uncovering uncertainty ranges that were previously missing in the
traditional Coupled Model Intercomparison Project (CMIP) scenarios with prescribed greenhouse gas concen-
tration pathways. Meeting the 1.5 °C warming level requires a 40 % (full model range: 7 % to 76 %) reduction
in multi-model mean CO2-forcing-equivalent (CO2-fe) emissions from 2025 to 2030, a 98 % (57 % to 127 %)
reduction from 2025 to 2050, and a stabilization at 1.0 (−1.7 to 2.9) PgC yr−1 from 2100 onward after the 1.5 °C
global warming level is reached. Meeting the 2.0 °C warming level requires a 47 % (8 % to 92 %) reduction
in multi-model mean CO2-fe emissions until 2050 and a stabilization at 1.7 (−1.5 to 2.7) PgC yr−1 from 2100
onward. The on-average positive emissions under stabilized global temperatures are the result of a decreasing
transient climate response to cumulative CO2-fe emissions over time under stabilized global warming. This evo-
lution is consistent with a slightly negative zero emissions commitment – initially assumed to be zero – and leads
to an increase in the post-2025 CO2-fe emission budget by a factor of 2.2 (−0.8 to 6.9) by 2150 for the 1.5 °C
warming level and a factor of 1.4 (0.9 to 2.4) for the 2.0 °C warming level compared to its first estimate in 2025.
The median CO2-only carbon budget by 2150, relative to 2020, is 800 GtCO2 for the 1.5 °C warming level and
2250 GtCO2 for the 2.0 °C warming level. These median values exceed the median IPCC AR6 estimates by 60 %
for the 1.5 °C warming level and 67 % for 2.0 °C. Some of the differences may be explained by the choice of the
mitigation scenario for non-CO2 radiative agents. Our simulations highlight shifts in carbon uptake dynamics
under stabilized temperature, such as a cessation of the carbon sinks in the North Atlantic and in tropical forests.
On the other hand, the Southern Ocean remains a carbon sink centuries after temperatures stabilize. Overall, this
new type of warming-level-based emission-driven simulation offers a more coherent assessment across climate
models and opens up a wide range of possibilities for studying both the carbon cycle and climate impacts, such
as extreme events, under climate stabilization.

1 Introduction

Climate goals outlined in international policies, such as the
2015 Paris Agreement (UNFCCC, 2015), primarily focus on
global warming levels. The Paris Agreement in particular
aims to hold “the increase in the global average temperature
to well below 2 °C above pre-industrial levels” and to pur-
sue efforts “to limit the temperature increase to 1.5 °C above
pre-industrial levels”. Global warming levels are chosen in
international policies as they are often directly correlated to
global and regional impacts of climate change (Seneviratne
et al., 2016; IPCC, 2018). Hence, each fraction of avoided
warming reduces risks for humans and ecosystems (IPCC,
2022).

The Coupled Model Intercomparison Project (CMIP) pro-
vides climate projections of Earth system models (ESMs)
for the 21st century and beyond. These projections, how-
ever, follow an approach that poses challenges in estimat-
ing carbon emission pathways and budgets that are consis-
tent with the goals of the Paris Agreement. In CMIP pro-
jections, ESMs have traditionally been driven by prescribed
pathways in the concentrations of CO2 and other radiative
agents (O’Neill et al., 2016; Meinshausen et al., 2020), al-
though there is now a push towards more emission-driven
scenario designs (Sanderson et al., 2024). For a given green-
house gas emissions or concentrations trajectory, each ESM

simulates different global warming trajectories (e.g. Tebaldi
et al., 2021, and see schematic in Fig. 1), primarily due to
the wide range in climate sensitivity and in the transient cli-
mate response (e.g. Zelinka et al., 2020; Meehl et al., 2020;
Arora et al., 2020). The varying responses of ESMs have led
to varying estimates for the cumulative CO2 emissions un-
til a given global warming level is reached (Rogelj et al.,
2016; Tokarska et al., 2018). Consequently, it is difficult
to estimate the emission pathways that align with stabiliz-
ing the climate at specific global warming levels. Instead,
the emission pathways and budgets for temperature stabi-
lization were estimated with reduced-form models (Millar
et al., 2017), Earth system models of intermediate complex-
ity (Steinacher et al., 2013; Matthews et al., 2017; Good-
win et al., 2018b; Mengis and Matthews, 2020; Matthews
et al., 2021), or by the near-linear relationship between an-
thropogenic global surface warming and cumulative emis-
sions suggested by ESMs (Allen et al., 2009; Matthews et al.,
2009; Zickfeld et al., 2009).

Numerous studies have confirmed the near-linear response
between global temperature increase and cumulative CO2
emissions, with the slope of this relationship called the tran-
sient climate response to cumulative CO2 emissions (TCRE).
The TCRE has been estimated from observational data (e.g.
Millar and Friedlingstein, 2018) and model experiments and
has been used to estimate the amount of cumulative emis-
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Figure 1. Schematic of the forward vs. backward modelling approach. Black lines indicate the same prescribed variable (emissions for
CMIP, global warming level for AERA) in all models. Red lines indicate the resulting range across models in simulated temperature and the
resolved range in emissions in AERA.

sions that could still be emitted before reaching a given
global warming level (Meinshausen et al., 2009; Rogelj et al.,
2016, 2019). The amount of cumulative CO2 emissions up
to the point of net-zero CO2 emissions is known as the re-
maining carbon budget (RCB) for a fixed warming level.
The RCB from the beginning of the year 2020, for example,
has been estimated to be 400 GtCO2 (109 PgC) for a 50 %
chance of maintaining the global temperature below 1.5 °C
of warming, with its uncertainty range being 54 to 204 PgC,
for an 83 %–17 % chance (Forster et al., 2023). For the 2.0 °C
level, the RCB ranges from 245 to 600 PgC. The uncertainty
of the RCB is large due to uncertainties in the TCRE, cli-
mate response to zero emissions, unrepresented feedbacks,
future warming from non-CO2 agents (Rogelj et al., 2019),
and pathway dependencies (Millar et al., 2017).

As the uncertainties in TCRE, climate response to zero
emissions, feedbacks, and future warming from non-CO2
agents will unlikely be significantly reduced in the near fu-
ture, an iterative and regular update of the RCB is necessary
to ensure that the latest scientific understanding is included
and to ensure policies can be judiciously implemented to
avoid exceeding the given global warming levels. Through
an adaptive process aligned with the “pledge and review”
mechanism of the Paris Agreement, the RCB and emission
pathways might be regularly updated at each stocktake pe-
riod based on the best available science (Otto et al., 2015). An
iterative approach ensures that the emission pathway remains
in line with the prescribed warming level and adaptively ad-
justs to uncertainties in the evolution of the climate response,
such as the potential warming or cooling at near-zero CO2
emissions (zero emissions commitment, ZEC; MacDougall

et al., 2020), and the response to mitigation rates in non-
CO2 radiative agents. Such adaptive approaches have been
proposed and tested with reduced-complexity models run-
ning forward from present day and offer promising poten-
tial. Goodwin et al. (2018a) introduced the “adjusting mit-
igation pathways” method using a climate box model. In
this approach, the remaining carbon budget to a predefined
warming level is estimated using the near-linear relationship
between warming and cumulative carbon emission from a
historically forced simulation. Following this, the remaining
budget is distributed in the future and reassessed every 10
years. However, limitations, including idealized emission tra-
jectories, disregarding non-CO2 agents in TCRE and RCB
calculations, and challenges in reaching the warming level
within the uncertainty range of ±0.25 °C by 2300, hinder
its real-world applicability. Further approaches that do not
make use of an adaptive RCB include backwards modelling
approaches, like temperature tracking using models of inter-
mediate complexity (EMICs; Matthews and Caldeira, 2008;
Zickfeld et al., 2009, 2013; Mengis et al., 2018) or employ-
ing impulse–response functions with a simple climate model
(Millar et al., 2017) to convert a smooth temperature trajec-
tory into an emission pathway. In contrast, the recently de-
veloped Adaptive Emission Reduction Approach (AERA),
validated with the Bern3D-LPX Earth system model of in-
termediate complexity (Terhaar et al., 2022a, 2023), offers a
less idealized approach and addresses several limitations in-
herent in previous approaches. Even though the underlying
principles of AERA are similar to the adjusting mitigation
pathways approach (Goodwin et al., 2018a), AERA provides
smoother emission pathways, incorporates non-CO2 agents,
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always stabilizes at the warming levels within ±0.2 °C, and
can also be applied to run simulations that temporarily over-
shoot the warming level. However, as of now, none of these
approaches have been implemented in comprehensive fully
coupled ESMs.

Here, we implement the AERA introduced by Terhaar
et al. (2022a) across a range of fully coupled CO2 emission-
driven Earth system models. This new Adaptive Emis-
sion Reduction Approach Model Intercomparison Project
(AERA-MIP) provides projections that stabilize surface tem-
perature to the same warming level. The AERA-MIP frame-
work enables estimations of the remaining carbon budget,
compatible emission pathways, and the ocean and land car-
bon cycle response to those pathways within scenarios of sta-
bilized warming levels at 1.5 or 2 °C, which we present in
this study. Other potential applications of AERA-MIP will
be addressed in Sect. 8.

2 Methods

The detailed protocol for the simulations of the AERA-
MIP is provided in Frölicher et al. (2022). The proto-
col is a slightly modified version of the originally pro-
posed method by Terhaar et al. (2022a). For details,
see steps 1 and 3 in Sect. 2.1. The AERA code is
distributed as a Python module openly available under
https://doi.org/10.5281/zenodo.14499905 (Terhaar, 2024),
with guided documentation and examples provided. Below,
the protocol is summarized before introducing the participat-
ing models, simulations, and carbon stock analysis.

2.1 Adaptive Emission Reduction Approach – AERA

The goal of the AERA is to quantify successive future tra-
jectories of CO2-forcing-equivalent (CO2-fe) emissions that
stabilize the global surface air temperature (GSAT) at a pre-
determined level (Terhaar et al., 2022a). The concept of CO2-
fe emissions is used to unify the emissions of various ra-
diative forcing agents and precursors into a single metric
(Jenkins et al., 2018; Allen et al., 2018; Smith et al., 2021).
CO2-fe emissions for all non-CO2 agents represent the CO2
emissions that would produce the same radiative forcing tra-
jectory as these non-CO2 emissions. While cumulative CO2
emissions largely determine anthropogenic warming, non-
CO2 radiative forcing agents such as methane, nitrous oxide
and aerosols also play an important role. Quantifying the im-
pact of these non-CO2 agents on global temperatures is com-
plicated by existing methodologies, which often use conven-
tional global warming potentials or other metrics to convert
the non-CO2 radiative forcing agents into “CO2-equivalent”
emissions. The CO2-fe emissions framework offers a well-
suited alternative for comparing emissions from different
agents in the context of temperature stabilization pathways
(Terhaar et al., 2022a). It also offers an opportunity to com-
pare emission reductions in different radiative forcing agents

for ecosystem impacts (Terhaar et al., 2023). The CO2-fe
emissions from non-CO2 agents, Enon-CO2-fe, are estimated
based on the radiative forcing time series of non-CO2 agents
(Smith et al., 2021):

Enon-CO2-fe(t)=
1
α

(
dFnon-CO2 (t)

dt
+ ρFnon-CO2 (t)

)
, (1)

where Fnon-CO2 is the radiative forcing of non-CO2 agents,
ρ is the rate of decline in radiative forcing under zero emis-
sions over decadal to centennial timescales (0.33 %), and α
is a constant representing the forcing impact of ongoing CO2
emissions (1.08 Wm−2 per 1000 GtC). By varying the rela-
tive shares of CH4 and N2O emissions and radiative forcing
from aerosols in the total CO2-fe emissions, Terhaar et al.
(2022a) demonstrated the robustness of the CO2-fe approach
in translating contributions from different radiative forcing
agents into CO2-fe emissions.

AERA achieves the temperature stabilization at a prede-
termined warming level by estimating future CO2-fe emis-
sions based on the estimated TCRE-fe (the transient climate
response to cumulative CO2-fe emissions). The TCRE-fe in
turn is derived from simulations of past annual GSAT, past
fossil fuel and land use change CO2 emissions, and CO2-fe
emissions from non-CO2 forcing agents calculated from their
radiative forcing estimates (Jenkins et al., 2021).

The AERA consists of three steps, which are repeated
every 5 years, mirroring the stocktaking mechanism imple-
mented in the Paris Agreement (Terhaar et al., 2022a).

1. AERA estimates the anthropogenic warming 1T from
the simulated GSAT time series (relative to 1850–1900).
The past anthropogenic warming is estimated here by
applying a 31-year running mean with a linear extrapo-
lation for the last 15 years, assuming a constant warm-
ing rate based on the last 31 years. This is in contrast
to the original AERA method, which employs an im-
pulse response function on radiative forcing and tem-
perature estimates to determine anthropogenic warming
(Otto et al., 2015). The simple running mean method
was applied here as it yields more robust results in cases
where the model’s radiative forcing is unknown (as is
the case for most ESMs) and after reaching the temper-
ature level.

2. The anthropogenic warming calculated in step 1 is then
divided by the cumulative CO2-fe emissions since 1850
to determine the TCRE-fe. Using this TCRE-fe metric,
we compute the amount of CO2-fe emissions that can
still be emitted before reaching the temperature level.
This remaining CO2-fe emission budget, referred to as
REB, is derived by dividing the remaining warming un-
til the temperature level is reached (1Tremaining) by the
TCRE-fe value:

REB=
1Tremaining

TCRE-fe
. (2)

Earth Syst. Dynam., 15, 1591–1628, 2024 https://doi.org/10.5194/esd-15-1591-2024

https://doi.org/10.5281/zenodo.14499905


Y. Silvy et al.: AERA-MIP: a multi-model analysis 1595

3. The REB from step 2 is then distributed in the future us-
ing a cubic polynomial function. The parameters of the
function are chosen to limit an overshoot in temperature
and maintain minimal year-to-year changes in CO2-fe
emissions (see Terhaar et al., 2022a, for details). In con-
trast to Terhaar et al. (2022a) and to prevent large os-
cillations in the emissions in the ESMs when the warm-
ing levels are reached, we modified the minimum and
maximum length (both now variable and depending on
the REB and the annual emissions) of the cubic poly-
nomial that distributes the CO2-fe emissions over the
future years.

2.2 Earth system models

A total of 13 models have participated in the AERA-MIP:
10 fully coupled Earth system models (ACCESS-ESM1-5,
CESM2, EC-Earth3-CC, NASA-GISS-E2-1-G-CC, GFDL-
ESM2M, GFDL-ESM4, IPSL-CM6-LR-ESMCO2, MIROC-
ES2L, MPI-ESM1-2-LR, and NorESM2-LM), 2 models of
intermediate complexity (Bern3D-LPX and UVic-ESCM-
2.10), and 1 atmosphere–ocean general circulation model
coupled to a carbon cycle emulator (HadCM3-FaIR2; see
Appendix A, for a description of the configuration). Nine
of the fully coupled ESMs participated in the sixth phase
of the coupled model intercomparison project (CMIP6), and
GFDL-ESM2M participated in CMIP5. Table A1 lists the
models, their abbreviation used in this paper, the correspond-
ing references, the simulated time period, and the number
of ensemble members. A summary of their components has
been already provided in several multi-ESM studies (e.g.
Séférian et al., 2020; MacDougall et al., 2020; Arora et al.,
2020; Canadell et al., 2021).

Small initial condition ensembles were provided by
two participating ESMs to estimate the uncertainty asso-
ciated with internal variability (Table A1). EC-Earth and
GFDL-ESM2M provided a three-member and a five-member
ensemble, respectively. Ideally, more ensemble members
are necessary to properly quantify the internal variability
(Lehner et al., 2020). However, even the small number of en-
semble members available here provide a first-order estimate
of internal variability.

The ACCESS-ESM1-5 model is somewhat of an outlier.
It also converges to both prescribed temperature levels but
substantially later than all other models, and after a signif-
icant temperature overshoot. The model most likely over-
shoots and converges later due to a strong mismatch between
the estimate of non-CO2 radiative forcing used in the AERA
to estimate CO2-fe emissions (from the RCP/SSP database;
see below) and the non-CO2 radiative forcing simulated in
the model based on the prescribed atmospheric non-CO2 ra-
diative agents. Hence, results from ACCESS were excluded
from subsequent multi-model statistics but are still shown
for transparency in Fig. 2. However, the inclusion of the

ACCESS model in the ensemble modifies our results only
slightly (Fig. B1).

2.3 Simulations

The simulations of the AERA-MIP are performed until at
least 2150 (except for HadCM3-FaIR2 until 2100) and up
to 2300 to allow for enough time to reach the temperature
level and stabilize global surface warming (Table A1). Simu-
lations have been conducted for both the 1.5 and 2.0 °C tem-
perature levels. To remove biases in simulated warming over
the historical period relative to observations, we use the con-
cept of a relative temperature level (Millar et al., 2017; Good-
win et al., 2018a; Terhaar et al., 2022a). Under this concept,
the remaining allowable warming in 2020 is first estimated
from observations. In a second step, the AERA adds this
observation-based remaining allowable warming to the mod-
els’ anthropogenic warming in 2020 to calculate the absolute
temperature level in each model (see Frölicher et al., 2022;
Terhaar et al., 2022a). Thus, each model estimates the emis-
sion trajectory for the same remaining allowable warming in
2020, which is here estimated to be 0.28 °C for the 1.5 °C
warming level and 0.78 °C for the 2.0 °C level. These values
were derived from the observation-based estimated warming
of 1.22 °C in 2020 (Terhaar et al., 2022a). Each initial con-
dition ensemble member has its own anthropogenic tempera-
ture in year 2020, resulting in very small differences in abso-
lute temperatures for that year (maximum differences across
GFDL-ESM2M ensemble members of 0.067 °C).

Following a similar simulation strategy as in Terhaar et al.
(2022a), all simulations branch off an emission-driven sim-
ulation (esm-hist) over the historical period following the
CMIP6 protocol. After the end of the CMIP6 historical pe-
riod in 2014, fossil fuel CO2 emissions follow observed
emissions until 2020 (Friedlingstein et al., 2020; Le Quéré
et al., 2021) and projected emissions from the Nationally
Determined Contributions (NDCs; Climate Action Tracker:
https://climateactiontracker.org/global/temperatures/, last ac-
cess: 1 December 2021) from 2021 to 2025. Starting at the
end of the year 2025, fossil fuel CO2 emissions prescribed to
the model are obtained every 5 years from AERA (see below
and the schematic in Fig. B2) by subtracting CO2-fe emis-
sions from prescribed non-CO2 radiative agents and land
use land cover change from the AERA-derived total CO2-
fe emission curve. Non-CO2 agents and land use and land
cover change are prescribed as in the SSP1-2.6 scenario after
2015. This low-emission–high-mitigation scenario is often
used in related climate stabilization approaches (e.g. Millar
et al., 2017; Mengis et al., 2018). An exception is the CMIP5-
type GFDL-ESM2M, which follows the CMIP5 protocol for
the historical period and the RCP2.6 scenario instead of the
SSP1-2.6 scenario for the non-CO2 forcing agents and land
use and land cover change. After 2100, no further changes
occur in non-CO2 forcing agents, land use, and land cover.
A schematic is provided in Fig. B2, summarizing the feed-
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back loop between the AERA module and the ESM during
the post-2025 period of the simulations.

As the AERA calculates the total CO2-fe emissions, it re-
quires information about emissions from non-CO2 forcing
agents (Enon-CO2-fe) and CO2 emissions from land use and
land cover change (ELUC; referred to as land use change
emissions for simplicity from now on) to estimate the past
TCRE-fe in addition to the past fossil fuel CO2 emissions
(EFOS). Moreover, the future EFOS values prescribed to the
model after each stocktake are calculated as the difference
between the CO2-fe emission curve (Etotal-fe) from step 3 of
AERA and the estimated future CO2-fe emissions from land
use change and non-CO2 forcing agents:

EFOS = Etotal-fe−ELUC−Enon-CO2-fe. (3)

As most models do not directly output the radiative forcing
of non-CO2 agents (required to derive Enon-CO2-fe), we esti-
mate this time series from the radiative forcing given by the
RCP/SSP database for both the historical period and SSP1-
2.6 scenario. Some models, however, have provided an esti-
mate of the simulated effective radiative forcing for all non-
CO2 radiative agents (see Table A2 and Fig. 4d). For these
models, the internally calculated effective radiative forcing
estimates were used to derive the CO2-fe emissions from the
non-CO2 forcing agents (Smith et al., 2021). Similarly, some
models (see Table A2 and Fig. 4c) have conducted additional
simulations to estimate ELUC (Lawrence et al., 2016; Lid-
dicoat et al., 2021). In that case, the model-specific ELUC
is prescribed to AERA instead of the default ELUC estimate
stemming from the Bern3D-LPX model that was scaled to
align with the Global Carbon Budget estimates from 1850 to
2020. The default Enon-CO2-fe and ELUC time series and the
model-specific emissions for those that were able to estimate
them are shown in Figs. 4 and A1.

Although the future ELUC and Enon-CO2-fe are prescribed
in AERA to enable the extraction of future EFOS as input
to the models (Fig. B2), the future CO2-fe emission curve
Etotal-fe is largely insensitive to the chosen land use and non-
CO2 forcings (see tests in Terhaar et al., 2022a).

Further details on the configuration of the AERA simula-
tions are provided in Appendix A.

2.4 Remaining emission budget over time

While the TCRE is commonly considered approximately
constant, recent studies suggest a potential variability in
TCRE when CO2 emissions are reduced, owing partly to a
non-zero ZEC (Frölicher and Paynter, 2015; Steinacher and
Joos, 2016; Nicholls et al., 2020; MacDougall et al., 2020).
This indicates that the REB originally estimated at the end
of 2025 may evolve over time, with the additional effect of
potential non-linearities in the response of non-CO2 forcing
agents. To illustrate the temporal evolution of the REB from
a fixed starting point, we reconstruct the CO2-fe emission
budget from the beginning of the year 2026 (EB2026) at each

stocktake by summing the REB (i.e. all future emissions) cal-
culated at the end of the stocktake year (tst) and the already
emitted CO2-fe emissions between 2026 and that year:

EB2026(tst)= REB(tst)+

tst∫
2026

Etotal-fe(t)dt. (4)

EB2026(2025) is by definition REB(2025).

2.5 Distribution of carbon in the Earth system

Within individual ESMs, all sources and sinks of the carbon
mass balance are known (disregarding ocean–sediment inter-
actions and weathering, whose effects are negligible over the
timescales considered in this study) and we can write the fol-
lowing equation:

EFOS =GATM+ SOCEAN+ (SLAND−ELUC). (5)

EFOS indicates the prescribed global fossil fuel CO2 emis-
sions during the historical period and calculated by AERA
post 2025. GATM indicates the simulated atmospheric CO2
growth rate (in PgC yr−1) using the conversion factor of
2.123 PgC ppm−1 (Enting et al., 1994). SOCEAN is the net
ocean carbon sink derived from the CO2 flux into the ocean
(CMIP6 variable fgco2). SLAND-ELUC denotes the net CO2
flux into land and is derived from the net biosphere produc-
tion (CMIP6 variable nbp). The net biosphere production in-
cludes the gross land carbon sink SLAND minus emissions
from land use and land cover change ELUC.

For the eight models that estimate theirELUC term, we can
quantify the gross land carbon sink SLAND (Fig. A1 and Ap-
pendix A) by adding the two diagnostics nbp +ELUC. Thus,
by rearranging Eq. (5), we can separate net sources and sinks
of CO2:

EFOS+ELUC =GATM+ SOCEAN+ SLAND. (6)

As opposed to earlier studies (Liddicoat et al., 2021; Koven
et al., 2022), atmospheric CO2 is freely evolving and not pre-
scribed, whereas EFOS is prescribed and does not need to be
diagnosed.

From Eq. (6), we derive the cumulative airborne fraction
(CAF), ocean-borne fraction (COF), and land-borne fraction
(CLF):

CAF(t)=

∫
GATM(t)dt∫

(GATM(t)+ SOCEAN(t)+ SLAND(t))dt
, (7)

COF(t)=

∫
SOCEAN(t)dt∫

(GATM(t)+ SOCEAN(t)+ SLAND(t))dt
, (8)

CLF(t)=

∫
SLAND(t)dt∫

(GATM(t)+ SOCEAN(t)+ SLAND(t))dt
, (9)

with the
∫

sign representing the time integral from 1850.
Here we use GATM+ SOCEAN+ SLAND instead of EFOS+
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ELUC as the denominator of the cumulative fractions to avoid
minor budget closure errors. These errors are negligible in
most models and represent a maximum of a few percent (not
shown), in which case they are very likely due to missing
diagnostics.

For some models, the ELUC term prescribed to AERA was
either the default estimate from the adjusted Bern3D-LPX
time series or a model internal estimate but presented some
errors. In the carbon stock analysis, we corrected these terms
(see Appendix A).

3 Temperature, CO2-fe emission, and atmospheric
CO2 pathways

3.1 Convergence towards the prescribed temperature
level

The AERA effectively stabilizes the simulated GSAT in
ESMs around the prescribed warming level within an uncer-
tainty of ±0.2 °C (Fig. 2a, b). The uncertainty of ±0.2 °C
corresponds to the uncertainty with which anthropogenic
warming can be determined from observations (Haustein
et al., 2017; Jenkins et al., 2022a). The IPSL model temporar-
ily leaves the 1.5 °C uncertainty range, and MIROC briefly
leaves the 2.0 °C uncertainty range. In the 1.5 °C simulation,
the multi-model mean GSAT anomaly enters the warming
level uncertainty range in 2026, i.e. the year when the first
AERA period begins (thick black line in Fig. 2a). The tem-
perature anomaly first peaks at 1.43 °C in 2043 (min–max
model range: 1.20 to 1.57 °C), temporarily drops to 1.40 °C
(1.23 to 1.50 °C) in 2069, and stabilizes around 1.44 °C (1.25
to 1.64 °C) between 2100 and 2150. In the 2.0 °C simulation
(Fig. 2b), the multi-model mean GSAT anomaly enters the
uncertainty envelope in 2061 and stabilizes at around 1.90 °C
(1.77 to 2.09 °C) between 2100 and 2150.

The convergence to the temperature level here shows that
the AERA approach works for both intermediate-complexity
models, as shown previously (Terhaar et al., 2022a), as well
as for fully coupled ESMs. This is the case despite dif-
ferences in ELUC and Enon-CO2-fe prescribed to the AERA
framework and in the models themselves. An exception is
the ACCESS model that only converges to the respective
warming level by the late 22nd century after an overshoot
of 0.3–0.5 °C (larger overshoot for the 1.5 °C warming level;
see Sect. 2 for more details).

3.2 CO2-fe emission pathways

For the 1.5 °C warming level, CO2-fe emissions decrease
strongly and immediately after 2025 for all models, al-
beit with a large inter-model spread (Fig. 2c; Table 1). By
2030, CO2-fe emissions drop to 8.1 (min–max range: 3.1
to 11.9) PgC yr−1, a 40 % (7 % to 76 %) decline compared
to 2025 levels of 13.7 (11.0 to 18.9) PgC yr−1. During this
strong decline phase, CO2-fe emissions reach a maximum

reduction of −2.0 (−0.4 to −3.6) PgC yr−2. Afterwards, the
emissions reach a temporary minimum at nearly zero in 2050
(0.2 PgC yr−1; range: −3.6 to 5.0 PgC yr−1), corresponding
to a 98 % (57 % to 127 %) decline from 2025 levels, be-
fore peaking at 1.9 (−0.2 to 4.2) PgC yr−1 in 2077. This
bounce in the CO2-fe emission curve could be explained by
the very rapid mitigation of non-CO2 forcing agents in the
early decades of the SSP1-2.6 scenario, causing slightly neg-
ative forcing-equivalent emissions approximately from 2030
to 2100 (Enon-CO2-fe; see Fig. 4d). Because this decline in
Enon-CO2-fe is not accounted for in the first estimate of the
REB at the end of the year 2025, the emission budget is re-
evaluated and increases in the stocktake years around 2050
relative to its 2025 estimate (Fig. 5a), leading to the on-
average increase in emissions between 2050 and 2077. Sub-
sequently, CO2-fe emissions decrease again to 1.0 (−1.7 to
2.9) PgC yr−1 between 2100 and 2150 when global mean
temperatures have been stabilized. Until the end of the 22nd
century, CO2-fe emissions remain slightly positive on aver-
age. The positive emissions and large model spread during
the temperature stabilization phase are consistent with the
overall negative but highly uncertain multi-decade temper-
ature response after zero CO2 emissions across a range of
EMICs and ESMs (MacDougall et al., 2020; Jenkins et al.,
2022b). In 4 out of 13 models (GFDL-ESM4, IPSL, MPI,
UVic), negative CO2-fe emissions are not necessary to stabi-
lize at the 1.5 °C warming level.

Achieving the 2.0 °C warming level also requires strong
CO2-fe emission reductions, albeit less drastic than for the
1.5 °C level. By 2030, multi-model mean CO2-fe emissions
decrease to 13.0 (10.9 to 17.1) PgC yr−1, a 5.2 % (−1% to
16 %) reduction from 2025 levels. By 2050, they drop fur-
ther to 7.2 (1.3 to 11.4) PgC yr−1, a 47 % (8 % to 92 %) de-
crease compared to 2025, and stabilize at 1.7 (range: −1.5
to 2.7) PgC yr−1 between 2100 and 2150. The maximum re-
duction rate between 2026 and 2100 is −0.7 (range: −2.3 to
−0.1) PgC yr−2. Only two models, EC-Earth and CESM2,
exhibit temporary negative CO2-fe emissions before 2150.

Several models simulate decadal-scale oscillations in
emissions trajectories after reaching the prescribed tempera-
ture level. These fluctuations partly stem from the challenge
faced by AERA’s anthropogenic warming estimation, utiliz-
ing an extended 31-year running mean, in distinguishing en-
tirely between multi-decadal internal variability and anthro-
pogenic trends in atmospheric temperature. In particular in
NorESM2, large multi-decadal temperature variations due to
Atlantic meridional overturning circulation (AMOC) decline
and subsequent recovery have been shown to occur when
emissions are phased out (Schwinger et al., 2022). However,
these oscillations lead to temperature fluctuations that remain
within the ±0.2 °C range around the temperature level, ex-
cept for a small undershoot simulated in the IPSL model,
which takes a few decades to recover towards the warming
level. This slow evolution of GSAT could be partly related to
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Figure 2. Simulated temperature anomaly and CO2-fe emissions for the 1.5 and 2.0 °C warming levels. Panels (a) and (b) display the
31-year running mean of the global surface air temperature (GSAT) anomaly, aligned with the observed value in 2020. Panels (c) and
(d) illustrate CO2-fe emissions. The multi-model mean, excluding the ACCESS model, is displayed by the thick black line, with the grey
shading indicating the min–max spread. The ensemble mean is shown for models that have several ensemble members. The vertical dotted
line at year 2026 marks the beginning of the AERA simulations. The horizontal shading in (a) and (b) indicates the uncertainty with which
anthropogenic warming can be determined (±0.2 °C).

the large low-frequency internal variability exhibited in this
model (Bonnet et al., 2021).

Beyond 2200, a time period for which only three models
provide results, CO2-fe emissions necessary for maintaining
temperature stabilization are still projected to evolve slightly.
For example, GFDL-ESM2M shows a slower reduction in
CO2-fe emissions during the 21st century compared to other
models due to its low TCRE and a negative temperature re-
sponse to zero emissions on decadal timescales. However,
by the mid-22nd to 23rd century, CO2-fe emissions in this
model become slightly negative and will remain so for sev-
eral centuries in response to a time-varying ZEC and con-
tinued warming in this model on multi-centennial timescales
under zero emissions (Frölicher et al., 2014; Frölicher and
Paynter, 2015). On the other hand, the Bern and MIROC
models simulate continuous (albeit small) positive emissions
on these timescales, reflecting continued cooling in these
models under zero CO2 emissions (negative ZEC) on multi-
centennial timescales (MacDougall et al., 2020). This time
dependency of the ZEC response following a period of CO2
emissions erodes the value of the remaining budget concept

as a fixed estimate beyond the first several decades around
net zero.

The simulated uncertainty range in CO2-fe emission path-
ways across the models is caused by model differences and
by internal variability (as diagnosed by the range across indi-
vidual ensemble members of one model; Table 1, Figs. 3b
and B3b). The internal variability uncertainty range diag-
nosed here represents a lower bound of the true internal
variability uncertainty from ESMs as only a few ensemble
members are available. Across the five ensemble members
of GFDL-ESM2M, the min–max range in CO2-fe emissions
in 2050 is 3.9 PgC yr−1 for the 1.5 °C level and 0.7 PgC yr−1

for the 2.0 °C level, corresponding to 45 % and 7 % of the
multi-model range, respectively. These numbers rise to 66 %
and 53 % between 2100 and 2150, respectively. The EC-
Earth three-member ensemble represents 33 % and 53 % of
the multi-model range CO2-fe emissions in 2050 and 34 %
and 29 % between 2100 and 2150 for the 1.5 °C and 2.0 °C
levels, respectively. The inter-member spread decreases dur-
ing the temperature stabilization period. For example, in the
2.0 °C warming level ensemble by GFDL-ESM2M, the inter-
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Figure 3. Comparison between model uncertainty and a lower bound for internal variability uncertainty in simulated temperature, CO2-fe
emissions, and atmospheric CO2 pathways for the 2.0 °C warming level. This is similar to Fig. 2b and d and Fig. 4f, but here the panels show
the multi-model min–max range (in grey) and the inter-member min–max range of EC-Earth (3 members, in yellow) and GFDL-ESM2M (5
members, in blue). The inter-member ensemble ranges are centred on the multi-model mean. For the 1.5 °C warming level, refer to Fig. B3.

member range decreases from 2.7 PgC yr−1 in 2100–2150 to
1.1 PgC yr−1 in 2250–2300 (Fig. 3b). As for the maximum
reduction rate in CO2-fe emissions between 2026 and 2100,
the GFDL-ESM2M ensemble members range from −1.3 to
−0.1 PgC yr−2 for the 2.0 °C warming level, corresponding
to 56 % of the spread across all models.

3.3 Emissions from fossil fuel, non-CO2 agents, and
land use change

Fossil fuel emissions (EFOS; see Eq. 3) closely track the evo-
lution of the CO2-fe curve (Fig. 4a, b). In the 1.5 °C sce-
nario, the multi-model mean emissions remain slightly posi-
tive throughout the simulation, reaching a minimum in 2046
of 0.9 (−2.7 to 6.6) PgC yr−1, peaking in 2069 at 1.7 (−1.0
to 5.4) PgC yr−1, and gradually declining towards zero by
the end of the 22nd century. Although the multi-model mean
suggests that EFOS can remain positive if emission reduc-
tions are fast and strong, negative emissions may still be nec-
essary as five models simulate negative EFOS, reaching −4.5
to −1.6 PgC yr−1 before 2050.

In the 2.0 °C simulation, the multi-model mean reaches
8.2 (1.4 to 11.9) PgC yr−1 in 2050, stabilizes at 1.3 (−1.7
to 3.2) PgC yr−1 between 2100 and 2150, and slightly de-
clines thereafter. In this scenario, only two models (CESM2
and EC-Earth) simulate non-negligible negative fossil fuel
emissions before 2150, reaching −1.5 to −2.0 PgC yr−1. A
temporary increase in EFOS occurs post 2025 in the 2.0 °C
simulation due to rapid reductions in non-CO2 emissions
(Enon-CO2-fe) as prescribed in the SSP1-2.6 scenario (Fig. 4d).

The prescribed CO2-fe emissions from non-CO2 agents
based on SSP1-2.6 (Fig. 4d; coloured lines for models that
were able to estimate their internal radiative forcing, while
the black line is for the others; see Sect. 2) exhibit a rapid
decrease after year 2026, reaching maximum negative emis-
sions around year 2054 of −1.4 PgC yr−1 and stabilizing at
slightly positive levels of 0.2 PgC yr−1 after 2100 for the de-

fault prescribed emissions (black line). The simulated CO2
emissions based on prescribed land use change from SSP1-
2.6 (Fig. 4c) generally remain slightly positive throughout
the 21st century, except in the NASA-GISS, EC-Earth, and
ACCESS models, where they are temporarily negative. Post-
2100, the land use change CO2 emissions prescribed to
AERA stabilize around zero, consistent with the constant
land use area forcing. For the UVic and MPI simulations,
the values prescribed to AERA post-2100 in ELUC were kept
positive and constant, although this does not correspond to
the land use forcing. These time series were corrected in the
remaining emissions budgets reported in Sect. 4 and in the
carbon stock analysis of Sect. 6 (see Appendix A). Both the
non-CO2 and the land use change CO2-fe emissions follow
identical trajectories for the 1.5 and 2.0 °C global warming
level simulations, as they follow the SSP1-2.6 scenario for
both warming levels.

The simulated model-specific CO2 emissions from land
use change and CO2-fe emissions from non-CO2 agents are
not available as output from all models. Nevertheless, nega-
tive CO2-fe emissions from non-CO2 radiative forcing agents
are only possible if the radiative forcing from these agents is
decreasing. However, the radiative forcing agents follow the
SSP1-2.6 or RCP2.6 scenario, and after 2100 they are set
to constant values for all models, suggesting that substan-
tial negative non-CO2 emissions are unlikely post-2100. In
addition, land use area is also set to be constant after 2100.
Considering that CO2 emissions from both land use change
and non-CO2 agents are likely to be zero or slightly above
zero after temperature stabilization, it is reasonable to con-
clude that the positive CO2-fe and fossil fuel CO2 emissions
after stabilizing warming are more likely a consequence of
the overall negative zero emissions commitment rather than
net negative forcing from non-CO2 forcing or from land use
change.

The uncertainty across models found here in residual fos-
sil fuel emissions (Fig. 4a, b) compatible with tempera-
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ture stabilization appears to be in agreement with the re-
sults from Jenkins et al. (2022b), who diagnosed compatible
emissions with halting warming after 1pctCO2 and 1.5 °C-
compatible CO2 emission-driven experiments. They calcu-
late these emissions based on a theoretical framework (defin-
ing the RAZE parameter, i.e. the rate of adjustment to zero
emissions), results from the ZECMIP simulations, and a cli-
mate emulator. In their scenario in which non-CO2 forc-
ing agents follow SSP1-1.9 and CO2 emissions linearly de-
crease to zero between 2021 and 2050, the best estimate of
CO2 emissions compatible with halting warming after 2050
is given at 0.66 PgC yr−1 (2.2 GtCO2 yr−1), with a 5th–95th
percentile range of−2.2 to 1.9 PgC yr−1. In their formulation
of the multi-decade ZEC response, this equates to a small
negative RAZE parameter, the uncertainty of which spans
zero. On the other hand, Mengis et al. (2018) find that net
negative fossil fuel CO2 emissions are necessary to stabi-
lize global surface temperature at 1.5 °C in an observation-
constrained carbon cycle perturbed-parameter ensemble of
the UVic model. In their study, they used RCP2.6 non-CO2
forcing extended to the year 2200, which in total causes pos-
itive radiative forcing between the first time the temperature
is reached in 2055 and the period of stabilization until 2200.
They discuss that this is a likely cause for the net-negative
CO2 emissions.

3.4 Consequences for atmospheric CO2

Since the simulations are CO2 emission-driven, atmospheric
CO2 evolves dynamically (Fig. 4e, f). The multi-model mean
atmospheric CO2 reaches 420 ppm in 2020, slightly higher
than the observed 412 ppm (Lan et al., 2023). In both tem-
perature stabilization simulations, the multi-model mean ex-
hibits a peak and subsequent decline behaviour. Atmospheric
CO2 peaks at 438 ppm in 2031 for the 1.5 °C scenario and at
499 ppm in 2070 for the 2.0 °C scenario, subsequently de-
creasing to 410 ppm in the 1.5 °C scenario and to 480 ppm in
the 2.0 °C scenario by 2150. Thus, atmospheric CO2 should
start to decrease around 2030 to reach the 1.5 °C level, ac-
cording to the multi-model mean. Some models do not sim-
ulate such a smooth peak-and-decline behaviour and in addi-
tion simulate a (temporary) rise in atmospheric CO2 due to a
temporary rise in CO2 emissions during or after the decline
(Fig. 4a).

The different CO2 emissions and the strength of the land
and ocean carbon sinks lead to large differences in atmo-
spheric CO2. The model min–max range in atmospheric CO2
of 53 ppm in year 2025 originates from different ocean and
land carbon sinks and ELUC emissions during the historical
period (Hoffman et al., 2014) as all models have identical
prescribed fossil fuel CO2 emissions until 2025 (Fig. 4a, b;
note HadCM3-FaIR2 differs due to the emissions being diag-
nosed and not prescribed; see Appendix A). After year 2025,
the spread in atmospheric CO2 is also driven by the divergent
EFOS pathways and thus strongly increases, as EFOS also

evolves with the model-dependent AERA calculation every
5 years. The model min–max range expands to 105 ppm
(1.5 °C simulation) and 55 ppm (2.0 °C) by the year 2050,
125 ppm (1.5 °C) and 139 ppm (2.0 °C) by the year 2100, and
123 ppm (1.5 °C) and 141 ppm (2.0 °C) by the year 2150.

Part of these large uncertainties may stem from internal
variability (Figs. 3c and B3c). GFDL-ESM2M’s five ensem-
ble members show a min–max range of 54 ppm (1.5 °C) and
49 ppm (2.0 °C) by 2100, approximately 43 % and 40 %, re-
spectively, of the multi-model range. EC-Earth’s three en-
semble members represent 29 % and 27 % of the model range
in 2100. GFDL-ESM2M’s range tends to decrease over the
23rd century, reaching 24 ppm (1.5 °C) and 41 ppm (2.0 °C)
by 2300. Sensitivity simulations with the Bern model, cover-
ing likely range of TCRE as determined by the IPCC AR6,
exhibit an inter-member spread in atmospheric CO2 levels
that is as large as the inter-model spread, persisting during
stabilization (not shown). Thus, while internal variability cer-
tainly plays an important role by 2100, differences in TCRE
among the models remain the primary driver for the substan-
tial model uncertainties in simulated atmospheric CO2. Ad-
ditional processes may be at play in explaining the model
spread that are not explained by differences in TCRE, such
as the sensitivity to evolving non-CO2 agents and the repre-
sentation of land use land cover changes in the models. For
example, the MIROC model has a low TCRE and negative
ZEC (MacDougall et al., 2020), and yet it exhibits the lowest
levels of atmospheric CO2 at the end of the historical period
(Fig. 4e, f).

4 The remaining emission and carbon budget from
2020 to 2150

The AERA simulations provide actual emissions data both
during the period of model stabilization to the prescribed
warming level and beyond. We compare these numbers with
the remaining carbon budget (RCB) estimates from the IPCC
AR6 Working Group I (WGI; IPCC, 2021). For consistency
with IPCC data, we convert our results from gigatonnes of C
into gigatonnes of CO2 and round up the numbers to the near-
est 50 GtCO2. For the 1.5 °C warming level, our median esti-
mate of cumulative total CO2-fe emissions between 2020 and
2150 is 900 GtCO2, with a 17th–83rd percentile model range
of 450 to 1800 GtCO2 (Table 4). This includes 700 (250 to
1450) GtCO2 from fossil fuel CO2, 150 (50 to 300) GtCO2
from land use changes, and 10 (−10 to 20) GtCO2 from
non-CO2 forcing agents. Note the sum of the individual me-
dian estimates is not exactly equal to the to the median of
the total CO2-fe emissions because the median is not linear
and because of rounding. The CO2-only budget from both
fossil fuel and land use change emissions is 800 (250 to
1800) GtCO2. In comparison, the IPCC AR6 WGI estimate
of the remaining carbon budget (CO2 only) from the year
2020 is 500 (300 to 900) GtCO2 for a 50 % (83 % to 17 %)
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Figure 4. Simulated fossil fuel CO2 emissions, emissions from land use change and non-CO2 forcing agents, and atmospheric CO2. The
multi-model mean, excluding the ACCESS model, is displayed by the thick black line, with the grey shading indicating the min–max spread.
The ensemble mean is shown for models that have several ensemble members. The vertical dotted line at the year 2026 marks the beginning
of the AERA simulations. In panels (c) and (d), the black line shows the default AERA input for both warming levels, whereas the coloured
lines show the diagnosed land use change or non-CO2-forcing-equivalent emissions for models that do not use AERA default values. The
(c) land use change and the (d) non-CO2CO2-fe emissions follow identical trajectories for both warming levels.

likelihood of limiting global warming to 1.5 °C. The method-
ological update from Forster et al. (2024) slightly lowers the
budget to 400 (200 to 750) GtCO2 (Table 2). Our new median
remaining carbon budget (CO2 only) estimate from the year
2020 for the 1.5 °C warming level is therefore 60 % larger
than the median IPCC AR6 estimate.

For the 2.0 °C warming level, the AERA simulations esti-
mate median (17th–83rd percentile range) total CO2-fe emis-
sions between 2020 and 2150 at 2150 (1600 to 2900) GtCO2.
Here, 2050 (1350 to 2600) GtCO2 is from fossil fuels, 150
(50 to 300) GtCO2 from land use changes, and 10 (−10 to
20) GtCO2 from non-CO2 forcing agents (note the land use
change and non-CO2 emissions are not warming level depen-

dent in the AERA protocol). This gives a total CO2-only bud-
get of 2250 (1350 to 2900) GtCO2, compared to 1350 (900
to 2350) GtCO2 from the IPCC AR6 RCB and 1300 (900 to
2200) from Forster et al. (2024). Our new median remain-
ing carbon budget (CO2 only) estimate from the year 2020
for the 2.0 °C warming level is therefore 67 % larger than the
median IPCC AR6 estimate.

The AERA simulations show larger CO2 emission bud-
gets for both 1.5 and 2.0 °C warming levels compared to the
IPCC AR6 RCBs, although the large model range encom-
passes the uncertainty distribution from AR6. The method-
ologies are different, and part of that gap could be due to the
choice of non-CO2 scenario. In the AERA simulations, the
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Table 2. Estimates of the remaining emission budget for 1.5 and 2.0 °C warming levels, considering the AERA-MIP simulations from the
beginning of the year 2020 until the end of the year 2150. Reported here is the multi-model median, as well as the 17th–83rd percentile
model range in the brackets, for each term. The ACCESS and HadCM3 models are excluded from the model statistics (ACCESS simulations
do not converge to the given warming level in time; see Sect. 2.2; HadCM3 simulations stop in 2100). In this table, we use the default
time series prescribed to AERA for ELUC and for Enon-CO2-fe for the models that do not have their own internal estimate (see Sect. 2 and
Appendix A). For a few models, we use the corrected ELUC time series (see Appendix A). All values are given here in gigatonnes of CO2
(a factor 3.67 compared to PgC) and rounded to the nearest 50 GtCO2 (except for Enon-CO2-fe since the range is smaller than 50 GtCO2) for
direct comparison with IPCC AR6 WGI estimates of the remaining carbon budget and the update from Forster et al. (2024). For those two
references, the reported numbers correspond to a 50 % (83 % to 17 %) likelihood of limiting global warming to the temperature limit.

Warming level Total CO2-fe FF+LUC CO2 FF CO2 LUC CO2 non-CO2
EFOS+ELUC+ EFOS+ELUC EFOS ELUC Enon-CO2-fe

Enon-CO2-fe

This study 1.5 °C 900 800 700 150 10
(450 to 1800) (250 to 1800) (250 to 1450) (50 to 300) (−10 to 20)

IPCC AR6 WGI 1.5 °C 500 220–440
(300 to 900)

Forster et al. (2024) 1.5 °C 400
(200 to 750)

This study 2.0 °C 2150 2250 2050 150 10
(1600 to 2900) (1350 to 2900) (1350 to 2600) (50 to 300) (−10 to 20)

IPCC AR6 WGI 2.0 °C 1350 220–440
(900 to 2350)

Forster et al. (2024) 2.0 °C 1300
(900 to 2200)

remaining total CO2-fe emission budget calculated in step 2
of the AERA is independent of the future pathway of non-
CO2 forcing agents. Nonetheless, the partition between fu-
ture CO2 and non-CO2 emissions is a scenario-dependent
one, with a very small amount distributed to non-CO2 emis-
sions here (median estimate of 10 GtCO2), and it is con-
strained by the SSP1-2.6 scenario in our modelling proto-
col. Similarly, the AR6 estimate is also dependent on the sce-
nario regarding future additional non-CO2 warming until net-
zero CO2 emissions. The median estimate for this non-CO2
warming is 0.1–0.2 °C (Canadell et al., 2021), corresponding
to 220–440 GtCO2 following the median TCRE, much more
than our median estimate of 10 GtCO2. The scenario uncer-
tainty in the AR6 estimate represents variations of at least
±220 GtCO2. Thus, when adding up CO2 and non-CO2 con-
tributions (although estimated using different approaches),
the median 1.5 °C remaining emission budget is in fact very
similar between the AR6 estimate and the AERA simulations
(around 800 GtCO2). This does not hold for the 2.0 °C re-
maining emission budget, which is still larger in the AERA
simulations, even when accounting for the differences in the
non-CO2 emission budget.

Another source of difference stems from the uncertainty
in the response to CO2 emissions. Interestingly, the median
TCRE (CO2-only) from the models participating in AERA
and sampled in Table 2 (1.60 °C/1000 PgC) is very close to
the IPCC AR6 median TCRE estimate (1.65 °C/1000 PgC),
indicating that model sampling bias alone cannot explain the

differences. In addition, the RCB calculation in AR6 relies on
the assumption that TCRE remains constant over time. The
numbers from the AERA simulations provided in Table 2,
on the other hand, retrospectively count the simulated emis-
sions until temperature is stabilized and beyond. This makes
AERA a valuable tool for exploring how TCRE and the es-
timated emission budget evolve as the climate responds to
mitigated emissions and temperature stabilization. Next, we
explore the evolution of the remaining CO2-fe emission bud-
get.

5 The evolving remaining emission budget

AERA calculates the simulated remaining CO2-fe emission
budget (REB) every 5 years based on the remaining allow-
able warming and the TCRE-fe relationship (see Eq. 2 in
Sect. 2). At the beginning of the year 2026, the start of
the AERA period, the multi-model mean REB is 99 (47
to 204) PgC for the 1.5 °C warming level and 409 (248 to
581) PgC for the 2.0 °C level (Table 3). These REBs translate
to 7 (3 to 14) years of CO2-fe emissions sustained at mean
2020 levels (14.1 PgC yr−1) for the 1.5 °C warming level and
29 (18 to 41) years for the 2.0 °C level before reaching the
respective temperature level.

To compare these model-based estimates to other REB es-
timates from the beginning of the year 2021 (Jenkins et al.,
2021; Terhaar et al., 2022a), we combine the CO2-fe cumu-
lative emissions of 70 PgC on average from 2021 to 2025
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with the REB from the beginning of the year 2026, which
yields a mean REB of 169 (113 to 264) PgC from the start of
2021 for the 1.5 °C warming level and 479 (309 to 640) PgC
for the 2.0 °C level. Our model-estimated REB range en-
compasses the AERA-based REB calculations from observa-
tions of 167 PgC for 1.5 °C and 472 PgC for 2.0 °C (Terhaar
et al., 2022a). The model’s estimated REB also aligns with
observation-constrained estimates by Jenkins et al. (2021)
of 128–237 PgC for an 83 %–17 % probability of limiting
warming to 1.5 °C (also based on total CO2-fe emissions).

In our simulations, the multi-model mean REB as esti-
mated at the beginning of the year 2026 (EB2026) is smaller
than the emissions that are actually emitted until temperature
stabilization. In other words, the actual EB is larger than the
REB estimated at the beginning of 2026 (Table 3). Between
2100 and 2150, the multi-model mean estimate of EB2026
(calculated as the sum of the REB in the respective year and
the already emitted emissions between 2026 and that year;
see Sect. 2 for details) reaches 217 (−40 to 475) PgC for
1.5 °C and 552 (297 to 778) PgC for 2.0 °C. These updated
emission budgets correspond to 15 years (−3 to 34) of sus-
tained mean CO2-fe emissions at 2020 levels for 1.5 °C and
39 years (21 to 55) for 2.0 °C. Thus, the simulated remain-
ing emissions until temperature stabilization are 2.2 times
larger than estimated at the beginning of 2026 for the 1.5 °C
warming level and 1.4 times larger for 2.0 °C. This increase
in the EB2026 between the beginning of the AERA period and
the end of the simulations (Fig. 5) corresponds to a decrease
in the TCRE-fe (Fig. B4), which is qualitatively consistent
with a slightly negative multi-decade zero emissions com-
mitment (and RAZE parameter) (MacDougall et al., 2020;
Jenkins et al., 2022b) and the resulting residual positive emis-
sions found on average across models during the stabilization
phase (Fig. 2). However, this relationship does not hold for
all models, pointing to other processes that may be at play,
such as the evolution of physical feedbacks, heat uptake by
the ocean, carbon uptake by the ocean and land sinks, and the
fraction of radiative forcing explained by CO2 compared to
non-CO2 agents (e.g. Williams et al., 2017, 2020).

When summed from 1850 to 2150, the total CO2-fe emis-
sions amount to 1063 (750 to 1461) PgC for the 1.5 °C warm-
ing level and 1380 (1087 to 1785) PgC for the 2.0 °C level.
The lower end of the multi-model distribution encompasses
the estimate of 817 and 1090 PgC found by Mengis and
Matthews (2020) under a 1.5 and 2.0 °C stabilization sce-
nario, respectively, with the UVic model.

Similar to residual emissions compatible with tempera-
ture stabilization, the spread across models in EB2026 is
very large, which reflects not only model differences but
also uncertainties due to internal climate variability. The
range in EB2026, when estimated at the end of the year 2025
across the ensemble members of GFDL-ESM2M, represents
41 % (24 %) of the total model range for the 1.5 °C (2.0 °C)
warming level (Fig. B5). For EC-Earth, the ensemble range
amounts to 28 % (11 %) of the total model range. These dif-

ferences in EB2026 are predominantly caused by differences
in estimated anthropogenic warming in 2020 due to the dif-
ference in internal variability in each ensemble member. If
a perfect fit to GSAT for anthropogenic warming existed,
which could remove all internal variability, these differences
would vanish. This shows how sensitive the emission budget
is to the estimate of global warming (Tokarska et al., 2020).
When EB2026 is re-estimated later in the simulations and av-
eraged between 2100 and 2150, the GFDL-ESM2M range is
41 % (44 %) of the model range, while the EC-Earth ensem-
ble amounts to 24 % (31 %).

The model spread of the change in EB2026 over time is
also large. For the 1.5 °C warming level, the model range
spans from an EB2026 decrease by a factor of −1.2 to an in-
crease of a factor of 6.9 between 2025 and 2100–2150. The
largest decrease in absolute value is simulated by CESM2,
for which EB2026 is initially estimated at 100 PgC but de-
creases drastically to 6 PgC by 2100–2150 for the 1.5 °C
warming level. The largest increase in absolute value is simu-
lated by GFDL-ESM4, for which EB2026 is initially 111 PgC
but increases sharply to 475 PgC. For the 2 °C warming level,
the factor spans from 0.8 to 2.4. These differences in the evo-
lution of the emission budget reflect uncertainties in the non-
linear evolution of the TCRE-fe, in the response to non-CO2
forcing agents, and also partly in internal climate variabil-
ity. Within the GFDL-ESM2M five-member ensemble, the
increase in EB2026 ranges from a factor of 1.2 to 2.4 for the
1.5 °C warming level and from a factor of 1.1 to 1.7 for the
2 °C warming level.

As the evolution in the remaining emission budget is cru-
cial for achieving goals defined in the Paris Agreement, we
test here if this evolution can be explained by standard cli-
mate metrics, such as the (effective) equilibrium climate sen-
sitivity (ECS), the transient climate response (TCR) and the
(CO2-only) transient climate response to cumulative CO2
emissions (TCRE). These metrics, reported by various stud-
ies (Arora et al., 2020; Meehl et al., 2020; MacDougall et al.,
2020) are analysed alongside the 2025 estimate of the TCRE-
fe including all CO2-fe emissions. For the 2.0 °C warming
level, there is no strong relationship between those metrics
and the differences in EB2026 between the 2100–2150 aver-
age and the first estimate at the end of 2025 (Fig. 6). The
IPSL model stands out as being a highly sensitive model
(Boucher et al., 2020), and thus it has a very low initial
estimate of the EB2026 compared to other models. How-
ever, as emissions rapidly decrease during the AERA sim-
ulations, the linearity of the TCRE-fe relationship breaks in
this model, and positive emissions become necessary to keep
warming the model at the prescribed warming level. This
could be due to either large negative ZEC (which needs to be
confirmed by dedicated ZECMIP simulations) and/or strong
sensitivity to non-CO2 greenhouse gases that are heavily mit-
igated in the SSP1-2.6 scenario. When the IPSL model is
removed from the analysis, a clearer relationship emerges.
Models with higher sensitivity (e.g. high ECS, TCR, TCRE,
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Table 3. Remaining CO2-fe emission budget (REB) from the beginning of the year 2026, calculated at the first stocktake (end of the year
2025; EB2026(2025)) and recalculated and averaged between 2100 and 2150, taking into account the emissions actually seen by the models
since 2026 (EB2026(2100-2150); see Eq. 4).

Models REB at first stocktake EB2026 averaged between stocktakes 2100–2150
EB2026(2025) (PgC) EB2026(2100–2150) (PgC)

1.5 °C 2.0 °C 1.5 °C 2.0 °C

CESM2 100 345 6 298
EC-Earth ensemble 81 339 78 310

(52 to 97) (322 to 359) (16 to 142) (230 to 365)
NASA-GISS 132 470 112 444
GFDL-ESM2M ensemble 204 581 353 778

(178 to 244) (534 to 615) (260 to 423) (678 to 889)
GFDL-ESM4 111 407 475 756
IPSL ensemble 60 248 412 585

(58 to 62) (240 to 256) (386 to 438) (561 to 609)
MIROC 86 478 259 599
MPI 104 416 416 721
NorESM2 47 442 −40 677

Bern ensemble 86 374 118 418
(24 to 174) (236 to 554) (−133 to 396) (109 to 792)

UVic-ESCM 120 439 284 549
HadCM3-FaIR2 ensemble 58 369 133 491

(−12 to 148) (230 to 606) (−89 to 276) (242 to 718)

Multi-model mean 99 409 217 552
Multi-model range (47 to 20) (248 to 581) (−40 to 475) (297 to 778)

Figure 5. Remaining CO2-fe budget recalculated from the beginning of the year 2026 at each stocktake (denoted as EB2026 in the text) in
the 1.5 °C (a) and 2.0 °C (b) warming level simulations. The ensemble mean is shown for models that have several ensemble members. The
multi-model mean is displayed by the thick black line, and the grey shading covers the min–max spread.

and TCRE-fe) tend to exhibit a lower increase or even a slight
decrease in the EB2026, while less sensitive models show a
more substantial increase. It is noticeable that the relation-
ship between the different configurations of the Bern model

(small pink dots) aligns particularly well with the slope of the
linear regression between models excluding IPSL (red line).
This relationship aligns with previous findings illustrating a
positive correlation between the zero emissions commitment
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Figure 6. Simulated changes in the EB2026, i.e. the estimate averaged over 2100–2150 minus the first estimate at the end of the year 2025,
plotted against ECS (a), TCR (b), CO2-only TCRE (c), and TCRE-fe at the end of the year 2025 (d). Here only the 2.0 °C simulation is
shown. Results for the 1.5 °C simulation are displayed in Fig. B6. The black line indicates the linear regression including all models, while
the red line excludes the IPSL model. The nine parameter-perturbed configurations of the Bern model are displayed by the small pink dots,
but the regression is calculated based on the ensemble mean (larger pink dot).

(implying decreases in EB over time) and TCR or TCRE
across multiple models (MacDougall et al., 2020). Addition-
ally, this correlation is evident between the zero emissions
commitment and ECS within parameter-perturbed ensembles
of a single model (MacDougall et al., 2020), as also shown
here for the Bern model. Nevertheless, this relationship is not
true for all models, as shown in Fig. 6, and the range remains
large. For example, NASA-GISS has a low sensitivity but
a decreasing EB2026. As pointed out by MacDougall et al.
(2020), the evolution of the surface temperature and thus the
evolving amount of emissions needed to stabilize warming
is a balance between large quantities controlled by heat and
carbon dynamics, and it is thus not expected to scale partic-
ularly well with these climate metrics.

6 Where does the carbon go?

6.1 Global response

Atmosphere, ocean, and land carbon fluxes exhibit peak and
decline patterns, albeit with distinct differences between all
three sinks (Fig. 7). In this section, our emphasis is on the
2.0 °C scenario. In addition, the analysis for the 1.5 °C sce-
nario is shown in Appendix B (Fig. B7), and the numbers
for the cumulative emissions and sinks are reported for both
scenarios in Tables 4 and 5.

The atmospheric CO2 growth rate,GATM, initially mirrors
fossil fuel emissions, reaching 4.7 (3.5 to 5.7) PgC yr−1 in
2020 (Fig. 7a), consistent with the observation-based esti-
mate of 5.0± 0.2 PgC yr−1 (Friedlingstein et al., 2022). As
emissions decrease, GATM deviates from fossil fuel emis-
sion trends, turning negative and reaching−0.5 (range:−2.7
to 1.7) PgC yr−1 between 2100–2150 due to continued car-
bon uptake by the ocean and land. The ocean remains a
consistent carbon sink, with multi-model mean uptake de-

creasing from 2.9 (2.2 to 3.3) PgC yr−1 in 2020 to 1.2 (0.2
to 1.9) PgC yr−1 by 2100–2150 (Fig. 7c). Conversely, the
net land carbon sink (SLAND-ELUC) undergoes a transition
from a net source to a sink between 1850–1950. The net
land carbon sink peaks at 2.1 (0.5 to 4.1) PgC yr−1 in 2020
and remains a net sink or neutral until 2200 (Fig. 7g).
Notably, the land sink reaches a neutral state faster than
the ocean sink, even temporarily shifting to a small car-
bon source by the end of the 22nd century. The simulated
ocean and land carbon uptake in 2020 align well with the
observation-based estimates: 3.0± 0.4 PgC for ocean car-
bon uptake and 2.0 PgC yr−1 (SLAND = 2.9± 1.0 PgC yr−1

minus ELUC = 0.9± 0.7 PgC yr−1) for land carbon uptake
(Friedlingstein et al., 2022). Among the models providing
land use change emissions estimates, the gross land carbon
uptake SLAND emerges as a larger sink than the net land car-
bon flux SLAND−ELUC (Fig. 7e), trending towards neutral-
ity or even displaying a source tendency on longer timescales
in GFDL-ESM2M. SLAND in NASA-GISS, which lies at the
lower end of the model range, is small because its sensitiv-
ity to CO2 fertilization is damped: while the model simu-
lates enhanced photosynthetic uptake of CO2, its vegetation
structure remains fixed, and the extra carbon is instead al-
located to the soil where it can still be respired back to the
atmosphere. In addition, the NASA-GISS model does not
capture regrowth from secondary forest. These together lead
to a relatively small cumulative land-borne fraction (Fig. 7f)
and larger cumulative ocean-borne fraction by compensation
(Fig. 7d).

The net ocean carbon flux initially has a narrow spread
across models during the historical period, with a min–max
range of 0.8 PgC yr−1 over 2000–2020. However, this spread
notably widens after 2025, reaching 1.5 PgC yr−1 over 2040–
2060 and 1.7 PgC yr−1 over 2100–2150. Pre-2025 differ-
ences among models are mainly due to various represen-
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Figure 7. (a) Atmospheric CO2 growth rate (GATM); (c) net ocean sink (CO2 flux into the ocean; SOCEAN); (e) gross land sink (SLAND);
(g) net land sink (CO2 flux into land; SLAND–ELUC); and cumulative (b) airborne, (d) ocean-borne, and (f) land-borne fractions in the 2.0 °C
simulation. The multi-model mean is displayed by the thick black line, and the grey shading covers the min–max spread. Apart from the
cumulative fractions, all time series have been smoothed with a 31-year running mean to remove short-term internal variations for visual
purposes. The numbers are reported in the text without the 31-year average to be comparable with the Global Carbon Budget estimates.
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tations of ocean circulation and biogeochemistry in ESMs
(Terhaar et al., 2022b). After 2025, the widening spread also
results from differing emission pathways. In contrast, the
land carbon flux exhibits a much wider spread during the his-
torical period, reaching 4.0 PgC yr−1 over 2000–2020. This
range only increases slightly after 2025 to 5.0 PgC yr−1 over
2040–2060, reverting to 4.0 PgC yr−1 over 2100–2150. The
substantial spread in land carbon flux, not entirely depicted in
Fig. 7 due to a 31-year average for visual clarity, arises from
the diverse representations of land carbon processes across
models (Canadell et al., 2021).

From 1850 to 2020, 294 PgC (ranging from 236 to
354 PgC) of the total cumulative CO2 emissions from fossil
fuels (462 PgC) and land use change (170 PgC) remained in
the atmosphere. During the same period, the ocean has taken
up 173 PgC (ranging from 128 to 208 PgC), while the land
absorbed 168 PgC (ranging from 79 to 254 PgC) (Table 5).
This partitioning translates to a cumulative airborne fraction
of 0.48 (0.41 to 0.53), an ocean-borne fraction of 0.27 (0.24
to 0.31), and a land-borne fraction of 0.26 (0.16 to 0.33).
These values are similar to observation-based estimates for
1850–2020 of 0.26 for the ocean sink and 0.30 for the land
sink (Friedlingstein et al., 2022). Over the simulation period,
the cumulative airborne fraction steadily decreases alongside
declining emissions after 2025, signifying the gradual uptake
of anthropogenic carbon by the ocean and the land (Fig. 7b,
d, f). By the year 2150, the cumulative airborne fraction de-
creases to 0.34 (0.26 to 0.42), with an average of 416 (284
to 354) PgC of anthropogenic carbon still remaining in the
atmosphere. Concurrently, the ocean-borne fraction consis-
tently rises, emerging as the dominant fraction by the end of
the simulations. In 2150, the ocean-borne fraction increases
to 0.36 (0.30 to 0.45), surpassing both the land-borne fraction
of 0.30 (0.13 to 0.44) and the airborne fraction. The cumu-
lative ocean sink by 2150 amounts to 426 (330 to 556) PgC,
while the land has taken up 370 (113 to 540) PgC. Nonethe-
less, substantial variability persists among model estimates
for each fraction.

6.2 Regional distribution

The continuous ocean carbon uptake until the end of the sim-
ulations is limited to specific regions (Fig. 8a, c, d). While
the ocean carbon sink increases almost everywhere from the
early 20th century to the mid-21st century, it only contin-
ues to take up carbon after temperature stabilization at the
end of the 21st century in the Southern Ocean and the low-
latitude regions close to the Equator. The Southern Ocean
around 60° S remains an especially prominent and endur-
ing carbon sink post temperature stabilization, a consistent
feature across models (no stippling in Fig. 8a, d). Cumula-
tively, the Southern Ocean south of 30° S, representing 35 %
of the ocean area, takes up 42 % (35 % to 46 %) of the global
ocean carbon uptake by 2020, rising to 46 % (35 % to 57 %)
by 2150 in the 2.0 °C simulation shown here. This region re-

mains a sink until 2300 for the models that have run long sim-
ulations (GFDL-ESM2M, MIROC, Bern, not shown). An-
other strong present-day carbon sink (Fig. 8c), the subpo-
lar North Atlantic, ceases to absorb carbon when the sur-
face temperature stabilizes (Fig. 8d). The subpolar North At-
lantic north of 40° N (and using the northern boundary of Fay
and McKinley, 2014) represents 3 % of the ocean area but
takes up 7 % (3 % to 11 %) of global ocean carbon uptake
by 2020, a fraction that decreases to 5 % (1 % to 11 %) by
2150. The prevalence of the Southern Ocean carbon sink is
consistent with results from CMIP5 and CMIP6 simulations
for the historical period and for idealized 1pctCO2 experi-
ments (Frölicher et al., 2015; Terhaar et al., 2021; Williams
et al., 2023). The pronounced long-term steady carbon sink
in the Southern Ocean can be attributed to the high carbon
concentration feedback and efficient surface-to-depth export
of anthropogenic carbon shown in earlier studies (Tjiputra
et al., 2010; Roy et al., 2011). In the mid-latitude subtropics,
some models even simulate less carbon uptake or outgassing
due to the accumulation of anthropogenic carbon near the
surface layers (Couespel and Tjiputra, 2024; Rodgers et al.,
2020).

The land carbon uptake also persists only in particular re-
gions during temperature stabilization (Fig. 8b, e, f). Some
strong and robust carbon sink regions in the present era
(2011–2030), particularly in tropical areas like South Amer-
ica, central Africa, and parts of Indonesia, experience a com-
plete cessation of carbon uptake after 2100. However, strong
terrestrial carbon uptake persists in the Northern Hemisphere
during temperature stabilization, including regions like Cen-
tral America and temperate and boreal forests in eastern
North America and Eurasia.

Compared to the ocean carbon uptake, locally the land car-
bon uptake has a larger uncertainty across models, although
much of this uncertainty is located in regions where no car-
bon exchange is found during the pre-industrial period (e.g.
desertic regions) and is thus an artefact of the method and
therefore not indicated by stipples on the maps (see caption
of Fig. 8).

The land and ocean carbon sink patterns look qualitatively
similar to previous results based on low-emission scenarios
(Canadell et al., 2021). The novelty of these simulations is
a quantification of these sinks for a given temperature level
and the representation of carbon cycle dynamics beyond the
21st century under strong mitigation scenarios. For example,
here we show that the North Atlantic ocean sink vanishes
during and after stabilization, whereas the Southern Ocean
remains an active sink. The divergence in carbon uptake be-
tween these regions can be attributed to distinct ocean circu-
lation patterns. The Southern Ocean is the region where old,
anthropogenic CO2-poor circumpolar deep waters are being
upwelled (e.g. Mikaloff Fletcher et al., 2006), even during
global surface climate stabilization. This upwelling results
in continuous carbon uptake due to the positive air–sea gra-
dient in anomalous pCO2 (Frölicher et al., 2015). On the
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Figure 8. Multi-model mean ocean (top, SOCEAN) and land (bottom, SLAND−ELUC) carbon flux anomalies in the 2.0 °C simulation relative
to 1850–1900. In panels (a) and (b) the fluxes are zonally integrated and smoothed with a 31-year running mean, while panels (c)–(f) display
maps averaged between 2011–2030 and 2100–2150. Stipples indicate where less than 80 % of the models agree on the sign of the anomaly.
Stippling is not shown where carbon fluxes during the 1850–1900 period are lower than 2.5 gC m−2 yr−1.

other hand, when global temperature stabilizes, the Atlantic
Meridional Overturning Circulation (AMOC) is expected, at
least in some models, to recover after an initial decrease (e.g.
Manabe and Stouffer, 1994; Sigmond et al., 2020; Frölicher
et al., 2020; Schwinger et al., 2022; Bonan et al., 2022), a
phenomenon associated with a recovery of deep convection
in the subpolar North Atlantic, enhanced mixing of anthro-
pogenic CO2-rich waters previously sequestered at depth,
and a consequently lower ocean carbon uptake in this region.
A stronger AMOC would also transport more warm surface
waters with high anthropogenic carbon concentrations to the
high latitudes where the anthropogenic carbon would be out-
gassed during cooling (Siegenthaler and Joos, 1992; Völker
et al., 2002; Tjiputra et al., 2010), a phenomenon already
simulated for the present time in the Arctic Ocean while at-
mospheric CO2 is still increasing (Terhaar et al., 2020). The
exact drivers of the vanishing Atlantic Ocean carbon sink
under temperature stabilization will be the subject of future
dedicated studies using the AERA-MIP simulations.

7 Discussion

The AERA-driven simulations achieve temperature stabiliza-
tion with realistic CO2-fe and CO2 emission pathways across
an ensemble of comprehensive Earth system models. How-
ever, applying the AERA with ESMs is more complex than
traditional concentration-driven simulations and comes with
its caveats and limitations.

We robustly quantify a decrease in CO2-fe emissions to-
wards very low emissions for the selected 1.5 and 2.0 °C
warming levels. To which extent reductions in CO2-fe emis-
sions are realized by reductions in emissions of fossil fuel
CO2 vs. other agents depends on scenario choices. We opted
for the low-emission–high-mitigation scenario SSP1-2.6 for

all greenhouse gases except CO2 and for anthropogenic
aerosols. While the scenario choice does not impact initial
estimates of the REB and CO2-fe emission pathways (Ter-
haar et al., 2022a), the choice does affect fossil fuel CO2
emissions, atmospheric CO2, and the land and ocean car-
bon sinks (Terhaar et al., 2023). Thus, the quantitative es-
timates presented here for the carbon budget in Sect. 4, car-
bon distribution in the Earth system and atmospheric CO2
offer a likely pathway under low emissions and high miti-
gation but may not encompass all uncertainties. These esti-
mates may change if alternative trajectories for non-CO2 ra-
diative agents and land use change are pursued in the future
(Terhaar et al., 2023). Nevertheless, qualitative statements re-
main robust, such as the necessity to substantially reduce fos-
sil fuel CO2 emissions for temperature stabilization and the
continuous carbon uptake by the Southern Ocean even under
temperature stabilization.

The choice of the scenario for non-CO2 radiative agents
can also lead to unwanted trajectories of the CO2 emission
curve if the prescribed non-CO2 scenario is not ideal for the
chosen temperature level. In the case of the 2 °C warming
level, fossil fuel CO2 emissions increase from 2025 to 2030
and start to decrease strongly afterwards (Fig. 4b). The tem-
poral increase in fossil fuel CO2 emissions is a result of a
strong decline in CO2-fe emissions from declining non-CO2
radiative agents under SSP1-2.6, which exceeds the neces-
sary total CO2-fe emission decline calculated by the AERA
in 2025. As a result, fossil fuel CO2 emissions increase to
compensate for the strong decline in CO2-fe emissions from
declining non-CO2 radiative agents. Such unwanted effects
could be avoided by adjusting the SSP1-2.6 scenario so that
mitigation efforts of non-CO2 agents and land use start later,
as already applied by Millar et al. (2017), or simply by choos-
ing the non-CO2 SSP scenario that fits best for each tem-
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perature level. Another possibility that might be offered in
the future when ESMs develop an emission-driven mode for
non-CO2 agents is to scale the CO2 and non-CO2 emissions,
as already applied in Terhaar et al. (2022a) with an EMIC.

The non-CO2 and land use change emissions add uncer-
tainties not only to the carbon budget but also to the AERA
at each stocktake. At each stocktake, the AERA needs in-
formation about the CO2-fe emissions from non-CO2 radia-
tive agents and from land use change. Unfortunately, most
models do not provide emissions from land use change or
the non-CO2 radiative forcing from which the corresponding
CO2-fe emissions can be estimated. As a result, the CO2-fe
emissions from land use change and from non-CO2 agents
provided to AERA are estimated from other sources (see
Sect. 2), which lead to discrepancies between the real CO2-fe
emissions in the model and the estimated CO2-fe emissions
seen by the AERA. This discrepancy affects the estimate of
the TCRE-fe and the future CO2 emission curve, which is
estimated as the difference between the AERA-derived CO2-
fe emission curve and the CO2-fe emissions from land use
change and non-CO2 radiative agents. Fortunately, the simu-
lations provided here with an ensemble of ESMs demonstrate
that the re-evaluation of the TCRE-fe and the future CO2-
fe emission curve every 5 years allows all models but one
to reach the prescribed temperature level without any larger
divergence (Fig. 2). For future simulations, possibly within
CMIP7, diagnosing each models’ effective radiative forc-
ing of non-CO2 agents and land use change (Smith, 2020;
Zelinka et al., 2023) would likely lead to even more precise
results, as described in more detail for the IPSL model in
Appendix A. This is particularly important for the aerosol ra-
diative forcing, which is the most uncertain component, with
important repercussions for the ability to reach climate goals
(Watson-Parris and Smith, 2022).

While the implementation of the AERA with ESMs in-
troduces uncertainties, the comprehensive emission-driven
and fully coupled Earth system models also have limitations
themselves. For example, the models do not include changes
in freshwater input from melting ice sheets and the associ-
ated impacts on ocean circulation. This additional freshwater
input can modulate global and regional temperature and car-
bon cycle responses (e.g. Bronselaer et al., 2018; Li et al.,
2023). However, ice sheet changes are expected to occur on
timescales over many centuries, potentially beyond the time
horizon of the largest reduction in CO2-fe emissions. Nev-
ertheless, the AERA approach would adjust allowable emis-
sions in response to emerging, unforeseen feedbacks when
applied to real-world emission and temperature data (Terhaar
et al., 2022a). Additionally, most models in our study either
neglect or poorly represent permafrost dynamics and often
underestimate soil carbon stocks in the northern high lati-
tudes (MacDougall et al., 2015; Burke et al., 2017; Gasser
et al., 2018; Lowe and Bernie, 2018; Burke et al., 2020;
MacDougall, 2021). Permafrost thaw due to global warm-
ing has the potential to release a substantial amount of car-

bon stored in soil for millennia into the atmosphere over a
relatively short period (e.g. Schuur et al., 2015). Therefore,
CO2-fe emission pathways that account for the release of
permafrost soil carbon may differ from those shown here,
potentially requiring more stringent emissions reduction to
achieve the prescribed global warming levels. Future model
studies incorporating permafrost soil carbon are necessary to
quantify this effect and fully capture the uncertainty in land
and ocean carbon warming feedbacks. Another caveat is the
large uncertainties in the non-CO2 GHG warming feedbacks
(Stocker et al., 2013; Battaglia and Joos, 2018; IPCC, 2021),
which are currently not represented in our approach with pre-
scribed non-CO2 forcing. These feedbacks would potentially
reduce the emission budget over time and potentially make
negative emissions over long time periods necessary to main-
tain a stable temperature (Palazzo Corner et al., 2023). An-
other limitation of the Earth system model lies in the long
equilibration timescales, resulting in potential drift in car-
bon fluxes (amongst other variables). A correction is often
applied by removing the pre-industrial trend, but this is not
taken into account in the current version of the AERA, as
it would add another layer of complexity to the simulation
setup.

Using CMIP6 models, Arora et al. (2020) demonstrated
that models that included a representation of the terrestrial
nitrogen cycle typically show lower carbon uptake than those
without because of widespread nitrogen limitation of the veg-
etative carbon sink. This finding has been corroborated by
the ZECMIP analysis (MacDougall et al., 2020). A lower
terrestrial carbon sink in models with a terrestrial nitrogen
cycle implies stronger reductions in total CO2-fe emissions
in those models. This is indeed simulated in both the 1.5
and 2.0 °C global warming level scenarios (see Fig. B8).
For example, under the 1.5 °C global warming scenario, the
multi-model mean CO2-fe emissions in 2050 for the six mod-
els including a terrestrial nitrogen cycle are −1.6 PgC yr−1,
compared to 2.0 PgC yr−1 for the five models without it.
Averaged between 2100–2150, the CO2-fe emissions are
0.8 PgC yr−1 for models with a terrestrial nitrogen cycle and
1.5 PgC yr−1 without. The minimum CO2-fe emissions in the
1.5 °C scenario between 2026 and 2150 are −1.6 PgC yr−1

in the models with a nitrogen cycle and 1.3 PgC yr−1 in
the models without. The emission budget between 2020 and
2150 is also affected when partitioning the models into these
two groups. The CO2-only budget is 550 (250 to 950) GtCO2
for the models with a nitrogen cycle in the 1.5 °C scenario
(median and 17th–83rd percentile range) and goes up to 1500
(1000 to 1850) GtCO2 for the models without. In the 2.0 °C
scenario, the budget is 1850 (1250 to 2500) GtCO2 for the
models with a nitrogen cycle and 2300 (2000 to 3100) GtCO2
for the models without. The analysis indicates that part of
the spread in CO2-fe emission pathways and budgets can po-
tentially be attributed to whether models account for the ni-
trogen limitation in the terrestrial carbon sink. However, the
model spread in CO2-fe emissions also emerges due to other
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model differences, such as in ocean carbon uptake (e.g. Ter-
haar et al., 2022b) or climate sensitivity (Cox et al., 2018).

8 Conclusions

This study presents multi-ESM emission-driven projections
compatible with internationally agreed climate goals. We
showed that the Adaptive Emission Reduction Approach
(AERA) proposed by Terhaar et al. (2022a) works not only
for EMICs but also for more complex, higher-resolution
fully coupled ESMs. The prescribed temperature levels are
reached even when the simulated non-CO2 radiative forcing
and land use change emissions are not fully known, with the
exception of one ESM. The success of the AERA-MIP sim-
ulations across a large group of modelling centres shows that
the AERA can be used in subsequent model intercomparison
projects, such as CMIP7, with many applications for these
temperature stabilization simulations.

Unlike the standard CMIP scenarios that simulate differ-
ent warming levels for the same prescribed CO2 concentra-
tion or emission pathways (Tebaldi et al., 2021), all mod-
els converge to a given warming level. The convergence to a
common warming level with varying emissions now allows
us to quantify the diversity of model responses in terms of
emission budgets; pathways compatible with these warming
levels; and resulting atmospheric CO2 levels, carbon cycle
responses, and their effect on ecosystems, such as ocean acid-
ification (Terhaar et al., 2023). While globally integrated re-
sults are qualitatively similar to previous results with EMICs
(Terhaar et al., 2022a, 2023; Goodwin et al., 2018b), the
ESM simulations here allow us to explore a more quantita-
tive and regional focus, to better quantify uncertainties, and
especially to quantify the importance of internal climate vari-
ability.

To limit warming to 1.5 or 2.0 °C (i.e. an allowable warm-
ing of 0.28 and 0.78 °C from the year 2020 forward), dras-
tic reductions in greenhouse gas emissions are necessary. If
such immediate and drastic emission reductions of around
−1 to−2 PgC yr−2 were implemented, both CO2-fe and fos-
sil fuel CO2 emissions may even be allowed to stay positive
(on the order of 1 PgC yr−1 upon stabilization). However, the
amount of allowed continuous CO2-fe emissions after the
temperature is stabilized is strongly dependent on the model,
with a large spread found across ESMs. The large spread is
mainly caused by varying zero emissions commitments and
responses to non-CO2 forcing agents across the model en-
semble.

Unlike the remaining carbon budget concept, which as-
sumes constant TCRE and a constant ZEC centred around
zero, the AERA simulations provide the realized emission
budget until the temperature reaches the prescribed warming
level and stabilizes. This modelling exercise is a powerful
tool to explore the evolution of the TCRE and the associated
budgets as the climate responds to emissions mitigation. In-

deed, the spread in the zero emissions commitment in com-
bination with a non-constant TCRE-fe results in an initially
biased estimate of the remaining emission budget. On aver-
age across models, the REB that was estimated in 2025 could
change by a factor of 1.4 to 2 (Table 3). The direction of
change mainly depends on the ZEC, with a negative ZEC al-
lowing for more emissions. Here, the REB was on average
underestimated in line with a slightly negative multi-model
mean ZEC (MacDougall et al., 2020). However, there are
large uncertainties around the ZEC and hence the develop-
ment of carbon and emission budgets with time.

A few ensemble simulations pointed to a significant role
of internal variability, potentially explaining 30 % to over
50 % of the inter-model spread in compatible emissions, at-
mospheric CO2 levels, and emission budgets. The origin of
this uncertainty partly lies in the estimate of the anthro-
pogenic warming, which in practice differs among members
and can lead to large differences in the emission budgets, as
also pointed out by Tokarska et al. (2020). This indicates that
caution is required when interpreting remaining budgets esti-
mates and planning for a margin of error in mitigation path-
ways to avoid overshooting the desired warming level.

In addition to the “relative warming level” simulations pre-
sented here (i.e. the same amount of remaining warming for
all models after 2020 based on observations), the AERA can
also be used to make simulations with an “absolute warming
level” (i.e. all models are set up to warm by the same amount
relative to 1850–1900) or with an overshoot. Absolute warm-
ing level simulations allow us to explore climate impacts of
global surface temperature stabilization at different warming
levels across Earth system models (King et al., 2021), which
will be the focus of future dedicated studies. Temperature
overshoot simulations with the AERA allow us to define the
magnitude and length of the overshoot by varying prescribed
temperature levels over time, e.g. a first warming level of
2.0 °C until 2050 followed by a step-wise reduction of that
level every 5 years to 1.5 °C in 2100 (Terhaar et al., 2022a;
Lacroix et al., 2024).

The AERA framework proposed here accounts for pre-
scribed global surface temperature levels aligned with inter-
national climate agreements. However, other climate change
impacts, such as ocean acidification, sea level rise, inte-
rior ocean changes, terrestrial productivity, and regional ex-
tremes, pose important risks for ecosystem and human so-
cieties. Extending the AERA to other targets, and towards
avoiding crossing some of the Earth’s planetary boundaries
(Rockström et al., 2009), as proposed by Steinacher et al.
(2013); Seneviratne et al. (2016); Avrutin et al. (2023), would
enable us to constrain the emission budget and pathways to-
wards a safer world.
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Appendix A: Further details on the AERA
configuration of the participating models

All participating models are listed in Table A1. Both
HadCM3-FaIR2 and MPI performed the AERA simulations
with a previous version of the AERA code using an impulse
response function to the radiative forcing to estimate anthro-
pogenic temperature instead of the 31-year running mean (as
in Terhaar et al., 2022a). The HadCM3-FaIR2 configuration
is described in detail in Lee (2024). Briefly, it uses the Hadley
Centre Coupled Model version 3 (HadCM3, Collins et al.,
2001), with 29 members from a physics-perturbed parameter
ensemble (Sparrow et al., 2018). Because HadCM3 runs in
concentration-driven mode and does not solve the carbon cy-
cle, it is coupled to the Finite Amplitude Impulse Response
(FaIR) version 2 (Leach et al., 2021) at each AERA stock-
take. The FaIR parameters are chosen to fit each member of
the HadCM3 ensemble based on the 1881–2025 simulation
period. The carbon cycle component of FaIR is used both
to derive the CO2-fe emissions from non-CO2 agents and to
convert the CO2 emissions given by AERA to CO2 concen-
tration to prescribe to HadCM3 every 5 years.

The time series prescribed to AERA (default or model-
estimated ELUC and Enon-CO2-fe) are listed in Table A2. To
estimate their own simulated ELUC, most models compare
land–air carbon fluxes between two concentration-driven
simulations following historical plus SSP1-2.6 CO2 concen-
trations (1850–2100), one with land use change activated
and another without (Lawrence et al., 2016; Liddicoat et al.,
2021). This difference is then smoothed with a 21-year run-
ning mean to remove large interannual variations. Eight mod-
els prescribed their internally estimated ELUC to AERA. The
NASA-GISS model underestimates ELUC as it estimated the
emissions from land use change due to crop cover change
only but did not include the transport of crop harvest from
land or the deforestation component of ELUC. UVic used an
estimate based on the carbon flux from vegetation burning
only. The time series of all ELUC estimates prescribed to
AERA are shown in Fig. A1a (the same as Fig. 4c).

In the analysis of carbon distribution (Eq. 6) presented
in the paper, we corrected and re-estimated some of these
ELUC time series to obtain the best estimate possible of
the internally simulated ELUC. These time series are shown
in Fig. A1b. GFDL-ESM2M performed the concentration-
driven simulations a posteriori with and without land use
change activated, providing its estimate of ELUC for the car-
bon analysis from 1861 to 2100. We then extended the time
series to 2300 by applying a linear decay to zero emissions
from 2100 to 2150 and maintaining the emissions at zero af-
terwards. We similarly corrected the MPI estimate between
2100 and 2150 by linearly decaying the emissions to zero.
Dedicated UVic simulations were additionally performed to
better estimate ELUC in the AERA simulations for both pre-
scribed warming levels. IPSL was also able to diagnose the
simulated ELUC emissions online within the AERA simula-

tions. For CESM2, we were able to estimate ELUC for the
historical period using the concentration-driven hist and hist-
nolu simulations available on the Earth System Grid Fed-
eration and the method described above (Lawrence et al.,
2016). However, the extension for the SSP1-2.6 scenario was
not available. Nonetheless, the ELUC term during the histor-
ical period matched the default ELUC forcing from the Bern
model adjusted time series (not shown), and thus we used the
default estimate for the carbon distribution analysis.

The simulated effective radiative forcing from non-CO2
agents was diagnosed in dedicated simulations for IPSL, but
this was only done for CH4, N2O, and aerosols, which have
major climate impacts amongst non-CO2 forcing agents. For
other agents, we used the estimates from Smith et al. (2023)
for the historical period and from Smith (2020) for the SSP1-
2.6 scenario period post-2022.

For the IPSL model, one additional set of simulations
was performed by prescribing the internally calculated
Enon-CO2-fe and ELUC emissions, enabling us to test the ef-
fect of the mismatch in Enon-CO2-fe and ELUC between the
default time series and the internally simulated emissions.
The member with the internally calculated emissions allowed
for a shorter temperature undershoot in the 1.5 °C simulation
and a better temperature stabilization within the 2.0 °C un-
certainty range in the associated simulation. However, mi-
nor differences in emission budget and cumulative fossil fuel
emissions were found overall between these two ensemble
members due to compensating effects between CH4 and N2O
in the estimated and the internally calculated radiative forc-
ing and between Enon-CO2-fe and ELUC. As an indication, the
EB2026(2025) (i.e. the REB from the beginning of the year
2026 estimated at the first stocktake) differs by 3 PgC for the
1.5 °C warming level and by 15 PgC for the 2.0 °C level be-
tween the two ensemble members. The differences increase
to 52 PgC and 48 PgC, respectively, for EB2026(2100–2150).

The simulations performed with the Bern3D-LPX model
correspond to the configuration in Terhaar et al. (2023),
where two parameters (ocean heat uptake efficacy and feed-
back parameter) were varied to obtain nine values of equi-
librium climate sensitivity (ECS) spanning the range 2.23
to 4.63 °C. Since Bern3D-LPX does not represent atmo-
spheric variability on GSAT, a synthetic noise was added
on the GSAT output read by AERA for each of these nine
ECS values, providing eight synthetic ensemble members per
configuration, with a total of 72 ensemble members. This
Bern3D-LPX range across members is thus more representa-
tive of parametric uncertainty and not comparable to the per-
turbed initial-condition ensembles of EC-Earth and GFDL-
ESM2M.
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Table A1. Earth system models of full and intermediate complexity participating in AERA-MIP.

Model full name Abbreviation References Simulated years Ensemble members

ACCESS-ESM1-5 ACCESS Ziehn et al. (2020) 1850–2200 1
CESM2 CESM2 Danabasoglu et al. (2020) 1850–2200 1
EC-Earth3-CC EC-Earth Döscher et al. (2022) 1850–2169 3
GFDL-ESM2M GFDL-ESM2M Dunne et al. (2012, 2013) 1861–2300 5
GFDL-ESM4 GFDL-ESM4 Dunne et al. (2020) 1850–2150 1
IPSL-CM6-LR-ESMCO2 IPSL Boucher et al. (2020) 1850–2150 2
MIROC-ES2L MIROC Hajima et al. (2020) 1850–2300 1
MPI-ESM1-2-LR MPI Mauritsen et al. (2019) 1850–2150 1
NASA-GISS-E2-1-G-CC NASA-GISS Kelley et al. (2020); Ito et al. (2020) 1850–2150 1

Miller et al. (2021); Lerner et al. (2024)
NorESM2-LM NorESM2 Seland et al. (2020); Tjiputra et al. (2020) 1850–2200 1

Bern3D-LPX Bern Ritz et al. (2011) 1850–2300 72
UVic-ESCM-2.10 UVic Mengis et al. (2020) 1850–2200 1
HadCM3-FaIR2 HadCM3-FaIR2 Lee (2024) 1881–2100 29

Table A2. AERA forcings prescribed to each model.

Model ELUC provided to AERA Enon-CO2-fe provided to AERA

ACCESS-ESM Model estimate Default
CESM2 Default Default
EC-Earth Model estimate Default
GFDL-ESM2M Default Model estimate
GFDL-ESM4 Default Model estimate from GFDL-ESM2M
IPSL-ESM Default and model estimate Default and model estimate
MIROC-ES2L Default Default
MPI-ESM Model estimate Default
NASA-GISS Model estimate Model estimate
NorESM2 Default Default

Bern3D-LPX Model estimate Default
UVic-ESCM Model estimate Default
HadCM3-FaIR2 Model estimate Model estimate
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Figure A1.ELUC diagnosed in the models and default AERA input. Panel (a) shows the time series prescribed to AERA, and panel (b) shows
the corrected time series used in the carbon distribution analysis of this paper (see Appendix A for the details of the corrections).

Appendix B: Additional figures

Figure B1. Simulated multi-model mean CO2-fe emissions for the 1.5 and 2.0 °C warming levels with and without including the ACCESS
model.
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Figure B2. Schematic of the feedback loop between the Earth system model and the AERA module. Steps 1 to 4 are performed at each
stocktake year, starting at the end of 2025.

Figure B3. The same as Fig. 3 but for the 1.5 °C warming level.
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Figure B4. Solid lines show TCRE-fe calculated by AERA at each stocktake year. Dotted lines indicate the TCRE-fe calculated a posteriori
with the final (“true”) estimate of the 31-year running mean time series of GSAT. The deviation between the solid and dotted lines occurs
because the temperature fit becomes less accurate when the temperature increase slows toward stabilization. As the warming rate decreases,
the 31-year mean will also decrease. Therefore the “true” estimate of the 31-year mean will be smaller than the estimate at each stocktake.
Consequently, the TCRE-fe will be smaller than estimated at the stocktake during periods of slowing down temperature increases. In addition,
the reconstructed TCRE-fe (dotted lines) is less variable than the TCRE-fe calculated by AERA, which calculates 1T based on the last year
of the extended 31-year running mean time series until each stocktake year, which introduces some noise compared to the true final estimate.

Figure B5. The same as Fig. 5 but showing only the multi-model mean, spread, and min–max range across members for the GFDL-ESM2M
and EC-Earth ensembles centred on the multi-model mean.
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Figure B6. The same as Fig. 6 but for the 1.5 °C warming level.
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Figure B7. The same as Fig. 7 but for the 1.5 °C warming level.
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Figure B8. Simulated multi-model mean CO2-fe emissions for the 1.5 and 2.0 °C warming levels for the models that include a terrestrial
nitrogen cycle (CESM2, EC-Earth, MIROC, MPI, NorESM2, and Bern, shown in red) and for the models that do not include a terrestrial
nitrogen cycle (NASA-GISS, GFDL-ESM2M, GFDL-ESM4, IPSL, and UVic, shown in red). ACCESS is not included.

Code and data availability. The AERA code is dis-
tributed as a Python module openly available under
https://doi.org/10.5281/zenodo.14499905 (Terhaar, 2024), with
guided documentation and examples. The AERA-MIP model
outputs used in this study are available under Silvy et al. (2024).
The Python code used to produce the figures of this paper is openly
available at Silvy (2024).
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