

ETUDE PETROGRAPHIQUE ET GEOCHIMIQUE DES ROCHES SEDIMENTAIRES PALEOZOÏQUES DU MASSIF ARMORICAIN Presqu'île de Crozon, Flanc Nord du Bassin de Laval

Marie-Pierre Dabard

▶ To cite this version:

Marie-Pierre Dabard. ETUDE PETROGRAPHIQUE ET GEOCHIMIQUE DES ROCHES SEDI-MENTAIRES PALEOZOÏQUES DU MASSIF ARMORICAIN Presqu'île de Crozon, Flanc Nord du Bassin de Laval. Pétrographie. Université de Rennes 1 [UR1], 1983. Français. NNT: . tel-01759545

HAL Id: tel-01759545 https://insu.hal.science/tel-01759545v1

Submitted on 5 Apr 2018 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ETUDE PETROGRAPHIQUE ET GEOCHIMIQUE DES ROCHES SEDIMENTAIRES PALEOZOÏQUES DU MASSIF ARMORICAIN

Presqu'île de Crozon, Flanc Nord du Bassin de Laval

> Marie-Pierre DABARD Rennes 1983

SERIE : C N° d'Ordre : 772 N° de Série : 297

> THESE Présentée

DEVANT L'UNIVERSITE DE RENNES I

pour obtenir

le titre de DOCTEUR en TROISIEME CYCLE -Spécialité : GEOLOGIE

PAR

<u>Sujet de la Thèse</u> : Etude pétrographique et géochimique des roches sédimentaires paléozoïques du Massif Armoricain : Presqu'île de Crozon, flanc nord du Bassin de Laval.

Soutenue le 4 Juillet 1983 devant la Commission d'Examen

MM.	J.	HAMEURT	Professeur à l'Université de Rennes I.	Président
	R.	CAPDEVILA	Maître de Recherche CNRS	
	JJ.	CHAUVEL	Professeur à l'Université de Rennes I.	Examinateurs
	F.	PARIS	Chargé de Recherche CNRS	
	Μ.	STEINBERG	Professeur à l'Université de PARIS XI - ORSAY	

in And Ser

ی ۱۰ ۱۰ ۱۰ - ۲۰۰۰ می از ۲۰۰۰ میلی می

.

·

.

1			NALING CONTRACTOR OF THE OWNER OF
INSTIT	ur de	GÍG.	LOGIE
(le RLH	RES	
Nomero d'inventaire Bibliothèque	3:	353	

Que toutes les personnes qui, de près ou de loin, ont participé à l'élaboration de ce travail, trouvent ici le témoignage de ma profonde gratitude.

10-1			a anna an t		95 - 1			2 140 2021 5			е с 19	er.	1.8			6	
0007		80	3	÷.,			, ý	e ig	. 3	2	λî,	2	1.14		2. 1	š	4
	Cp						2 - 3 6										
10 V 0 C			, gagaret		, and						5.			ч 1			10100
												. :	, t.,			5	
per contraction of the second s											÷.	- 5	ŝż	51	1		112,00000
-0000																00.000 X	

" On ne peut, je crois,rien connaître par la simple science ; c'est un instrument trop exact et trop dur. Le Monde a mille tendresses dans lesquelles il faut se plier pour les comprendre avant de savoir ce que représente leur somme... Seul le marin connaît l'archipel".

Jean Giono (L'Eau Vive)

*

SOMMAIRE

7370000	 F (3)7
INIRU	LON

I - Buts de ce travail	1
II - Plan du memoire	1
III - Methodes et techniques d'études	2
1) Echantillonnage	2
2) Etude pétrographique	2
3) Etude geochimique	2
4) Traitement des données	. 3
IV - Historique	3
V - Cadre geologique	4
Première Partie	9
<u>Chapitre 1</u> - Les terrains briovériens	. 11
I - Résultats pétrographiques et minéralogiques	12
II - Résultats géochimiques	
2.1) Coupe de Sérent	12
2.2) Coupe de Janzé	
2.3) Coupe de Mayenne	14
2.4) Coupe de Normandie	14
2.5) Conclusion à l'étude géochimique	14
III - Conclusion - Synthèse	14
Chapitre 2 - Les formations du Cambro-Trémadocien	17
I - Etude pétrographique	17
l.l) Presqu'île de Crozon	17
1.2) Bassin de Châteaulin	17
II - Etude géochimique	18
2.1) Analyses chimiques	19
2.2) Répartition des éléments entre les phases minéralogiques	20
III - Conclusion	22
<u>Chapitre 3 - Les formations de l'Ordovicien inférieur (Arenig)</u>	23
I - Etude pétrographique	23
l.l) Presqu'île de Crozon	23
1.2) Bassin de Châteaulin	23
1.3) Bassin de Laval	24
1.4) Conclusion	24
II - Etude géochimique	24
2.1) Analyses chimiques	24
2.2) Répartition des éléments entre les phases minéralogiques	26
2.3) Conclusion	27
III - Conclusion	28

I - Etude pétrographique	29
1.1) Presqu'île de Crozon	29
1.2) Bassin de Châteaulin	29
1.3) Bassin de Laval	30
1.4) Conclusion	30
II - Etude géochimique	30
2.1) Analyses chimiques	30
2.2) Répartition des éléments entre les phases minéralogiques	30
2.2.1) Bassin de Laval-Presqu'île de Crozon	33
2.2.2) Bassin de Châteaulin	24
2,2.3) Comparaison entre les trois coupes	
III - Conclusion	ು
	30
Chapitre 5 - Les formations de l'Ordovicien supérieur (Caradoc-Ashgill)	37
I - Etude pétrographique	37
1.1.) Presqu'île de Crozon	37
1.1.1) Formation de Kermeur	37
1.1.2) Formation du Cosquer	37
1.1.3) Formation des tuffs et calcaires de Rosan	38
1.2) Bassin de Laval : Formation de St-Germain-sur-Ille	38
II - Etude génchimique	38
2.1) Analyses chimicules	38
2 1 1) Gras de Kermenr	38
2.1.2) Schistes du Cosmer	40
$2 \cdot 1 \cdot 2$, believe de Pogan	40
2 1 A) Grae de St-Cermain-gur-Ille	40
2.1.7) Gles de Se German Sur 2220	40
2.1.3) classification des éléments entre les phaces minéralogiques	40
2.2) Repartition des éléments entre les phoses minetatogrades	41
2.2.1) Gies de Meineur-Gies de Scotermain-Survitte	42
2.2.2) Sensies de Cosquer	47
	44
III - Conclusion	
Charitar 6 - Los formations du Silurian inférieur et moven (Llandovery-Wenlock-Ludlow)	45
$\frac{1}{1} = \frac{1}{1} = \frac{1}$	45
I - Etude periographique	45
1.1, riesqu'ile de closon 1.2) Baccin de Châteaulin	46
1.2) Unité du Ménez-Bélair	47
1.5) UNITE du Menez-Detati	47
1.4) Dabbin de Davar	48
	48
II - Etude geochimique	48
2.1) Analyses chimiques	48
2.1.1) Liandovery	49
2.1.2) Wenlock	50
2.1.3) Ludlow	J.U

2.2) Répartition des éléments entre les phases minéralogiques.	51
2.2.1) Llandovery	51.
2.2.2) Wenlock	52
2.2.3) Ludlow	53
2.3) Conclusion	54
IV - Conclusion	55
Chamilton 7 - Los formatione de Cilucito punctuis en el print de circum en	
<u>Chapitre 7</u> - Les formations du Siturien superieur et du Devonien inferieur (Ludlow-	
L - Ptude pótrographicus	57
1)) Presculite de Croron	57
1.1.1) Formation de Lostmarsch	57
1.1.2) Rormation de Plougastel	-57
1.1.3) Formation de Landévennec	57
1.2) Bassin de Châteaulin	58
1.3) Bassin de Laval - Ménez Bélair	58
1.3.1) Formation du Val	59
1.3.2) Formation de Gahard	59
1.4) Conclusion	59
II - Etude géochimique	60
2.1) Analyses chimiques	60
2.1.1) Presqu'île de Crozon	60
2.1.2) Bassin de Châteaulin	61
2.1.3) Bassin de Laval	62
2.2) Classification des grès	63
2.3) Répartition des éléments entre les phases minéralogiques	64
2.3.1) Presqu'île de Crozon	64
2.3.2) Bassin de Châteaulin	65
2.3.3) Bassin de Laval	66
2.3.4) Conclusion	68
III - Conclusion	69
<u>Chapitre 8</u> - Les formations du Dévonien inférieur (Gedinnien supérieur - Siégenien)	71
I - Etude pétrographique	71
l.l) Presqu'île de Crozon	71
1.2) Bassin de Laval	71
1.3) Conclusion	72
II - Etude géochimique	72
2.1) Analyses chimiques	72
2.2) Répartition des éléments entre les phases minéralogiques	73
2.3) Conclusion	74
III - Conclusion	75
Chapitre 9 - Les formations du Dévonien moyen et supérieur	77
I - Etude pétrographique	77
1.1) Presqu'île de Crozon	77
1.2) Bassin de Châteaulin	78
1.3) Bassin de Laval	79
1.4) Conclusion	79

II - Etude géochimique	79
2.1) Analyses chimiques	79
2.1.1) Roches détritiques terrigènes	82
2.1.2) Grès calcareux - Laval et Crozon	83
2.1.3) Bassin de Châteaulin	83
2.2) Répartition des éléments entre les phases minéralogiques	83
2.2.1) Presqu'île de Crozon	83
2.2.2) Bassin de Châteaulin	84
2.2.3) Bassin de Laval	85
2.2.4) Grès calcareux	85
2.3) Conclusion	86
III - Conclusion	88
Chapitre 10 - Les Formations du Carbonifère	89
I - Etude pétrographique	89
1.1) Bassin de Laval	89
1.2) Bassin de Châteaulin	90
II - Etude géochimique	91
2.1) Analyses chimiques	91
2.1.1) Bassin de Laval	91
2.1.2) Bassin de Châteaulin	92
2.2) Répartition des éléments entre les phases minéralogiques	92
2.2.1) Bassin de Laval	92
2.2.2) Bassin de Châteaulin	92
2.3) Conclusion	94
III - Conclusion	95
Deuxième Partie : Synthèse	97
I - Introduction - Données géologiques	99
II - Résultats pétrographiques et géochimiques	99
2.1) Compositions minéralogiques des formations étudiées	99
2.2) Compositions géochimiques des formations étudiées	101
2.2.1) Rappels des principaux caractères	101
2.2.2) Etude de quelques diagrammes	104
2.3) Analyse factorielle	109
2.3.1) Grès	109
2.3.1.1) Bassin de Laval	109
2.3.1.2) Presqu'île de Crozon	109
2.3.1.3) Récapitulation	109
2.3.2) Schistes	111
2.3.2.1) Bassin de Laval	111
2.3.2.2) Presqu'île de Crozon	111
2.3.2.3) Récapitulation	111
III - Evolution climatique	111

.

•

IV - Recherche de l'origine des sédiments	113
4.1) Origine des sédiments	113
4.2) Recherche de la nature chimique de la roche-mère	114
V- Conclusion	116
Troisième Partie	117
I - Introduction	119
Chapitre 1 - Le Titane	121
I - Géochimie de Ti	121
II - Comportement de Ti dans les roches sédimentaires du Massif Armoricain	121
2.1) Evolution du rapport TiO ₂ /Al ₂ O ₂ dans les grès	122
2.2) Evolution du rapport TiO_2/Al_2O_2 dans les schistes	124
III - Conclusion	125
Chapitre 2 - Le Niobium	127
I - Géochimie de Nb	127
II - Comportement de Nb dans les roches sédimentaires du Massif Armoricain	127
III - Conclusion	129
<u>Chapitre_3</u> - Le Vanadium	131
I - Géochimie de V	131
II - Comportement de V dans les roches sédimentaires du Massif Armoricain	131
2.1) Roches ayant des concentrations en V inférieures à 300 ppm	133
2.2) Roches ayant des concentrations en V supérieures à 300 ppm	133
III - Conclusion	134
Chapitre 4 - Le Chrome	135
I - Géochimie de Cr	135
II - Comportement de Cr dans les roches sédimentaires du Massif Armoricain	135
2.1) Comportement de Cr dans les ampélites siluriennes	136
2.2) Comportement dans les calcaires	136
III - Conclusion	136
<u>Chapitre 5</u> - Le Cobalt	137
I - Géochimie de Co	137
II - Comportement de Co dans les roches sédimentaires du Massif Armoricain	137
III - Conclusion	136
<u>Chapitre 6 - Le Nickel</u>	139
I- Géochimie de Ni	139
II - Comportement de Ni dans les roches sédimentaires du Massif Armoricain	139
III - Conclusion	140
<u>Chapitre 6</u> - Le Nickel I- Géochimie de Ni II - Comportement de Ni dans les roches sédimentaires du Massif Armoricain III - Conclusion	

<u>Chapitre 7</u> - Conclusion à l'étude des éléments, V, Cr, Co, Ni	143
<u>Chapitre 8</u> - Le Rubidium	145
I - Géochimie de Rb	145
II - Comportement de Rb dans les roches sédimentaires du Massif Armoricain	146
III - Conclusion	149
<u>Chapitre 9</u> - Le Baryum	151
I - Géochimie de Ba	151
II - Comportement de Ba dans les roches sédimentaires du Massif Armoricain	152
2.1) Le Bassin de Laval	153
2.2) La Presqu'île de Crozon	153
III - Conclusion	153
<u>Chapitre 10</u> - Le Strontium	155
I - Géochimie de Sr	155
II - Comportement de Sr dans les roches sédimentaires du Massif Armoricain	156
2.1) Comparaison du rapport Sr/Al entre les grès et les schistes	156
2.2) Evolution du rapport Sr/Al au Paléozoïque dans les roches	
détritiques terrigènes	156
2.3) Comparaison du rapport Sr/Al entre les formations du Bassin	
de Laval et celles de la Presquîle de Crozon	158
2.4) Formations du Carbonifère	159
2.5) Comportement de Sr dans les roches carbonatées	159
III - Conclusion	159
<u>Chapitre 11</u> - L'Yttrium	161
I - Géochimie de Y	161
II - Comportement de Y dans les roches sédimentaires du Massif Armoricain	161
III - Conclusion	162
<u>Chapitre 12</u> - Le Zirconium	163
I - Géochimie de Zr	163
II - Comportement de Zr dans les roches sédimentaires du Massif Armoricain	163
III - Conclusion	165
Chapitre 13 - Conclusion	167
Quatrième Partie	169
I - Méthode	173
II - Résultats : Distribution des roches	173
III - Compositions géochimiques moyennes	174
3.1) Roches sédimentaires	174
3.1.1) Evolution chimique dans le Massif Armoricain	176
3.1.2) Comparaison avec les évolutions mondiales	177
3.2) Roches ignées	178
3.3) Roches métamorphiques	179

IV - Composition géochimique moyenne de la croûte du Massif Armoricain	180
4.1) Comparaison entre les trois régions	180
4.2) Evolution de la composition entre le Cadomien et le Paléozoïque	181
4.3) Comparaison de la croûte armoricaine avec les données de la littérature	181
4.4) Intégration de la croûte supérieure armoricaine dans l'évolution	
générale des croûtes mondiales	182
V - Bilan géochimique	183
5.1) Excès de CaO	184
5.2) Défaut de MgO	184
5.3) Défaut de Na ₂ O	185
5.4) Remarque	185
VI - Conclusion	185
Conclusions Générales	187
Bibliographie	191
Annexe : Localisation des échantillonnages.	197

INTRODUCTION

I - Buts de ce travail.

De multiples travaux ont été consacrés à l'étude des formations sédimentaires paléozoïques du Massif Armoricain, et actuellement, on dispose de nombreuses informations sur la stratigraphie, la pétrographie, la paléontologie et la paléogéographie de ces formations.

Cependant, l'ensemble des questions relatives à l'origine des roches détritiques, au mode d'altération de la source, aux paléoclimats, aux conditions de dépôt et à la nature primitive des sédiments, n'a été abordé que par des méthodes classiques. Ce mémoire essaie donc d'apporter de nouveaux éléments de réponse par une approche géochimique.

Dans ce but, une étude pétrographique et géochimique a été entreprise sur les principales formations sédimentaires paléozoïques du domaine Centre Armoricain et les résultats obtenus ont été confrontés avec ceux des études antérieures.

Cette confrontation apporte de nouveaux éléments à la compréhension des mécanismes géodynamiques externes, responsables de la sédimentation paléozoïque.

De plus, grâce aux résultats géochimiques il est possible de tenter une évaluation de la composition moyenne de la croûte supérieure armoricaine.

II - Plan du Mémoire.

Ce mémoire comprend quatre parties :

- La première partie correspond à l'étude pétrographique et géochimique des roches sédimentaires paléozoïques. Elle a été effectuée sur deux colonnes stratigraphiques, situées dans le domaine Centre Armoricain, l'une établie dans la ^presqu'île de Crozon, l'autre sur le flanc Nord du Bassin de Laval. Ce domaine et ces colonnes ont été choisis en fonction de leur bonne représentativité de la stratigraphie paléozoïque.

- La deuxième partie synthétise les résultats pétrographiques et géochimiques des éléments majeurs et des éléments-traces. Elle replace les milieux de sédimentation dans un cadre général et contribue à une meilleure reconstitution paléogéographique du domaine Centre Armoricain.

- La troisième partie prolonge les résultats précédents par une étude plus approfondie des éléments-traces, de leurs concentrations dans les différents sédiments et de leurs comportements au cours du cycle sédimentaire.

- La quatrième partie rassemble les données géochimiques publiées en éléments majeurs des formations sédimentaires, métamorphiques et magmatiques du Massif Armoricain, dans le but de faire un premier bilan de la composition de la croûte continentale supérieure armoricaine.

III - Méthodes et techniques d'études.

Diverses méthodes et techniques ont été mises en œuvre :

1) Echantillonnage :

Il s'est effectué avec la collaboration de :

- J.J. CHAUVEL, pour les formations cambro-trémadociennes et arénigiennes de la ^presqu'île de Crozon.
- F. PARIS, pour les formations de l'Ordovicien moyen et supérieur, du Silurien et du Dévonien inférieur de la ^Presqu'île de Crozon.
- M. ROBARDET, pour les formations ordoviciennes, siluriennes et du Dévonien inférieur du Bassin de Laval.

J'ai effectué personnellement les autres échantillonnages.

Les grès ont été prélevés par blocs de 2 à 3 kg et les schistes par fragments décimétriques répartis sur un même banc (l à 2 kg). Les analyses sont faites sur roche séparée.

Dans les formations monotones le nombre d'échantillons a été restreint et les formations trop ponctuelles ont été négligées. A noter que l'échantillonnage de roches sédimentaires pose des problèmes du fait des fréquentes variations latérales et verticales de faciès.

2) Etude pétrographique :

Deux méthodes ont été employées :

- Microscopie optique
- Diffractométrie X (appareil Philips à anticathode de Cobalt).
- L'interprétation des résultats s'est faite à l'aide des fiches A.S.T.M.

3) Etude géochimique :

Les techniques mises en œuvre sont :

- Absorption atomique (Perkin Elmer 403) pour le dosage de Mg et Na.

- FluorescenceX (Spectromètre X Siemens SRS) pour le dosage des autres éléments. Les précisions analytiques sont signalées dans le tableau suivant :

. <u>Majeurs</u> :

SiO2	A1203	Fe ₂ 0 ₃ T	MgO	රියට	Na ₂ 0	к ₂ 0	TiO ₂	P205
2%	3%	2%	3%	2%	3%	2%	2%	10%

. Traces :

	RЬ	Sr	Y	Nb	Ni	Co	V	Cr	Zr
Teneurs > 20 ppm	3%	3%	5%	5%	5%	5%	5%	5%	5%
Teneurs < 20 ppm			10%	10%	10%	10%	10%	10%	10%

Les analyses des roches terrigènes ont été effectuées avec la collaboration de F. VIDAL et M. LE MOINE, et celles des grès calcareux par le Centre de Recherches Pétrographiques et Géochimiques de Nancy (1982).

4) Traitement des données :

Les résultats des analyses chimiques ont été traités à l'aide du calcul des matrices de corrélation. Ces dernières mettent en évidence les identités de comportement des oxydes et des éléments-traces et leurs répartitions entre les différents constituants minéralogiques:

un fort coefficient positif entre deux oxydes traduit leur présence simultanée dans un même minéral, le calcul des rapports "oxyde sur oxyde" permet ensuite d'en déterminer la nature. Cependant, les possibilités d'interprétation sont limitées lorsque le nombre de phases minérales augmente, car les oxydes se dispersent et les corrélations disparaissent. Pour ces cas, on a utilisé les représentations géométriques "oxyde, oxyde" dans lesquelles sont figurées les compositions minéralogiques.

Ensuite une analyse factorielle a été entreprise sur l'ensemble des formations étudiées. Son intérêt réside dans le fait qu'à partir d'une matrice des données, elle permet d'extraire sous forme condensée la plus grande part possible d'informations. Elle se ramène à une analyse de la matrice des corrélations. De nouvelles variables sont extraites, appelées facteurs, qui sont des fonctions linéaires des variables initiales. Leur nombre est restreint et elles suffisent à expliquer un pourcentage élevé de la variance.

IV - Historique.

Les travaux relatifs à la géochimie du domaine armoricain sont relativement récents. Sagon (1976), dans une étude de la partie orientale du Bassin de Châteaulin, a effectué des analyses chimiques des majeurs sur l'ensemble des schistes. En comparant les concentrations des oxydes, des différences sont apparues liées à la position dans la colonne stratigraphique. Ces variations s'accordent avec une évolution minéralogique durant le Paléozoïque.

La Presqu'île de Crozon a fait l'objet de deux études dans lesquelles des analyses chimiques ont été utilisées.

- Hamoumi (1981) a précisé grâce à celles-ci les phénomènes diagénétiques observés par les analyses de rayons X.
- Paradis (1981) a mis en évidence une évolution de la chimie des phyllosilicates au cours des étapes de la diagenèse et du métamorphisme.

D'autre part, le B.R.G.M., l'Université de Rennes, l'Université de Caen et la S.N.E.A.(P) (1980) ont entrepris un vaste échantillonnage dans le Briovérien du domaine cadomien externe. Les résultats obtenus ont abouti à un essai de synthèse régionale esquissant les traits paléogéographiques et géodynamiques du bassin briovérien et en particulier une zonation du domaine qui concorderait avec une région source située vers le Nord-Est.

Les autres études trop ponctuelles n'ont pu être prises en considération.

V - Cadre Géologique.

Le Massif Armoricain est constitué de formations magmatiques, métamorphiques et sédimentaires, d'âge Protérozoïque inférieur, Protérozoïque supérieur et Paléozoïque. Il a été affecté par les cycles orogéniques pentévrien, cadomien et varisque. Les formations ayant subi le cycle pentévrien n'existent qu'à l'état de reliques et il semble que la croûte armoricaine soit surtout d'âge Protérozoïque supérieur, recyclée au Paléozoïque.

4

Il est divisé en zones et en domaines d'évolutions géologiques différentes, généralement séparés par de grands cisaillements. On distingue : une zone Nord Armoricaine formée des domaines domnonéen et mancellien, une zone Centre Armoricaine et une zone Sud Armoricaine constituée des domaines de l'Anticlinal de Cornouaille, ligérien et ouest-vendéen (Cogné, 1974; Chauvel et Robardet, 1980) Figure A.

La transgression paléozoïque débute dans la partie ouest du domaine Centre Armoricain dès le Cambro-Trémadocien. Les dépôts reposent en discordance sur le socle cadomien. Ils sont essentiellement détritiques terrigènes, comprenant des alternances de niveaux gréseux et de niveaux pélitiques dans lesquelles s'intercalent quelques épisodes carbonatés et volcaniques. - L'ensemble des formations est résumé dans les figures B, C et D extraites de Chauvel et Robardet (1980).

Figure A : Le Massif Armoricain : structure et granites hercyniens (d'après Cogné, 1974).

Figure B : Les formations ordoviciennes (d'après Babin et al., 1976).
1 : conglomérats; 2 : pélites à fragments; 3 : grès; 4 : schistes; 5 : niveaux
ferrifères; 6 : calcaires; 7 : volcanites.

Figure C : Les formations siluriennes (d'après Robardet, 1973 , et Paris, 1977).

1 : pélites à fragments; 2 : grès; 3 : schistes; 4 : ampélites; 5 : calcaires; 6 : graptolites.

• , • .

1^{ère} PARTIE

·

CHAPITRE 1

LES TERRAINS BRIOVERIENS

Bien que n'entrant pas dans le cadre de notre étude, leurs principaux caractères seront rappelés brièvement. Ils constituent en effet une grande partie du domaine Centre Armoricain et représentent une région source possible pour les séries sédimentaires paléozoīques.

Le Briovérien correspond à un ensemble de formations essentiellement sédimentaires, d'âge Protérozoïque supérieur. Ces formations recouvrent un socle daté à 2000 M.A. et sont recoupées par des granites dont l'âge varie entre 600 M.A. et 580 M.A.

Les orogenèses cadomienne et hercynienne les ont structurées et métamorphisées. On distingue deux domaines : - un domaine cadomien interne formé de Briovérien inférieur - un domaine cadomien externe formé de Briovérien supérieur.

(Cogné, 1974 ; Cogné et Wright, 1980).

L'étude du Briovérien du domaine externe, regroupant la Bretagne Centrale et le Bocage Normand a été éffectuée sur quatre coupes représentatives (Fig. I-1) avec une maille d'échantillonnage de 3 échantillons par kilomètre (Chantraine et al., 1982). Les principaux résultats de cette étude sont résumés dans ce chapitre.

I - Résultats pétrographiques et minéralogiques.

La sédimentation briovérienne est monotone, elle correspond essentiellement à des dépôts détritiques terrigènes dans lesquels s'intercalent quelques niveaux carbonatés et volcanogènes.

Sa principale caractéristique est l'immaturité des sédiments qui se traduit par la prédominance des faciès de type "wacke".

Au niveau de la minéralogie on remarque une bonne homogénéité entre les quatre coupes avec l'association quartz, illite, chlorite et albite. Ce dernier minéral a une origine supposée volcanique. Les proportions des phyllosilicates varient peu, contrairement à celles du quartz et de l'albite qui évoluent en sens contraire les unes des autres. De la kaolinite et de la vermiculite ont été observées, elles résultent ici de phénomènes d'altération superficielle. Quelques minéraux accessoires sont visibles : zircon, apatite et rutile.

II - Résultats géochimiques. (Tableau I-1).

Les principaux résultats des analyses chimiques et factorielles seront résumés coupe par coupe.

Les pourcentages de la variance de certains facteurs sont mis entre parenthèses.

2.1. Coupe de Sérent.

Comparativement aux autres coupes elle se caractérise par de basses teneurs en alcalins, CaO, Al_2O_3 , Sr, Ba et des concentrations relativement élevées en Pb, Ni, Ga, Zr, Li, TiO₂, SiO₂, Fe₂O₃.

Les facteurs mis en évidence par l'analyse factorielle sont les suivants :

- F₁ (35%) : oppose SiO₂sous forme de quartz et SiO₂ total à l'ensemble des éléments (V, Al, K, Ba, Cr, Ti, Ga, Mg, P.F., Na, Zr) correspondant aux phyllosilicates et au feldspath potassique (K).
- F₂ : distingue (Mn, Zn, Fe, Co) du carbone organique et à la part des pertes au feu à 500°C qui correspond à la combustion de cette matière organique. Cette association pilotée par Zn et Mn évoque une oxydation de surface.
- F₃ : oppose (La, Ca, Na, SiO₂, quartz) aux pertes au feu et aux éléments (Cu, Fe, Zn, Li), il marque ponctuellement le caractère volcano-sédimentaire.

F₇ : groupe (B, Ga, Sr, Ba, K) et représente l'illite.

2.2. Coupe de Janzé.

On observe les plus hautes teneurs en Zn, Cu, B , Sr, Mn, CaO, P.F. en opposition à Ba et La peu abondante.

Les trois principaux facteurs sont :

- F₁ (35%) : qui oppose SiO₂ sous forme de quartz et SiO₂ total aux éléments des phyllosilicates (Al, V, K, Ba, Ga, Cr, Mg, Ti, Fe, Li).
- F₂ : qui distingue le quartz et le résidu insoluble à l'albite (Na, Ca, Sr) et à la calcite (Ca, Sr, Mn, P.F.).
- F₃ : qui groupe Zr, Ti, P, représentant les minéraux lourds : zircon, rutile, apatite.

DONNEES	COUPE	COUPE	COUPE	COUPE		
	SERENT		MAYENNE	NORMANDIE		
CHIMIQUES	(69 éch.)	(75 éch.)	(103 éch.)	(123 éch.)		
D 6						
ro ppm 7.	36,7	32,1	27,4	31,5		
2n ppm	105,1	119,7	92,5	82,5		
cu ppm	30,9	35,5	27,1	34,1		
ва ррт	381,4	381	429,3	465		
В ррш	68,2	78,7	68,0	57,2		
V ppm	96,4	95,1	96,1	89		
Cr ppm	124,8	125,8	124,7	118		
Ni ppm	38,9	25,7	27,9	19,4		
Sr ppm	57,4	109,8	95,6	83,7		
Ga ppm	29,8	23,2	27,5	23,1		
Zr ppm	156,2	132	130,7	146.3		
La ppm	27,6	24,8	26,9	66.4		
Li ppm	31,4	16	24,4	15.5		
Ми ррт	413,9	444	328,2	360		
TiO2 %	0,751	0,74	0,741	0,713		
Quartz %	54,5	48,1	46,6	42,5		
CaU 7.	0,045	0,63	0,204	0,220		
C.O.T. %	0,100	0,065	0,077	0,091		
P ppm	471,0	522	541,1	471,3		
R.I. 🛪	94,7	87,85	91,3	91,0		
Na ₂ 0 %	0,825	0,94	1,53	2,24		
SiO2 7	69,5	67,78	67,4	66,2		
AL203 %	14,2	14,15	15,2	15,9		
Fe203 Z	7,0	6,66	5,96	6,09		
Mg0 %	1,6	1,62	1,84	1,52		
K20 Z	2,20	2,55	2,74	2,95		
P.F. 1050°	3,3	4,42	3,65	3,49		
$SiO_2 - Qz$	15,0	19.7	18.8	24,7		
Ba, K2 0	0,0172	149° x 10 ⁻⁴	157 x 10 ⁴	158×10^{-4}		
Ga/Al203	0,0021	$1,64 \times 10^{-4}$	1,81 x 10-4	$1,52 \times 10^{-4}$		

Tableau I-1 : Moyennes par coupe des valeurs brutes (d'après Chantraine et al., 1982).

2.3. Coupe de Mayenne.

Les concentrations en MgO et P sont plus importantes que dans les autres coupes tandis que Fe₂O3, Pb, Cu, Zr et Mn sont moins abondants.

Quatre facteurs ont pu être déterminés :

F ₁	:	oppose la silice aux éléments (K, Ba, B, Al, Ti, Ga) de l'illite -muscovite .
F ₂	:	distingue SiO_2 et le résidu insoluble du cortège (Ni, Mn, Fe, Cu, Zn, Mg, Ga, V,
		Cr, P.F.) correspondant à la chlorite.
F ₃	:	caractérise l'albite (Sr, Na, Ca, Al, La, Ga).
F ₆	:	groupe (Zr, Ti, B, La, P) représentant les minéraux lourds.

2.4. Coupe de Normandie.

C'est la région la plus riche en Ba, La, Na_2^0 , $Al_2^0_3$ et K_2^0 et la plus pauvre en Li, P). de nombreux autres éléments (Zr, B, Cr, V, Ni, TiO2, MgO, SiO2,

L'analyse factorielle permet de distinguer trois facteurs principaux :

F 1

F2

۴,

: qui oppose les éléments de la chlorite (V, Cr, Ti, perte à 1050°C, Mg, Fe) à l'association (SiO2, résidu insoluble, Na, Sr) évoquant le quartz et l'albite.

: qui regroupe (Sr, La, Ca, Na, P) rapportés à l'albite de haute température.

qui oppose la silice aux éléments de la muscovite (K, Ba, Al, B, Ga).

2.5. Conclusion à l'étude géochimique.

Les concentrations en éléments majeurs et traces varient peu sur l'ensemble des quatre coupes, et la principale caractéristique du Briovérien supérieur est sa pauvreté en Ca0. Certaines évolutions ont pu cependant être mises en évidence d'Ouest en Est.

- diminution des teneurs en SiO₂, TiO₂, Fe₂O₃, Ni et Cr.
- augmentation des teneurs en Al₂O₃, Na₂O, K₂O et Ba.

III - Conclusion - Synthèse.

L'étude pétrographique et géochimique du Briovérien effectuée par Chantraine et al., (1982) démontre l'homogénéité de cette série. Elle se caractérise par l'association minérale, quartz, illite, chlorite, albite et par des concentrations en éléments chimiques typiques des séries détritiques terrigènes. Cependant les variations géochimiques et lithologiques observées traduisent une évolution régionale du milieu de dépôt.

Cette évolution vers le Sud-Ouest est double, elle se traduit par des gradients de maturité croissants et des gradients d'influence volcanique décroissants. (Figure I-2). Des questions restent cependant posées :

- l'une est la recherche de la source d'alimentation du Briovérien supérieur. Compte tenu du sens des évolutions observées, il est peu probable que ce soit le domaine cadomien interne.
- la deuxième découle de l'absence de faciès argileux purs et de la rareté de faciès siliceux purs et pose le problème de la détermination du modèle de sédimentation briovérienne.

Seule l'étude du domaine cadomien interne fournira des éléments de réponse à ces questions.

Figure I-2 : Evolution et gradients sédimentaires dans les formations briovériennes de Bretagne centrale et du Bocage normand (d'après Chantraine et al., 1982).

CHAPITRE 2

LES FORMATIONS DU CAMBRO-TREMADOCIEN

Après l'émersion et l'érosion du socle cadomien, la reconquête par la mer du domaine armoricain va s'effectuer en plusieurs étapes. Elle débute au Cambrien inférieur en Normandie mais ne s'achève totalement qu'au Llanvirn. L'âge de cette transgression, variable selon les régions, n'est pas connu avec exactitude (Le Corre et Chauvel, 1969 ; Chauvel et Robardet, 1980).

Dans les coupes de Crozon et Châteaulin, la base du Paléozoïque est constituée par des dépôts détritiques grossiers correspondant aux séries rouges de la Formation de Pont-Réan. Ces niveaux sont absents dans la coupe de Laval.

I - Etude pétrographique.

1.1. Presqu'île de Crozon (Chauvel et Le Corre, 1971).

La base de la formation est constituée par des conglomérats à galets de quartz dominants et à matrice gréso-pélitique. Elle se poursuit par des grès et des schistes rouges.

. Composition minéralogique.

Les grès sont constitués d'éléments figurés de taille supérieure à 64μ : grains de quartz, amas sériciteux correspondant à d'anciens cristaux de feldspath K. Ils sont dispersés dans une matrice phylliteuse, constituée de micas blancs (illite, muscovite) et de chlorite. On remarque également certains minéraux accessoires: rutile, tourmaline, zircon et de l'hématite en abondance.

Les rayons X ont confirmé la paragenèse à quartz, micas blancs, chlorite et hématite. Elle correspond à une association de diagenèse profonde ou de très bas degré de métamorphisme (Winkler, 1976).

1.2. Bassin de Châteaulin (Sagon, 1976).

Des conglomérats de base sont surmontés par des quartzites, des quartzites phylliteux et des schistes.

. Composition minéralogique.

Schistes : Ils sont formés par de nombreux grains de quartz et quelques cristaux de chloritoïde dispersés dans une trame phylliteuse (muscovite, chlorite). Les minéraux accessoires observés sont le rutile, la tourmaline et des grains d'hématite.

Les paragenèses déterminées par diffraction de rayons X sont décrites dans le tableau I-2.

Numéro d'échantillons	Paragenèses						
M 771 - M 1030	Quartz, muscovite, chlorite, chloritoïde.						
Q 1331	Quartz, muscovite, chlorite.						
M 717 - M 719	Quartz, muscovite, chlorite, hématite, rutile.						
M 347	Quartz, muscovite, hématite.						
Q 1355	Muscovite						

Tableau I-2 : Paragenèses du Cambro-Trémadocien (d'après Sagon, 1976).

Quartzites : Ils sont constitués par de nombreux grains recristallisés, les teneurs en phyllosilicates (chlorite et muscovite) varient. Les minéraux lourds sont représentés par des grains de tourmaline, zircon et rutile. Le chloritoïde apparaît dans certains échantillons. Ces associations minérales correspondent à celles du bas degré du faciès schistes verts (Winckler, 1976).

II - Etude géochimique.

Les analyses géochimiques des échantillons de la Presqu'île de Crozon ont été effectuées sur des grès rouges (quartz, mica blanc, chlorite, hématite), et celles du Bassin de Châteaulin sur des schistes dont les paragenèses sont notées dans le tableau I-2.

1				2								
	Sr 5	5r 8	Sr 10	Sr 13		Q 1331	M 347	M 717	M 719	M 771	M 1038	Q 1355
SiO,	66,52	77,20	70,14	65,95	1	79,1	62,5	75,94	74,5	71,9	74,69	44,95
A1,0,	17,06	11,14	15,16	17,23		10,04	16,3	12,03	14,53	15,3	14,8	33,55
Fe,0,T	6,38	5,6	5,81	7,75		3,79	10,81	4,81	4,52	6,56	4,18	2,85
MnÔ	tr	tr	tr	tr		nd	nd	nd	nd	nd	nd	nd
MgO	0,78	0,65	0,74	0,64		0,4	1,05	0,55	1,00	0,8	0,91	0.9
CaO	0,05	0,13	0,3	0,04		0,35	0,07	0,35	0,42	0,42	0,21	0,42
Na ₂ 0	0,50	0,33	0,44	0.45		0,1	0,15	0,24	0,54	0,23	0,24	0,40
к,0	3,67	2,34	3,47	3,93		2,33	3,82	2,7	2,7	2,15	0,56	9
Tio,	0,9	0,73	0,89	0,91		0,77	0,78	0,75	0,73	0,71	1,42	1,9
P.0.	0,07	0,14	0,34	0,06		лd	nd	nd	nd	nd	nd	nd
Perte au feu	3,1	2,18	2,93	3,29		2,15	4,3	2,18	2,26	2,38	2,8	5,09
Total	99,03	100,44	100,22	100,25		99,03	99,78	99,45	101,22	100,44	99,81	99,00
Rb	147	96	134	165			L	l	L			Ł
Sr	78	60	76	68								
ва	551	362	465	669					Table	au I-1	3:	
Ni	30	32	34	22							-	
Cr	123	96	105	116		A	halvse	es chim	iques	des éc	hantil	llons
Co	9	13	11	6						1. 0.		
v	141	91	122	143		_	. : ecr	antill	.ons ae	e la ri	esdn. 1	tte de
Nb	16	11	14	14		2	2 : éch	nantill	ons du	ı Bassi	in de C	Châtea
Zr	249	336	254	277								
Y	36	31	40	34								

lons du Cambro-Trémadocien :

le de Crozon.

hâteaulin (d'après Sagon, 1976).

44,95 33,55 2,85 nd 0,9 0.42 0,40 9 1,9 nd 5,09 99,06 2.1. Analyses chimiques. (Tableau I-3).

Les proportions des différents éléments majeurs sont semblables entre les coupes. Les roches sont riches en SiO₂ (+ 60%), les deux oxydes les plus abondants étant ensuite Al₂O₃ et Fe₂O₃. Les concentrations en K₂O sont de l'ordre de 3% alors que celles en MgO, CaO et Na₂O sont généralement inférieures à 1%.

Les teneurs en éléments-traces coı̈ncident avec les moyennes mondiales des séries détritiques terrigènes (Wedepohl, 1974); les éléments Rb, Ba, V et Cr varient dans le même sens $qu'Al_2O_3$.

Dans la classification des grès proposée par Pettijohn et al. (1973) les échantillons se situent soit dans le champ, soit dans la zone prolongée des arkoses (Figure I-3).

Bassin de Châteaulin

Presqu'île de Crozon

2.2. <u>Répartition des éléments entre les phases minéralogiques</u>. (figure I-4) Matrice des corrélations (ll analyses).

Si02								
96	A1203							
05	20	Fe203						
46	.44	. 29	MgO					
.01	.17	66	03	CaO				
27	.33	13	.27	08	Na20			
92	.90	12	.21	.13	.31	к ₂ 0		
72	.84	47	.31	.17	.13	.62	TiO ₂	
95	.86	.21	. 52	17	.11	.82	.69	P.F.

Figure I-4 : Matrice des corrélations.

Elle permet de distinguer trois principaux groupes d'éléments :

- SiO₂

- Al_2O_3 , K_2O , TiO_2 , P.F. (perte au feu)
- Fe₇0₃

Le fort coefficient de corrélation négative entre SiO₂ et Al_2O_3 (-0.96) indique que l'on a affaire à une série détritique terrigène résultant du mélange entre deux phases :

. une phase siliceuse constituée par le quartz,

. une phase alumineuse hydratée, contrôlée essentiellement par K $_20$ $({\rm Al}_20_3, {\rm K}_20$ = 0,90) mais pas exclusivement, TiO $_2$ est associé à cette phase.

L'absence de corrélation entre Al_2O_3 et Fe_2O_3 , Al_2O_3 et MgO, Fe_2O_3 et MgO indique que la chlorite ne joue pas un rôle prépondérant dans la minéralogie. Le fer existe principalement sous forme d'hématite.

En ce qui concerne Na_2^0 et Ca0, leurs teneurs sont trop faibles pour que l'on ait individualisation de minéraux calciques ou sodiques, ils entrent plutôt dans d'autres sites minéralogiques.

Ces roches résultent donc d'un fractionnement entre un pôle siliceux et un pôle alumineux potassique. Afin de déterminer la nature de ce dernier, le rapport K_2^{0/Al_2O_3} a été calculé pour chacun des échantillons, les valeurs obtenues varient entre 0,19 et 0,27 sauf M 1038 (0,03) et M 771(0,14). Il a été fait de même pour différents minéraux potassiques (Deer et al., 1966) :

. muscovite : 0,29 (moyenne de 9 analyses).

- . illite : 0,26 (moyenne de 13 analyses).
- . feldspath K : 0,41 (moyenne de 15 analyses).

Le rapport des roches des formations cambro-trémadociennes se rapproche de celui de l'illite. Parallèlement l'observation de la matrice permet de comparer les coefficients de corrélation $(SiO_2, K_2O = -0.92)$ et $(SiO_2, Al_2O_3 = -0.96)$. Compte tenu du fait que K est le principal constituant du pôle alumineux, la différence observée peut signifier la présence de reliques d'autres minéraux potassiques que l'illite, plus riches en SiO₂, tels que le felds-path K.

mu : muscovite, bi : biotite, fk : feldspath K, il : illite,

py : pyrophillite, ch : chlorite.

.

Donc les principaux minéraux sont :

- Quartz, illite, muscovite, chlorite, hématite dans la Presqu'ile de Crozon.

- Quartz, muscovite, chlorite, chloritoïde, hématite dans le Bassin de Châteaulin.

D'autre part, les compositions chimiques coïncident avec celles des arkoses (Petti-John et al., 1973). A partir de ces données il est possible de tenter une reconstitution de la minéralogie du sédiment originel.

Pettijohn et al.(1973) attribuent la corrélation "Al $_2$ O $_3$, alcalins", à l'existence de feldepaths dans les arkoses. Cette interprétation n'est pas valable dans les roches actuelles du Cambro-Trémadocien puisque l'on sait que la corrélation résulte de la présence d'illite (^Presqu' île de Crozon) et de muscovite (Bassin de Châteaulin) (figure I-5). Cependant, il est possible que des feldepaths aient été présents dans la roche originelle, leurs destructions sous l'effet de la diagenèse (séricite) auraient permis le départ des alcalins, en particulier Na $_2$ O. Parallèlement de l'illite se serait développée. Les teneurs élevées d'Al $_2$ O $_3$ peuvent être l'héritage d'une grande concentration de muscovite dans la roche originelle, détruite également au cours de la diagenèse. L'ensemble de ces transformations aboutit aux roches actuelles. La présence de chloritoïde à Châteaulin soulève certaines questions. C'est un minéral de métamorphisme dont l'apparition nécessite un milieu riche en Fe_2O_3T et en Al_2O_3 (Dunoyer de Segonzac et Heddebant, 1971 ; Sagon, 1976), elle s'effectue suivant différents schémas notamment à partir d'hématite, de chlorite et de kaolinite (Hoschek, 1969).

Il peut apparaître à basse température, dans un champ de pression vaste (Miyashiro, 1973), à la limite entre le très bas et le bas degré de métamorphisme (Frey, 1978).

La présence d'argile alumineuse dans la roche originelle (montmorillonite ou kaolinite) expliquerait alors l'enrichissement de ces deux échantillons en Al₂O₃. Ceci est compatible avec leur position excentrée puisque ces minéraux se disposent préférentiellement près des côtes en bordure de rivage (Millot, 1964).

Les échantillons analysés de la presqu'île de Crozon ne montrent pas d'enrichismement en Al_2O_3 .

En résumé, la minéralogie primitive des sédiments semble être constituée par du quartz, de l'illite, de la muscovite et du feldspath K, de la chlorite (rare), de l'hématite, et localement des argiles alumineuses : montmorillonite ou kaolinite.

III - Conclusion.

Le Cambro-Trémadocien est constitué par des roches détritiques terrigènes riches en SiO₂, Al₂O₃ et Fe₂O₃. Le métamorphisme, plus important à Châteaulin (bas degré) qu'à Crozon permet la formation de muscovite et de chloritoïde. La minéralogie originelle devait comprendre principalement du quartz, de l'illite, de la chlorite, ou des interstratifiés illite - chlorite et localement de la kaolinite. Celle-ci témoignerait dans ce cas d'une position en bordure de rivage.

Ces sédiments proviennent vraisemblablement de l'érosion de la chaîne cadomienne : des granites de la Mancellia (présence de feldspath K) et pour une grande part des formations briovériennes, comme en témoignent les grains de phtanite observés dans le Cambro-Trémadocien.

CHAPITRE 3

LES FORMATIONS DE L'ORDOVICIEN INFERIEUR (Arenig)

La sédimentation grossière qui marque la base de la transgression paléozoïque se poursuit pendant l'Arenig par des dépôts de grès blancs, constituant la Formation du Grès armoricain.

Cette formation a été étudiée dans la Presqu'île de Crozon (coupe de Camaret) et sur le flanc Nord du Bassin de Laval (Camp français).

Les résultats de Sagon (1976) sont rappelés.

I - Etude pétrographique.

1.1. Presqu'île de Crozon (Chauvel et Le Corre, 1971).

Dans cette coupe la Formation du Grès armoricain est complète, elle comprend :

- un membre inférieur homogène, formé de bancs de grès blancs centimétriques à décimétriques et de quelques intercalations schisteuses dans la partie supérieure.
 - un membre intermédiaire à dominance schisteuse possédant des niveaux de galets
- phosphatés et des niveaux à Lingules.
- un membre supérieur constitué de bancs de grès blancs alternant avec des couches micacées. Des lits de zircon, des niveaux ferrifères et des poudingues à galets phosphatés y sont disséminés.

. Composition minéralogique.

Niveaux gréseux : les roches sont constituées par des grains de quartz très abondants, souvent jointifs, parfois séparés par une matrice sériciteuse et légèrement chloritisée. Des paillettes de muscovite détritique sont visibles, ainsi que des minéraux accessoires: zircon, rutile, tourmaline, souvent disposés en lits. Ces roches sont des quartzites.

Niveaux schisteux : ce sont des roches de couleur bleu-noir à débit ardoisier, dans lesquelles la matrice abondante, chlorito-sériciteuse, enrobe des grains de quartz et des fines baguettes de muscovite. On observe les mêmes minéraux accessoires que dans les grès.

Les rayons X ont mis en évidence la présence de quartz, micas blancs, chlorite, et de trace de feldspath K. Ces roches correspondent à d'anciennes pélites phylliteuses.

1.2. Bassin de Châteaulin.

Dans cette région le Grès armoricain est constitué de deux parties :

- une partie inférieure gréseuse, possédant quelques lits phylliteux
- une partie supérieure formée d'alternances de grès et de schistes

. Composition minéralogique.

Les observations microscopiques sont les mêmes qu'à Crozon. Les rayons X ont permis de déterminer les paragenèses décrites dans le tableau I-4.

Numéro d'échantillons	Paragenèses
M 811	Quartz, muscovite, kaolinite (traces).
M 948	Quartz, muscovite, chlorite
M 821	Quartz, muscovite
M 941	Muscovite

Tableau I-4 : Paragenèses de l'Arenig.

1.3. Bassin de Laval.

Dans cette région la formation ne comprend qu'un seul membre gréseux reposant directement sur le socle cadomien. Il pourrait correspondre au membre supérieur des autres coupes (Chauvel et Robardet, 1980).

. Composition minéralogique.

Les observations microscopiques et les rayons X ont mis en évidence les mêmes minéraux que dans la Presqu'île de Crozon. Cette formation correspond donc à d'anciens bancs gréseux quartzeux entrecoupés de quelques lits pélitiques.

1.4. Conclusion.

Dans la partie supérieure de la série on observe un retour aux conditions de sédimentation arénacées. Les paragenèses observées à Laval et Crozon sont compatibles avec un degré de métamorphisme très bas (Winkler, 1979). Dans le ^Bassin de Châteaulin la présence de muscovite néoformée traduit un métamorphisme plus poussé, de bas degré (Sagon, 1976).

II - Etude géochimique.

Les analyses chimiques ont été effectuées sur des grès (CFr 10, CFr 4, Si 11, Si 13), des joints schisteux (CFr 28, CFr 25, CFr 24, CFr 36) et des schistes du membre intermédiaire (Si 6, Si 14).

2.1. Analyses chimiques (tableau I-5)

- Grès : SiO₂ prédomine largement avec des teneurs supérieures à 80% par rapport aux autres éléments. Les éléments-traces les plus abondants sont Ba et Zr.

L'augmentation des teneurs de tous les éléments-traces sauf Sr et Cr et celle des rapports Ba/Al et K/Rb (Tableau I-6) traduisent une évolution entre le ^Bassin de Laval et la Presqu'île de Crozon.

- Joints schisteux : SiO₂ présente un large éventail de valeur (46% à 75%) ainsi qu'Al₂O₃ (18% à 32%). L'oxyde le plus abondant est ensuite K₂O avec des teneurs comprises entre 5% et 9,5 %.

			1				2				3				
	CFr 10	CFr 4	CFr 28	CFr 25	CFr 24	CFr 36	Si 6	Si 11	Si 13	Si 14		M 811	M 821	M 941	M. 948
Si0 ₂	97,05	99,56	60,67	63,36	53,62	74,82	79,85	93,04	84,52	50,36		56,3	55,64	46,68	48,40
A1203	1,05	0,69	22,91	23,06	28,71	17,80	10,95	3,72	8,76	29,85		26,52	29,45	32,37	30,21
Fe ₂ 0 ₃ T	0,13	0,10	2,25	1,37	1,66	1,43	2,21	0,22	0,55	1,27	1	2,18	1,4	2,71	3,16
MnO	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	< 0,01	<0,01		nd	nd	nd	nd
MgO	< 0,05	< 0,05	0,11	0,6	0,78	0,50	0,38	0,05	0,18	0,36	ł	0,4	σ,4	1,31	1,21
CaO	< 0,05	< 0,05	0,31	< 0,05	< 0,05	< 0,05	0,03	0,03	0,04	0,04		0,7	0,35	0,14	0,21
Na ₂ 0	< 0,05	< 0,05	0,77	0,1	0,36	0,10	0,14	0,05	0,14	0,27		0,26	0,53	0,17	0,21
κ ₂ 0	0,26	0,15	6,37	6,68	7,98	4,87	2,72	0,78	2,27	7,69		7,12	5,18	9,57	9,37
Ti02	0,12	0,07	1,11	1,07	1,63	1,14	0,84	0,34	0,60	1,45		1,46	2,32	1,77	1,93
P205	< 0,01	< 0,01	0,41	0,05	0,04	0,07	< 0,01	< 0,01	< 0,01	0,08	l	nd	nd	nd	nd
Perte au feu	0,39	0,32	4,61	3,87	5,2	3,03	2,34	0,94	1,95	6,05		4,42	4,23	5,13	5,39
Total	99,00	100,89	99,52	100,16	99,98	103,76	99,46	99,17	99,01	97,42		99,36	99,50	99,85	100,09
Rb	12	9	272	281	340	195	91	30	83	262		b			
Sr	10	16	91	46	43	37	16	13	18	61					
Ba	45	24	631	472	553	424	700	193	483	1598					
Ni	tr	tr	28	15	19	16	14	6	1	8					
Cr	68	48	140	136	166	229	52	84	50	166					
Co	tr	tr	7	tr	tr	tr	10	2	3	3					
V	tr	tr	169	138	171	97	64	17	47	193					
Nb	tr	tr	29	26	41	26	16	6	12	30					
Zr	288	52	253	228	560	663	558	312	374	354					
Y	tr	tr	73	32	37	35	22	15	15	46					

Tableau I-5 : Analyses chimiques des échantillons de l'Ordovicien inférieur :

l – échantillons du Bassin de Laval.

2 - échantillons de la Presqu'île de Crozon.

3 - échantillons du Bassin de Châteaulin (d'après Sagon, 1976).

.

25

On ne remarque pas de concentration anormale au niveau des éléments-traces sauf Ba $(1598\ \rm ppm)$ dans $\rm S_T14$.

	Ba/Al	K/Rb	Nombre d'échantillons		Ba/Al	K/Rb	Nombre d'échantillons
Laval	74.10-4	159.10 ⁴	2	Laval	43.10-4	198.10 ⁴	4
Crozon	108.10-4	230.104	3	Crozon	100.10-4	246.104	1

Les rapports K/Rb et Ba/Al évoluent dans le même sens que pour les grès (Tableau x I-6, I-7).

Tableau I-6 : Rapports dans les Grès.

SiO_

Tableau I-7 : Rapports dans les Schistes.

2.2. Répartition des éléments entre les phases minéralogiques :

Matrice des corrélations (analyses du Bassin de Laval et de la Presqu'île de Crozon : 10 analyses) (figure I-6).

4																				
- 1.	A1203																			
- ,73	.71	Fe2 ^U 3																		
70	.74	.56	MgO																	
31	.28	.47	- •23	CaO																
63	. 59	.66	.07	. 89	Na ₂ 0															
99	1	.72	.75	.30	. 59	к _z o														
96	.97	.76	.81	.19	. 54	.97	TiO2													
45	.43	.56	-• 13	.98	.92	. 44	. 34	P205												
- 1	.99	.71	.66	.32	.64	.98	.96	.46	P.F.											
96	.98	.71	.76	.35	.62	.99	.94	.47	,94	Rb										
-,82	.81	.68	.28	.76	.87	. 82	.72	.86	. 83	.82	Sr									
78	.75	. 53	.35	.08	.38	.70	.72	.24	. 81	.58	.58	8a								
70	.70	. 88	.49	.67	.77	.72	.71	.74	.67	.77	.79	.29	Ni							
70	.76	.47	.62	.19	.33	.76	.77	.34	.70	.76	.63	.41	.61	Cr						
14	.07	.65	- 13	. 39	.43	.05	.13	. 39	,15	.01	.23	.34	.40	+ 26	Ċa					
99	.99	.73	.64	.40	.68	.99	,94	. 53	.99	.96	.88	.76	.73	.72	.14	V				
~.79	.80	. 73	.43	.42	. 52	. 79	.76	. 57	. 80	.75	.82	.72	.67	. 69	. 29	.82	Nb			
34	.36	.50	.60	23	.01	.34	.56	13	.33	.32	.03	.28	.35	.50	.20	.28	.29	Zr		
83	.82	.79	.34	.73	.87	.82	.78	- 84	.84	.82	.97	.61	.87	.66	.36	. 88	.85	.22	Y	

Figure I-6 : Matrice des corrélations.

La matrice des corrélations met en évidence les associations suivantes :

. SiO₂ . Al₂O₃, K₂O, TiO₂, P.F. . Al₂O₃, Fe₂O₃, MgO . Na₂O, CaO, P₂O₅

Ces roches résultent d'un fractionnement entre un pôle siliceux, constitué par le quartz et un pôle alumineux auquel sont associés plusieurs éléments et principalement K₂O et la perte au feu. Ce pôle alumineux contient des minéraux hydratés et potassiques. Les rapports K_2O/Al_2O_3 des échantillons varient entre 0,21 et 0,31, ils se rapprochent de ceux de l'illite (0,26) et de la muscovite (0,29). D'autre part, les forts coefficients de corrélation négative (SiO₂, Al₂O₃ = -1) et (SiO₂, K₂O = -0,99) traduisent l'absence de feldspath K en quantité importante.

On observe des intercorrélations entre les oxydes :

Elles peuvent évoquer une phase chloriteuse, mais plus probablement la présence de Fe_2O_3 et MgO au sein des minéraux potassiques (phengite).

Les corrélations entre Na_2^0 , CaO, $P_2^0_5$ sont difficiles à interpréter compte tenu de la faible proportion de ces éléments dans de nombreux échantillons.

Le diagramme Al_2O_3/K_2O (figure I-7) montre la bonne homogénéité entre les trois coupes d'une part, et les grès et les schistes d'autre part. Ceci indique que la fraction alumineuse de ces deux types de roches est identique.

Figure I-7 : Localisation des échantillons de l'Ordovicien inférieur.

mu : muscovite, bi : biotite, fk : feldspath K, il : illite, py : pyrophillite, ch : chlorite.

La majorité des éléments-traces se comporte de la même façon qu'Al₂O₃ :Rb, Sr, Ba, V, Cr, Nb, Y et Ni, ce dernier étant plus proche de Fe₂O₃ (0,88) que de K₂O (0,72), seuls Zr et Co sont indépendants.

2.3. Conclusion.

Les principaux minéraux constituant ces roches actuellement sont, le quartz, la muscovite détritique, l'illite abondante, la chlorite, et de rares cristaux de feldspath K. A partir de ces observations sur les roches actuelles, on va tenter de reconstituer la minéralogie originelle. L'association quartz, illite, muscovite, chlorite, feldspath implique l'existence de ces mêmes minéraux dans le sédiment primitif. Les proportions devaient être à peu près du même ordre. En effet, la présence de muscovite détritique dans le Grès armoricain traduit une altération peu poussée, donc le feldspath K rare maintenant, devait l'être également au départ (Sagon, 1976, n'en a pas observé). Seule l'illite, au cours de la diagenèse a pu se développer aux dépens des autres minéraux potassiques.

III - Conclusion.

La Formation du Grès armoricain est constituée essentiellement par des bancs quartzitiques dans lesquels s'intercalent des niveaux schisteux. La minéralogie et la géochimie sont homogènes entre les trois coupes (quartz, illite, chlorite, muscovite). Seul le degré de métamorphisme varie, bas à Châteaulin, très bas à Laval et Crozon.

Ces dépôts correspondent à une sédimentation détritique terrigène de type épicontinental, présentant une dominance de niveaux d'anciens sables quartzeux entrecoupés par des intercalations argileuses résultant d'épisodes généralement plus calmes.

Plusieurs origines peuvent être envisagées pour ces dépôts, la plus locale implique les formations cambro-trémadociennes et le socle cadomien (sédiments briovériens et granites mancelliens). On ne peut négliger leur participation, cependant certains indices obligent à rechercher ailleurs que dans le Massif Armoricain la source du Grès Armoricain.

Tout d'abord au niveau de la composition minéralogique, l'abondance du quartz, la présence de muscovite détritique, parallélisées par la rareté de la chlorite et du feldspath K dans la Formation du Grès armoricain, s'expliquent difficilement par une origine exclusivement cadomienne.

D'autre part, des travaux sur les cortèges de minéraux lourds (Doré, 1971 ; Faure, 1978) ont mis en évidence l'augmentation du rutile et la disparition de l'apatite entre le Cambro -Trémadocien et l'Arenig.

Enfin, l'occurence de cet épandage sédimentaire qui s'étend du Sud marocain jusqu'au Pays de Galles et la grande puissance de cette formation (plus de 800 m à Crozon) argumentent plutôt pour une origine externe au domaine armoricain, située vers le Sud-Ouest de l'Europe.

CHAPITRE 4

LES FORMATIONS DE L'ORDOVICIEN MOYEN (Llanvirn - Llandeilo)

Le Llanvirn marque la fin de la transgression dans le Massif Armoricain. La sédimentation arénacée du Grès armoricain fait place à une sédimentation argileuse assez uniforme, constituée par des schistes noirs parfois micacés. Ces formations correspondent aux anciens "schistes à Calymènes". Dans le domaine Centre Armoricain elles se poursuivront jusqu'au début du Caradoc.

L'étude a été effectuée dans le Bassin de Laval et sur la ^Presqu'île de Crozon, les résultats obtenus par Sagon (1976) sur le Bassin de Châteaulin sont rappelés.

I - Etude pétrographique.

1.1. Presqu'île de Crozon : Formation de Postolonnec.

Elle est constituée de schistes noirs et de quelques intercalations gréseuses (Lindstrom et al., 1974). L'une d'elles s'est individualisée en une masse gréso-schisteuse appelée membre de Kerarvail, d'une quinzaine de mètres d'épaisseur (Babin et al., 1975).

. Composition minéralogique.

- Schistes : dans une matrice très abondante, chlorito-sériciteuse, on observe des petites paillettes de chlorite et de muscovite et des grains de quartz. Du rutile, du zircon et de la matière organique sont également visibles.

- Grès : ils se distinguent par une plus grande abondance de quartz et par la présence de tourmaline. Les phyllo-silicates sont les mêmes que dans les schistes.

La diffraction X a permis de détecter la présence de feldspath K dans certains échantillons.

Les schistes noirs correspondent à d'anciennes pélites riches en phyllo-silicates, possédant de la matière organique et les grès correspondent à des quartzwackes et à des quartzarénites.

1.2. Bassin de Châteaulin : schistes d'Angers (Sagon, 1976).

Ils sont constitués par des roches sombres possédant un débit ardoisier. Des niveaux gréseux et des niveaux de minerai de fer apparaissent au Caradoc.

. Composition minéralogique.

Les observations microscopiques sont les mêmes qu'à Crozon, mais les rayons X ont permis de déterminer la présence de paragonite et de chloritoïde.

Les paragenèses sont décrites dans le tableau I-8.

Numéro d'échantillons	Paragenèses
M 1200 - M 1292	Quartz, muscovite, chlorite, rutile.
M 1309 - M 1347 M 441	Quartz, muscovite, chlorite, paragonite.
M 1264 - M 1267 M 1287	Quartz, muscovite, chlorite, paragonite, rutile.
M 443	Quartz, muscovite, chlorite, choritoĭde.

Tableau I-8 : Paragenèses du Llanvirn-Llandeilo.

Ces roches correspondent à d'anciennes pélites particulièrement riches en phyllo silicates.

1.3. Bassin de Laval : Formation d'Andouillé.

Elle est constituée par des schistes sombres et par quelques niveaux ferrugineux intercalés dans sa partie inférieure (Babin et al., 1975).

. Composition minéralogique.

Les observations microscopiques sont rendues difficiles par la petite taille des minéraux, des diffractogrammes de rayons X ont donc été effectués, qui ont mis en évidence une paragenèse à quartz, micas blancs (illite, muscovite), chlorite et feldspath K (traces). Ces roches correspondent à d'anciennes pélites riches en phyllo-silicates.

1.4. Conclusion.

Ces formations sont assez uniformes sur les trois coupes. Les paragenèses observées sont les mêmes que dans le Grès armoricain de Laval et Crozon, elles correspondent à un métamorphisme de très bas degré. A Châteaulin de nouveaux minéraux apparaissent, le métamorphisme y est plus prononcé. Les mesures de cristallinité des micas permettent de le situer dans le faciès schistes verts (Winkler, 1979).

II - Etude géochimique.

Les analyses chimiques ont été effectuées sur des schistes excepté les échantillons Scp 12 (quartzite) et Scp 7 (schiste avec nodule siliceux).

Les deux analyses de Hamoumi (1981) et celles de Sagon (1976) ont été jointes à l'étude.

2.1. Analyses chimiques. (Tableau I-9).

La principale caractéristique des schistes est leur richesse en Al $_2$ O $_3$ (>22%) et Fe $_2$ O $_3$ (4,7% à 11%). Les autres éléments sont en abondance moyenne MgO, K $_2$ O, à faible CaO. On observe la variation de Na $_2$ O, plus concentré dans la série de Châteaulin.

		1						2								3		*]
	An 2	An 4	An 6	An 1	SCP 14	SCP 12	SCP 7	SCP 8	SCP 18	SCP 4	Ιb	3	Q 1292	Q 1309	Q 1347	M 441	11 443	M 1200	Q 1264	Q 1267	Q 1287
SiO ₂	57,67	49,15	50,06	55,19	63,72	92,65	77,76	51,04	53,57	49,99	52,35	73,25	65,68	50,75	41,43	55,8	51,70	38,91	49,7	53,4	54,59
A1203	22,33	25,84	25,78	24,69	17,28	3,62	9,46	23,85	21,38	24,15	22,85	8,29	16,81	26,6	36,06	22,8	23,9	32,23	25,9	23,4	24,42
Fe203	7,63	9,57	8,93	4,74	8,02	0,82	4,87	7,42	8,65	10,95	7,68	7,5	6,48	8,08	6,83	8,01	10,17	8,74	10,14	9,38	7,36
MnO	0,01	0,01	0,01	0,01	0,05	0,01	0,06	~	0,03	0,25	0,05	0,05	nd	nd	nd	nd	nd	nd	nd	nd	nd
MgO	1,18	1,45	0,96	1,21	1,14	0,15	0,92	1,36	2,09	1,86	2,16	1,36	2,06	2,02	1,56	1,76	2,15	2,62	2,17	2,6	2,42
CaO	0,13	0,13	0,14	0,18	0,3	0,29	0,55	0,06	0,26	0,66	0,23	2,22	0,21	0,07	0,35	0,42	0,21	0,35	0	0	0,14
^{Na} 2 ⁰	0,25	0,43	0,41	0,85	0,76	0,06	1,25	0,73	0,73	0,6	0,35	0,15	0,52	1,58	1,98	1,24	0,75	0,83	1,91	1,49	1,54
к ₂ 0	4,49	5,00	5,00	3,95	3,38	0,92	1,35	5,94	4,09	3,68	5,58	1,29	2,72	3,45	3,28	3,19	3,81	6,27	3,04	3,27	3,31
Ti02	1,06	1,07	1,12	1,15	1,05	0,88	0,62	1,32	1,01	1,02	0,96	0,32	0,86	1,36	1,53	1,0/	1,02	1,88	1,10	1,13	1,13
^P 2 ⁰ 5	0,14	0,14	0,16	0,12	0,2	-	0,04	0,06	0,17	0,48	0,14	1,65	nd	nd	nd	nd	na	nd	nd	nd	nd
Perte au feu	5,47	6,45	6,93	6,7	3,89	1,02	2,31	8,11	5,49	6,18	6,6	3,89	4,48	5,38	6,01	4,86	5,51	7,76	5,7	5 ,1 0	5,28
Total	100,36	99,24	99,50	98,79	99,79	100,42	99,19	99,89	97,47	99,82	98,95	9 9,97	99,82	100,09	99,03	99,15	99,22	99,59	99,66	99,77	100,19
Rb	223	242	247	184	130	34	54	228	160	172											
Sr	77	101	104	141	37	15	41	90	38	103											
Ba	612	710	678	686	736	194	299	1045	905	655											
Ni	37	55	47	29	41	-	13	32	44	61									[
Cr	134	161	156	128	89	36	27	152	116	144									· · [
Co	8	16	16	5	13	3	9	6	23	22											
V	142	172	179	168	118	23	39	191	154	177									l		
Nb	22	21	21	23	23	15	14	27	20	21											
Zr	171	108	113	159	364	1200	440	194	151	115											
Y	43	43	43	50	45	45	43	32	41	61											

Tableau I-9 : Analyses chimiques des échantillons de l'Ordovicien moyen :

l : échantillons du bassin de Laval.

2 : échantillons de la Presqu'ile de Crozon (Ib, 3 : d'après Hamoumi, 1981).

3 : échantillons du bassin de Châteaulin (d'après Sagon, 1976).

Ω

Au niveau des éléments-traces seuls Ba et Co se distinguent par des teneurs élevées (1045 ppm, 905 ppm) pour Ba, (22 ppm et 23 ppm) pour Co. On constate comme dans la formation de l'Ordovicien inférieur une augmentation des rapports K/Rb et Ba/Al entre Laval et Crozon. Tableau I-10.

	K/R5	Ba/Al	Nombre d'échantillons
Laval	171.104	51.10-4	4
Crozon	209.10 ⁴	72.10-4	6

Tableau I-10 : Rapports dans les Schistes.

2.2. <u>Répartition des éléments entre les phases minéralogiques</u> :

Compte tenu des différences minéralogiques existantes entre Laval-Crozon d'une part, et Châteaulin d'autre part, les analyses sont traitées séparément.

2.2.1. Bassin de Laval - Presqu'ile de Crozon (10 analyses) (Figure I-8).

siO,																			-	
 . 99	A1,03																			
-• 86	. 79	Fe203																		
-• 16	.09	.44	MnO																	
78	. 69	.80	.42	MgO																
. 29	37	.05	. 83	.12	Ca0															
1C	.02	.09	.17	.32	.38	Na ₂ 0														
91	.91	. 69	.15	.56	61	.09	к ₂ 0													
70	.74	. 39	.18	.32	-, 67	27	. 86	110 ₂												
52	.47	.73	.86	.63	. 52	.0	.22	.16	P205											
94	.95	.68	.02	.62	- 45	.05	.95	.83	.33	P.F.										
91	.94	.70	- 12	. 50	58	- 19	.96	.78	.27	.92	Rb									
- 73	• 81	.41	.11	.33	- 25	.06	.64	. 59	.33	.81	.74	Sr								
- 83	.79	.65	- 06	.71	48	.07	.89	.85	.28	.84	.75	.42	Ba							
88	. 84	.96	.42	.77	.0	-• 04	.70	.47	.77	.70	.74	. 51	.65	Ni						
94	.96	.75	.05	. 59	46	- 22	.94	.82	.44	.94	.97	.76	.79	.81	Cr					
- 55	. 45	.90	. 53	.76	.34	.09	.28	.01	.72	.29	. 29	.05	.37	.79	.39	Co				
- 97	.98	.77	.11	.69	- 39	02	.94	.83	.48	.97	.92	.76	.87	.82	.97	.44	V			
69	.74	. 34	- 12	.39	52	.08	.76	.89	.18	. 80	.69	.70	.79	.41	.71	08	.79	Nb		
.94	- 92	- 84	- 17	- 79	.16	- 33	- 79	- 48	48	- 84	- 81	.68	70	- 81	- 79	53	85	- 59	Zr	
03	.05	. 18	.78	.16	,69	04	30	- 23	.76	11	16	.26	29	.31	.0	.34	.01	09	04	,

Figure I-8 : Matrice des corrélations (Bassin de Laval, Presqu'île de Crozon).

Les associations d'oxydes sont les suivantes :

. SiO₂ . Al₂O₃, K₂O, TiO₂, P.F. . Al₂O₃, Fe₂O₃, MgO. . MnO, CaO, P₂O₅. Comme dans les séries précédentes SiO_2 s'oppose à la fraction alumineuse. Celle-ci est constituée de deux phases associées, l'une potassique dans laquelle se retrouvent les micas blancs (illite et muscovite), l'autre ferromagnésienne formée par la chlorite (Fe₂O₃, MgO = 0,8). Le feldspath K (peu abondant) est également présent comme en témoigne la corrélation (SiO₂, K₂O = - 0,91).

On a reconstitué les principaux minéraux, illite et chlorite pour chacune des analyses à partir des rapports moyens obtenus grâce aux données publiées par Deer et al. (1956).

> . illite : $K_20/A1_20_3 = 0,26$ (moyenne de 13 analyses) . chlorite : $Fe_20_3 + Mg0/A1_20_3 = 2$ (moyenne de 20 analyses).

Les pourcentages d'Al₂O₃ non utilisé sont notés dans le tableau suivant :

Nº Echant.	An 2	An 4	An 6	An 1	IЬ	3	Scp 14	Scp 12	Scp 7	Scp 8	Scp 18	Scp 4
% A1203	1.76	2.33	2.84	7.5	-2.16	0.78	0.53	-0.18	2.36	-1.92	1.29	4.5

Ces chiffres ne sont qu'un ordre de grandeur, ils ne prétendent pas correspondre à un pourcentage réel dans les roches. Ils permettent d'observer que dans la majorité des échantillons Al_2O_3 reste en excès, or aucune argile alumineuse n'a été détectée aux rayons X. Cet Al_2O_3 se retrouve donc dans l'illite et la chlorite.

La dernière corrélation entre MnO, P₂O₅ et CaO évoque l'apatite, le Mn remplaçant Ca. La dispersion des éléments-traces entre les majeurs se fait de la façon suivante :

- . avec Al_2O_3 et K_2O : Rb, Ba, Cr, V.
- . avec Al_03 : Sr.
- . avec TiO₂ : Nb.
- . avec Fe_2O_3 et MgO : Ni, Co.
- . avec P₂O₅ et MnO : Y.
- . avec SiO, : Zr.

La phase alumineuse est le principal porteur des éléments-traces, soit par l'intermédiaire de l'illite, soit par celui de la chlorite. On retrouve Y dans l'apatite et Nb dans le rutile.

Conclusion.

Ces études ont mis en évidence la présence de quartz, d'illite-muscovite, de chlorite et de feldspath K. Au niveau géochimique on a observé un enrichissement relatif en Al_2O_3 par rapport aux sites minéralogiques associés. Pour expliquer cet enrichissement des minéraux on peut évoquer la présence d'argiles alumineuses dans le sédiment primitif notamment de la kaolinite. Au cours de la diagenèse elle se serait transformée (circulation des eaux) et aurait évolué vers d'autres minéraux, en particulier vers l'illite (Millot, 1964 ; Dunoyer de Segonzac et Millot, 1962).

La minéralogie de départ comprenait donc du quartz, de l'illite, de la chlorite, un peu de feldspath K et une argile alumineuse (kaolinite ou montmorillonite). 2.2.2. Bassin de Châteaulin : (Figure I-9).

SiO,								
96	A1203							
25	.01	Fe203						
05	16	.40	MgO					
.19	01	54	81	CaO				
38	.51	.08	27	05	Na ₂ 0			
68	.51	.23	.49	35	32	к ₂ 0		
90	.86	.0	.15	23	.18	.81	TiO2	
89	.77	.22	.33	36	.02	.91	.91	P.F.

Figure I-9 : Matrice des corrélations (Bassin de Châteaulin).

Les coefficients de corrélation sont moins élevés qu'à Laval-Crozon, ceci traduit un nombre plus important de phases minérales et donc une plus grande dispersion des éléments.

Si l'on retrouve toujours l'opposition entre SiO₂, quartz et Al₂O₃, la fraction alumineuse est moins évidente à déterminer. Les indications fournies par la matrice montrent qu' elle est hydratée (Al₂O₃, P.F. = 0,77) et que TiO₂ lui est associé. K₂O et Na₂O interviennent également dans cette fraction mais la présence de chlorite et chloritoïde détectée par Sagon (1976) n' est pas visible à ce niveau.

En partant des paragenèses observées et des analyses chimiques, Sagon (1976) a reconstitué la minéralogie primitive. Les paragenèses à muscovite, quartz et chlorite nécessitent pour se former la présence dans le sédiment originel d'illite, de chlorite, ou d'interstratifiés et de quartz. Cependant, d'autres paragenèses ont été observées comprenant de la paragonite et du chloritoïde. La formation de ces minéraux très alumineux (40% d'Al₂O₃) nécessite dans le sédiment originel l'intervention d'argiles alumineuses, kaolinite ou montmorillonite.

On retrouve donc la même paragenèse originelle à Châteaulin qu'à Laval et Crozon. La présence de paragonite dans le Bassin de Châteaulin explique les teneurs relativement élevées en Na₂O. Selon Sagon (1976) celui-ci proviendrait de l'eau de mer qui imbibe les sédiments.

2.2.3. Comparaison entre les trois coupes :

Si la composition minéralogique originelle est la même pour les trois coupes, les roches sédimentaires actuelles du assin de Châteaulin se singularisent par la présence de minéraux de métamorphisme : la paragonite et le chloritoïde. Ce dernier avait déjà été signalé dans la Aresqu'île de Crozon pour Melou et Plusquellec (1967), sa formation n'est pas en contradiction avec le degré très bas de métamorphisme décelé ici. En ce qui concerne la paragonite on sait qu'elle peut apparaître sous forme d'interstratifiés dans la muscovite (Paradis, 1981) et dans la phengite (Le Corre, 1978) à la limite entre le très bas degré et le bas degré de métamorphisme (Paradis, 1981).

Dans ces conditions il est peu vraisemblable qu'elle soit détectée sur les diffractogrammes de rayons X, ses concentrations étant trop basses. La paragonite individualisée n'apparaitra probablement qu'une fois que les possiblités d'accueil seront entièrement saturées, sans doute à des conditions de pression et de température plus élevées qui n'existent pas dans la Presqu'île de Crozon et sur le flanc nord du Bassin de Laval.

34

III - Conclusion.

Les roches sédimentaires de l'Ordovicien moyen sont constituées par d'anciennes pélites dans lesquelles se sont intercalés des niveaux gréseux. Ces pélites correspondent à un retour à des conditions de milieu plus calmes, faisant suite aux conditions de milieu agitées ayant présidé durant le dépôt du Grès armoricain.

Les débris organiques traduisent que le milieu de sédimentation était marin et les minerais de fer oolithiques qu'ilcorrespondait à une mer épicontinentale peu profonde.

Les pélites observées se caractérisent par des concentrations élevées en Al₂O₃, témoignage de la présence de kaolinite ou de montmorillonite dans la roche originelle.

La minéralogie et la géochimie de ces roches originelles semblent homogènes pour les trois coupes, mais l'influence du métamorphisme a entrainé les variations que l'on observe actuellement. •

CHAPITRE 5

LES FORMATIONS DE L'ORDOVICIEN SUPERIEUR (Caradoc - Ashgill)

La sédimentation de l'Ordovicien supérieur débute généralement par des dépôts arénacés. Sur le flanc nord du Bassin de Laval cette sédimentation se maintient jusqu'à l'Ashgill, tandis que dans la Presqu'île de Crozon, elle est remplacée par des dépôts argileux ou des dépôts volcano-sédimentaires. Le Bassin de Châteaulin se caractérise par une continuité des formations du Llandeilo.

L'étude de ces formations a été entreprise dans le Bassin de Laval (Formation de Saint-Germain-sur-Ille) et dans la Presqu'île de Crozon (Formation de Kermeur, Formation du Cosquer et Formation de Rosan), le travail effectué par Hamoumi (1981) a été intégré à cette étude.

I - Etude pétrographique.

1.1. Presqu'ile de Crozon.

1.1.1. Formation de Kermeur (Caradoc) (Kerforne 1899 ; Hamoumi, 1981).
C'est une série gréseuse, renfermant quelques lits silteux.

. Composition minéralogique.

Les grès de Kermeur sont constitués par de nombreux grains de quartz, des paillettes de muscovite et de chlorite, des amas séricitisés, correspondant à d'anciens cristaux de feldspath K altérés et du plagioclase. L'ensemble est enrobé dans une matrice peu abondante phylliteuse. On observe les minéraux accessoires: zircon, tourmaline, rutile, ainsi que des opaques.

Les rayons X ont permis de détecter de la kaolinite (GK 7, GK 10). Ces grès correspondent à des quartzwackes.

1.1.2. Formation du Cosquer (Caradoc-Ashgill) (Philippot, 1963 ; Hamoumi, 1981).

Elle est constituée par des schistes noirs micacés, dans lesquels s'intercalent quelques bancs gréseux vers le sommet de la coupe.

Ces bancs marquent un retour à des conditions de sédimentation identiques à celles des grès de Kermeur.

. Composition minéralogique.

Des grains de quartz, de la muscovite parfois illitisée sont enrobés dans une matrice constituée d'illite et de chlorite. On observe des minéraux lourds, zircon et tourmaline, des opaques, et de la matière organique. Les rayons X ont permis de déterminer des paragenèses à quartz, illite, chlorite, et des paragenèses à quartz, illite, chlorite et kaolinite (peu abondante). Ces roches correspondent à d'anciennes pélites.

1.1.3. Formation des tuffs et calcaires de Rosan (Caradoc-Ashgill).

Ils représentent une variation latérale de faciès des schistes du Cosquer dans la région de l'Aber et sont formés d'alternances de bancs carbonatés, de coulées basiques sous - marines et de hyaloclastiques, sur une épaisseur d'environ 150 m.

. Composition minéralogique.

Seuls les calcaires ont été étudiés. Ils sont constitués par des débris coquillers, la fraction détritique terrigène est pratiquement inexistante.

Conclusion.

La cristallinité des micas indique que cette série se situe dans le très bas degré de métamorphisme (Hamoumi, 1981). La présence de kaolinite, exceptionnelle à ce stade, a cependant déjà été décrite par Dunøyer de Segonzac (1969) et Thompson (1970).

1.². Bassin de Laval: Formation de Saint-Germain-sur-Ille. (Paris, 1971).

Cette formation contient un ensemble gréseux interrompu dans sa partie médiane par des niveaux schisteux et des lits ampéliteux.

. Composition minéralogique.

Les grains de quartz, très nombreux, sont accompagnés par quelques amas sériciteux, traces d'anciens cristaux de feldspath K, par des plages de muscovite et des minéraux accessoires : zircon, tourmaline et rutile. Ces roches correspondent à des quartzites.

II - Etude géochimique.

Les analyses chimiques ont été effectuées sur des schistes (SCO 1, SCO 3, SCO 5, GK 7, GK 2), des quartzwackes (GK 10, GK 12), des quartzarénites (G 11, G 13, GK 4) et des calcaires (CAR 1, CAR 3, CAL 1). Les données de Hamoumi (1981) et de Fourmond (1964), ont été jointes aux tableaux.

2.1. Analyses chimiques (Tableau I-11).

2.1.1 Grès de Kermeur.

Riches en SiO₂ (60 à 94%), ils possèdent cependant une fraction alumineuse non négligeable. Les teneurs en CaO et Na₂O sont faibles. On observe une bonne cohérence entre les concentrations de ferromagnésiens et d'Al₂O₃.

Les éléments-traces se concentrent principalement dans les échantillons les plus alumineux, excepté le zirconium.

38

[1	2												
	[A			****				В			
	GI 1	GI 3	GK 10'	GK 4	GK 12	GK 7	GK 2	12	15	20	30 Ь	40 g	64 b	98 c	103
610	85.00	97 4	99.94	94 10	84 40	62 28	60 34	88 3	86 ú	70.9	91.25	93.05	87.2	76.5	88.5
5102	- 	74,0	07,04	54,10 4 10	7 05	27 60	19 1/1	00,5	7 35	13.87	5, 30	3 75	7 45	12.00	7 27
203	2,2	, o	0.75	4,10	0.27	1 00	5 77	0.51	3 3	4.5	0.24	n. 39	0.26	n. 54	n, 48
re2 ¹ 3	0,10	0,00	0,25	0,10	0,2/	1,07	0.02	0,21	1,5	0.07	0,	0	0.02	0,02	
1110 11-0	1 00	0.75		0.07	1 54	0 59	3 /9	0,02	0.24	1 2	0,05	0 11	0.16	0.24	0.13
Mgu	1,08	0,0	0,10	0,07	1, 24	0,00	1,42	0,54	0,14	0.16	0,00	0,11	0 11	0.11	0,19
Lau			0			0,0	0,17	0,14	0,02	0,10	0,12	0.06	0.18	0.23	ດ 14
Na ₂ 0	0,06	0,05	0,07	0,06	1.56	4 04	4.05	2.4	1 47	3 13	0.98	0.85	1 57	7 54	1 22
^K 2 ^U	0,65	0,52	1,20	0,75	1,70	1 27	4,05	2,4	1,67	0.59	0.15	0,02	0.38	1.84	0.15
1102	0,16	0.84	0,28	0,07	0,51	1,25	1,01	0,47	0,41	0,07	0.04	0.01	0,50	0.04	0,12
205	U	U I	Ų	U	U	ŭ	0,09	0,01	0,01	1 0,07	0,04	0,01	0,01	0,04	, u
Perte au feu	0,50	1,65	1,81	1,26	2,08	4,94	5,25	2,2	2,3	4,65	1,63	0,86	2,01	4,26	2,3
Total	100,1	102,6	100,6	100,55	100,4	99,81	97,49	100,04	99,79	99,27	99,85	99,30	99,30	98,32	100,29
RS	29	31	47	29	56	209	147		ł	Í	1	1		1	
Sr	6	65	12	5	10	41	17			1				}	1
Ba	80	185	202	133	272	1019	770							1	
Ni	-	3	-	-	3	16	27						}		
Cr	30	34	19	5	34	115	97								
Co	2	3	3	1	4	4	12						1		
v	10	29	30	18	27	148	133		1						
Nb	2	17	11	2	11	25	21						1		
Zr	183	1086	711	46	539	608	320				l	1			
Y	5	38	21	5	18	46	37								
Cr Co V Nb Zr Y	30 2 10 2 183 5	34 3 29 17 1086 38	19 3 30 11 711 21	5 1 18 2 46 5	34 27 11 539 18	115 4 148 25 608 46	97 12 133 21 320 37								

r	1							r	***		,					
						3							4			5
	SCO 1	SCO 3	SC0 5	134	137 a	150	155) 154	160	178 ь	180	CAR 1	CAR 3	CAL 1	a	β
1				1	1	1	1	1		1			1	1)
5102	57,60	56,42	60,13	55,05	60,05	56,60	54,83	81,70	55,60	61,05	66,40	10,05	1,01	0,38	50,78	50,32
A1203	20,85	20,64	19,99	21,08	19,10	21,00	21,43	7,88	21,65	18,95	20,1	2,06	0,45	0,23	13,71	13,96
²⁰ 3	6,46	6,94	5,58	7,82	6,07	7,37	7,43	3,64	6,99	4,31	0,68	2,15	0,79	0,21	11,76	12,12
MnO	0	0,03	0	0,09	0,06	0,1	0,05	0,02	0,04	0,02	0,01	0,11	0,13	0,04	0,10	0,14
MgO	1,29	1,57	1,33	3,34	2,04	2,37	2,36	0,99	2,16	1,48	0,64	0,68	0,39	0,49	5.00	6.03
CaD	0,06	0,26	0,18	0,36	0,33	0,39	0,52	0,35	0,24	0,07	0,05	46,03	54,34	54,96	5.67	6.74
Na ₂ 0	0,19	0,76	0,62	0,31	0,41	0,34	0,94	1,78	0,43	0,83	0,22	0,09	0.02	0.02	2.7	3,12
K 20	5,41	4,67	4,62	5,16	4,44	4,73	4,97	0,87	5,03	4,29	5,12	0.13	tr	tr	0.46	0.37
Ti02	1,13	1,09	1,08	1,11	1,04	1,16	1,22	0,40	1,02	0,96	1.07	0.28	0.10	0.11	1.53	1.53
P205	0,12	0,23	0,19	0,19	0,14	0,20	0,16	0,09	0.21	0.1	0.01	0.15	0.06	0.01	0.47	0,49
Perte											-,	- ,	1 4,00	0,01	0,47	0,47
aureu	4,61	5,02	4,73	5,46	5,74	5,42	5,90	1,92	5,79	7,17	4,52	37,28	43,15	43,4	8,2	6.11
1									1							
Total	97	97,63	98,45	98,97	99,42	99,68	99,81	99,64	99,16	99,23	98,82	99,01	100,44	99,85	99,44	99,93
1314	204	170	100													
no	200	1/2	100									20	21	21		
Sr	110	50	42									472	339	406		
Ba	915	1066	1127									73	43	39		
Ni	43	37	33									34	25	23		
Cr	132	141	127									100	57	67		
Co	20	19	10									tr	22	tr		
v	177	160	144									120	69	82		
Nb	24	23	22													
Zr	200	227	256										}			
Ŷ	48	47	42													

Tableau I-ll: Analyses chimiques des échantillons de l'Ordovicien supérieur.

l : échantillons du Bassin de Laval.

2 : échantillons de la Presqu'île de Crozon : Formation de Kermeur.

B : d'après Hamoumi, 1981.

- 3 : échantillons de la Presqu'île de Crozon : Formation de Cosquer.
 - D : d'après Hamoumi, 1981.
- 4, 5 : échantillons de la Presqu'île de Crozon : Formation de Rosan.

(4 : calcaires, 5 : volcanites d'après Fourmond, 1964).

2.1.2. Schistes du Cosquer.

Ils sont homogènes, les teneurs en SiO₂ s'échelonnent de 55% à 66% et en AI_2O_3 de 19% à 22%. Les oxydes les plus abondants sont ensuite K_2O , Fe_2O_3 et MgO.

Les éléments-traces se comportent de façon cohérente, cependant on observe un enrichissement relatif en baryum et en yttrium par rapport aux séries précédentes.

2.1.3. Calcaires de Rosan.

Ils sont constitués principalement de carbonate de calcium (CaO + PF \sim 90%) et d'oxydes de fer.

Rapportées à Al_2O_3 les concentrations des éléments-traces Rb, Ba, Ni, Cr, Co et V sont plus élevées que dans les schistes.

2.1.4. Grès de St-Germain-sur-Ille.

Les deux échantillons analysés sont des quartzites presque purs contenant plus de 90% de SiO₂. Tout comme pour les Grès de Kermeur, l'échantillon le plus alumineux est aussi le plus riche en éléments-traces.

2.1.5. Classification des grès.

Les Grès de Kermeur correspondent aux arkoses et subarkoses définies par Pettijohn et al (1973) (figure I-10). Un échantillon de St-Germain est une sublitharénite (GI 1) et l'autre une subarkose (GI 3).

Figure I-10 : Localisation des échantillons des formations de Saint-Germain-sur-Ille et de Kermeur dans le diagramme différenciant les familles de grès (Petrijohn et al., 1973)

40

2.2. <u>Répartition des éléments entre les phases minéralogiques</u> : matrice des corrélations.

2.2.1. Grès de Kermeur - Grès de St-Germain (Figure I-11) (15 analyses).

Si02										
97	A1203									
82	.72	Fe ₂ 03								
24	.23	.20	MnO							
52	.43	.62	.24	MgO						
.07	17	.26	.68	.31	CaO					
62	.57	.46	.24	.42	. 46	Na ₂ 0				
93	.98	.64	.30	.39	27	. 50	K ₂ 0			
68	.69	.35	.30	.21	16	.48	.65	TiO,		
84	.78	.84	0	.84	. 59	.54	.70	.37	P205	
97	.95	.78	.19	.43	.02	.71	. 89	.74	.80	P.F.

Figure I-11 : Matrice des corrélations (Formation de St-Germain-sur-Ille et Formation de Kermeur).

La matrice des corrélations met en évidence l'existence de deux phases principales dans les roches :

- une phase siliceuse, constituée par le quartz
- une phase alumineuse à laquelle se joignent K_20 , P.F., et dans

une moindre mesure TiO₂, Fe₂O₃ et P₂O₅.

La fraction alumineuse contient donc principalement des minéraux potassiques, illite et muscovite, Fe_2O_3 est associé à cette fraction à la fois par l'intermédiaire des micas blancs (Fe_2O_3 , $K_2O = 0,64$) dans la phengite et en liaison avec MgO (Fe_2O_3 , MgO = 0,62) dans la chlorite.

Si l'on reconstitue les minéraux à partir des analyses chimiques comme il a été fait précédemment, de l'Al $_2$ O $_3$ reste en excès, tableau I-12.

№ Ech.	GI 1	GI 3	GK 10	GK 4	GK 12	GK 7	GK 2	12	15	20	30ь	40q
%A1203	47	2,13	1,52	1,36	1,33	30	.93	49	.57	23	2.27	.44

№ Ech.	64 b	88 c	103
^{%A1} 2 ⁰ 3	1.77	2.47	2.57

Tableau I-12 : % d'Al₂0₃ en excès.

Cet Al_2O_3 se retrouve sous forme de kaolinite dans les grès. Selon Hamoumi (1981), celle-ci résulte de transformation diagénétique aux dépens du feldspath K et de la muscovite et n'a pas une origine détritique.

2.2.2. Schistes du Cosquer (Figure I-12)(11 analyses).

Si0 ₂										
94	A1203									
69	. 43	Fe203								
53	.38	.73	MnO							
62	.43	.80	.86	MgO						
11	10	.57	.62	.64	CaO					
.70	83	18	.43	27	.34	Na ₂ 0				
89	.98	.33	.34	.35	21	89	K20			
92	.97	.44	.45	. 42	- 0	79	. 95	TiO,		
62	.39	.88	.59	.64	.48	11	•26	.35	P205	
78	.76	.36	.25	. 47	06	51	.70	.70	. 28	P.F

Figure I-12 : Matrice des corrélations (Formation des schistes du Cosquer).

On retrouve au niveau de la matrice des corrélations, la présence des minéraux alumineux potassiques (Al_2O_3 , K_2O = 0,98), de la chlorite (Fe_2O_3 , MgO = 0,80) et peut être du plagioclase (SiO_2 , Na_2O = 0,70). La reconstitution de ces minéraux à partir des analyses chimiques permet de déterminer le pourcentage d' Al_2O_3 non utilisé. Tableau I-13.

Nº Ech.	SCO 1	SCO 3	SCO 5	134	137 d	150	155	154	160	178 Б	180
%A1203	- 2,5	-0,43	0	-3,08	0,94	-0,9	-1,36	2,43	-1,03	0,6	1,00

Tableau I-13 : % d'Al₂0₃ en excès.

Ces résultats indiquent que dans la majorité des cas tout l'Al₂O₃ entre dans la formation de l'illite et de la chlorite, et que la kaolinite est relativement rare, son origine est toujours supposée diagénétique (Hamoumi, 1981).

Les données disponibles en éléments-traces sont insuffisantes pour autoriser des conclusions.

2.2.3. Conclusion.

Ces observations minéralogiques et géochimiques vont permettre de tenter une reconstitution du sédiment originel.

La paragenèse à quartz, illite (et muscovite illitisée), chlorite est constante dans les deux coupes, le plagioclase a été observé dans les deux formations de Crozon et la kaolinite semble liée particulièrement aux grès. Elle a une origine diagénétique et pourrait provenir de l'évolution du feldspath K et de la muscovite, par lessivage des alcalins. On peut imputer sa présence préférentielle dans les grès à la perméabilité plus grande de ces derniers (Millot, 1964) qui facilite la circulation des eaux.

mu : muscovite, bi : biotite, fk : feldspath K, il : illite, py : pyrophillite, ch : chlorite.

Dans la figure I-13, on observe une bonne corrélation entre le pourcentage d'Al₂0₃ et les teneurs en alcalins. Selon Pettijohn (1963) celle-ci résulte de la présence des feldspaths dans les roches. Ceci n'est plus le cas de ces roches actuelles et la droite de régression passe par le domaine de composition de l'illite et de la muscovite. Cependant, il est probable que dans la roche originelle du feldspath K et du plagioclase aient été présents, ils auraient ensuite évolué :

formation de kaolinite aux dépens du feldspath K et de la muscovite
illitisation de la kaolinite et de la muscovite

Les schistes au Cosquer se singularisent par l'absence de kaolinite malgré des teneurs en Al_2O_3 élevées. L'altération du feldspath K et de la muscovite a du se produire sans le passage par la kaolinite, directement vers la séricite et l'illite. Les teneurs élevées d'Al_2O_3 résultent sans doute d'une plus grande abondance de la muscovite par rapport à celle des Grès de Kermeur.

III - Conclusion.

Alors que durant l'Ordovicien inférieur et moyen la sédimentation était uniforme entre les trois coupes avec les dépôts du Grès Armoricain puis des Schistes à Calymènes, le Caradoc et l'Ashgill se singularisent par une diversité des formations entre Laval et Crozon d'une part et à Crozon même d'autre part.

Sur le flanc nord du bassin de Laval, la Formation de Saint-Germain-sur-Ille correspond au dépôt d'anciens sables quartzeux sur une plateforme. On observe le même type de dépôt à Crozon avec les Grès de Kermeur. Selon Hamoumi (1981) ils résultent de l'érosion d'un socle cristallin lointain, ou de l'érosion d'une source sédimentaire épimétamorphique au lieu dit le Veryac'h, et d'un relief jeune dans la région de l'Aber-Kerglintin. Ils sont suivis par deux types de sédimentation :

- une sédimentation argileuse (schistes du Cosquer) dont l'origine est liée à un relief ancien (région du Veryac'h),
- du volcanisme de faible profondeur et des calcaires correspondant vraisemblablement à des dépôts de plateforme (Hamoumi, 1981) dans la région de l'Aber-Kerglintin.

La minéralogie originelle de ces formations comprenait les minéraux suivants : - quartz, illite, muscovite, feldspath potassique, plagioclase et chlorite.

CHAPITRE 6

LES FORMATIONS DU SILURIEN INFERIEUR ET MOYEN (Llandovery-Wenlock-Ludlow)

Après une lacune de sédimentation qui s'étend de la fin de l'Ashgill au début du Llandovery dans le Bassin de Laval, et au début du Wenlock en Presqu'île de Crozon, une nouvelle transgression envahit le domaine Centre Armoricain. Les dépôts sont constitués à la base par des arènes auxquelles succèdent des bancs ampéliteux. Au Wenlock la sédimentation devient franchement ampélitique et des quartzites pyriteux apparaissent. Ces faciès régressent ensuite au Ludlow et font place à des silstones micacés à intercalations gréso-quartzitiques ou psammitiques (Lardeux et al., 1977).

Deux formations ont été échantillonnées :

- la Formation de la Tavelle en ^Presqu'île de Crozon

- la Formation de la Lande-Murée dans le ^Bassin de Laval. Les données et résultats obtenus par Sagon (1976) sur le ^Bassin de Châteaulin sont également joints.

D'autre part, F. Paris a communiqué des analyses d'échantillons provenant du Ménez-Bélair.

I - Etude pétrographique.

1.1. Presqu'île de Crozon : Formation de la Tavelle (Paris, 1980).

Elle débute par des grès sur 6 à 10 m et se poursuit par des ampélites dans lesquelles s'intercalent quelques niveaux gréseux.

. Composition minéralogique.

Grès : ils sont constitués par des grains de quartz, des lamelles de muscovite (dont l'extrémité est parfois en éventail), de rares cristaux de chlorite et des amas sériciteux correspondant à d'anciens grains de feldspath K altérés. Les deux principaux types de grès présents dans cette formation sont les grès micacés et les grès quartzeux.

Ampélites : les diffractions de rayons X ont permis de déterminer les minéraux suivants : quartz, micas blancs, chlorite, pyrophyllite (pics à 9,16 - 4,58 - 3,06) et calcite (AMS 3). Ces roches sont d'anciennes argiles riches en matière organique.

Discussion : On constate l'apparition de pyrophyllite dans cette série. Ce minéral avait déjà été décrit dans le Dévonien du bassin de Laval (Dunoyer de Segonzac et Millot, 1962), dans le Dévonien de la Presqu'île de Crozon (Melou et Plusquellec, 1967), et dans les formations siluro-dévoniennes de Normandie (Robardet et Steinberg, 1972). Il peut apparaître dès le très bas degré de métamorphisme et persister dans le faciès schistes verts (Winkler, 1979).

Les associations minérales présentées, correspondent à un très bas degré de métamorphisme.

45

1.2. Bassin de Châteaulin (Sagon, 1976).

Les formations siluriennes sont constituées par une succession de termes dans lesquels on retrouve de bas en haut :

- des quartzites blancs et bleus dits du Valentien.

- des schistes bleus et noirs et des ampélites à Graptolites du Wenlock.
- des schistes gris et des quartzites rubanés en petits bancs, du Ludlow.

. Composition minéralogique.

On observe deux types de schistes :

. Schistes à chloritoïde : des paillettes de muscovite néoformée constituent une trame dans laquelle sont dispersés des grains de quartz et de chloritoïde. De la tourmaline, du rutile, du zircon et des cubes de pyrite sont aussi présents.

. Schistes sans chloritoïde : la matrice (illite et chlorite) enrobe des grains de quartz, d'albite, de muscovite et de chlorite détritique. Les minéraux accessoires sont les mêmes que précédemment.

> Les rayons X ont permis à Sagon de déterminer les paragenèses suivantes : Tableau I-14.

	Numéro d'échantillons	Paragenèses
OCK	G 623	Quartz, muscovite
WENL	G 184 - G 640	Quartz, muscovite, chlorite
	M 386	Quartz, muscovite, margarite, chloritoïde, rutile (kaolinite goethite).
MO	Q 1244	Quartz, muscovite, margarite (kaolinite, goethite)
Lun	Q 1247	Quartz, muscovite, margarite
	G 483	Quartz, muscovite, margarite (rutile)
	G 641	Quartz, muscovite, margarite, chloritoIde, pyrite.

Tableau I-14 : Paragenèses de Wenlock et du Ludlow.

. Quartzites : les grains de quartz sont jointifs ou séparés par de fines paillettes de chlorite néoformée et plus rarement par de la muscovite (néoformée et détritique). On observe des minéraux lourds : zircon, rutile, anatase, épidote, tourmaline souvent disposés en lits.

. Discussion.

On constate une évolution minéralogique entre le Wenlock et le Ludlow avec l'apparition de minéraux alumineux tels que le chloritoïde et la margarite. La kaolinite observée dans certains échantillons est d'origine secondaire. Les paragenèses présentes sont identiques à celles reconnues dans le premier sous faciès du faciès schistes verts (Winkler, 1976).

1.3. Unité du Menez-Bélair : Formation de la Lande Murée (Paris, 1977).

Elle est formée d'arénites sombres et de niveaux ampéliteux. On y distingue trois membres :

- un membre inférieur, formé de quartzarénites et de passées ampéliteuses
- un membre moyen, avec des sapropélites feuilletées

- un membre supérieur, de nature ampélitique.

Aucune observation microscopique n'a été faite.

1.4. Bassin de Laval : Formation de la Lande Murée (Paris, 1977).

Les dépôts débutent au Llandovery et se poursuivent jusqu'au Ludlow. Le manque d'affleurement rend l'étude de la formation difficile, mais les successions lithologiques semblent assez proches de celles du Ménez Bélair (Paris, 1977), constituées de grès sombres et d'ampélites.

. Composition minéralogique :

Grès : Ils sont formés principalement de grains de quartz, de quelques grains de chlorite et de micas blancs. Les minéraux accessoires sont le zircon, le rutile et la tourmaline. Ces roches correspondent à des quartzites.

> Ampélites : Les rayons X ont permis de déterminer les paragenèses suivantes : Tableau I-15.

Numéro d'échantillons	Paragenèses
LM 1 - LM 2	Quartz, micas blancs, chlorite, feldspath K
LM 3	Quartz, micas blancs, feldspathK
LM 4	Quartz, micas blancs, chlorite, pyrophyllite
LM 5	Quartz, micas blancs, kaolinite, pyrophyllite, rutile

Tableau I-15 : Paragenèses du Silurien.

On constate l'apparition de la pyrophyllite, ces paragenèses correspondent au très bas degré de métamorphisme.

Ces roches résultent de la transformation d'anciennes argiles riches en matière

organique.

1.5. Conclusion.

Le Llandovery et le Wenlock se caractérisent par une paragenèse constante : quartz, illite-muscovite, chlorite, à laquelle se joignent la kaolinite et la pyrophyllite dans quatre roches. A partir du Lludlow des minéraux plus alumineux apparaissent de façon systématique, pyrophyllite et kaolinite à Laval et Crozon, margarite et chloritoïde à Châteaulin. La pyrophyllite apparaît dès le très bas degré de métamorphisme (Winkler, 1979) mais la margarite nécessite des conditions de métamorphisme plus poussées correspondant au bas degré (Althaus et Winkler, 1962 ; Frey, 1978).

II - Etude géochimique.

Les analyses chimiques ont été effectuées sur des ampélites et sur quelques grès micacés.

2.1. Analyses chimiques.

						1						•		
	1	3	12	13	4	5	6	7	8	9	10	11	LM 1	
5i0,	65,47	53,94	50,23	45,36	43,14	27,25	36,79	54,23	40,13	48,57	36,26	45,59	42,58	_
A1,0,	4,51	25,00	18,18	11,42	25,68	13,98	8,7	15,16	12,16	15,69	12,48	21,78	15,04	
Fe,0,T	0,43	1,88	0,86	4,48	2,27	0,96	0,61	1,09	4,41	1,27	1,37	1,46	10,00	
Mnū	tr	tr	tr	tr	tr	tr	tr	tr	tr	tr	tr	tr	0.01	
MgŨ	0,4	0,87	0,74	0,56	0,98	0,56	0,4	0,62	0,5	0,67	0,52	0,18	0,64	
CaO	tr	tr	tr	tr	tr	tr	tr	tr	0,28	tr	tr	1,02	0,29	
Na ₂ 0	0,06	0,15	0,12	0,09	0,17	0,13	0,14	0,1	0,1	0,1	0,11	tr	0,15	
к,0	1,44	6,34	4,21	3,04	6,4	3,55	2,36	3,85	3,75	3,06	3,51	4,22	3,21	1
T102	0,76	1,08	0,86	0,51	2,01	0,81	0,70	0,98	0,86	0,83	0,86	0,87	0,77	
P205	0,19	0,11	tr	0,11	0,07	0,2	0,09	80,0	0,15	0,11	0,14	0,12	0,06	
Perte au feu	26,6	10,7	24,8	33,2	18,6	51,6	49,4	23,3	36,5	29,4	24,4	22,96	24,72	-
Total	99,86	100,07	100,00	98,77	99,22	99,04	99,19	99,41	98,74	99,7	99,65	98,2	97,47	
Rb	68	278	219	206	295	270	176	184	207	183	177	227	127	
Sc	596	175	223	224	138	606	307	189	571	353	494	405	77	-
Ba	nd	nd	nd	nd	nd	ndi	nd	nd	nd	nd	nd	nd	60 9	
Ni	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	170	340	
Cr	177	164	164	390	218	240	147	165	155	230	170	nd	156	
Co	nd	tr	tr	30	nd	tr	nd	nd	nd	nd	nď	5	8	
v	1635	333	1970	585	1050	5765	5260	1600	2935	2680	2750	2140	5756	
NÞ	nd	nd	ndt	nd	nd	ndi	nd	nd	nd	nd	nd	39	14	
Zr	248	152	129	120	410	304	245	162	215	198	166	226	186	
Y	110	52	66	106	77	310	146	83	143	105	158	116	50	

2.1.1. Llandovery (Tableau I-18).

Tableau I-16 : Analyses chimiques des échantillons du Llandovery.

1 : Menez-Belair (d'après Paris)

2 : Bassin de Laval.

Il se caractérise par des concentrations en SiO₂ faibles par rapport aux séries pélitiques sous-jacentes, (\overline{M} = 45,75%) et en Al₂O₃ (\overline{M} = 15,40%) moyennes. La perte au feu atteint des teneurs jamais observées encore dans le Massif Armoricain (\overline{M} = 26,67%). Les autres oxydes sont peu abondants.

Les observations relatives aux éléments-traces concernent principalement Sr $(\vec{M} = 315 \text{ ppm})$, Y $(\vec{M} = 111 \text{ ppm})$, Cr $(\vec{M} = 195 \text{ ppm})$ dont les concentrations sont élevées et surtout V $(\vec{M} = 2864 \text{ ppm})$ qui peut atteindre 5600 ppm dans certaines roches.

			1								2				3			
	14	15	16	17	19	20	23	25	AMS 1	AM5 2	AW 2	18	21	22	G 184	G 623	G 640	
Si0,	72,76	76,30	80,19	81,03	73,00	75,18	71,93	79,73	76,48	71,80	62,26	66,03	74,46	66,79	53,28	54,42	51,76	
A1,0,	7,7	8,94	4,99	3,71	10,87	10,00	12,84	6,69	11,09	15,11	17,64	15,18	9,02	13,69	22,72	24,08	22,72	
Fe ₂ 0 ₄ T	1,48	0,61	0,36	0,96	1,47	0,61	0,58	0,59	5,24	3,99	0,72	G,73	0,41	0,35	8,7	5,27	10,43	
MnŪ	tr	tr	tr	tr	tr	tr	tr	tr	tr	0,01	tr	tr	tr	tr	nd	nđ	nd	
MgD	0,33	0,46	0,26	0,23	0,51	0,53	0,52	0,44	0,73	0,56	0,47	0,31	0,93	0,61	3,00	2,32	3,12	
CaO	tr	0,07	tr	tr	0,65	0,07	0,13	0,11	0,08	0,12	0,04	0,08	tr	0,07	0,14	0,35	0,21	
Na_C	0,07	tr	0,05	0,04	0,26	tr	0,27	0,05	0,57	0,71	0,26	0,39	tr	tr	0,23	0,31	0,3	
к,0	2,05	1,52	1,35	1,1	2,46	1,95	2,71	1,82	0,95	1,58	4,19	3,98	2,39	3,49	5,00	6,21	4,58	
Tio,	0,54	0,4	0,4	0,39	0,49	0,45	0,54	0,48	0,82	1,19	0,61	0,57	0,45	0,58	1,48	1,27	1,4	
P,0,	tr	0,06	tr	tr	0,16	0,11	tr	0,09	0,09	0,08	0,07	0,08	tr	0,06	nd	nd	nd	
Perte au feu	15,00	11,9	13,4	12,5	8,49	10,18	10,61	9,7	3,66	4,26	11,48	12,64	11,87	12,1	5,52	6,03	5,58	
Total	99,93	100,26	101,00	99,96	99,01	99,08	100,13	99,7	99,71	99,41	97,74	99,99	99,53	97,74	100,07	100,26	100,10	
къ	100	79	66	50	114	90	130	86	55	68	181	173	114	171				
Sr	35	103	66	65	653	214	58	160	79	102	73	36	21	84		(
88	nd	nd	nd	nd	nd	nd	nd	nd	375	430	1957	nd	nd	nd				
Ni	nd	92	nd	nd	120	62	57	nd	18	14	45	108	133	99		1		
Cr	75	nd	52	48	nd	nd	nd	116	84	106	103	nd	nd	nd				
Co	nd	4	nd	tr	4	3	• 3	nd	5.	4	3	4	3	4				
v	340	2095	304	230	3110	1420	910	985	113	128	2174	5210	2655	2390				
Nb	nd	12	nd	nd	13	nđ	18	nđ	21	26	12	20	18	18				
Zr	107	90	124	113	130	113	97	114	457	419	81	112	144	109		}	· ·	
Y .	75	33	57	57	48	60	39	40	36	30	42	69	60	53		1		

2.1.2. Wenlock (Tableau I-17).

Tableau I-17 : Analyses chimiques des échantillons du Wenlock.

- 1 : Menez Belair (d'après Paris).
- 2 : Presqu'île de Crozon (B : d'après Paris).
- 3 : Presqu'île de Chateaulin (d'après Sagon, 1976).

L'évolution par rapport au Llandovery se marque par une augmentation de SiO₂ (\overline{M} = 69,85%) et une diminution de la perte au feu (\overline{M} = 9,70%). Les autres éléments majeurs sont en teneurs toujours faibles. En ce qui concerne les éléments-traces on observe que V, bien qu'abondant diminue (\overline{M} = 1576 ppm) en même temps que Y (\overline{M} = 50 ppm).

En comparant la composition géochimique des trois logs on observe une identité entre Crozon et le Ménez-Bélair, tandis que Châteaulin se différencie par un enrichissement relatif en Al₂O₃, Fe₂O₃ etMgO.

De même au niveau des éléments-traces on a pu mettre en évidence une augmentation du rapport Sr/Al₂O₃ entre Crozon et le Menez-Bélair. Tableau I-18.

	M = (Sr/Al 10 ⁴)	σ	Nombre d'échantillons
Crozon	9	3,7	6
Menez-Bél	air 37	31,5	8

Tebleau	I-18	:	Moyennes	des	rapports	Sr/	A.	
---------	------	---	----------	-----	----------	-----	----	--

2.1.3. Ludlow (Tableau I-19).

		1			2		3					4		
	LM 2	LM 4	LM 5	26	27	28	AMS 3	AMS 6	AL 1	M 386	Q 1244	Q 1247	G 483	G 641
S10,	53,67	50,52	52,72	51,09	52,68	47,07	44,8	50,7	42,52	48,5	49,4	51,00	57,34	39,04
Al203	25,31	31,28	31,1	31,18	26,58	29,55	26,6	27,65	28,79	28,00	28,2	33,4	28,26	35,25
Fe ₂ 0 ₃ T	1,38	1,47	1,14	1,09	4,09	1,85	7,00	5,12	5,55	9,26	6,91	0,51	0,38	8,84
MnQ	0,01	0,01	0,01	tr	tr.	tr	0,03	0,01	-	nd	nd	nd	nd	ndi
MgO	0,82	0,42	0,33	0,69	1,34	0,69	1,47	0,55	1,11	0,30	-	0,4	0,6	1,41
CaO	0,30	0,13	0,19	tr	tr	tr	1,79	0,06	0,07	1,12	2,66	1,54	2,24	1,12
Na ₂ 0	0,45	0,57	0,5	0,76	0,83	1,28	0,82	0,8	1,05	0,94	0,9	2,19	1,03	0,98
κ ₂ 0	4,17	2,78	2,63	2,93	3,22	4,29	3,14	3,42	4,31	3,83	3,37	3,17	3,55	2,29
Ti02	1,00	1,05	1,28	0,98	1,08	0,98	1,16	1,3	1,04	1,38	1,29	1,17	0,81	1,61
P205	0,05	0,07	0,06	tr	tr	0,09	0,18	0,12	0,18	nd	nd	nd	ndi	nd
Perte au feu	12,04	11,44	8,95	11,3	10.4	12,1	10,8	8,55	12,95	6,23	6,33	6,31	5,2	9,13
Total	99,20	99,74	98,91	⁻ 160,02	200.22	97,9	97,79	98,28	97,57	99,56	99,06	99,69	99,41	99,67
Rb	186	153	139	189	194	266	161	154	209					
Sr	143	230	193	227	145	320	172	9 9	301					
Ba	857	815	670	nd	nd	nd	941	710	1584					
Ni	44	30	20	nd	nd	40	113	10	105					
Cr	162	190	161	160	160	nd	137	150	133					
Co	3	2	2	nd	nd	8	21	2	18					
v	900	946	857	1020	353	1630	620	275	1520					
Nb	19	21	28	nd	nd	34	23	25	19					
Zr	130	98	148	86	128	115	136	208	121					
Y	41	26	49	39	43	42	36	33	45					

Tableau I-19 : Analyses chimiques des échantillons du Ludlow.

1 : Bassin de Laval.

2 : Menez-Belair (d'après Paris).

3': Presqu'ile de Crozon

4 : Bassin de Chateaulin (d'après Sagon, 1976).

Il montre un changement radical dans la composition chimique. SiO₂ diminue nettement (M = 49,36 %) alors qu'Al₂O₃ augmente (M = 29,37 %) et que la perte au feu reste du même ordre de grandeur que précédemment (M = 9,41 %). Les autres oxydes s'enrichissent mais sans quitter des gammes de valeurs faibles à moyennes.

Les éléments-traces marquent la transition avec une diminution des teneurs en V (M = 902 ppm), en Y (M = 39 ppm) et en Ni (M = 52 ppm). Les autres éléments n'atteignent pas de valeur anormale. Seul l'échantillon AL 1 se caractérise par 1504 ppm de Ba.

2.2. <u>Répartition des éléments entre les phases minéralogiques</u> : matrice des corrélations.

2.2.1. Llandovery(Figure I-14) (12 analyses).

SiO ₂															
11	A1203														
22	.07	Fe ₂ 03													
.06	.53	.10	MgO												
11	.27	.09	64	CaO											
30	.28	.0	.79	72	Na20										
11	.94	.21	.66	.09	.47	к ₂ 0									
02	.68	01	.57	06	.50	.75	TiO ₂								
09	47	.03	44	.09	29	41	30	P2 ⁰ 5							
71	60	02	42	12	.05	59	47	.37	P.F.						
58	.82	.27	. 52	.10	. 50	.85	. 54	28	13	Rb					
11	59	09	59	.19	41	58	43	.83	,50	43	Sr				
06	20	.63	02	11	12	17	36	03	.10	01	24	Cr			
67	40	35	39	02	.11	43	30	.35	. 87	04	.55	34	V		
40	.19	15	.06	۰04	.28	.21	.68	.24	.19	.28	.15	36	.30	Zr	
64	38	11	33	05	.04	35	28	.67	.79	.07	.70	07	.82	.32	Y

Figure I-14 : Matrice des corrélations des échantillons du Llandovery.

On ne retrouve pas la corrélation négative entre SiO_2 et Al_2O_3 qui existait dans les séries précédentes. Les roches ne sont donc plus le résultat d'un mélange entre deux phases minérales, l'une siliceuse et l'autre alumineuse. Un troisième facteur intervient, indépendant des deux autres. Il est vraisemblablement constitué par les éléments de la perte au feu (H₂O, CO_2 , SO_3 , C 1...). En effet, celle-ci se comporte en opposition à SiO_2 (SiO_2 , P.F. = -0,71) et à Al_2O_3 (Al_2O_3 , P.F. =-0,60), de plus elle est très abondante dans ces roches.

Le rôle important joué par cette phase atténue l'opposition SiO₂ (quartz) à la fraction alumineuse. Ici la silice doit se partager entre le quartz et les phyllœilicates

Le fort coefficient de corrélation entre Al_2O_3 et K_2O , les faibles teneurs en Fe_2O_3 , MgO et Al_2O_3 conduisent à penser que la phase alumineuse est constituée principalement par des minéraux potassiques, illite-muscovite. Trois échantillons montrent un enrichissement en Al_2O_3 par rapport aux autres oxydes, ce sont les roches 12, 9 et 11. De la kaolinite ou de la pyrophyllite doivent intervenir dans leur minéralogie. Les deux analyses du bassin de Laval n'ont pas été introduites dans le calcul de la matrice des corrélations à cause de leur pourcentage élevé en Fe_2O_3 . Calvert (1976) a montré que dans les sédiments dépourvus de minéraux ferrifères, authigènes, le rapport Fe_2O_3/Al_2O_3 était inférieur à 0,52. La valeur de ce rapport ici, 0,66 et 1,82 met en évidence la présence de tels minéraux dans ces roches.

Certains éléments-traces sont associés à la perte au feu : V (r = 0,87), Sr (r = 0,79) et Y (r = 0,5).

Ce type de liaison avait déjà été signalé par Vine (1969) dans les blackshales de la série de Phosphoria aux U.S.A. Il l'avait interprétée comme résultant de la présence abondante de matière organique dans ces roches. Cette interprétation peut être retenue ici puisque l'on sait que la matière organique est un composant important des ampélites siluriennes.

SiO ₂		2.2.2. Wenlock (Figure I-15) (14 analyses).												
91	A1203													
.08	.20	Fe203												
15	.30	.29	MgO											
07	.15	.11	.07	CaO										
29	, 58	.81	.16	.21	Na ₂ 0									
90	.73	43	.04	.08	Ō	к ₂ 0								
30	.56	.79	.28	.03	.88	05	TiO2						,	
19	.36	.28	.14	.71	.33	.13	.24	P205						
07	32	83	47	33	77	.33	75	.55	P.F.					
.12	.20	.96	.40	.02	.80	45	.83	.23	87	Zr				
07	27	42	29	20	45	23	46	29	70	.46	Y			
.06	0	.03	.02	.95	. 04	02	10	.76	29	05	13	Sr		
89	.71	44	.09	.08	04	. 99	08	.10	.34	46	.23	03	Rb	
57	.45	41	.09	.30	06	. 73	24	.35	.27	40	.29	.22	.73	۷

Figure I-15 : Matrice des corrélations des échantillons du Wenlock.

Du fait de l'hétérogénéité de la série et des différences géochimiques observées au niveau des éléments majeurs, les données du bassin de Châteaulin n'ont pas été intégrées au calcul de la matrice des corrélations.

Le fort coefficient négatif $(Al_2O_3, SiO_2 = -0,91)$ indique que l'on retrouve une série essentiellement détritique, constituée d'une phase siliceuse et d'une phase alumineuse. K_2O est le principal oxyde associé à cette dernière. D'autre part, les teneurs peu élevées en Fe_2O_3 et MgO et l'absence de corrélation avec Al_2O_3 indiquent que la chlorite ne joue pas un rôle important dans la minéralogie. Celle-ci est donc formée principalement par de l'illite muscovite.

Dans le diagramme Al_20_3/K_20 (figure 1-16), on observe l'enrichissement en Al_20_3 de deux échantillons AMS 1 et AMS 2.

Cet enrichissement s'explique pour AMS 1 par la présence de chlorite $(Fe_2O_3 = 5,24\%)$, et pour AMS 2 par la présence de chlorite $(Fe_2O_3 = 3,99\%)$ et de pyrophyllite. Ces minéraux ont été déterminés par les diffractions X. Tous ces minéraux alumineux illite - muscovite, chlorite et pyrophyllite sont hydratés, or la corrélation $(Al_2O_3, P.F.)$ est égale à - 0,32. Ce coefficient met en évidence l'importance de la phase organique comme constituant de la perte au feu, moindre cependant qu'au Llandovery. On retrouve une autre association (CaO, P_2O_5 , Sr) correspondant à l'apatite, où le strontium se substitue au calcium (CaO, Sr = 0,95).

Les éléments-traces se regroupent de la manière suivante :

- Sr avec CaO

- Rb avec K20

Figure I-16 : Localisation des échantillons du Silurien inférieur et moyen.

On observe que le coefficient de corrélation (V, $K_2D = 0,73$) est relativement élevé. Cependant compte tenu des hautes teneurs en V on peut difficilement l'interpréter en terme d'association dans une même phase.

SiO.			2.2.3.	Ludlow (Figure I-17) (9 analyses).												
1	A1 0															
	203															
64	52	Fe203														
45	66	.72	MgO													
39	38	. 57	.55	CaO												
69	.02	.37	.33	08	Na ₂ 0											
42	46	.17	.27	16	. 55	к,0										
.14	03	.34	-,20	.21	29	46	TiO ₂									
85	20	.76	.33	.54	.39	.35	.27	P205								
48	05	07	.31	04	.37	.63	89	.16	P.F.							
.11	40	. 44	08	.08	08	.03	.83	.33	71	Zr						
01	07	09	.15	17	.16	.27	.01	10	.05	.0	Y					
59	.54	20	~. 08	21	.61	.37	57	.21	.69	63	.21	Sr				
.36	07	08	.23	29	.80	.75	69	0	.65	37	.30	.66	RЪ			
50	.41	30	15	24	.49	. 54	62	.20	.76	57	. 29	.94	.68	V		
.64	.43	76	61	41	44	41	21	67	06	35	44	02	16	04	Cr	

Figure I-17 : Matrice des corrélations des échantillons du Ludlow.

53

Les données du Bassin de Châteaulin n'ont pas été intégrées dans le calcul de la matrice des corrélations. Le Ludlow se singularise par deux traits :

- absence des corrélations habituelles (SiO₂, Al₂O₃, K₂O, ...)

- faiblesse de la majorité des coefficients.

L'observation de cette matrice permet de distinguer uniquement la présence de chlorite (Fe $_2O_3$, MgO = 0,72).

Dans le diagramme Al_2O_3/K_2O (Figure I-16) le Ludlow se désolidarise de la tendance dessinée par le Llandovery et le Wenlock avec un enrichissement en Al_2O_3 non accompagné d'augmentation de CaO, Na_2O , Fe_2O_3 ou MgO. L'origine de cette alumine est liée à la présence d'autres phyllosilicates alumineux : kaolinite ou pyrophyllite.

Au niveau des éléments-traces on observe l'association (TiO₂, Zr) qui met en relief la présence mutuelle de ces deux éléments au sein des phases minérales accessoires. Une deuxième observation intéressante concerne la relation entre Sr, Rb, et V et la perte au feu , cette dernière étant indépendante (Al₂O₃, P.F. = 0,05). Compte tenu de l'abondance en V et de la teneur élevée de la P.F. on doit admettre l'influence de la matière organique sur ces deux éléments mais également semble-t-il, sur Sr et Rb.

2.3. Conclusion.

On constate une évolution de la composition géochimique. Au Llandovery, la fraction organique joue un rôle important, elle favorise la concentration de certains éléments (V, Y, Sr, Cr), parallèlement les éléments liés à la fraction détritique $(SiO_2, Al_2O_3, K_2O, Sr)$ diminuent. L'influence de cette fraction organique s'atténue ensuite au Wenlock sans pourtant disparaître (V toujours abondant). La fraction détritique dans ces deux étages est constituée par les oxydes SiO_2 , Al_2O_3 et K_2O . Pendant le Ludlow, la fraction organique continue de perdre son influence par rapport à la fraction détritique, celle-ci étant formée principalement par Al_2O_3 et SiO_2 . La composition géochimique semble alors s'homogénéiser sur l'ensemble du domaine Centre Armoricain : on assisterait à un retour à des conditions plus stables de sédimentation.

Les deux diagrammes $Si0_2/A1_20_3$ (Figure I-18) et $A1_20_3/K_20$ mettent bien en évidence l'évolution minéralogique au cours du Silurien inférieur et moyen.

- Si0₂/Al₂0₃ : il met en évidence le fractionnement entre un pôle quartzeux et un pôle alumineux. Dans cette figure le Wenlock et le Ludlow qui sont les étages possédant une fraction détritique importante, s'alignent sur une droite de corrélation négative, alors que le Llandovery plus riche en fraction organique, s'éparpille sous cette droite.
- K₂O/Al₂O₃ : il permet de déterminer la nature de la phase alumineuse. Pour le Llandovery et le Wenlock elle est constituée principalement par des minéraux potassiques (illitemuscovite), tandis que le Ludlow montre un net enrichissement en Al₂O₃ qui explique la présence de minéraux alumineux.

A partir de ces deux études géochimiques et minéralogiques, on va essayer de reconstituer la composition minéralogique du sédiment initial.

Au Llandovery et au Wenlock, les minéraux observés sont les mêmes à Laval et à Crozon : quartz, illite, chlorite et ponctuellement kaolinite et pyrophyllite. A Châteaulin, la paragenèse inclue du quartz, de la muscovite et de la chlorite.

54

Figure I-18 : Localisation des échantillons du Silurien inférieur et moyen.

Ces paragenèses nécessitent la présence des minéraux quartz, illite, chlorite ou interstratifiés illite-chlorite dans le sédiment primitif, et de kaolinite dans l'échantillon possédant de la pyrophyllite. L'occurence de la kaolinite est ponctuelle et correspond probablement à une localisation préférentielle de l'échantillon.

A partir du Ludlow, la présence de pyrophyllite systématique à Laval et Crozon et de chloritoïde et margarite à Châteaulin, implique de la kaolinite dans la minéralogie primitive. Sous l'effet de la diagenèse et du métamorphisme elle a évolué vers ces minéraux alumineux.

IV - Conclusion.

Cette étude a mis en évidence l'originalité de ces formations ampélitiques siluriennes. Elles sont constituées par des dépôts sableux à la base suivis par des argiles riches en matière organique comprenant quelques intercalations sableuses.

Ces faciès noirs témoignent d'un milieu réducteur recevant peu de matériel détritique.

La présence abondante de matière organique influence certaines concentrations d'élémentstraces de deux façons :

 par les conditions physico-chimiques qu'elle crée, ici un milieu réducteur, pouvant favoriser la précipitation de certains éléments. - par la nature des organismes présents, qui peuvent être porteurs d'éléments.

L'évolution observée pendant le Silurien tendrait vers une diminution relative de l'influence organique. Pour l'expliquer, plusieurs hypothèses peuvent être émises :

- le milieu très réducteur au Llandovery a pu devenir plus oxydant en s'ouvrant vers l'extérieur. Les conditions n'étaient alors plus aussi favorables pour conserver la matière organique.

- l'abondance de la matière organique a pu diminuer par rapport aux apports détritiques.

Au niveau de la minéralogie, une évolution se fait sentir au Ludlow par l'apparition systématique de minéraux alumineux, pyrophyllite, chloritoïde et margarite. Ceux-ci ont nécessité pour se former la présence d'argile alumineuse, kaolinite ou montmorillonite dans le sédiment originel. Leur présence est un indicateur paléoclimatique dont il sera question plus tard.
CHAPITRE 7

LES FORMATIONS DU SILURIEN SUPERIEUR ET DU DEVONIEN INFERIEUR (Ludlow - Pridoli - Gedinnien)

Dans le domaine Centre Armoricain on observe une continuité de sédimentation entre le Silurien et le Dévonien. Les faciès ampéliteux régressent progressivement et font place à des apports détritiques constitués de pélites, silts et arènes. Puis à partir du Gedinnien, les dépôts franchement gréseux apparaissent.

Ces formations ont été étudiées dans la ^Presqu'île de Crozon (Formations de Lostmarc'h,Plougastel, Landévennec) et sur le flanc nord du ^Bassin de Laval (Formation du Val et de Gahard). Les résultats de Sagon (1976) obtenus dans le ^Bassin de Châteaulin sont également rappelés.

I - Etude pétrographique.

1.1. Presgu'île de Crozon.

Tuois formations ont été distinguées, ce sont de bas en haut :

1.1.1. Formation de Losmarc'h (Babin et al., 1979).

Elle débute dès la fin du Ludlow et se poursuit durant le Pridoli. Elle est constituée par des schistes micacés, des niveaux gréseux et quelques bancs calcaires.

. Composition minéralogique.

On observe des grains de quartz, soit jointifs, soit enrobés dans une matrice phylliteuse, les autres minéraux visibles sont la muscovite, la chlorite, et du feldspath K rare, parfois séricitisé. Les minéraux accessoires sont les mêmes que dans les séries précédentes : tourmaline, zircon, rutile et minéraux opaques.

Les rayons X ont permis de déceler de la pyrophyllite.

Les schistes correspondent à d'anciennes pélites riches en micas et les grès sont soit des quartzwackes, soit des quartzarénites.

1.1.2. Formation de Plougastel (Babin et al., 1972).

Elle s'étend de la fin du Silurien au début du Dévonien. Les niveaux gréseux quartziteux deviennent plus nombreux pendant que les alternances de schistes micacés se raréfient.

. Composition minéralogique.

Les grès sont formés par de nombreux grains de quartz, du feldspath K parfois séricitisé, de la muscovite souvent altérée. On observe également du zircon et des minéraux opaques.

Les schistes ont une matrice constituée de paillettes très fines d'illite et de chlorite, elle enrobe des minéraux plus grands "muscovite et chlorite ainsi que du zircon. La pyrophyllite a été mise en évidence par les rayons X.

1.1.3. Formation de Landévennec (Babin et al., 1972).

Elle est datée du Gedinnien Supérieur. Dans sa partie inférieure, elle correspond à une sédimentation franchement arénacée. Puis des niveaux calcaires apparaissent dans la partie supérieure celle-ci devient en même temps plus ferrugineuse.

. Composition minéralogique.

Dans la partie arénacée elle est semblable à celle des formations précédentes. La matière organique est plus abondante ainsi que les minéraux accessoires : tourmaline, rutile et minéraux opaques. On observe la présence de pyrophyllite (rayons X).

1.2. Bassin de Châteaulin (Sagon, 1976).

Le Gedinnien se présente sous forme de schistes et de quartzites gris en dalles. L'épaisseur de cette partie est d'environ 300-500 m (Pruvost et Le Maître , 1943). Surmontant ces phyllades on retrouve un épisode arénacé qui semble correspondre aux grès de Landévennec, daté là du Siégenien inférieur. Il est constitué de grès ferrugineux dont la puissance varie de 50 à 200 m (Pruvost et Le Maître , 1943).

. Composition minéralogique.

Les quartzites sont constitués par des grains de quartz jointifs ou séparés par des paillettes néoformées de chlorite, chloritoïde et muscovite. On remarque des cubes de pyrite, du zircon, du rutile, de la tourmaline, de l'anatase et de l'épidote.

L'épisode arénacé se caractérise par l'absence de chloritoïde. Dans les schistes la trame phylliteuse est formée par un assemblage de phyllites : muscovite, chlorite et parfois margarite. Quelques cristaux de chloritoïde y sont dispersés.

Les paragenèses déterminées aux rayons X pour le Gedinnien contiennent les minéraux suivants : quartz, chlorite, muscovite, pyrophyllite, paragonite et margarite. (Tableau I-20).

Numéros d'Echantillons	Paragenèses
U 335, M 301, G 426	Quartz, muscovite, chlorite, chloritoīde (rutile).
Q 585	Quartz, chloríte, pyrite, rutile
G 423, Q 1238, Q 1306 G 447, G 478, G 472	Quartz, muscovite, chloritoïde
Q 1239	Quartz, muscovite, chloritoĭde , pyrophyllite.
Q 1645	Quartz, muscovite, chlorite, chloritoIde, paragonite.

Tableau I-20 : Paragénèses du Gedinnien.

1.3. Bassin de Laval - Ménez Bélair :

Deux formations se succèdent, de bas en haut :

1.3.1. Formation du Val (Paris, 1977).

Elle recouvre le Ludlow supérieur et le Pridoli. Paris l'a étudiée plus particulièrement dans le Ménez-Bélair, où elle est constituée de silstones micacés et d'intercalations gréseuses et psammitiques.

. Composition minéralogique.

Les grès et les silstones sont formés d'une matrice phylliteuse abondante, dans laquelle se dispersent de nombreux grains de quartz, d'illite-muscovite, de la muscovite et plus rarement de chlorite. La matière organique y est présente. On observe les minéraux accessoires, tourmaline et zircon.

Les diffractions X ont mis en évidence du feldspath K et de la pyrophyllite.

1.3.2. Formation de Gahard.

Elle recouvre le Gédinnien et correspond aux grès à Platyorthis monnieri. Elle est formée par des bancs gréseux dans lesquels des petits niveaux schisteux s'intercalent.

. Composition minéralogique.

Deux types de grès peuvent être distingués. Le premier type est constitué par des grains de quartz, d'illite, de chlorite et du feldspath K séricitisé, enrobés dans une matrice phylliteuse. Les minéraux accessoires sont : zircon, tourmaline, rutile et minéraux opaques. Les rayons X ont mis en évidence de la pyrophyllite. Ces grès sont pour la plupart des quartzwackes et des quartzarénites.

Le deuxième type se situe dans la partie supérieure de la coupe, on observe de nombreux grains de quartz jointifs, quelques rares paillettes de muscovite. La chlorite a disparu, la pyrophyllite et le feldspath K sont toujours présents mais en très faible quantité. Ce deuxième type correspond à des quartzites.

1.4. Conclusion.

Les observations minéralogiques ont permis de distinguer d'une part les formations du Bassin de Laval et de la ^Presqu'île de Crozon, et d'autre part celles du Bassin de Châteaulin. Dans les premières les paragenèses rencontrées correspondent à un métamorphisme de très bas degré, dans les secondes la formation des minéraux observés nécessite des conditions thermodynamiques du bas degré.

II - Etude géochimique.

2.1. Analyses chimiques.

					2					
		C			Ď				E	
	tos 4	105 7	SCPL 7	SCPL 5	SCPL 12	SCPL 2	SCPL 9	GLA 4	GLA 6	GLA 1
SiO ₂	71,04	56,84	55,3	91,00	60,94	50,05	76,8	55,00	85,27	95,12
A1203	14,44	24,9	25,31	2,39	21,67	28,16	12,16	26,63	7,17	1,5
Fe203T	5,36	6,63	6,89	4,30	5,17	6,54	5,17	1,95	0,8Z	1,89
MnO	0,09	0,02	0,03	0,02	0,02	0,04	0,05		-	-
MgÜ	0,54	0,55	0,77	0,74	0,67	0,66	0,52	0,5	0,12	0,06
CaO	0,04	0,13	0,15	0,04	0,17	0,21	0,02	0,07	0,55	0,14
Na ₂ 0	0,81	0,63	0,74	0,02	1,63	0,72	0,22	0,49	0,21	0,04
к ₂ 0	1,92	2,96	2,76	-	2,54	3.00	1,03	6,15	1,56	-
TiO ₂	1,27	1,23	1,44	U,5	1,48	1,4	1,12	1,32	0,69	0,12
P205	0,02	0,07	0,13	0.02	0,12	0,24	-	0,1	0,66	0,14
Perte au feu	3,48	6,28	5,42	1,2	4,55	6,79	3,3	5,57	2,27	1,25
Total	99, 01	100,24	98,95	100,23	98,87	97,82	100,4	97,78	99,32	100,26
Rb	80	139	121	1	96	128	46	263	63	1
Sr	85	84	168	9	131	251	56	102	49	10
8a	406	454	476	5	477	540	198	688	224	7
Ni	25	10	44	6	31	41	26	12	-	2
Cr	102	132	147	48	124	157	74	162	54	70.
Ca	6	20	23	5	14	13	12	3	4	3
V	98	139	138	78	142	164	89	170	53	43
Nb	24	25	29	8	32	27	24	30	12	1
Zr	596	240	285	441	600	195	590	265	375	94
Y .	47	44	47	6	62	46	40	41	123	6

2.1.1. Presqu'île de Crozon (Tableau I-21).

Tableau I-21 : Analyses chimiques des échantillons du Silurien supérieur - Dévonien inférieur de la Presqu'île de Crozon.

- C : Formation de Lostmarch
- D : Formation de Plougastel
- E : Formation de Landevennec

Des analyses ont été effectuées sur des schistes : LOS 7, SCPL 7, SCPL 12, SCPL 2, GLa 4., et sur des grès : LOS 4, SCPL 5, SCPL 9, GLa 6, GLa 1.

Les formations de Losmarc'h et Plougastel se caractérisent par des teneurs assez élevées en Al_2O_3 (22%) et Fe_2O_3 (4,3% à 6,8%) dans les schistes. Comparativement les alcalins sont peu abondants. Au niveau des éléments-traces on constate la relative pauvreté en Sr.

Les grès de Landévennec diffèrent par des concentrations relatives plus élevées en K_2^0 et plus faibles en ferromagnésiens. Le rapport $Fe_2^0_3/Al_2^0_3$ supérieur à 0,52 des échantillons Gla l et SCPL 5 traduit la présence des minéraux ferrifères. Les teneurs en élémentstraces sont normales si ce n'est l'Y abondant (123 ppm) dans Gla 6.

	U 335	Q 585	Q 1238	Q 1239	Q 1306	Q 1645	M 301	G 423	G 426	G 447	G 472	G 478
Sio	51,91	44,75	53,10	55,65	57,70	60,90	53,70	59,32	53,37	57,53	80,10	50,00
A1,0,	28,40	14,65	26,20	26,65	23,90	18,20	28,10	23,62	25,45	24,52	11,89	30,32
Fe ₂ 0 ₂ T	7,84	17,23	10,00	9,11	11,02	10,18	8,28	4,47	9,56	8,31	3,59	7,1
MnD	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
MgO	0,94	11,86	1,60	0,25	0,50	1,96	0,45	1,41	1,81	1,15	0,80	0,90
Ca0	0,36	1,95	0,13	0,01	0,01	0,01	0,10	0,98	0,14	0,42	0,27	0,50
Na ₂ 0	1,24	0,05	0,54	0,60	0,20	1,12	1,10	0,38	0,89	0,46	0,11	0,48
к,0	2,99	0,24	1,87	2,00	1,40	1,64	2,44	3,15	2,21	2,71	1,76	5,77
TiO ₂	1.64	2,80	1,31	1,30	1,20	1,00	1,40	1,70	1,77	0,95	0,38	0,76
P205	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Perte au feu	3,99	6,95	4,44	4,05	3,50	4,14	4,10	4,36	4,97	4,36	1,96	4,79.
Total	99,31	100,48	99,19	99,62	99,43	99,15	99,67	99,39	100,17	100,41	100,86	100,62

2.1.2. Bassin de Châteaulin (Tableau I-22).

Tableau I-22 : Analyses chimiques des échantillons du Gedinnien du Bassin de Chateaulin (d'après Sagon, 1976).

Les analyses chimiques ont été effectuées sur des schistes. On observe une grande variation des concentrations entre les échantillons, avec des teneurs parfois élevées en MgO (Q 585), Na₂O (U 335), K₂O (G 478), CaO (Q 585), Fe₂O₃ (Q 585, Q 1239, Q 1306, Q 1645). Certaines de ces concentrations expliquent une minéralogie originale tel Q 585 où le fer est sous forme de pyrite mais en règle générale il semble difficile de relier systématiquement la minéralogie avec la géochimie. On constate par exemple que Q 585 riche en CaO (1,95%) ne possède pas de minéral calcique, et que U 335 riche en Na₂O (1,24%), ne possède pas de minéral sodique. Certains caractères généraux ressortent, cependant :

- Al₂O₃ est plutôt abondant \overline{M} = 23,49%

- Fe₂O₃ est abondant \overline{M} = 8,9%.

					*****			1								
in			A						******		8					
	VA 1	VA 5	VA 4	VA 2	VA 3	GA 6	GA 4	GA 2	GA 14	GA 12	GA 20	GA 18	GA 10	GA 22	GA 8	GA 16
Si02	54,29	50,30	83,50	72,47	91,23	56,35	73,42	30,94	92,27	80,02	93,48	91,03	81,21	93,77	97,71	92,78
A1203	31,17	31,32	10,82	9,50	4,22	23,96	13,79	8,94	4,58	10,94	4,72	5,70	11,51	4,71	2,03	4,72
Fe203	2,21	5,05	0,65	10,63	1,31	7,28	4,87	3,73	0,12	0,67	0,30	0,44	0,86	0,24	0,16	0,26
MnO	0,01	tr	tr	tr	0,01	0,01	tr	0,01	0,01	0,01	0,01	tr	tr	tr	tr	tr
MgO	0,41	0,5	0,08	0,33	0,06	0,87	0,7	0,1	0,05	0,15	0,07	0,04	0,22	0,1	0,02	0,05
Caŭ	0,09	0,05	0,05	0,07	0,04	0,1	0,05	0,13	0,08	0,09	0,08	0,05	0,09	0,22	0,03	0,05
Na20	0,36	0,47	0,52	0,21	0,25	0,34	0,26	0,28	0,26	0,38	0,24	0,11	0,39	0,2	0,01	0,26
κ ₂ 0	2,38	3,32	0,33	0,25	0,08	4,26	2,17	1,36	0,62	1,95	0,78	0,71	2,15	0,59	0,2	0,51
Ti02	1,38	1,45	0,70	0,76	0,62	1,35 0,92 0,79 0,48 0,77 0,37 0,53 0,92 0,47 0,44 0,52										
P205	0,08	0,11	0,01	0,08	0,02	0,19	0,07	0,13	0,04	0,13	0,12	0,05	0,15	0,27	0,01	0,06
Perte au feu	7,81	7,90	3,14	4,93	1,83	5,24	3,22	2,60	1,05	2,74	1,14	1,48	2,23	1,26	0,43	1,06
Total	100,19	100,47	99,80	99,23	99,67	99,94	99,47	99,01	99,56	97,85	101,31	100,14	99,73	101,83	101,04	100,28
RЪ	125	155	16	13	6	169	93	55	29	88	35	38	95	27	10	25
Sr	179	204	58	30	39	235	117	85	133	245	277	168	255	88	45	167
Ba	561	707	121	88	52	520	341	355	186	460	274	285	507	177	42	131
Ni	21	29	4	20	2	33	21	7	+	45	-	-	1	Z	-	-
Cr	165	159	28	58	27	156	91	79	30	65	61	42	90	42	22	34
Co	1	3	2	3	2	8	9	1	2	2	2	2	2	2	1	2
v	231	253	46	85	27	167	102	64	26	76	37	38	84	29	15	32
Nb	· 29	30	13	15	13	29	21	14	10	17	7	12	19	10	7	10
Zr	133	219	379	327	476	330	354	407	277	322	262	332	398	399	577	389
Y	30	35	22	33	30	46	26	26	39	37	38	45	45	51	16	50

2.1.3. Bassin de Laval (Tableau I-23).

Tableau I-23 : Analyses chimiques des échantillons du Silurien supérieur - Dévonien inférieur

du Bassin de Laval.

A : Formation du Val

b : Formation de Gahard

Les analyses chimiques ont été effectuées sur des grès et des schistes (Va 1, Va 5, Ga 6).

a) Formation du Val.

Les schistes sont riches en Al₂O₃, comparativement aux autres oxydes, K₂O, Na₂O, Fe₂O₃ et MgO. On observe la présence de minéraux ferrifères dans l'échantillon Va 2. Il n'y a rien à signaler au niveau des éléments-traces sinon la pauvreté en Co.

b) Formation de Gahard.

Au niveau de la géochimie on observe l'évolution mise en évidence par

la minéralogie.

- de Ga 2 à Ga 12 (excepté Ga 8) les grès possèdent une fraction alumineuse non négligeable à laquelle se lient les éléments K_2^0 et Fe $_2^{0}$.

- de Ga 14 à Ga 22 les teneurs en SiO₂ augmentent, se traduisant par une diminution de la phase phylliteuse.

Cette évolution se retrouve au niveau des éléments-traces : Rb, Ba, Ni et Nb augmentent avec Al_2O_3 et Zr, Y avec SiO_2 .

On remarque que les teneurs en Ba sont normales mais le rapport Ba/Al est nettement plus élevé ici que dans les autres séries $(40.10^{-4} \text{ à } 109 \ 10^{-4})$.

2.2. Classification des grès (Figure I-19).

Figure I-19 : Localisation des échantillons du Silurien supérieur - Dévonien inférieur dans le diagramme différenciant les familles de grès (Pettijohn et al., 1973).

Les échantillons de Gahard (Ga 14 à Ga 22), de Landévennec (Gla 1) et de Plougastel (Scpl 5) correspondent aux sublitharénites et quartzites définis par Pettijohn et al. (1973). Ceux de la formation du Val et Scpl 12 (Plougastel) sont des litharénites, tandis que les roches constituant la partie inférieure de Gahard (Ga 2 à Ga 12) et les roches Gla 6 (Landévennec), Scpl 9 (Plougastel) et Los 4 (Losmarc'h) appartiennent aux domaines des arkoses et des subarkoses.

2.3. Répartition des éléments entre les phases minéralogiques : matrice des corré-

lations.

2.3.1. Presqu'île de Crozon (Figure I-20).

Les Formations de Lostmarc'h et de Plougastel sont traitées ensembles (7 analyses).

SiO ₂																				
- 1	A1,03																			
89	.89	Fe ₂ 03																		
.24	27	20	MnO																	
04	.03	.05	49	MgO																
86	.86	. 66	52	.40	CaO															
60	. 59	.23	13	.06	.61	Na ₂ 0														
98	.98	.86	19	04	.82	.66	κ ₂ 0													
88	.87	.68	.02	13	.65	.77	. 89	Ti0 ₂												
 80	.78	.63	34	. 42	•94	.45	.71	.58	P205											
97	.98	.91	87	07	.82	.45	.95	. 79	.76	P.F.										
83	.83	. 62	06	16	.62	.78	.84	.98	.51	.74	Nb									
.58	58	76	.44	34	62	.17	51	13	65	67	05	Zr								
76	.76	.51	.04	26	. 54	.85	.80	.96	.42	.67	.98	.08	Y							
87	.85	.71	11	.26	•86	.48	.79	.75	.95	.81	.67	54	. 59	Sr						
-,97	.97	.91	80	07	.78	.55	.99	.83	.67	.97	.78	59	.74	.75	RЬ					
74	.77	.83	55	.18	.59	.30	.72	.60	.43	.73	.63	56	.50	.46	.76	Co				
95	.95	.78	42	.20	.97	.62	.92	.77	.90	.93	.73	62	.66	.88	. 9ŭ	.66	V			
66	.64	.54	.09	.27	.57	.46	.57	.77	.67	.54	.72	17	.63	.84	.51	.42	. 59	Ni		
99	.98	. 89	21	.13	. 98	.60	.97	.86	.83	.95	.79	60	.73	. 89	.96	.71	•95	.69	Cr	
96	.95	.79	04	06	.79	.74	.98	.94	.71	.90	.88	38	.87	. 82	.94	.60	.89	.66	.96	3a

Figure I-20 : Matrice des corrélations des échantillons de la Presqu'ile de Crozon.

Les groupes d'éléments intercorrélés sont les suivants :

- Al₂O₃, Fe₂O₃, K₂O, P.F. - Al₂O₃, K₂O, TiO₂, P.F. - Al₂O₃, TiO₂, P.F. - CaO, P₂O₅

La silice sous forme de quartz, s'oppose à la phase alumineuse (SiO₂, $AI_2O_3 = -1$). Plusieurs minéraux constituent cette dernière :

- des minéraux potassiques hydratés : de l'illite et de la muscovite.

- des minéraux potassiques ferreux : de la phengite.

- des minéraux uniquement alumineux : la pyrophyllite.

La présence de cette dernière est confirmée par le calcul de l'Al₂0₃ restant après la reconstitution des autres minéraux : chlorite, phengite, illite.(Tableau I-24).

Nº Echant.	LOS 4	LOS 7	SCPL 7	SCPL 5	SCPL 12	SCPL 2	SCPL 9
% Al ₂ 03	4,58%	10,65%	10,82%	1	9,81%	13,76%	5,61%

Tableau I-24 : % d'Al₂0, en excès.

L'association (CaO, P_2O_5) correspond à l'apatite.

En comparaison la formation de Landévennec semble moins riche en Al_2O_3 (Tableau I-25).

Nº Echant.	GLA 1	GLA 6	GLA 4
% A12 ⁰ 3	?	+ 1,14	+3,52

Tableau I-25 : % d'Al₂0₃ en excès.

La répartition des éléments-traces au sein des différentes phases à Lostmarc'h et Plougastel se fait de la manière suivante : (entre parenthèses sont notés les oxydes et les éléments ayant un bon coefficient de corrélation).

- liés à Al₂O₃ on retrouve : Nb (TiO₂ et K₂O), Y (Nb, TiO₂, K₂O, Na₂O), Sr (P₂O₅, P.F., CaO), Rb (P.F., TiO₂, K₂O, Fe₂O₃), V (Rb, P.F., K₂O, Sr, P₂O₅, CaO), Ni (TiO₂), Cr (K₂O, Fe₂O₃, CaO), Ba (K₂O), Co (Fe₂O₃).

 - Zr a un comportement indépendant des autres éléments. L'ensemble de ces associations a déjà été observé dans les séries précédentes.

2.3.2. Bassin de Châteaulin (12 analyses) (Figure 1-21).

SiO₂ - .54 A1203 -.16 Fe₂0₃ - .66 -.51 .77 MgO -.43 - .39 .43 .87 Ca0 -.36 -.49 Na₂0 .49 -.11 -.38 -.22 .64 -.57 -.50 .21 к,0 -.18 -.11 .76 .69 - .02 - .43 TiO₂ .70 - .05 - .69 .82 P.F. .76 .69 - .05 -.11 .77 .09 - .85

Figure I-21 : Matrice des corrélations des échantillons du Bassin de Chateaulin.

Les coefficients de corrélation sont également faibles, ceci doit être attribué à la plus grande diversité minéralogique et plus grande dispersion des éléments.

Le faible coefficient (SiO₂, Al₂O₃ = -,54) met en évidence le partage de la silice au sein de plusieurs phases minérales ayant des rapports SiO₂/Al₂O₃ variables. D'autre part la valeur du coefficient (Al₂O₃, P.F. = 0,09) traduit la présence soit de minéraux alumiéneux non hydratés, soit de matière organique, ces deux hypothèses ne s'excluant pas.

Les principales corrélations se situent entre les éléments :

. Fe₂O₃, MgO, P.F. . MgO, CaO. . MgO, TiO₂.

Elles traduisent la prépondérance des ferromagnésiens dans ces échantillons par rapport aux autres minéraux. Sagon (1976) avait en effet détecté de la chlorite et du chloritoïde. Les autres minéraux n'apparaissent pas dans le matrice des corrélations.

- ..

2.3.3. Bassin de Laval.

~ · ~

Les deux formations ont été dissociées :

a) Formation du Val. (5 analyses) (Figure I-22).

5102																			
96	A1,03																		
27	02	Fe203																	
97	.85	.49	MgO																
57	.51	.27	.54	CaO															
28	.45	51	.08	19	Na ₂ 0														
93	.97	01	.85	.30	.45	κ ₂ 0													
97	. 99	.03	. 89	.47	.37	.98	TiO2												
90	.75	. 60	.98	.46	05	.78	.81	P205											
1.	.95	.28	.96	. 63	.26	.91	.96	.89	P.F.										
- 95	.98	.02	.88	.47	.32	.98	1.	.81	.94	Nb									
.95	 ,94	16	87	77	27	83	92	77	97	90	Zr								
56	.39	.64	.73	.15	44	.50	.50	.83	.54	.53	36	Y							
-,90	.98	14	.79	.34	. 49	.99	.98	.70	.88	.98	85	.39	Sr						
94	.98	03	.85	.36	.43	1.	, 99	.77	.92	.99	86	.49	.99	RЬ					
03	18	.70	.22	45	27	02	11	.35	01	14	.24	.48	17	08	Co				
98	.98	.12	.92	. 50	44	.97	1.	.85	.97	.99	93	.55	.96	.98	06	V			
94	.80	.57	.99	.49	.49	.81	.84	.99	.93	.83	82	.75	.73	.80	.33	.88	Ni		
97	.98	.09	.91	.56	.25	.95	. 99	.83	.97	.99	94	.54	.95	.97	15	.99	.85	Cr	
93	. 98	04	. 84	.34	.46	1.	.99	.77	.92	.98	86	.47	.99	1.	07	.98	.80	.96	Ba

Figure I-22 : Matrice des corrélations des échantillons du Bassin de Laval : Formation du Val.

Les éléments s'associent de la façon suivante : . SiO_2 . Sl_2O_3 , MgO, K₂O, TiO₂, P₂O₅, P.F.

L'absence de corrélation entre Al_2O_3 , Fe_2O_3 et Fe_2O_3 , MgO résulte du pourcentage très élevé de Fe_2O_3 dans l'échantillon Va 2. Si on le néglige les coefficients deviennent plus élevés : $(Al_2O_3, Fe_2O_3 = 0,75)$ et $(Fe_2O_3, MgO = 0,87)$.

Donc les principaux minéraux constitutifs de ces roches sont des micas potassiques, illite et muscovite, contenant parfois du fer (phengite) et de la chlorite.

Lorsque l'on reconstitue ces minéraux, Al_2O_3 reste en excès (Tableau I-26).

Nº Echant.	VA 1	VA 5	VA 4	VA 3
^{% A1} 2 ⁰ 3	21,3%	16,6%	9,27%	3,25%

Tableau I-26 : % $d'Al_2O_3$ en excès.

Cet Al₂O₃ se retrouve sous forme de pyrophyllite. Les éléments-traces liés à la fraction alumineuse sont : Rb, Sr, V, Ni, Cr et Ba. Le cobalt s'associe avec Fe₂O₃ (0,70), le zirconium avec SiO₂ et l'yttrium avec MgO (0,73) et surtout P₂O₅ (0,83).

b) Formation de Gahard (Figure I-23) (11 analyses).

SiC,																			
99	A1203																		
91	. 88	Fe ₂ 03																	
91	. i 1	.91	MgÖ																
04	.05	.03	03	CaO															
61	.62	.35	.40	.25	Na ₂ 0														
98	.99	.84	.89	.05	.65	κ ₂ Ο													
98	.97	.87	.87	.03	.61	.97	TiO ₂												
32	.36	.23	.25	.90	.45	.38	.31	P205											
99	.98	.91	. 89	.10	.61	.97	.96	.38	P.F.										
97	.99	.82	.87	.03	.67	1.	.96	.37	.96	Яb									
35	.41	.05	.21	11	.65	.47	.31	.22	.35	.50	Sr								
81	.82	.57	.59	.10	.82	.85	.82	.41	.82	.88	.68	ва							
72	.71	.54	.60	.0	. 53	.71	.65	.22	.75	.72	.35	.63	Ni						
96	.97	.88	.87	.11	.61	.97	.94	.44	.95	.96	.45	.84	.59	Cr					
78	.78	.82	.96	13	.27	.73	.71	.11	.76	.73	.13	.43	.52	.71	Со				
99	1.	.89	.92	.02	.61	.99	.97	.35	.98	.99	.42	.83	.70	.97	.78	V			
98	.98	.84	.90	.02	.62	.97	.98	.32	.96	.98	.35	.83	.69	.92	.77	.98	Nb		
. 2 4	26	10	19	09	52	26	10	17	27	17	64	42	25	26	24	24	20	Zr	
06	.14	13	.02	.42	.38	.14	.06	.51	.09	.16	.49	.25	06	.12	01	.10	.14	49	,

Figure I-23 : Matrice des corrélations des échantillons du Bassin de Laval : Formation de Gahard.

Les majeurs se regroupent autour d'Al₂O₃ : Fe_2O_3 , MgO, K₂O, TiO₂et P.F. Les minéraux principaux sont le quartz (SiO₂,Al₂O₃ = -0,99), la chlorite (Al₂O₃,Fe₂O₃ = 0,88), (Al₂O₃, MgO = 0,91), (Fe₂O₃, MgO = 0,91), et des minéraux potassiques (Al₂O₃, K₂O = 0,99) pouvant contenir du fer (K₂O, Fe₂O₃ = 0,88), illite, muscovite, phengite. Une phase phosphatée est également présente (CaO, P₂O₅ = 0,90).

Au niveau des éléments-traces on retrouve les mêmes associations que dans la formation du Val, mis à part Zr et Y qui ont un comportement indépendant, et Co qui est lié à la fraction alumineuse.

2.3.4. Conclusion.

L'étude géochimique a confirmé la présence des minéraux observés au microscope et déterminés aux rayons X : quartz, illite, muscovite, chlorite et pyrophyllite, pour le Bassin de Laval et la Presqu'île de Crozon.

Pour se former, cet assemblage minéralogique a nécessité la présence d'un certain nombre de minéraux dans la roche originelle : quartz, illite, muscovite, chlorite et kaolinite, ce dernier se retrouvant dans la majorité des échantillons.

Dans le Bassin de Châteaulin, la minéralogie observée est plus complexe mais les minéraux de la roche originelle sont les mêmes qu'à Laval et Crozon.

On a constaté que dans les matrice de corrélation des formations de Laval et de Crozon, les oxydes liés à la fraction alumineuse (K_2 0, Fe_2 0₃, Mg0, Ti0₂, P.F.)s'intercorréllaient ensemble. Ceci traduit que les minéraux qu'ils constituent sont dans des proportions semblables en opposition au quartz.

Les points de ces formations sont reportés dans le diagramme Al_2O_3/K_2O + Na_2O . (Figure I-24).

Figure I-24 : Localisation des échantillons du Silurien supérieur - Dévonien inférieur.

mu : muscovite, bi : biotite, fk : feldspath K, il : illite, py : pyrophillite, ch : chlorite. L'enrichissement en Al₂O₃ s'observe bien, impliquant une intervention de la pyrophyllite dans la minéralogie. Il semble que l'on puisse différencier deux tendances, la première tendance plus riche en Al₂O₃ regrouperait les Formations du Val, de Lostmarc'h, de Plougastel et le Gedinnien du Bassin de Châteaulin, le deuxième tendance relativement moins riche en Al₂O₃ comprendrait les Formations de Gahard et de Landévennec. Dans celle-ci la pyrophyllite bien que toujours présente jouerait un rôle moins important.

III - Conclusion.

L'évolution par rapport aux séries précédentes se marque par une augmentation des apports détritiques et une diminution de la matière organique. Vraisemblablement on assiste à une réouverture vers l'extérieur du milieu de sédimentation à la fin du Ludlow. Les dépôts sont constitués par des sables et des argiles dans un premier temps puis par une prépondérance des sables dans les Formations de Gahard et de Landévennec.

Au niveau de la minéralogie on ne constate pas vraiment de transition, le cortège originel est le même qu'au Ludlow avec en particulier la présence de kaolinite.

Le milieu de dépôt était marin ainsi qu'en témoignent les faunes (Sagon, 1976 ; Paris, 1980), et peu profond (lits de minéraux lourds, litages entrecroisés. La nature semblable des formations à Laval et Crozon, du point de vue minéralogique et géochimique et la constance des proportions des minéraux sont des arguments en faveur d'une même origine. Elle est probablement identique à celles des séries précédentes, les dépôts se produisant sans interruption.

CHAPITRE 8

LES FORMATIONS DU DEVONIEN INFERIEUR (Gédinnien supérieur - Siégenien).

Le passage de la sédimentation sableuse à la sédimentation argilo-carbonatée se fait progressivement par une chute de la granulométrie des apports. Des argilites apparaissent, pendant que les niveaux gréseux subsistent et que l'on voit se développer des bancs carbonatés. Ces formations correspondent aux schistes et calcaires à Athyris Undata.

Ces formations ont été étudiées dans la ^Presqu'île de Crozon (coupe de l'Armorique) et sur le flanc nord du Bassin de Laval (coupe de St Cénéré).

I - Etude Pétrographique.

1.1. Presqu'île de Crozon : Formation de l'Armoríque

La fraction schisteuse se réduit à des petits lits, la majeure partie de la formation étant constituée de calcaires.

. Composition minéralogique.

Schistes : ils sont constitués d'une matrice phylliteuse (chlorite et illite) qui englobe des grains de quartz, des lamelles de muscovite altérée, et du feldspath K altéré en séricite. La matière organique se dispose en liseré autour des grains, on observe des minéraux opaques et du rutile. De la pyrophyllite a été mise en évidence par les rayons X. Ces schistes correspondent à d'anciennes pélites phylliteuses peu micacées.

Calcaires : ils sont formés essentiellement de calcite, souvent recristallisée et d'une faible fraction détritique comprenant du quartz et de l'illite. . Ces calcaires sont bioclastiques.

1.2. Bassin de Laval : Formation de St Cénéré.

Elle apparaît comme une alternance de niveaux schisteux et de niveaux calcaires.

. Composition minéralogique.

Les observations au microscope sont les mêmes que celles faites sur les roches de la Presqu'île de Crozon.

1.3. Conclusion.

On constate une uniformité entre la formation du flanc nord du bassin de Laval et celle de la presqu'île de Crozon, ainsi qu'une continuité de la minéralogie avec les séries précédentes. Les paragenèses correspondent toujours à un très bas degré de métamorphisme.

II - Etude géochimique.

Des joints schisteux (Arm A, Arm F, Cn 8, Cn 6) et des niveaux calcaires (Arm E, Arm 64, Arm B, Cn 2, Cn 4, Cn 10) ont été analysés.

2.1. Analyses chimiques (Tableau I-27).

		,	1						2		
		A		8		Ī		:		D	
	ARMA	ARM _F	ARME	ARM64	ARMB		CN ₈	CN ₆	CN ₁₀	CN4	CN2
SiO,	52,13	52,4	12,95	11,33	3,15]	55,78	56,23	4,71	17,35	10,31
A1203	22,67	28,3	5,6	4,04	0,48	İ	24,61	26,51	2,09	4,01	3,89
Fe ₂ 03	5,74	5,89	4,04	2,00	1,06		8,53	4,65	2,32	2,86	1,76
MnD	0,02	0,02	0,09	0,12	0,07		tr	tr	0,08	0,07	0,10
MgO	1,75	0,96	3,3	1,11	0,59		1,47	0,97	0,62	1,24	0,75
CaO	3,42	0,85	36,52	42,33	52,38		0,24	0,30	48,72	38,87	44,99
Na ₂ 0	0,83	0,50	0,17	0,23	0,01		0,66	0,48	0,05	0,04	0,10
K ₂ 0	3,06	3,59	0,64	0,46	0,02		2,49	2,72	0,19	0,21	0,34
Ti02	1,22	1,43	0,27	0,25	0,09		1,24	1,13	0,15	0,26	0,23
P205	0,11	0,13	tr	tr	tr		0,07	0,05	0,06	0,12	0,06
Perte au feu	7,41	6,43	35,16	36,77	42,21		5,87	5,78	40,81	33,99	37,84
Total	98,36	100,50	98,74	98,64	100,06		100,96	98,82	99,80	99,02	100,37
Rb	134	156	38	35	46		128	141	27	19	24
Sr	442	169	507	1145	1232		346	330	1189	954	965
Ba	465	602	133	169	30		370	378	60	73	76
Ni	38	43	34	13	tr		48	31	37	32	32
Cr	135	152	67	72	61		148	134	62	62	70
Co	18	17	36	12	tr		20	12	70	56	31
V	160	181	83	84	64		17	150	82	87	67
Nb	27	35					28	25			
Zr	212	263					218	153			
Y	27	40					41	24			

Tableau I-27 : Analyses chimiques des échantillons du Dévonien inférieur.

l : Presqu'île de Crozon : A) Schistes

B) Calcaires

2 : Bassin de Laval

: C) Schistes

D) Calcaires

Schistes : la composition chimique semble homogène entre Laval et Crozon. Les principaux oxydes constituant la roche sont SiO_2 , Al_2O_3 , Fe_2O_3 , MgO et K_2O . On remarque la plus grande abondance de CaO dûe à la présence des débris coquillers. On retrouve la même homogénéité au niveau des éléments-traces avec un relatif enrichissement en Sr dont on reparlera plus tard. La teneur en V de l'échantillon CN 8 est amormalement basse : 17 ppm.

Calcaires : la géochimie met en évidence la présence d'une phase détritique avec Al_2O_3 compris entre 0,48% et 5,6% et SiO₂ entre 3,15% et 17,35%, le principal constituant est cependant CaO. Il est accompagné par des teneurs élevées en Sr allant jusqu'à 0,1% et en Co plus abondant que dans les schistes (\overline{M} = 34 ppm) contre (\overline{M} = 17 ppm).

On remarque un enrichissement en Rb comparativement à K_2O . Les rapports K/Rb très variables s'échelonnent de 4 à 139. Dans les schistes et les grès des séries rencontrées précédemment K/Rb était égal en moyenne à 184.

2.2. <u>Répartition des éléments entre les phases minéralogiques</u> : matrice des corrélations.

Etant donné l'homogénéité de la minéralogie, les deux formations ont été regroupées : Schistes : le nombre d'analyses (4) est insuffisant pour autoriser un calcul de la matrice des corrélations. Les minéraux principaux observés au microscope (illite, muscovite et chlorite) ont été reconstitués afin de calculer le pourcentage d'Al₂O₃ restant. (Tableau I-28).

Nº Echant.	Arm A	Arm F	Cn 8	Cn 6
^{% A1} 2 ⁰ 3	7,9%	11,95%	10,65%	13,91%

Tableau I-28 : % d'Al₂D₃ en excès.

Cet Al₂O₃ se retrouve sous forme de pyrophyllite toujours abondante ici. Calcaires : (Figures I-25) (6 analyses).

SiO ₂																	
.82	Al ₂ 03																
.63	.80	Fe203															
.17	.48	01	MnO														
.50	.75	.89	.11	MgO													
91	95	86	26	78	CaO												
.37	.69	.57	.90	.50	56	Na ₂ 0											
. 53	.90	.72	.65	.80	79	.87	к ₂ 0										
.91	.97	.70	.48	.60	95	.66	• 80	TiO ₂									
.49	.09	.12	43	27	21	49	32	. 24	P205								
99	89	72	23	61	.97	47	-,65	-,95	38	P.F.							
60	82	87	06	93	.81	38	78	68	.05	.68	Sr						
55	35	21	.04	.19	.34	. ! 4	.0	48	90	.48	.05	RЬ					
.25	.22	.49	33	.06	26	26	.01	.22	.70	25	17	74	Со				
.62	.58	.71	.14	.43	70	.40	.46	.63	.31	67	32	41	.57	V			
.43	.57	.67	05	.33	51	.03	.39	.57	.35	47	52	73	.88	.49	Ni		
.31	.60	.07	.96	.21	39	.88	.72	.65	36	37	24	03	- .34	.06	.03	Cr	
.50	.75	.47	.82	.54	67	.98	.86	.74	36	59	41	.05	16	.57	.05	.79	Ba

Figure I-25 : Matrice des corrélations des calcaires du Dévonien inférieur.

La matrice des corrélations met bien en évidence les deux fractions constituant la roche :

fraction détritique représentée par l'ensemble des oxydes Si0₂, Al₂0₃, MgO, Fe₂0₃, K₂0, Ti0₂.
 fraction biogénique constituée par CaO, Sr et P.F.

Les minéraux de la première fraction sont de l'illite-muscovite $(Al_2O_3, K_2O = 0,9)$ et de la chlorite $(Al_2O_3, Fe_2O_3 = 0,8)$, $(Al_2O_3, HgO = 0,75)$, $(Fe_2O_3, HgO = 0,39)$, SiO_2 sous forme de quartz est peu abondant.

A ces minéraux se joignent les éléments-traces suivants : Ba (Na_20) , Cr (Na_20) , V (Fe_2O_3) . On retrouve la corrélation entre les éléments Co et Ni déjà observée dans les séries détritiques, par contre les éléments Rb et K semblent être indépendants. Une explication possible serait que le Rb n'est plus seulement associé à K par substitution dans les minéraux potassiques, mais qu'il possède une autre origine, liée aux débris calcaires des organismes.

Pour savoir s'il existait une corrélation entre le Rb supposé biogénique et le Sr, on part de l'hypothèse que la substitution (Rb, K) se faisait avec un coefficient (K/Rb = 184) tout comme dans les pélites, puis on calcule les teneurs en Rb restant. Tableau I-29.

On ne dispose malheureusement pas de données de comparaison pour vérifier si de telles concentrations de Rb sont compatibles avec des débris calcaires, mais le coefficient de corrélation (Rb, Sr) calculé est de 0,59. Bien que faible il ne s'oppose pas à une association de ces deux éléments dans une phase biogénique.

	ARM E	ARM 64	ARM B	CN 10	CN 4	CN 2
к ₂ 0 %	0,64 %	0,46 %	0,02 %	0,19 %	0,21 %	0,34 %
Rb ppm	38 ppm	35 ppm	46 ppm	27 ppm	19 ppm	24 ppm
Rb restant ppm	9 ppm	14 ppm	45 ppm	18 ppm	9 ppm	9 ррт
Sr ppm	507 ppm	1145 ppm	1232 ppm	1189 ppm	954 ppm	965 ppm

Tableau I-29 : Calcul des teneurs en Rb restant.

2.3. Conclusion.

Ces deux formations sont constituées par deux ensembles :

- un ensemble biogénique formé par accumulation de débris calcaires recristallisés.

- un ensemble détritique formé de niveaux argileux. La minéralogie est la même à Laval et à Crozon et comprend du quartz, de l'illite et de la muscovite, de la chlorite et de la pyrophyllite, l'apparition de cette dernière a nécessité la présence de kaolinite dans la roche initiale.

Il semble que les interactions ou les contaminations entre ces deux ensembles se soient limitées au Sr que l'on retrouve plus abondant dans les joints schisteux de ces séries que dans ceux des séries précédentes.

III - Conclusion.

Le dépôt de ces formations, montrant des alternances de niveaux argileux et de niveaux biogéniques calcaires, s'est effectué sous une faible profondeur d'eau, dans un milieu de plateforme (Lardeux et al., 1977; Plusquellec et al., 1980).

Au niveau de la minéralogie des épisodes détritiques, on constate une continuité avec les formations précédentes et en particulier la présence de kaolinite dans le sédiment originel. L'étude géochimique a mis en évidence certaines particularités :

- contamination du Sr dans les joints schisteux.
- enrichissement relatif en Co et Rb des calcaires.

L'origine de ces dépôts, vraisemblablement la même que celle des séries sous-jacentes, est à rechercher au niveau du socle cadomien. •

CHAPITRE 9

LES FORMATIONS DU DEVONIEN

Une série d'argilites fines, de grauwackes de décalcification et de grès, constitue le Siégenien supérieur (Babin et al., 1972). A partir de l'Emsien , des bancs gréseux et calcaires s'intercalent dans les dépôts.

Le Dévonien supérieur, inconnu dans le synclinorium de Laval, est en revanche bien représenté dans le Finistère. Il apparaît sous forme d'alternances de schistes, grès à slumpings, bancs calcaires et schistes noirs à nodules (Lardeux et al., 1977, Morzadec, 1982). Cette évolution de la sédimentation traduit le passage d'un milieu marin à un milieu plus littoral. La tendance à l'émersion s'accentue encore au Faménnien avec le dépôt de schistes bitumineux noirs et de schistes gris riches en fer.

Ces formations ont été étudiées dans le Bassin de Laval et en Presqu'île de Crozon. Les résultats obtenus par Sagon (1976) dans le Bassin de Châteaulin seront rappelés.

I - Etude pétrographique.

1.1. Presqu'île de Crozon (Babin et al., 1979 ; Plusquellec et al., 1980).

On distingue six formations dont quatre ont donné lieu à une étude. Ce sont de bas en haut :

- Formation du Faou (Siégenien supérieur Emsien inférieur) : Elle présente un important développement de schistes, dans lesquels s'intercalent des petits bancs de grès micacés et de grès calcareux.
- Formation de Reun-ar-C'hrank (Emsien) : Elle est constituée principalement par des schistes dans lesquels on observe quelques niveaux grauwackeux.
- Groupe du Troaon (Emsien supérieur Givetien inférieur) : Il débute par l'apparition de bancs et de nodules calcaires. Puis des schistes gris et noirs contenant des nodules siliceux ou calcareux apparaissent, ils alternent avec des niveaux de grès et de calcaires argileux.
- Formation des calcaires de Kergarvan (Givetien supérieur) : On y observe des alternances de schistes et de calcaires.
- Formation des schistes de ^Traonliors et des grès de Goasquellou (Frasnien inférieur et moyen): Elle marque le passage par l'intermédiaire de schistes à nodules calcaires argileux puis siliceux. Ensuite des bancs gréseux apparaissent, surmontés par une formation plus schisteuse.
- Formation des schistes kerabitumineux de Porsguen (Frasnien supérieur Famennien inférieur). Elle est constituée par des schistes noirs très riches en matière organique.

. Composition minéralogique.

Elle est relativement homogène pour l'ensemble des quatre formations étudiées (Faou, Troaon, Traonliors, Reun-ar-C'hrank). La matrice, d'abondance variable est phylliteuse (chlorite et micas blancs) et contient des oxydes de fer et de la matière organique. Les éléments figurés sont le feldspath K séricitisé, la muscovite et la chlorite. Dans les Formations de Traonliors et du Troaon la muscovite est souvent altérée montrant des alternances de niveaux potassiques et ferrifères.

Les minéraux accessoires présents sont le rutile, la tourmaline et les minéraux opaques.

Les rayons X ont permis de détecter de la pyrophyllite dans les échantillons TRON 6, TRA 2, et TRA 3. Les schistes correspondent à d'anciennes pélites micacées.

1.2. Bassin de Châteaulin (Sagon, 1976).

Le Siégenien, l'Emsien et peut être l'Eifelien sont représentés par une série de phyllades renfermant des lits ampéliteux et des niveaux de fer carbonatés. L'épaisseur de la série est d'environ 400 m (Pruvost et le Maître, 1943).

. Composition minéralogique.

Elle est identique à celle du Gedinnien et se caractérise par la présence de quartz, chlorite, muscovite, chloritoïde, paragonite et margarite. Ces deux derniers minéraux sont ici plus abondants qu'au Gedinnien. Les minerais sont constitués généralement par de la sidérite, mais on observe également de la magnétite et de la bavalite.

Les paragenèses des échantillons analysés sont décrites dans le tableau I-30.

Echantillons	Paragenèses
Q 1321 - G 613	Quartz, muscovite, chlorite
Q 1318 - Q 1323 - Q 1366 Q 1611 - Q 1625 - G 16 - G 604 - G 615 - M 523	Quartz, muscovite, chlorite, chloritoīde
Q 904	Quartz, muscovite, pyrophyllite, chlorite, rutile (kaolinite)
G 619	Quartz, muscovite, chlorite, chloritoĭde, margarite.

Tableau I-30 : Paragenèses du Siegénien et de l'Emsien.

1.3. Bassin de Laval.

On distingue trois formations qui sont de haut en bas :

- Formation de Montguyon (Siégenien supérieur Emsien inférieur) (Le Menn et Racheboeuf, 1977); elle est constituée par des alternances de bancs carbonatés et schisteux surmontées par des alternances de schistes, de grès calcareux et de grès psammitiques.
- Formation du Buard (Emsien)(Racheboeuf, 1974 ; Babin et al., 1972). On observe des alternances de schistes micacés et schistes argileux, ainsi que quelques lentilles calcaires et bancs gréseux.
- Formation des Marollières (Emsien supérieur)(Racheboeuf, 1974). Elle est formée essentiellement par des schistes noirs entrecoupés de niveaux gréso-quartzitiques et de nodules calcaires.

. Composition minéralogique.

La minéralogie est assez semblable pour les trois formations.

Les schistes sont constitués d'une matrice chlorito-sériciteuse enrobant des grains de quartz, du feldspath K séricitisé, de la muscovite détritique et en voie de chloritisation et de la chlorite. On observe également du zircon, du rutile, de la tourmaline, souvent disposés en lits, de la matière organique, des oxydes de fer et de la sidérose dans une roche du Buard.

Elles résultent de la transformation d'anciennes pélites argileuses et micacées.

Les grès ont la même composition minéralogique, seules les proportions varient. De la kaolinite a été observée (Mo 9) ainsi que des interstratifiés illite, chlorite. Ces roches sont soit des quartzwackes, soit des quartzarénites.

1.4. Conclusion.

Jusqu'à l'Emsien, les roches du Bassin de Laval et de la Presqu'île de Crozon ont la même composition minéralogique. A partir de l'Emsien on voit apparaître de la pyrophyllite dans la Presqu'île de Crozon.

Les paragenèses décrites correspondent à un très bas degré de métamorphisme, tandis que dans le Bassin de Châteaulin, on atteint le faciès schistes verts.

II - Etude géochimique.

2.1. Analyses chimiques : (Tableaux I-31, I-32, I-33).

Elles ont été effectuées sur des grès, des schistes et des calcaires à Laval et Crozon. Dans le Bassin de Châteaulin, Sagon (1976) a analysé des schistes et des grès phylliteux.

			1							3	
		Ą		8			c		D		
	FAU 3	FAU 4	RAS 1	RAS 3	RAS 5	TRON 5	TRON 6	TRA 2	TRA 3	RAS 7	TRON 2
SiO ₂ Al ₂ O ₃	63,13 19,44	72,5 11,58	50,61 26,85	54,82 23,5	52,95 24,93	77,37 7,91	55,05 24,12	49,51 27,44	51,33 28,15	20,41	18,71 5,62
Fe ₂ 0 ₃	6,71	8,73	6,01	6,24	7,24	9,61	8,89	9,13	7,41	5,48	3,88
Mg0	0,52	0,59	1,48	1,52	1,18	0,82	2,55	0,14	0,69	1,04	1,15
CaO Na _n O	0,04 0,66	0,07 0,21	0,06	0,04 0,63	0,06 0,97	0,02	0,03 0,65	0,09	0,05 0,54	30,72	36,08 0,2
κ ₂ ΰ	2,75	1,02	3,8	3,66	3,72	0,31	2,06	2,44	2,36	0,83	0,52
TiO ₂ PaOa	1,07 0.02	0,73 0.07	1,3	1,18 0.07	1,10 0.12	0,77	1,31 0,04	1,16	1,41 0.09	0,33	0,22
Perte au feu	5,02	3,87	6,93	6,54	6,95	3,03	6,53	6,84	7,15	29,48	32,86
Total	99,41	99,45	98,37	98,22	99,21	100,01	101,23	98,22	99,18	96,8	100,2
Rb ´	106	39	148	154	168	13	88	133	120	36	32
Sr	104	52	228	173	186	48	155	180	148	509	875
Ba	370	160	555	464 44	470	82	42	373	370	177	168
Ni	40	44 55	149	137	27	51	44	69	37 170	45	41 67
	76 19	در ۱۵	13	13	13	12	15	25		16	18
v	120	78	177	200	260	165	68	141	177	124	108
Nb	23	15	28	25	23	15	29	27	33		
Zr	331	462	189	180	159	505	326	175	212		
Y	45	32	48	34	38	34	38	38	37		

Tableau I-31 : Analyses chimiques des échantillons du Dévonien moyen et supérieur de la Presqu'île de Crozon.

1 : Roches détritiques terrigènes : A) Formation du Faou

8) Formation de Reun-ar-Chrank

C) Groupe du Troaon

D) Formation des Traonliors

3 : Grès carbonatés.

				3	5						
		ε			F			G.,			
	MO 8	MO 9	мо в	BU 1	BU 3	BU 4	MA 3	MA 5	MA 6	MO 6	BU 2
SiOz	57,11	56,27	57,72	57,43	64,41	61,37	59,71	61,58	75,39	37,34	22,85
Al203	21,79	22,60	20,72	24,27	17,43	18,59	20,64	19,93	10,39	5,06	8,09
Fe203	9,09	7,44	8,92	6,24	8,36	8,32	8,35	7	6,37	1,96	8,1
MnO	0,01	0,04	0,04	0,02	0,05	0,08	0,02	0,02	0,02	0,06	0,14
MgO	1,80	1,23	1,43	0,90	1,10	1,07	1,42	1,45	0,88	0,38	1,36
CaO	0,57	0,48	0,21	0,57	0,36	0,45	0,14	0,06	0,05	25,14	27,82
Na ₂ 0	0,83	1,07	0,98	1,09	0,72	0,82	0,71	0,69	0,34	0,14	0,26
к ₂ 0	2,65	2,83	3,05	3,62	1,99	2,21	3,02	3,08	2,19	0,69	0,86
TiO ₂	1,12	1,24	1,04	1,15	1,11	1,09	1,05	1,08	0,59	0,4	0,37
^P 2 ⁰ 5	0,3	0,09	0,15	0,24	0,10	0,23	0,14	0,12	0,1	0,05	0,32
Perte au feu	5,32	5,59	5,07	5,38	4,81	5,33	5,15	4,56	3,22	24,03	27,34
Total	100,58	98,88	99,33	100,91	100,41	99,56	100,35	99,56	98,54	95,25	97,51
Rь	117	12 1	132	140	83	88	130	131	52	24	33
Sr	202	263	200	323	193	197	209	225	104	898	1005
Ba	391	420	482	634	354	367	447	457	186	208	173
Ni	48	40	49	48	42	42	43	43	35	33	50
Cr	116	122	110	132	103	97	117	111	44	45	74
Co	16	19	20	14	19	25	13	12	13	64	32
v	151	153	159 -	165	125	128	170	149	58	55	110
Nb	25	29	23	24	24	23	23	23	14		•
Zr	235	218	199	182	32 9	2 54	183	205	344		
Y	53	40	33	53	43	43	40	43	39		

Tableau I-32 : Analyses chimiques des échantillons du Dévonien moyen et supérieur du Bassin de Laval.

2 : Roches détritiques terrigènes : E) Formation de Montguyon

F) Formation du Buard

G) Formation des Marollières

3) Grès carbonatés

	Q 904	Q 1318	Q 1321	Q 1323	Q 1366	Q 1611	Q 1625	G 16	G 604	G 613	G 615	G 619	M 523
SiO ₂	70,84	53,10	63,80	55,69	50,75	52,36	55,06	38,77	54,72	64,80	55,06	47,17	55,90
A1,03	17,21	26,50	17,70	24,84	28,50	26,32	27,00	34,85	24,98	12,63	24,55	30,98	22,00
Fe,03	4,38	7,9	8,16	6,7	8,37	9,35	8,12	10,79	7,77	11,66	8,29	10,15	9,38
MnO	nd nd	nd	nd	nd									
MgO	0,35	2,16	1,00	1,61	1,80	1,51	1,31	1,30	2,32	3,42	1,96	1,51	2,11
CaO	0,07	0,14	0,01	0,00	0,45	0,14	0,14	1,67	1,15	0,39	0,70	1,07	0,28
Na ₂ 0	0,26	0,68	0,30	1,58	0,90	0,53	1,06	1,74	0,75	0,04	0,84	0,92	0,75
K20	1,95	3,55	3,04	3,45	2,60	3,59	2,45	5,20	1,66	0,79	1,89	1,67	2,63
Ti0,	0,69	1,32	0,96	1,50	0,95	1,18	1,20	1,33	0,85	0,48	0,77	0,82	1,68
P205	nd nd	hn	nd	nd									
Perte au Feu	4,39	4,67	4,50	4,85	5,00	5,17	4,04	5,05	5,23	5,30	5,50	5,38	4,53
Total	100,14	130,02	99,47	100,22	99,32	100,15	100,38	100,70	99,43	99,51	99,56	99,67	99,26

Tableau I-33 : Analyses chimiques des échantillons du Bassin de Châteaulin (d'après Sagon, 1976).

2.1.1. Roches détritiques terrigènes : Presqu'île de Crozon.

Les quatre formations sont assez homogènes du point de vue géochimie avec Al_2O_3 variant de 8% à 28% et SiO₂ de 50% à 77% selon la nature de la roche. CaO est peu abondant comparativement à Na₂O et K₂O aux teneurs relativement élevées. On note la présence de minéraux ferrifères dans les roches TRON 5 et FAU 4.

Les anomalies relevées au niveau des éléments-traces se situent dans l'échantillon IRON 6 pauvre en Ba (642 ppm) et en V (68 ppm).

: Bassin de Laval.

On observe également une homogénéité pour les principaux éléments SiO_2 , AI_2O_3 et Fe_2O_3 qui se présente parfois sous forme de minéraux ferrifères (Ma 6, Bu 3). K₂O et MgO varient plus largement mais sans atteindre des valeurs très élevées. CaO et Na₂O ont augmenté par rapport aux séries sous-jacentes mais ils restent toujours faibles.

Les concentrations des éléments-traces sont du même ordre que dans les séries précédentes. On constate que dans ces roches, les teneurs en Ba et Sr rapportées à Al₂O₃ sont plus élevées dans le bassin de Laval que dans la presqu'île de Crozon.

2.1.2. Grès calcareux - Laval et Crozon.

La fraction détritique est relativement abondante puisque les teneurs en SiO₂ s'échelonnent de 18% à 37%. Le fer se présente fréquemment sous forme de minéraux ferrifères, au niveau des éléments-traces on observe de hautes teneurs en strontium, et en cobalt à Laval.

2.1.3. Bassin de Chateaulin.

Tout comme celle du Gedinnien, la géochimie de cette série est assez hétérogène. Elle se caractérise par des teneurs élevées en Al_2O_3 et Fe_2O_3 , respectivement 24,47% et 8,54% de moyenne, les autres oxydes variant dans de grandes proportions : CaO de O à 1,67%, Na₂O de 0,04% à 1,58%. Ces variations ne se reflètent pas dans la minéralogie.

2.2. Répartition des éléments entre les phases minéralogiques : matrices

de	cor	rél	lati	on s
----	-----	-----	------	------

2.2.1. Presquîle de Crozon (Figure I-26) (9 analyses).

SiO,				2	4.1. PI	esquit		rozon (r	ugure .	(~26)	(Yana	lyses)	•						
99	A1203																		
.48	49	Fe ₂ 03																	
.03	05	. 47	MnU																
37	.33	06	40	MgO	,														
40	.38	07	.62	34	Ca0														
78	.76	71	28	. 39	.27	Na ₂ 0													
80	.78	84	25	.28	.29	.90	к ₂ 0												
89	.92	48	29	.47	.04	.67	.65	Ti02											
69	.66	50	01	.10	.69	.74	.68	. 47	P205										
99	.99	50	13	.40	.36	.77	.81	.90	.69	P.F.									
90	.88	72	13	.22	.40	.87	.97	.72	.72	.90	Rb								
89	.85	55	13	.47	.23	.71	.86	.74	.57	.89	.90	Sr							
62	.61	82	09	17	.40	.64	.86	.42	.62	.61	.86	.72	Ba						
44	.41	.23	.86	02	.69	.13	.13	.18	.32	.35	.27	.31	.12	Ni					
95	.96	40	18	.45	.19	.64	.70	.94	.52	.97	.81	.88	.52	.29	Cr				
11	.09	.32	.91	16	.51	03	03	15	03	.01	.05	.04	02	.87	05	Co			
37	.34	48	38	12	.12	.54	.57	.22	.54	.39	.60	.46	.69	26	.33	38	V		
87	.90	36	13	.37	.08	.48	.57	.95	.34	.88	.67	.76	.42	.29	.95	03	.13	Nb	
.95	93	.60	.05	21	44	80	89	77	74	94	98	92	82	36	88	07	58	76	Zr
- 50	49	- 85	- 26	27	na	. 68	79	.51	34	47	66	63	70	.02	42	02	30	. 41	- 57

Figure I-26 : Matrice des corrélations des échantillons (schistes et grès) de la Presqu'île de Crozon.

On observe l'opposition entre la fraction siliceuse constituée par le quartz, et la fraction alumineuse. Les oxydes intercorrélés à cette dernière sont Na₂O, K₂O, TiO₂ et la perte au feu. Ils représentent des phyllosilicates hydratés dans lesquels on retrouve un mélange d'illite-muscovite et de séricite associée à de l'albite.

Le fer a un comportement particulier puisque l'on n'observe aucune corrélation avec les autres éléments. Deux hypothèses peuvent être émises pour l'expliquer :

- Il se partage entre la chlorite abondante et les oxydes de fer, et ce en proportions variables.

- Il participe plus généreusement que dans les séries sous-jacentes à la formation des autres minéraux. Notamment on a observé de nombreuses paillettes de muscovite en voie de chloritisation, où le fer se substitue au potassium.

Ces deux hypothèses ne s'excluent absolument pas.

Les corrélations significatives avec les éléments-traces sont les suivantes : - avec K_2^0 : Sr et Ba - avec TiO₂ : Cr et Nb Les autres éléments s'associent ainsi, Co avec Ni, CaO avec MnO, Zr avec Y.

2.2.2. Bassin de Châteaulin (Figure I-27)(13 analyses).

Si0 ₂								
93	A1203							
50	.19	Fe203						
05	23	.60	MgO					
68	.58	.47	.13	CaO				
76	.80	.06	20	.45	Na ₂ 0			
57	.58	.03	-• 39	.14	.62	κ _z o		
43	.43	02	15	13	.59	.70	TiO2	
35	.18	.49	. 49	• 56	.04	-, 20	40	P.F

Figure I-27 : Matrice des corrélations des échantillons du Bassin de Chateaulin.

La matrice des corrélations traduit bien la complexité minéralogique de ces sédiments. La silice, sous forme de quartz, joue le rôle de diluant de la fraction alumineuse. Le coefficient de corrélation entre Fe_2O_3 et MgO met en évidence la présence de minéraux ferromagnésiens tels que la chlorite et peut être le chloritoïde. On observe un fort coefficient de corrélation entre Al_2O_2 et Na_2O (0,80) qui peut représenter le plagioclase. Mais il est difficile d'interpréter plus avant cette matrice. 2.2.3. Bassin de Laval : (Figure I-28) (9 analyses).

SiO,

A1203																			
.22	Fe203																		
09	.28	MnO																	
.40	.69	34	MgO																
.60	.19	.20	.03	CaO															
.90	.18	17	.15	.70	Na ₂ 0														
.92	.04	25	.34	.29	.77	κ ₂ 0													
.89	.35	.21	.36	.64	.84	.71	TiO ₂												
. 43	.28	08	.31	.65	.34	.31	.27	P205											
.91	.45	.25	.36	.72	.88	.71	.93	.45	P.F.										
.90	.13	31	.48	.23	.73	.98	.70	.27	.69	Rb									
.90	19	07	.0	. 59	.86	.86	.80	. 29	.75	.78	Sr								
.89	05	15	.13	.39	.80	.96	.69	.35	.69	.90	.91	Ba							
.76	.44	15	.51	.44	.68	.75	, 58	.64	.64	.75	.56	.77	Ni						
.98	.26	07	.41	.55	.85	.90	.93	.34	90،	.89	.88	.87	.73	Cr					
.09	.51	.90	09	.44	.37	16	.34	.16	.44	19	02	09	.10	.07	Со				
.94	.36	10	.51	.37	.78	.93	.84	.32	.86	.94	.78	.86	.77	.96	.03	V			
.86	.37	.17	.41	.63	.83	.64	.97	.18	.91	.65	.73	.59	.48	.88	.34	.79	Nb		
84	10	. 23	42	18	68	95	60	32	67	95	72	85	66	80	.14	89	55	Zr	
.40	16	32	.08	.67	.23	.26	.32	.72	.30	.19	.47	.34	.35	.37	22	.21	.24	13	Y
	A12U3 .22 09 .40 .60 .90 .92 .89 .43 .91 .90 .90 .90 .89 .76 .98 .09 .94 .86 84 .40	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$A1_2U_3$.22 Fe_2O_3 09 .28 Mn0 .40 .69 34 .60 .19 .20 .90 .18 .17 .92 .04 25 .89 .35 .21 .43 .28 08 .91 .45 .25 .90 .13 31 .90 .19 07 .89 05 15 .76 .44 15 .98 .26 07 .09 .51 .90 .94 .36 10 .86 .37 .17 .84 10 .23 .40 16 32	$A1_2U_3$.22 Fe_2O_3 09 .28 Mn0 .40 .69 34 Mg0 .60 .19 .20 .03 .90 .18 .17 .15 .92 .04 25 .34 .89 .35 .21 .36 .43 .28 08 .31 .91 .45 .25 .36 .90 .13 31 .48 .90 .19 07 .0 .89 05 15 .13 .76 .44 15 .51 .98 .26 07 .41 .09 .51 .90 .51 .86 .37 .17 .41 84 .10 .23 42 .40 16 32 .08	$A1_2U_3$.22 Fe_2D_3 09 .28 Mn0 .40 .69 34 Mg0 .60 .19 .20 .03 Ca0 .90 .18 .17 .15 .70 .92 .04 25 .34 .29 .89 .35 .21 .36 .64 .43 .28 08 .31 .65 .91 .45 .25 .36 .72 .90 .13 31 .48 .23 .90 19 07 .0 .59 .89 05 15 .13 .39 .76 .44 15 .51 .44 .98 .26 07 .41 .55 .09 .51 .90 09 .44 .94 .36 10 .51 .37 .86 .37 .17 .41 .63 .84 .10 .23 42 18 .40	$A1_2U_3$.22 Fe_2O_3 09 .28 MnO .40 .69 34 MgO .60 .19 .20 .03 CaO .90 .18 .17 .15 .70 Na ₂ O .92 .04 25 .34 .29 .77 .89 .35 .21 .36 .64 .84 .43 .28 08 .31 .65 .34 .91 .45 .25 .36 .72 .88 .90 .13 31 .48 .23 .73 .90 .19 07 .0 .59 .86 .89 05 15 .13 .39 .80 .76 .44 15 .51 .44 .68 .98 .26 07 .41 .55 .85 .09 .51 .90 09 .44 .37 .94 .36 10 .51 .37 .78 .86	A1203 .22 Fe_20_3 09 .28 Mn0 .40 .69 34 Mg0 .60 .19 .20 .03 Ca0 .90 .18 .17 .15 .70 Na20 .92 .04 25 .34 .29 .77 K_20 .89 .35 .21 .36 .64 .84 .71 .43 .28 08 .31 .65 .34 .31 .91 .45 .25 .36 .72 .88 .71 .90 .13 31 .48 .23 .73 .98 .90 .19 07 .0 .59 .86 .86 .89 05 15 .13 .39 .80 .96 .76 .44 15 .51 .44 .68 .75 .98 .26 07 .41 .55 .85 .90 .09 .51 .90 09 .44 .37 <	A1203 .22 Fe_20_3 09 .28 Mn0 .40 .69 34 Mg0 .60 .19 .20 .03 Ca0 .90 .18 .17 .15 .70 Na20 .92 .04 25 .34 .29 .77 K_20 .89 .35 .21 .36 .64 .84 .71 Tio2 .43 .28 08 .31 .65 .34 .31 .27 .91 .45 .25 .36 .72 .88 .71 .93 .90 .13 31 .48 .23 .73 .98 .70 .90 .19 07 .0 .59 .86 .86 .80 .89 05 15 .13 .39 .80 .96 .69 .76 .44 15 .51 .44 .68 .75 .58 .98 .26 07 .41 .55 .85 .90 <	A12U3 .22 Fe_20_3 09 .28 Mn0 .40 .69 34 Mg0 .60 .19 .20 .03 Ca0 .90 .18 .17 .15 .70 Na20 .92 .04 25 .34 .29 .77 K_20 .89 .35 .21 .36 .64 .84 .71 Ti02 .43 .28 08 .31 .65 .34 .31 .27 P_20_5 .91 .45 .25 .36 .72 .88 .71 .93 .45 .90 .13 31 .48 .23 .73 .98 .70 .27 .90 19 07 .0 .59 .86 .86 .80 .29 .89 05 15 .13 .39 .80 .96 .69 .35 .76 .44 15 .51 .44 .68 .75 .58 .64 .98	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$A1_2U_3$.22 Fe_2O_3 09 .28 MnO .40 .69 34 MgO .60 .19 .20 .03 CaO .90 .18 .17 .15 .70 Na_2O .92 .04 25 .34 .29 .77 K_2O .89 .35 .21 .36 .64 .84 .71 TiO_2 .43 .28 08 .31 .65 .34 .31 .27 P_2O_5 .91 .45 .25 .36 .72 .88 .71 .93 .45 P.F. .90 .13 31 .48 .23 .73 .98 .70 .27 .69 Rb .90 19 07 .0 .59 .86 .86 .80 .29 .75 .78 .89 05 15 .13 .39 .80 .96 .69 .35 .69 .90 .76 .44 15 .51	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						

Figure I-28 : Matrice des corrélations des échantillons (schistes et grès) du Bassin de Laval.

On retrouve les mêmes corrélations qu'à Crozon. Les minéraux présents dans ces

roches sont donc : - l'illite-muscovite et la séricite associée à l'albite (A1₂D₃, K₂D, Na₂D, P.F).

- la chlorite (Mg0, Fe₂0₃)
- l'apatite (Ca0, P₂0₅)
- le quartz libre (Si0₂)

Au niveau des éléments-traces, on retrouve associés à la fraction alumineuse : Rb (K₂0), Sr (K₂0, Na₂0), Ba (K₂0), Ni (K₂0), Cr (Ti0₂), V (K₂0), Nb (Ti0₂), Y se lie avec P₂0₅ et CaO au sein de l'apatite, Co avec MnO et Zr avec la fraction libre du quartz.

2.2.4. Grès calcareux : (Figure I-29) (4 analyses).

La matrice des corrélations distingue les deux fractions constituant la roche : - la fraction détritique avec Al₂0₃, Fe₂0₃, MgO, Na₂O. K₂O.

- la fraction biogénique avec CaO, P2O5 et P.F.

Le coefficient de corrélation négative entre SiO_2 et AI_2O_3 est faible, la silice doit participer aussi bien à la formation des phyllites qu'à celle du quartz. La minéralogie de la fraction détritique de ces calcaires est la même que celle des grès et des schistes. Elle comprend de l'illite, de la muscovite et de la chlorite. Le titane est associé à cette fraction ainsi que quelques éléments-traces : V, Ni, Cr et Rb.

510 ₂																	
55	A1203																
59	.92	Fe203															
89	.72	.86	MgO														
81	04	.04	.53	CaO													
60	.82	.57	.48	.21	Na ₂ 0												
.02	.82	.66	.22	59	.60	κ ₂ 0											
.73	.17	.06	46	99	07	. 69	Ti0 ₂										
73	11	.10	.58	.94	04	66	96	P205									
89	.12	.19	.65	.99	.34	46	96	.91	P.F.								
70	.30	.60	.86	.58	03	18	57	.78	.63	MnO							
92	.80	.72	.83	.55	,88	.35	43	.40	.67	. 47	Rb						
.30	27	.08	.05	22	77	22	.13	.13	26	.47	57	Sr					
.98	 55	67	- .95	77	51	.03	.70	77	86	83	-,86	.10	Ba				
04	.86	.74	.31	55	60	. 99	.65	59	41	08	.39	15	05	Ni			
90	.86	.81	. 79	.48	.83	.42	36	.37	.61	.53	.99	40	87	.47	Cr		
.98	54	51	80	81	71	.01	.72	67	89	56	93	.47	.92	04	92	Co	
92	.76	.72	.87	.62	.82	.27	51	.49	.73	.55	.99	44	91	.32	.99	96	V

Figure I-29 : Matrice des corrélations des échantillons de grès calcareux (Laval et Crozon).

En corrélation avec la fraction biogénique, on retrouve de l'apatite (CaO, $P_2O_5=0,94$). Les autres éléments-traces ont un comportement indépendant et en particulier Sr.

La substitution du K par le Rb ne se fait pas de façon aussi systématique que dans les roches détritiques puisque le rapport K/Rb varie de 135 à 239 (il est en moyenne de 184 dans les grès et les schistes).

2.3. Conclusion.

Par rapport aux séries sous-jacentes on observe une évolution minéralogique avec la disparition de la pyrophyllite à Laval et dans le Dévonien moyen de Crozon. Par contre, Sagon (1976) en a détecté dans les roches du Siégenien et de l'Emsien.

Si l'on place ces échantillons dans la diagramme Al_2O_3/K_2O + Na_2O (figure I-3O), on constate une bonne corrélation pour le Dévonien moyen de Laval et Crozon. Les trois échantillons enrichis en Al_2O_3 contiennent de la pyrophyllite.

La droite de corrélation est redressée par rapport à une droite passant par des compositions d'illite et de muscovite, elle coupe l'ordonnée en $Al_2O_3 = 5\%$.

Selon Pettijohn et al.(1973) une telle corrélation résulte de la présence de feldspaths dans les roches. Cette explication n'est pas totalement satisfaisante pour les roches étudiées. Si le feldspath K et le plagioclase interviennent, ils sont accompagnés par d'autres minéraux plus alumineux dont l'illite et la muscovite.

mu : muscovite, bi : biotite, fk : feldspath K, il : illite, py : pyrophillite, ch : chlorite.

Cependant, la teneur moyenne de ces derniers en Al_2O_3 ne justifie pas l'enrichissement observé. Pour l'expliquer en l'absence de la kaolinite et de la pyrophyllite on doit admettre que l'illite est particulièrement riche en Al_2O_3 (tout comme celle des formations cambro-trémadociennes).

Il est possible que la kaolinite ait été présente dans le sédiment originel et qu'elle ait été illitisée par diagenèse.

Un autre site potentiellement riche en Al_2O_3 est le plagioclase altéré en séricite où de la kaolinite a pu se néoformer entre les feuillets. La présence de kaolinite dans le sédiment originel explique la formation des minéraux alumineux déterminés par Sagon (1976) pyrophyllite, chloritoïde et margarite, dans certaines roches. Il a mis en évidence une évolution latérale de faciès en comparant l'occurence de certains minéraux riches en Al_2O_3 et en fer ceci lui a ensuite permis de déterminer certains sites de paléorivages.

On peut donc expliquer les différences minéralogiques observées entre Laval - Crozon et Châteaulin, par une situation paléo-géographique plus ou moins proche d'un rivage. La kaolinite nécessaire dans les sédiments originels de Traonliors résulterait de la tendance prononcée à l'émersion enregistrée à cette époque.

III - Conclusion.

Les séries du post-Siégenien sont constituées par des dépôts marins peu profonds comme en témoignent les fossiles observés (Babin et al., 1979 ; Sagon, 1976 ; Paris, 1980) et la présence de litages entrecroisés, de minerais de fer oolithique et les lits de minéraux lourds. On y observe des niveaux gréseux micacés alternant avec des niveaux de vases argileuses et des niveaux calcaires. La richesse en Al_2O_3 de la roche originelle, qui se traduit par l'apparition de minéraux alumineux, ou par la richesse inhabituelle en Al_2O_3 des micas, implique la présence de kaolinite dans le sédiment, celle-ci apporte des indications sur les paléoclimats qui présidaient à l'érosion des roches et sur la paléogéographie, ce minéral se déposant préférentiellement en bordure de rivage (Millot, 1964).

La région source de ce matériel est à rechercher dans le socle cadomien, comme pour les autres séries sous-jacentes.

CHAPITRE 10

LES FORMATIONS DU CARBONIFERE

A partir du Dévonien moyen et durant le Carbonifère, les premiers événements de l'orogenèse varisque vont se faire sentir. Ils entraineront une disharmonie d'évolution entre le Bassin de Laval et le Bassin de Châteaulin.

Le Carbonifère débute dans le Bassin de Laval par des émissions volcaniques acides auxquelles succèdent le dépôt d'épaisses molasses appelées Culm (Pelhâte, 1967). Au Tournaisien supérieur, puis du Viséen des dépôts carbonatés interviennent.

Dans le Synclinorium de Châteaulin, le volcanisme est de nature essentiellement basaltique, parfois rhyolitique, accompagné de dépôts volcano-sédimentaires épais. Ceux-ci sont ensuite recouverts par d'importantes formations schisto-gréseuses renfermant parfois des niveaux calcaires.

A la fin du Viséen moyen, on assite à une reprise de l'activité tectonique avec la phase sudète. Elle se traduit dans le Bassin de Laval par des manifestations volcaniques puis une reprise de la sédimentation détritique.

I - Etude pétrographique.

- 1.1. Bassin de Laval (Pelhâte, 1971 ; Plaine, 1976).
- Formation de l'Huisserie (Tournaisien) : Elle débute par des niveaux volcanoclastiques appelés blavierites et se poursuit par un ensemble détritique constitué de grès, siltones et conglomérats appelé "Culm".
- Formation de Changé (Tournaisien supérieur Viséen inférieur) : C'est une formation siltogréseuse.
- Formation de Laval (Viséen) : Elle est constituée par des sédiments biochimiques et organogènes calcaires; ils se présentent en petits bancs en alternance avec des strates silteuses.
- Formation de Heurtebise (Namurien) : De nature silteuse elle comprend des wackes peu matures.

. Composition minéralogique.

- Formation de l'Huisserie : La minéralogie des siltones est assez semblable à celle du Dévonien. Une matrice chlorito-séricitisée enrobe des grains de quartz, du feldspath K séricitisé, de la muscovite en voie de chloritisation. On remarque la présence d'oxydes de fer, de minéraux opaques, de tourmaline et de matière organique.

> Les rayons X ont mis en évidence en outre de la kaolinite et de la pyrophyllite. (HU 2).

- Formation de Heurtebise. La taille des grains varie entre les siltones et les grès sans que les proportions des éléments figurés, quartz, muscovite, biotite, plagioclase, feldspath K, changent significativement. L'ensemble est enrobé dans une matrice chlorito-séricitisée.

Le cortège de minéraux accessoires comprend du rutile, de l'apatite, du zircon, des oxydes de fer et des minéraux opaques. Quelques fragments lithiques sont visibles.

1.2. Bassin de Châteaulin (Sagon, 1976).

A la base, on observe un complexe volcanique de diabases sur lequel se superposent des roches acides, des tuffs rhyolitiques et des quartz-kératophyres. Par dessus vient se déposer la série sédimentaire inférieure dans laquelle on trouve des schistes gris parfois ardoisiers, des poudingues, des schistes rouges, des spilites kératophyres et quelques calcaires.

Puis apparaît un ensemble d'alternances de grauwackes et schistes correspondant au faciès Culm. L'âge supposé de cette partie se situe entre le Viséen moyen et le Viséen supérieur.

. Composition minéralogique.

- Grauwackes : On observe du quartz, du plagioclase, de la muscovite, parfois altérée les extrémités en éventail, du feldspath potassique. Ces minéraux sont enrobés dans une matrice constituée d'un mélange de micas blancs et de chlorite. La matière organique est abondante.

- Schistes : La matrice abondante est formée de séricite et chlorite. Les minéraux figurés sont : la biotite, la muscovite, le feldspath K altéré et le quartz, la matière organique forme un fin liseré autour de ceux-ci. Les rayons X ont mis en évidence la présence de paragonite, dolomite et calcite dans certaines roches.

Les paragenèses déterminées par Sagon (1976) sont décrites dans le tableau I-34, elles appartiennent au faciès schistes verts.

Echantillons	Paragenèses
U 238, U 309, S 414 M 1182, M 1384, G 352 S 408, M 838, G 368	Quartz, muscovite, albite, chlorite (rutile).
U 308	Quartz, muscovite, kaolinite, goethite, rutile.
L 33, M 1174	Muscovite, chlorite, rutile.
Q 1452	Quartz, muscovite, paragonite, chlorite, rutile.
Q 1513	Muscovite, chlorite, albite.
Q 1526	Quartz, muscovite, paragonite, rutile.
Q 1531	Quartz, muscovite, chlorite, calcite dolomite, pyrite.
Q 1586, G 406	Quartz, muscovite, chlorite.
S 415	Quartz, muscovite, albite, calcite.
M 1191	Muscovite

Tableau I-34 : Paragenèses du Dinantien.

II - Etude Géochimique.

2.1. Analyses chimiques.

2.1.1.	Bassin	de Laval	(Tableau	I-35).

	1					2					
	Hu 2	Hu 10	He3	He 2	Sa l	Sa 2	Sa 3	CHA 1	CHA 3	CHA 7	CHA 9
Si0,	67,52	62,13	69,67	58,14	1,71	0,92	0,71	56,39	73,33	75,32	56,44
A1,03	20,77	22,93	11,78	18,56	0,25	tr	0,09	20,36	12,97	12,68	19,95
Fe ₂ 0 ₃ T	3,42	2,49	3,12	6,2	0,06	0,09	0,06	7,71	4,1	4,53	11,28
MnD	-	-	0,16	0,09	0,02	0,02	0,02	0,15	0,03	0,05	0,08
Mg0	0,03	0,17	1,4	1,75	0,5	0,21	0,2	2,13	1,3	0,85	1,89
Ca0	0,02	0,06	2,72	2,1	53,37	55,82	54,83	0,77	0,27	0,01	0,03
Na ₂ 0	0,07	1,4	3,07	3,22	0,01	0,02	tr	1,51	2,44	0,19	0,33
κ ₂ ō	0,08	3,98	2,53	4,19	0,02	0,03	tr	3,72	2,02	1,95	3,17
TiO ₂	1,95	0,65	0.38	1,12	0,05	0,05	0,06	0,98	0.75	0,82	0,87
P205	0,03	0,04	0,11	0,49	tr	tr	tr	0,17	0.11	0,04	0,1
Perte au feu	5.57	5,15	3,41	3.42	43,33	43,35	43.74	5,06	2,56	3,22	4,76
Total	99,46	99,00	98,35	99,28	99,32	100,41	99,71	98,95	99,63	99,66	98,85
Rb	4	155	97	192	22	23	22	167	135	91	90
Sr	51	110	220	400	437	220	217	139	108	59	61
Ва	25	796	557	831	25	38	21	618	427	287	334
Ni	19	1	15	22	19	23	25	47	37	17	25
Cr	129	26	25	40	58	55	63	128	112	67	96
Co	4	3	8	13	tr	13	25	16	9	4	9
V	162	48	56	133	79	70	62	175	166	100	86
Nb	48	66	12	20				19	20	20	13
Zr	597	598	149	281				183	167	346	288
Y	70	112	40	46				36	36	35	27
		1								1	

Tableau I-35 : Analyses chimiques des échantillons du Carbonifère.

1 : Bassin de Laval

2 : Bassin de Châteaulin

Des schistes de l'Huisserie (Hu), Heurtebise (HE) et des calcaires de Sablé (Sa) ont été analysés.

- . Les deux analyses de l'Huisserie s'inscrivent dans la tendance générale observée jusqu'ici. Les teneurs en Na₂O, CaO et même K₂O pour Hu 2 sont faibles tandis que celles en Al₂O₃ et SiO₂ sont assez élevées.
- . Dans la Formation de Heurtebise une évolution très nette s'observe, les concentrations en Na₂O CaO et K₂O augmentent, elles traduisent l'apparition de plagioclase et de feldspath K plus abondants. De même, MgO et Fe₂O₃ correspondent à la présence de biotite et de chlorite. On observe également une évolution au niveau des éléments-traces avec une augmentation des teneurs en Sr (He = 400 ppm) et en Co.

L'abondance de ces deux éléments peut s'expliquer par la présence de minéraux frais, non hydrolysés dans la roche.

A l'opposé, Nb très concentré dans la formation de l'Huisserie diminue à Heurtebise. On remarque la même évolution pour Zr et Y. Le comportement de Ba et Rb coincide avec celui de K_2O .

. Calcaires de Sablé : Ils sont constitués presqu'exclusivement de calcite. Les éléments-traces les plus abondants sont Rb, Co et Ni alors que Sr est peu concentré en comparaison avec les séries calcaires précédentes.

2.1.2. Bassin de Chateaulin (Tableau I-36).

- Schistes : C'est une série très hétérogène, les pourcentages des différents éléments varient dans de larges gammes. L'hétérogénéité se retrouve aussi au niveau des élémentstraces. Les observations ponctuelles que l'on peut faire sont :

> . une concentration en Rb faible par rapport à K₂O dans l'échantillon CHA 9. . les fluctuations de Zr ne suivent pas celles de SiO₂.

- Grauwackes : Les valeurs semblent moins dispersées que celles des schistes, mais on dispose de peu d'analyses. Les principaux oxydes en dehors de SiO₂ et Al_2O_3 sont Fe_2O_3 , K_2O et Na_2O .

2.2. <u>Répartition des éléments entre les phases minéralogiques</u> : matrice des corrélations.

2.2.1. Bassin de Laval.

Les données étaient trop peu nombreuses pour permettre son calcul.

2.2.2. Bassin de Châteaulin (Figure I-31) (19 analyses).

SiO ₂								
34	Ti0 ₂							
90	. 27	A1203						
21	.25	08	Fe203					
53	24	.28	.54	MgO				
.25	23	47	27	09	CaO			
.28	23	06	44	24	16	Na ₂ 0		
78	-08	.91	35	.27	31	.05	K,0	
49	.13	.22	05	. 25	.65	50	.27	P.F.

Figure I-31 : matrice des corrélations des schistes dinantiens du Bassin de Chateaulin.

- Schistes : La faiblesse générale des coefficients est liée à la complexité minéralogique de ces roches. La corrélation (SiO₂, Al₂O₃) met en évidence la présence de quartz libre et de minéraux alumino-silicatés, ces derniers ne sont pas systématiquement hydratés puisque le coefficient (Al₂O₃, P.F.) est égal à 0,22.

Les principaux minéraux alumineux sont des minéraux potassiques (Al_2O_3 , K_2O = 0,91), muscovite et feldspath K, et des minéraux ferromagnésiens (MgO, Fe₂O₃ = 0,54), biotite et chlorite.
· · · · ·	M 1182	M 1191	M 1384	G 352	G 406	S 408	M 838	G 368	U 238	U 308	U 309	L 33	Q 1542	Q 1513	Q 1526	Q 1531	Q 1586	S 414	S 415	M 1174
5i0,	57,02	45,24	60,64	60,15	57,20	76,90	78,06	70,93	57,44	63,62	69,77	39,80	56,80	45,80	74,70	65,90	66,50	62,90	64,60	38,94
A1, 0,	21,15	34,41	17,67	18,52	20,20	13,40	11,73	13,86	20,72	13,32	16,08	31,30	22,45	31,40	14,60	8,50	9,70	18,60	17,40	30,34
fe ₂ 03	7,25	1,75	8,11	7,01	8,74	4,18	3,91	4,77	8,22	12,16	2,73	10,52	9,48	5,84	3,71	3,27	13,52	6,36	5,30	10,29
MnO	nd	nd	nd	nd	nđ	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nđ	nd
MgO	2,31	1,16	2,21	2,41	2,41	0,01	0,80	1,61	2,10	0,26	0,77	3,01	1,30	1,91	0,01	1,21	3,42	1,60	1,40	3,12
CaO	U,42	0,14	0,21	0,14	0,28	0,01	0,56	0,35	0,14	0,11	0,13	0,14	0,01	0,00	0,01	8,45	1,30	0,50	1,15	0,14
Na ₂ 0	1,08	0,33	1,35	0,55	0,24	1,76	1,16	1,45	1,50	0,01	2,86	0,35	1,30	0,97	0,80	0,45	0,08	1,40	1,15	0,50 -
к ₂ 0	4,90	8,80	3,57	4,08	4,35	0,84	1,22	2,15	4,00	0,90	3,86	5,81	2,50	7,24	2,54	1,65	0,41	3,20	3,36	7,44
Ti0 ₂	1,08	1,45	1,68	1,06	0,38	0,48	0,09	0,85	1,19	3,76	0,74	1,77	1,20	1,85	0,87	0,75	0,18	0,85	0,90	1,94
P205	nd	nd	nd	nd	nd	nđ	nd	nd	nđ	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
Perte au feu	5,15	6,65	4,56	5,21	6,10	2,14	2,50	3,54	4,49	4,89	2,63	6,91	4,60	5,18	2,69	9,74	3,89	3,90	4,15	6,58
Total	100,36	99,93	100	99,13	99,90	99,72	100,03	99,51	99,80	99,03	99,57	99,61	99,64	100,19	99,93	99,92	99,08	99,31	99,41	99,29

Tableau I-36 : Analyses chimiques des échantillons du Dinantien du Bassin de Chateaulin d'après Sagon, 1976).

	- Grauwackes (Figure 1-32) (5 analyses).								
SiO ₂									
82	Ti0 ₂								
73	.72	A1203							
74	.79	.70	Fe203						
81	. 50	.20	.46	MgO					
01	51	44	32	.48	CaO				
25	02	.32	36	.11	.20	Na20			
83	.77	.29	.62	.90	.08	.07	к ₂ 0		
72	.65	.34	.87	.74	.06	47	.82	P.F.	

Figure I-32 : Matrice des corrélations des grauwackes dinantiens du Bassin de Chateaulin.

La perte au feu est liée à la fraction détritique par l'intermédiaire de Fe_20_3 , MgO, TiO₂ et K₂O. Les minéraux contenant ces oxydes seront hydratés, c'est à dire qu'on retrouvera de la chlorite, plutôt que de la biotite, de l'illite et de la muscovite, plutôt que du feldspath potassique.

2.3. Conclusion.

La Formation de l'Huisserie mise à part, le Carbonifère se singularise des formations sous-jacentes par la fraicheur de ses constituants. Les minéraux détritiques, plagioclase et micas sont nombreux correspondant à des teneurs en Na₂O, CaO et MgO plus élevées D'autre part, en comparaison avec les roches dévoniennes, les roches du Carbonifère sont moins enrichies en Al₂O₃ (Figure I-33).

Figure I-33 : Localisation des échantillons du Carbonifère. mu : muscovite, bi : biotite, fk : feldspath K, il : illite, py : pyrophillite, ch : chlorite. La minéralogie originelle était plus variée, formée par du quartz, de la muscovite, de la biotite, de l'illite, de la chlorite, du plagioclase et du feldspath K.

III - Conclusion.

Dans le Bassin de Châteaulin, le Dinantien correspond à une succession de trois épisodes :

- un complexe volcanique de base
- des dépôts de galets recouverts par des sédiments argileux
- des sables et des silts

Le Carbonifère du Bassin de Laval est constitué par :

- le dépôt du Culm inférieur comprenant des alternances de galets, de sables et de sédiment argileux surmontant un épisode volcanique.
- des dépôts calcaires.
- des dépôts argileux.

On constate que la succession lithologique est différente entre ces deux régions. D'autre part, on a mis en évidence une évolution minéralogique et géochimique entre les séries du Dévonien et celles du Carbonifère avec notamment la présence de nombreux minéraux détritiques, micas et plagioclase, et l'absence de kaolinite systématique dans tous les sédiments originels.

Cette disharmonie d'évolution entre les deux régions et la transition avec le Dévonien résultent des bouleversements dûs à l'orogenèse varisque.

Le milieu de sédimentation est toujours un milieu marin peu profond de plateforme (Pelhâte, 1971; Sagon, 1976). Le problème consiste à déterminer la source de ces matériaux. Pour les séries sous-jacentes particulièrement du Silurien et du Dévonien, la zone d'alimentation était à rechercher du côté du socle cadomien. Au Dévonien moyen et supérieur à Laval et au Tournaisien à Châteaulin, la phase bretonne va engendrer de nouveaux reliefs entrainant l'émersion des couches dévoniennes. Puis dès le début du Dinantien, des roches volcaniques vont se mettre en place.

La source des matériaux formant le Carbonifère peut donc être attribuée à plusieurs zones :

- aux formations sédimentaires anté-carbonifères et notamment dévoniennes.
- au socle cadomien
- aux produits volcaniques.

L'argumentation principale en faveur de la première solution est la proximité de ces reliefs et leur jeunesse. Cependant, la minéralogie observée dans les séries anté-carbonifères ne peut expliquer la présence abondante de plagioclase et de biotite et l'absence de kaolinite.

Le socle cadomien et notamment l'érosion des micaschistes de la chaîne cadomienne a pu fournir la sédimentation du Carbonifère en micas : muscovite et biotite (Sagon, 1976). Quant à la présence abondante de plagioclase, elle ne peut s'expliquer que par l'intervention d'un matériel volcanique proche.

·

SYNTHESE

2^{ème} PARTIE

٩

.

x

I - Introduction - Données Géologiques.

Le Paléozoïque du domaine Centre Armoricain est constitué d'une succession monotone de formations détritiques terrigènes. Elles résultent des diverses transgressions qui ont débuté au Cambro-Trémadocien (Presqu'île de Crozon) et se sont poursuivies jusqu'au Dévonien.

Les dépôts sont formés par des alternances de niveaux gréseux et de niveaux pélitiques largement prépondérants sur les épisodes carbonatés et volcaniques.

Les faunes observées, la présence de minerais de fer oolithiques, de litages entrecroisés. et de lits de minéraux lourds témoignent généralement d'un milieu marin peu profond de type épicontinental; les changements de faciès résultent de variations dans la nature des apports ou de l'énergie du milieu de dépôt plutôt que de phénomènes d'approfondissement importants. Les études pétrographiques et géochimiques montrent que dans l'ensemble les compositions sont assez monotones. Cependant des évolutions locales et temporelles ont été décelées; leurs origines sont à rechercher au niveau de la région source et des conditions climatiques ayant conditionné son altération.

Cette partie récapitule l'ensemble des informations recueillies précédemment et replace les formations étudiées dans le cadre du Massif Armoricain.

II - Résultats pétrographiques et géochimiques.

2.1. Compositions minéralogiques des formations étudiées : Tableau II-1.

Une association minérale se retrouve systématiquement dans toutes les séries, elle est constituée par le quartz détritique et les phyllosilicates néoformés, l'illite et la chlorite. D'autres minéraux sont également présents mais en moindre abondance et seulement dans certaines formations, on en observe trois types :

- les minéraux détritiques : ce sont principalement la muscovite, présente dans les formations du Grès armoricain, du Dévonien moyen et supérieur et du Carbonifère , le feldspath K présent dans les Formations du Grès armoricain, des schistes à Calymènes, du Dévonien moyen et supérieur et du Carbonifère, plus occasionnellement le plagioclase mis en évidence dans les Formations de Kermeur et du Carbonifère ainsi que la biotite dans les formations du Carbonifère.
- un minéral alumineux néoformé:la kaolinite observable dans les Formations de Kermeur, du Cosquer et dans certaines formations du post-Wenlock.
- des minéraux de métamorphisme: la pyrophyllite, la margarite, la paragonite et le chloritoïde. Ces minéraux sont présents dans les formations du Cambro-Trémadocien, du Llanvirn et Llandeillo et dans les formations post-Wenlock.

Le cortège des minéraux accessoires englobe presque systématiquement le zircon, la tourmaline et le rutile auxquels viennent s'ajouter l'apatite et les minéraux opaques dans certaines séries.

Dans le tableau II-l sont récapitulés les assemblages minéralogiques détectés dans cette étude pour le Bassin de Laval et la Presqu'île de Crozon et par Sagon (1976) dans le Bassin de Châteaulin. Il faut ajouter à ce tableau des observations faites par d'autres auteurs :

Tableau II-1 : Compositions minéralogiques des formations étudiées.

- chloritoïde : mis en évidence dans l'Ordovicien de la ^presqu'île de Crozon par Melou et Plusquellec (1967), dans le Dévonien par Lucas et al. (1967), Cabanis (1972) et Bril (1975), dans les schistes et quartzites de Plougastel par Paradis (1981).
- paragonite : déterminée par Paradis (1981) sous forme d'interstratifié dans la muscovite dans la Presqu'île de Crozon.
- la margarite n'a jamais été signalée à Laval ou Crozon.

Les séries du Bassin de Laval et de la Presqu'île de Crozon correspondant stratigraphiquement aux formations du Bassin de Chateaulin où les minéraux chloritoïde, margarite et paragonite ont été déterminés par Sagon (1976), se caractérisent soit par la présence de pyrophyllite ou de kaolinite (Ludlow, Dévonien inférieur et moyen) soit par un enrichissement en Al_2O_3 (Cambro-Trémadocien, Llanvirn-Llandeilo, Dévonien moyen). Or le chloritoïde, la margarite et la paragonite nécessitent un milieu riche en Al_2O_3 pour se former. Donc l'hétérogénéité minéralogique résulte de phénomènes postérieurs aux dépôts, d'origine métamorphique. Alors que dans le Bassin de Châteaulin, les conditions de métamorphisme de bas degré sont atteintes (Sagon, 1976), dans la Presqu'île de Crozon (Paradis, 1981) et probablement sur le flanc Nord du Bassin de Laval on se situe encore dans le très bas degré de métamorphisme, ceci ne permet sans doute pas la formation de ces minéraux en quantité suffisante pour être détectés par diffraction de rayons X.

2.2. Compositions géochimiques des formations étudiées. Tableau II-2.

2.2.1. Rappels des principaux caractères.

Les compositions chimiques moyennes des deux types de roches présentes, les grès et les schistes, sont reportées dans le tableau II-2.

On observe par coupe une bonne homogénéité entre le Bassin de Laval et la Presqu'île de Crozon au niveau des principaux constituants SiO_2 , Al_2O_3 , Fe_2O_3T et K_2O . Les oxydes Na_2O , CaO et MgO sont peu abondants excepté dans les grès de Laval. Cet enrichissement résulte de la présence des grauwackes du Carbonifère dont la minéralogie est plus variée.

La comparaison des schistes met en évidence une augmentation des concentrations en K₂O à Crozon (5,37% pour 3,49%) et en Fe₂O₃ à Laval (6,12% pour 3,97%). Le Bassin de Châteaulin se différencie des autres coupes par une plus grande richesse en CaO, Na₂O etMgO qui correspond à la présence de margarite (CaO), de paragonite (Na₂O) et de chloritoïde (MgO).

Remarque :

Au cours de la première partie on a montré que dans la majorité des formations le comportement des éléments majeurs et des éléments-traces s'harmonisait entre les grès et les schistes. Ceci traduit une identité minéralogique des fractions alumineuses entre ces deux types de roches lorsqu'elles appartiennent à une même formation.

Λ	
A	

Nom Elément	Moyenne Arithm.	Ecart - - Type	Coefficient Dispersion	Valeur Maxima.	Valeur Minima.
SiO,	86.77	11.11	0.13	99.56	58.14
A1.0.	6.85	4.77	0.70	18.56	0.69
Fe ₂ 0 ₃	1.74	2.67	1.54	10.63	0.10
MnÖ	0.04	0.06	1.29	0.16	0.01
MgO	0.38	0.51	1.34	1.75	0.01
CaO	0.39	0.80	2.05	2.73	0.03
Na ₂ 0	0.58	0.95	1.65	3.22	0.02
K-0	1.02	1.04	1.02	4.19	0.08
Ti0,	0.55	0.30	0.53	1.12	0.07
P205	0.12	0.12	1.03	0.49	0.01
P.F.	1.86	1.27	0.69	4.93	0.32
Total	100.30	-	-	-	-

Bassin de Laval

Nom Elément	Moyenne Arithm.	Ecart - - Type	Coefficient Dispersion	Valeur Maxima.	Valeur Minima.
SiO,	77.02	6.22	0.08	91.25	70.93
A1,0,	11.84	2.74	0.23	13.86	5.30
Fe ₂ 0 ₃	3.69	1.43	0.39	4.76	0.24
MnÖ	0.03	0.01	0.34	0.05	0.02
MgO	0.85	0.57	0.67	1.61	0.01
CaO	0.23	0.18	0.79	0.56	0.01
Na ₂ 0	1.37	0.88	0.65	2.44	0.12
ĸ,Õ	1.58	0.54	0.34	2.15	0.84
Ti0,	Q.56	0.30	0.54	0.85	0.09
P205	0.08	0.04	0.47	0.11	0.04
P.F.	2.59	0.59	0.23	3.54	1.63
Total	99.83	÷	**	-	-

Bassin	de	Châ	te	aι	ılin	I
--------	----	-----	----	----	------	---

Nam Elément	Moyenne Arithm.	Ecart - - Type	Coefficient Dispersion	Valeur Maxima.	Valeur Minima
SiO ₂ Al ₂ O ₃	83.40 8.70 2.49	8.67 4.14 2.84	0.10 0.48 1.14	95.12 17.23 9.61	65.95 1.50 0.14
MnO MgO	0.02	0.02	0.90	0.09	0.01
CaO Na ₂ O	0.10	0.11 0.20	1.09 0.97 0.53	0.55 0.81 3.93	0.02
κ ₂ υ TiO ₂ Ρ ₂ Ο ₅	0.61	0.38	0.62	1.84 0.66	0.07
P.F. Total	2.38 100.08	1.00	0.42	4.65 -	0.86

Presqu'île de Crozon

Nom Elément	Moyenne Arithm.	Ecart - - Type	Coefficient Dispersion	Valeur Maxima.	Vəleur Minima.
SiO ₂	57.12	8.71	0.15	75.39	31.00
A1,03	22.95	5.37	0.23	31.32	10.39
Fe ₂ 0 ₃	6.12	5.11	0.84	28.73	0.58
MnÖ	0.02	0.02 -	0.88	0.08	0.01
MgO	0.85	0.45	0.53	1.80	0.03
Ca0	0.21	0.15	0.73	0.57	0.02
Na ₂ 0	0.54	0.32	0.59	1.40	0.07
к ₂ 0	3.49	1.57	0.45	7.98	0.08
Ti0 ₂	1.12	0.29	0.26	1.95	0.54
P205	0.13	0.09	0.71	0.41	0.03
P.F.	7.22	4.38	0.61	24.72	3.03
Total	99.78	-	-		-

	Bas	ssin	de	Laval
--	-----	------	----	-------

Nom Elément	Moyenne Arithm.	Ecart - - Type	Coefficient Dispersion	Valeur Maxima.	Valeur Minima.
SiO ₂	56.52	9.57	0.17	80.10	38.77
A1203	23.29	6.78	0.29	36.06	8.50
Fe ₂ 03	7.33	3.01	0.41	13.51	0.38
MnQ	0.10	0.03	0.32	0.15	0.08
Mg0	1.56	0.84	0.54	3.42	0.01
Ca0 `	0.56	1.10	1.96	8.45	0.01
Na ₂ 0	0.78	0.58	0.75	2.86	0.01
κ ₂ 0	3.62	2.02	0.56	9.57	0.41
Ti02	1.21	0.52	0.43	3.76	0.18
P205	0.12	0.03	0.27	0.17	0.10
P.F.	4.89	1,38	0.28	9.74	1.90
Total	99.98	-	-	-	-

Bassin de Châteaulin

Nom Elément	Moyenne Arithm.	Ecart - - Type	Coefficient Dispersion	Valeur Maxima.	Valeur Minima.
Si0,	56.04	7.08	0.13	81.70	45.52
A1,0,	24.06	5.43	0.23	31.67	7.88
Fe ₂ 0 _x	3.97	2.81	0.71	10.95	0.35
MnÔ	0.03	0.04	1.37	0.25	0.01
MgD	0.96	0.63	0.66	3.34	0.31
CaO	0.26	0.51	1.98	3.42	0.03
Na ₇ 0	0.50	0.35	0.69	1.78	0.14
к,0	5.37	2.15	0.40	9.08	0.87
TiO,	1.19	0.27	0.23	1.54	0.32
P205	0.12	0.20	1.64	1.65	0.01
P.F.	6.62	2.10	0.32	12.95	1492
Total	99.12	-	-	+	

Presqu'île de Crozon

Tableau II- 2 : Compositions chimiques moyennes des grès (A) et des Schistes (B) des formations étudiées.

2.2.2. Etude de quelques diagrammes.a) SiO₂/Al₂O₃

Une forte corrélation négative entre ces deux oxydes signifie que les points représentatifs des roches étudiées se répartissent suivant une droite de mélange dont le pôle alumineux correspond à un mélange de phyllosilicates et le pôle siliceux à un mélange où prédomine le quartz. Elle met de plus en évidence le faible rôle joué par la matière organique.

Le prolongement de la droite de corrélation interceptant l'axe SiO₂ près de 100%, indique que le feldspath potassique et le plagioclase ne jouent qu'un rôle subordonné dans le pôle du mélange siliceux.

Evolution de la corrélation (SiO_2, Al_2O_3) pendant le Paléozoïque. Fig.II-I.

Dans la majorité des formations étudiées, cette corrélation existe avec une légère évolution de la pente et de la position de la droite de régression au cours du Paléozoīque.

- Figure II-la Formations cambro-trémadociennes et ordoviciennes. La droite de régression coupe l'abscisse et l'ordonné aux points $SiO_2 = 100\%$ et $AI_2O_3 = 60\%$.
- Figure II-lb Formations du Llandovery, du Wenlock et du Ludlow. La corrélation négative disparaît dans les formations du Llandovery, les points se dispersent sous la droite définie précédemment. Ces phénomènes résultent de la présence d'une autre fraction constituée par la matière organique. La corrélation réapparaît ensuite au Wenlock et au Ludlow, la droite de régression se redresse passant par les points SiO₂ = 85% et Al₂O₃ = 70%.
- Figure II-lc Formations du Silurien supérieur et de Dévonien. La droite de régression coupe l'abscisse et l'ordonné aux points $SiO_2 = 95\%$ et $Al_2O_3 = 60\%$.
- Figure II-ld Formations du Carbonifère. La corrélation est moins bonne que dans les séries précédentes, on observe une plus grande dispersion des points. Elle résulte de la présence de nombreux grains de feldspath potassique et de plagioclase.

Conclusion :

Les résultats géochimiques confirment les résultats stratigraphiques et pétrographiques : les formations paléozoIques sont homogènes et correspondent à des séries détritiques terrigènes, résultant d'un mélange entre un pôle siliceux et un pôle alumineux. Les droites de régression coupent l'abscisse entre les points $SiO_2=85\%$ et $SiO_2=100\%$ et l'ordonné entre les points Al_2O_3 =60% et $Al_2O_3=70\%$. La présence de feldspath K et le plagioclase n'est significative qu'à partir du Carbonifère. Seule la formation ampélitique datée du Llandovery se distingue de l'ensemble par la présence abondante de matière organique.

Ces résultats coïncident avec ceux obtenus par Sagon (1976) sur la partie orientale du Bassin de Châteaulin.

Figure II-1 : Diagramme SiO_2 en fonction d'Al $_2O_3$ dans les formations étudiées.

Le potassium est le principal constituant lié à la fraction alumineuse. On constate dans les figuresII-2 et II-3 que tous les points représentatifs se situent dans la zone $Al_2O_3/K_2O > 3$. La répartition s'effectue entre deux ensembles :

- dans l'ensemble A on observe une bonne corrélation entre les deux oxydes. Al₂O₃ entre principalement dans la constitution des minéraux potassiques, la muscovite et l'illite, la chlorite ne joue qu'un rôle secondaire. Cet ensemble regroupe les formations du Cambro-Trémadocien, de l'Arénig, de l'Ordovicien supérieur, du Llandovery et du Wenlock, ainsi que quelques échantillons du Llanvirn-Llandeilo de la Presqu'île de Crozon.
- dans l'ensemble B la corrélation disparaît et on constate un enrichissement en Al₂0₃ par rapport aux teneurs de K₂0. Celui-ci va permettre la formation de minéraux alumineux. Cet ensemble comprend les formations du Ludiow, du Dévonien et quelques roches du Llanvirn-Llandeilo provenant du Bassin de Laval.

La dispersion des formations observée par Sagon (1976) dans le Bassin de Châteaulin est du même ordre. Figure II-4.

Ensemble A - formations du Cambro-Trémadocien, de l'Arénig, du Silurien moyen et du Dinantien.

Ensemble B

- formations de l'Ordovicien moyen et supérieur, du Silurien supérieur et du Dévonien.

Figure II- 2 : Diagramme K₂0 en fonction d'Al₂0₃ dans les formations de la Presqu'île de Crozon. Il : illite, Mu : muscovite, Ka : kaolinite, F.K. : feldspath potassique, Ch : chlorite, Qz : quartz.

Figure II- 3 : Diagramme K_2^0 en fonction d'Al $_2^0$ dans les formations du Bassin de Laval.

Il : illite, Mu : muscovite, Ka : kaolinite, F.K. : feldspath potassique, Ch : chlorite, Qz : quartz.

Figure II- 4 : Diagramme K_2^0 en fonction d'Al $_2^0$ dans les formations du Bassin de Châteaulin (Sagon, 1976).

Il : illite, Mu : muscovite, Ka : kaolinite, F.K. : feldspath potassique, Ch : chlorite, Qz : quartz.

c) $Al_2O_3/K_2O+Na_2O+CaO/Fe_2O_3$ (T)+MgO (Figure II-5).

Bien que les points soient assez regroupés on observe une légère évolution entre les deux groupes A et B définis précédemment avec une diminution relative de la somme K_2 0+Na₂0+Ca0 dans le groupe B par rapport au groupe A. Le parallélisme avec les compositions minéralogiques montre que le groupe A correspond à une composition voisine de celle de l'illite et montre l'influence des minéraux alumineux tels que la kaolinite pour le groupe B.

Conclusion :

La principale évolution observée est liée à la position des roches dans la colonne stratigraphique et se traduit par une variation des teneurs $d'Al_2O_3$ comparativement aux autres oxydes, et plus particulièrement à K₂O.

Cette étude a été complétée par une analyse factorielle effectuée sur les grès et les schistes de toutes les formations paléozoïques.

2.3. Analyse factorielle. Tableau II-3.

Elle met en évidence les principaux facteurs conditionnant le comportement des roches.

2.3.1. Grès.

2.3.1.1. Bassin de Laval.

Quatre facteurs ont été retenus, ils représentent 88% de la

variance.

F₁ (58%) : ce facteur oppose la silice (SiO₂) à la fraction alumineuse ferrifère (Al₂O₃, Fe₂O₃, Co, Ni, V, P.F.) à laquelle est associé TiO₂. Il exprime le rôle de dilution joué par le quartz.

F₂ (15%) : il distingue la silice (SiO₂) de l'ensemble des éléments (CaO, Na₂O, K₂O, Rb) correspondant au feldspath K et au plagioclase et les éléments (MnO, MgO, Co).

 $F_3 (8\%) : il rassemble les éléments de l'illite-muscovite (Al_2O_3, K_2O, Rb) et associés (TiO_2, Nb, P_2O_5, Y, Sr, Ba, V).$

 F_4 (7%) : il correspond aux minéraux accessoires zircon et rutile (Zr, TiO₂, Nb).

2.3.1.2. Presqu'île de Crozon.

Cinq facteurs ont été retenus, ils représentent 89% de la variance.

- F₁ (50%) : il oppose la silice (SiO₂) à une fraction ferrifère constituée par la chlorite (Fe₂O₃, TiO₂, P.F., Ni, Cr, V, Nb) et aux minéraux sodiques (Na₂O, Sr). Il représente l'opposition quartz, chlorite, plagioclase.
- F_2 (14%) : il associe (CaO, P_2O_5 , Y) et correspond à l'apatite .
- F_3 (12%) : il groupe les éléments de l'illite-muscovite (Al₂0₃, K₂0, Rb, Ba, Cr).
- $F_{\underline{\lambda}}$ (8%) : il représente le zircon (Zr).
- F_5 (5%) : il caractérise la chlorite (Al₂O₃, Fe₂O₃, MgO, P.F., Ni, Co, V).

2.3.1.3. Récapitulation.

La comparaison des résultats entre le bassin de Laval et la presqu'île .

de Crozon montre :

- le rôle de diluant joué par le quartz, en opposition à la fraction alumineuse.
- la principale fraction alumineuse, représentant 50% et 58% de la variance est constituée par la chlorite.
- la deuxième fraction est formée par le plagioclase, lié soit au feldspath K (Laval) soit à la chlorite (Crozon).
- les phyllosilicates potassiques jouent un rôle secondaire et ne représentent que 10% à 14% de la variance.
- les minéraux accessoires jouent un rôle dans le comportement des grès (zircon et rutile).

La seule différence notoire se situe au niveau de CaO. Il est moins abondant à Crozon où il est associé aux phosphates (14% de la variance) qu'à Laval où sa présence dans le plagioclase masque celle dans l'apatite.

supérieurs à 0,5).

2.3.2. Schistes :

2.3.2.1. Bassin de Laval.

F₁ (22%) : il oppose SiO₂ à l'association (Fe₂O₃, Ni, P.F., V) et exprime l'opposition entre la fraction détritique quartzeuse et la fraction constituée de matière organique et d'oxydes de fer.

 F_2 (21%) : il regroupe MgO, CaO, Na₂O, Sr et Co.

 F_3 (12%) : il oppose la fraction alumineuse et les éléments associés (Al₂O₃, TiO₂, Cr) aux oxydes de fer (Fe₂O₃, Co) et à MnO.

 F_5 (7%) : il exprime l'illite-muscovite (K₂0, Rb, Ba).

2.3.2.2. Presqu'île de Crozon.

- F₁ (22%) : il distingue le quartz et le zircon (SiO₂, Zr) à l'ensemble (P.F., Ni, V) représentant la matière organique.
- $\rm F_2$ (20%) : il regroupe les éléments de l'illite-muscovite (K_20, Rb, Ba) en opposition à (Fe_20_3, Na_20, Co).

 F_3 (17%) : il caractérise le rutile (TiO₂, Nb, Cr).

 F_4 (11%) : il oppose le zircon (Zr) à la chlorite (Fe₂O₃, MgO, Ni, Co, P₂O₅).

 $F_{f_{c}}$ (5%) : il exprime les carbonates (CaO, Sr, Y).

2.3.2.3. Récapitulation.

On observe une plus grande dispersion des facteurs qui sont par ailleurs moins significatifs que pour le groupe des grès.

Dans les deux coupes on retrouve l'opposition apports détritiques (quartz) matière organique, mais aucun facteur ne définit strictement le comportement d'Al₂O₃ qui se disperse entre les différentes phases alumineuses (illite, muscovite, chlorite) et minéraux alumineux(kaolinite, pyrophyllite).

L'absence de facteur déterminant résulte d'une certaine hétérogénéité de la composition des schistes au cours du Paléozoïque.

III - Evolution climatique.

La reconstitution de la composition minéralogique originelle a mis en évidence la présence constante de l'association minérale, quartz, muscovite-illite, chlorite à laquelle se joint dans certains étages la kaolinite. Les séries possédant des minéraux détritiques sont dépourvues de kaolinite ou ne montrent pas d'enrichissement en Al₂O₃. Ces observations autorisent à émettre certaines hypothèses sur les variations climatiques.

La présence de minéraux détritiques (muscovite, biotite, feldspath K, plagioclase) indique que l'altération était insuffisante pour détruire tous les constituants de la rochemère. A l'opposé la présence de kaolinite résulte d'une hydrolyse intense qui a permis la destruction de la muscovite et du feldspath K au profit de ce minéral.

Dans le premier cas on se retrouve en présence d'un climat tempéré et dans le deuxième cas d'un climat humide et chaud.

Le diagramme Al/3-K en fonction d'Al/3-Na de De La Roche (1972) a été choisi pour illustrer les évolutions climatiques. Ce diagramme montre le comportement différentiel de Na et K entre les formations magnatiques et sédimentaires. Dans les premières Na et K se retrouvent en-

Figure II- 6 : Diagramme Al/3-Na en fonction de Al/3-K (De La Roche, 1972).

semble au sein des structures feldspathiques. Mais au cours du cycle sédimentaire Na ira préférentiellement dans les eaux marines tandis que K sera lié à l'alumine pour former les phyllosilicates. Si l'altération s'accentue les minéraux potassiques hérités ou néoformés seront eux aussi détruits au profit de la kaolinite et K ira rejoindre Na.

Deux grands ensembles se distinguent dans les figures II-6.

- A : K et Na tendent à se comporter de façon identique tandis qu'Al augmente. Cet ensemble regroupe les séries se déposant à partir du Ludlow et jusqu'à la fin du Dévonien, ainsi que la Formation d'Andouillé (Bassin de Laval) et les formations de l'Ordovicien moyen et supérieur du bassin de Châteaulin. Il se situe dans ou près du domaine des argiles sidérolithiques.
- B : K est plus enrichi que Na. Cet ensemble regroupe les autres séries, il s'étend du domaine des shales à celui de l'illite-muscovite.

Du point de vue composition minéralogique et géochimique le groupe A rassemble les formations possédant des minéraux alumineux ou enrichis en Al₂O₃ tandis que dans le groupe B on observe certaines des formations ayant des minéraux détritiques.

Les observations faites dans le bassin de Laval et sur la presqu'île de Crozon coïncidant avec celles effectuées par Sagon (1972) sur la partie orientale du bassin de Châteaulin, on peut tenter une approche des évolutions climatiques au cours du Paléozoïque. Pour le Cambro-Trémadocien , la présente étude ne permet pas de conclure mais la présence sporadique de kaolinite, l'absence de minéraux détritiques (muscovite, plagioclase, feldspath K) et l'existence de couches rubéfiées témoignent d'une altération sous climat chaud. Ensuite à partir de l'Arénig, un refroidissement s'effectue aui permet la conservation de muscovite et de feldspath K détritiques et la disparition de kaolinite.

Puis à l'Ordovicien moyen , on assiste à un réchauffement qui explique l'enrichissement observé en Al₂O₃ dans les bassins de Laval et Châteaulin et la disparition de micas détritiques. L'absence de kaolinite peut résulter d'une localisation géographique au large des côtes.

Dans les formations de Kermeur et du Cosquer de la presqu'île de Crozon, la réapparition du plagioclase détritique tend à prouver l'existence d'un refroidissement. Ce dernier se poursuit au Silurien inférieur puisque les séries du Llandovery et du Wenlock ne montrent pas d'enrichissement en Al₂O₃ et que la kaolinite ne réapparaît qu'au Ludlow. Elle résulte alors d'un réchauffement climatique qui se prolonge pendant le Dévonien inférieur et moyen.

Des minéraux détritiques s'observent à nouveau au Carbonifère, leur présence pourrait être liée à un refroidissement. Ceci est cependant en contradiction avec les données de la paléontologie qui traduisent plutôt un climat tropical (F. Paris, communication orale). Une étude plus approfondie permettrait de trancher entre ces interprétations.

IV - Recherche de l'origine des sédiments.

Cette recherche va s'effectuer en deux temps :

- à partir des observations pétrographiques
- à partir des compositions géochimiques

4.1. Origine des sédiments.

L'origine la plus vraisemblable pour ces matériaux est à rechercher dans les terres émergées voisines. En effet, les minéraux observés dans les formations du domaine Centre -Armoricain sont soit présents dans le socle Cadomien (sédiments briovériens et granites mancelliens) soit proviennent de la destruction des minéraux le constituant. Deux formations cependant se différencient de l'ensemble : - la Formation du Grès armoricain : Elle se distingue par sa composition minéralogique très riche en quartz, comprenant de la muscovite et du feldspath potassique détritiques mais pauvre en chlorite. Or l'ensemblebriovérien se caractérise par la rareté des faciès siliceux purs, la rareté de la muscovite détritique, la présence d'albite comme unique feldspath et par une grande abondance de chlorite. D'autre part, cette formation très importante en volume s'est déposée en un temps relativement court (moins de 10 Millions d'années), ce qui exige un stockage préalable du matériel.

Enfin la présence de cette formation du Sud marocain jusqu'au Pays de Galles, argumente plutôt pour une origine externe au domaine armoricain située vers le Sud-Ouest de l'Europe. - les formations du Carbonifère. Elles contiennent de nombreux minéraux détritiques (biotite, muscovite, plagioclase, feldspath potassique) dont la présence ne peut s'expliquer par une origine uniquement briovérienne, il faut donc chercher ailleurs leurs provenances.

Le socle cadomien a pu fournir la sédimentation en biotite, muscovite et feldspath K par l'intermédiaire de l'altération des granites mancelliens et des micaschistes de la chaîne cadomienne. D'autre part, les formations anté-carbonifères soulevées par l'orogenèse varisque ont alimenté le Carbonifère en minéraux néoformés, illite et chlorite. Une trace de leur participation est la présence de pyrophyllite détectée dans un échantillon du Tournaisien. Enfin, le plagioclase provient vraisemblablement des émissions volcaniques qui se sont effectuées au moment du soulèvement.

4.2. Recherche de la nature chimigue de la roche-mère.

Les différentes étapes du cycle sédimentaire sont le siège de nombreuses réactions chimiques et transformations minéralogiques. Elles s'effectuent progressivement en réponse à l'action des facteurs extérieurs tels que :

- la nature de la roche originelle
- l'intensité de l'altération
- le transport
- la nature et la profondeur du bassin de sédimentation
- l'activité biologique
- la diagenèse

La différenciation de la roche sédimentaire sera liée aux intensités respectives de ces processus.

- L'intensité de l'altération et l'activité biologique sont responsables de certains caractères minéralogiques et géochimiques; ceux-ci ont été mis en évidence dans la première partie.
- Le transport n'est pas un facteur différenciant dans la mesure où il joue le même rôle pour la majorité des séries armoricaines.
- La diagenèse peut influencer la géochimie et la minéralogie notamment par les phénomènes de réhomogénéisation qui s'effectuent grâce à la circulation des eaux. On verra dans la troisième partie que son action semble limitée à des contaminations interbancs.

C'est donc l'influence de la nature chimique de la roche mère qui semble jouer le rôle le plus important et qui va être étudiée dans ce qui suit. Dans ce but, on a utilisé des représentations graphiques qui mettent en parallèle les roches sédimentaires et les roches plutoniques en différenciant bien ces dernières.

Diagramme $Fe_2O_3T + TiO_2 + CaO$ en fonction d'Al₂O₃ (de La Roche, 1972).

Ce diagramme s'applique aux roches totales et permet l'étude simultanée des roches sédimentaires et des roches ignées par comparaison des compositions chimiques.

Les séries ignées se dispersent peu et évoluent depuis les basaltes jusqu'aux rhyolites. Les formations sédimentaires s'étalent de part et d'autre, s'éloignant d'autant plus de la tendance ignée qu'elles sont évoluées et différenciées.

Figure II- 7 : Diagramme $Fe_20_3T + Ti0_2 + Ca0$ en fonction d'Al $_20_3$ (De La Roche, 1972). Champ couvert par les points représentatifs des trois coupes.

Figure II-7 : On pose $Fe_20_3T + Ti0_2 + Ca0 = X$

L'ensemble des formations se situe dans une zone limitée par les droites X = 0% et X = 12% et avec un pourcentage d'Al₂0₃ évoluant entre 0% et 35%. Les points représentatifs sont dispersés dans ce domaine qui s'étend des compositions des rhyolites à celles des granodiorites.

En parallèle sont notées les compositions des roches plutoniques et de leurs produits d'altération :

1.2,3 : évolution d'un gneiss granitique (Goldich 1938, in Garrels et Mac Kenzie, 1971). A,B,C,D:évolution d'un basalte (Patterson et Roberson, 1961, in Garrels et Mac Kenzie, 1971). Les séries armoricaines se parallélisent avec l'évolution chimique de l'altération

d'un gneiss granitique.

Diagramme $Si0_2/A1_20_3$. Figure II-8. Les sédiments du Paléozoïque se localisent dans la zone des compositions chimiques des roches acides et de leurs produits d'altération.

V - Conclusion.

Les roches sédimentaires du domaine Centre Armoricain sont détritiques terrigènes, elles ont une composition géochimique et minéralogique assez homogène. Elles proviennent de l'altération du socle cadomien qui s'est effectuée sous des climats alternativement tempérés et chauds et humides. La composition chimique de ces roches coïncide avec celles des roches magmatiques acides (rhyolites à granodiorites).

3^{ème} PARTIE

INTRODUCTION

Cette partie est consacrée à l'étude du comportement des éléments-traces au cours des différentes étapes du cycle sédimentaire, ainsi qu'à la réponse de ces éléments aux facteurs extérieurs qui affectent les sédiments.

L'étude repose sur des analyses chimiques effectuées sur roche totale; elle tient compte des observations faites dans la première partie.

Les éléments-traces analysés sont : V, Cr, Co, Ni, Rb, Sr, Ba, Nb, Y et Zr ainsi que TiO₂. Les résultats obtenus ont été comparés à ceux publiés par Wedepohl (1974).

CHAPITRE 1

LE TITANE

I - Géochimie de Ti.

C'est l'élément-trace le plus fréquent dans les roches ignées; on le retrouve plus abondamment dans les roches mafiques ($\overline{M} = 1,8\%$) que dans les roches siliceuses ($\overline{M} = 0,6\%$). Il possède trois valences 2⁺, 3⁺ et 4⁺ et peut se présenter sous plusieurs aspects :

- il se combine avec l'oxygène pour former des oxydes simples : rutile, anatase.

- ces oxydes peuvent s'associer à d'autres éléments :

. la silice et le calcium dans le sphène (Ca Si ${\rm TiO}_{\rm S})$

. le fer dans l'ilménite (Fe TiO₃)

- on le trouve dans les solutions solides de certains minéraux silicatés :

amphibole, pyroxène, biotite où il peut se substituer à Fe³⁺ ou Al³⁺.

Dans les roches sédimentaires il se présente souvent sous la forme d'aiguillés de rutile très finement cristallisées dans le plan des minéraux argileux. (Millot, 1964 ; Hirst, 1962).

Au cours des phénomènes d'altération, le titane se comporte différemment suivant sa localisation minéralogique :

- s'il est initialement constituant substitué, il se solubilise facilement.

- s'il est sous forme d'oxyde, il résiste plus ou moins à l'altération et peut rejoindre les autres minéraux lourds zircon et tourmaline dans les dépôts résiduels.

II - Comportement de Ti dans les roches sédimentaires du Massif Armoricain.

Les concentrations sont plus élevées dans les schistes (M = 1,17%) que dans les grès ($\overline{M} = 0,57\%$) tandis que les calcaires se caractérisent par des teneurs assez faibles, comprises entre 0,05% et 0,4%. Dans l'ensemble des formations étudiées du domaine Centre Armoricain, on constate que TiO₂ s'associe à la fraction alumineuse des roches, cette corrélation se retrouve à Laval et à Crozon (Figure III-1). Cependant deux tendances peuvent être distinguées, liées au pourcentage d'Al₂O₃:

Figure III-1 : Diagramme TiO₂ (%) en fonction d'Al₂O₃ (%).

Compositions moyennes de : (1) granites, (2) granodiorites, (3) gabbros, (4) basaltes. (Le Maître, 1976).

- $Al_2O_3 < 18\%$: ce sont principalement les grès qui constituent cet ensemble. Ils se caractérisent du point de vue minéralogique par des paragenèses à quartz, micas blancs, chlorite et parfois feldspath K. Dans ces roches TiO₂ est lié à Al_2O_3 avec un rapport variant entre 0,06 et 0,10.
- Al₂O₃ > 18% cet ensemble regroupe les schistes, plus riches en alumine. Les paragenèses sont plus variables, constituées de quartz, micas blancs et chlorite et englobant dans certaines formations des minéraux plus alumineux tels que la kaolinite et la pyrophyllite. Pour ces roches on observe un abaissement de la droite de corrélation et une diminution du rapport TiO₂/Al₂O₃ qui devient inférieur à 0,06 .

Compte tenu de la minéralogie des roches détritiques armoricaines, le principal porteur du titane est le rutile, soit associé aux minéraux alumineux, soit présent avec les autres minéraux accessoires.

2.1. Evolution du rapport IiO_2/Al_2O_3 dans les grès (Figure III-2).

Figure III-2 : Diagramme TiO₂ (%)/ Al_2O_3 (%) en fonction de SiO₂ (%) (même légende que dans la figure III-1).

Les roches détritiques terrigènes étudiées résultent d'un fractionnement entre un pôle siliceux (quartz) et un pôle alumineux (cf. lère partie); le coéfficient de corrélation (SiO₂, Al₂O₃) varie entre -0,9 et -1,00. Les minéraux plus riches en silice tels que le plagioclase et le feldspath K ne sont pas abondants, on peut donc, en l'absence d'analyse modale, approcher les variations des teneurs en quartz par celles de SiO₂ et cela à partir du seuil SiO₂ = 45% (teneur moyenne dans la muscovite).

La figure III-2 montre que le rapport $\text{TiO}_2/\text{Al}_2\text{O}_3$ varie entre 0,03 et 0,11 avec l'augmentation de SiO_2 . Cette évolution traduit la prédominance des oxydes de titane associés aux autres minéraux accessoires par rapport à ceux associés aux minéraux alumineux. Elle résulte du tri minéralogique qui s'est effectué progressivement et de l'augmentation de la taille des grains, celle-ci étant en relation avec l'énergie de l'environnement de dépôt.

Spears et Kanaris-Sotiriou (1976) ont observé une même corrélation dans des sédiments de Grande-Bretagne. Leur droite de régression coupe l'ordonné "Quartz = 0%" en $TiO_2/AI_2O_3 = 0,025$. Ils interprètent alors ce rapport comme représentatif des concentrations de titane dans les minéraux argileux.

Dans le Massif Armoricain les points sont plus dispersés, cependant c'est également aux environs de $\text{TiO}_2/\text{Al}_2\text{O}_3 = 0,025$ que passe la droite de régression. L'hypothèse de Spears et Kanaris-Sotiriou (1976) peut être reprise mais pas de façon systématique pour tous les minéraux argileux; en effet dans les schistes très alumineux le comportement de TiO₂ par rapport à Al₂O₃ évolue en fonction de la minéralogie. Ce point sera évoqué plus tard.

En ce qui concerne les roches riches en SiO₂, telles que les quartzites, bien que leur concentration en TiO₂ soit faible, elles ont un rapport TiO₂/Al₂O₃ élevé allant jusqu'à 0,15 (Gi 3, Va 3) et même 0,22 (Ga 8). Il faut attribuer cette augmentation à la plus grande maturité de ces roches. Au cours des cycles sédimentaires, les minéraux alumino-silicatés fragiles sont détruits alors que les oxydes de titane résistent à l'altération.

A titre de comparaison, le rapport TiO_2/AI_2O_3 peut atteindre 0,28 dans certains grès quartzitiques et quartzites (Sabine et al., 1969).

2.2. Evolution du rapport TiO₂/Al₂O₃ dans les schistes.

 ${\rm TiO}_2$ a un comportement plus variable dans les schistes que dans les grès et des comparaisons de rapport ont été effectuées entre des roches appartenant à des formations différentes. Tableau III-l.

Formations	Nombre d'échantillons	M (Ti0 ₂ /A1 ₂ 0 ₃)
Grès Armoricain Joints schisteux	9	0,057
♥ Schistes à ″′ Calymènes	7	0,048
Formations du Llandovery	14	0,093
Formations du Ludlow	14	0,039

Tableau III-1 : Evolution du rapport moyen TiO2/Al203 dans les schistes.

On observe une diminution du rapport dans les "schistes à Calymènes" par rapport aux joints schisteux du Grès Armoricain, ainsi que dans les schistes du Ludlow par rapport à ceux du Llandovery. Ces variations sont le témoignage d'une évolution minéralogique, cette dernière résultant de deux facteurs principaux : la nature de la roche-mère et l'intensité de l'altération subie par celle-ci. C'est ce deuxième facteur qui doit être invoqué ici :

Prenons deux exemples extrêmes :

- une altération en climat tempéré, provoquant une hydrolyse moyenne.
- une altération en climat chaud et humide entrainant une hydrolyse très poussée.

Dans le premier cas, le rapport $\text{TiO}_2/\text{Al}_2\text{O}_3$ va légèrement varier entre le produit d'altération et la roche mère, mais dans le deuxième cas les nombreuses destructions minéralogiques vont entrainer le départ d'une partie du titane tandis que l'Al₂O₃ va rester pour former de la kaolinite. On observera alors une nette diminution de ce rapport. Ainsi il sera plus élevé dans des roches résultant d'une altération modérée que dans des roches résultant d'une altération modérée que dans des roches résultant d'une altération set du cycle sédimentaire sont identiques).

C'est ce que l'on observe dans le Massif Armoricain où entre l'Arenig et le Llanvirn d'une part, et entre le Llandovery et le Ludlow d'autre part, des évolutions climatiques ont été mises en évidence, elles se traduisent par le passage d'un climat tempéré à un climat chaud et humide.

Donc les variations d'altération de la roche-mère entrainent des modifications du rapport TiO_2/Al_2O_3 qui se répercutent dans la minéralogie de la roche sédimentaire.

Remarque :

Au Carbonifère quelques roches présentent une hétérogénité dans le comportement du titane :

-HU₂ : TiO₂ = 1,95%. Par rapport au reste de la formation cette roche est enrichie en titane. Cette richesse peut être interprétée comme l'indice de contamination d'un volcanisme basique. Certains minéraux pourraient provenir des dykes doléritiques du domaine Nord-Armoricain. - HU_{10} : $TiO_2 = 0,65\%$, HE_3 : $TiO_2 = 0,38\%$. Les rapports TiO_2/Al_2O_3 sont de l'ordre de 0,03. La taille des grains et la minéralogie ne permettent pas de conclure sur l'origine de ces faibles concentrations.

III - Conclusion.

Les concentrations en titane dans les roches du domaine Centre Armoricain, bien que dispersées ne sont jamais très élevées. Ceci implique l'absence de minéraux porteurs. Il se présente principalement sous forme de rutile, associé à la fraction alumineuse ou aux minéraux résiduels. La concentration de cet élément, sa localisation minéralogique et la valeur du rapport TiO₂/Al₂O₃ sont influencées par plusieurs facteurs :

- la nature chimique et minéralogique de la roche mère

- l'intensité de l'altération subie par celle-ci
- la taille du grain et la maturité du sédiment
- les contaminations par un volcanisme basique.

Les roches du Bassin de Laval et de la Presqu'île de Crozon sont reportées dans un diagramme binaire TiO_2 en fonction de SiO_2 (figure III-3).

Figure III-3 : Place des échantillons du Massif Armoricain dans le diagramme différenciant les gneiss archéens: (A) des sédiments et métasédiments postarchéens: (B) (TARNEY, 1976)(même légende que dans la figure III-1).

On observe une bonne corrélation entre ces deux oxydes pour l'ensemble des formations armoricaines. Leur localisation correspond au champ défini par les sédiments post-archéens et les métasédiments de Grande-Bretagne (Tarney, 1976).

De l'ensemble des roches ignées, seuls les basaltes se différencient par un enrichissement en TiO₂ relativement à SiO₂ et Al₂O₃. (Figure III-1 et Figure III-3).

CHAPITRE 2

LE NIOBIUM

I - Géochimie de Nb.

Cet élément lithophile, souvent associé au Tantale, possède plusieurs valences et un rayon ionique de 0,69 Å. Il peut former des minéraux propres, oxydes ou hydroxydes ou être présent dans les minéraux tels que le rutile, le sphène ou le zircon par substitution à Ti 4⁺ (r = 0,60 Å) et Zr 4⁺ (r = 0,79 Å).

Les concentrations dans les roches sédimentaires sont assez variables (Tableau III-2)et Nb est très peu abondant dans la matière organique. La teneur moyenne mondi**ale** est de 23 ppm (Wedepolh, 1974).

	Й (Nb)	
Pélites et argiles de la plateforme russe	18,3 ppm	(Pachadzhanov, 1963)
Roches argileuses d' Afrique du Sud	15,7 ppm	(Hofmeyr, 1971)
Argiles et sédiments argileux	20 ppm	(Goldschmidt, 1937)

Tableau III-2 : Concentrations moyennes en Nb de quelques roches sédimentaires.

II - Comportement de Nb dans les roches sédimentaires du Massif Armoricain.

Les concentrations en Nb sont plus élevées dans les schistes (10 à 40 ppm) que dans les grès (2 à 25 ppm). Deux roches du Carbonifère appartenant à la Formation de l' Huisserie présentent un enrichissement relatif : $HU_2 = 48$ ppm , $HU_{10} = 68$ ppm.

Le comportement de Nb est lié à celui de Ti dans chacune des formations et cette corrélation se retrouve dans l'ensemble des séries avec un rapport Ti/Nb de l'ordre de 290. Figure III-4.

Ceci met en évidence la substitution du Nb au Ti dans les minéraux titanifères. Cette substitution n'est apparemment liée ni à la taille des grains, ni au type d'altération subie par le roche mère, ni à la présence de matière organique.

Figure III-4 : Diagramme Nb (ppm) en fonction de Ti (ppm).(même légende que dans la figure III-1).
Une observation de ce type avait déjà été effectuée par Pachadzhanov (1963) sur des roches argileuses de Russie, et par Hofmeyr (1971) sur des roches argileuses d'Afrique du Sud. Dans la figure III-4 on observe que la droite de régression passe par l'origine, ceci constitue un bon argument en faveur d'une association de ces deux éléments au sein d'une même phase minérale : le rutile probablement puisque la biotite n'intervient effectivement qu'à partir du Carbonifère.

Des analyses chimiques effectuées sur différents types de rutile montrent de grandes variations dans le rapport Ti/Nb (Deer et al., 1966). Tableau III-3.

	TiO ₂ %	N5205%	Ti/Nb
Tantalo-rutile	66,28	8,64	6,6
Niobium-rutile	53,04	21,73	2
Black Tantalian rutile	45,74	6,9	5,68

Tableau III-3 : Variations du rapport Ti/Nb dans des rutiles.

Aussi, la constance du rapport dans le Massif Armoricain (290) tendrait à démontrer que toutes les formations étudiées possèdent le même type de rutile. Il faudrait alors supposer que la ou les sources qui ont alimenté la sédimentation armoricaine ont été de même nature, tout au cours du PaléozoIque.

Remarque.

On constate qu'au Carbonifère une roche appartenant à la Formation de l'Huisserie se démarque complètement de la tendance générale par un enrichissement relatif en Nb comparativement à sa faible concentration en Ti :

$$TiO_2 = 0,65 \%$$

Cette anomalie peut s'expliquer par un phénomène de contamination par un volca-

En effet, des analyses effectuées sur des rhyolites de Rhodésie (Cox et al., 1965) et des U.S.A. (Hamilton, 1966), ont montré que ce type de roche pouvait être très riche en niobium, respectivement 110 ppm et 56 ppm. Or la Formation de l'Huisserie possède à sa base un épisode volcanique de caractère acide (cf. 1 ère partie).

III - Conclusion.

Les concentrations en Nb des roches sédimentaires du domaine Centre-Armoricain sont parfaitement comparables aux teneurs mondiales. Nb se substitue à Ti dans le rutile avec un rapport Ti/Nb constant, ce rapport pourrait être significatif quant à la nature de la roche ou des roches originelles. Les facteurs affectant son comportement sont du même ordre que pour le titane, de plus il met en évidence l'influence d'un matériel volcanique acide dans la minéralogie des roches sédimentaires.

Le rapport moyen Ti/Nb des roches armoricaines coïncide avec ceux des roches ignées. Tableau III-4.

	1	2	3
Ti (ppm)	6,13 10 ³	4,4 10 ³	4,4 10 ³
Nb (ppm)	20	20	24
Ti/Nb	306	220	180

Tableau III-4 : Concentrations et rapports moyens dans les roches ignées.

- (1) Tukerian in Horn (1964)
- (2) Vinogradov in Horn (1964)
- (3) Rankama-Goldschmidt, in Horn (1964).

LE VANADIUM

I - Géochimie du V.

Son rayon ionique est égal à 0,61 Å, il possède plusieurs valences :

 $2^+ - 3^+$: les hydroxydes sont basiques $4^+ - 5^+$: les hydroxydes sont amphotères

Il peut avoir deux origines :

- Une origine détritique, il se substitue alors à certains éléments dans la formation des minéraux. Les plus importants sont Ti 4⁺ dans le rutile et l'ilménite, Fe³⁺ dans la biotite, et Al³⁺ dans les couches octaèdriques des micas.

- Une origine organique, dans ce cas la fixation des métaux par la matière organique est liée au potentiel d'oxydo-réduction du milieu. Elle se fait soit par adsorption, soit par complexation par des molécules organiques. Ceci précède généralement une migration du V dans la structure des silicates. Il peut également constituer des composants sulfurés ou précipiter sous forme de vanadates en compagnie de Pb, Cu ou Zn.

Les variations des teneurs de cet élément sont généralement importantes dans les roches; voici cependant quelques concentrations moyennes :

•	Roches ultramafiques	:	100 ppm (Fischer et al., 1969)
•	Roches basaltiques	:	2 à 1110 ppm (Gmelin, 1965).
•	Roches granitiques	:	3 à 310 ppm (Gmelin, 1965).
•	Pélites	:	130 ppm (Wedepohl, 1974).
•	Grès	:	20 ppm (Wedepohl, 1974).
•	Calcaires	:	20 ppm (Wedepohl, 1974).

Il est parfois très abondant dans certains minéraux comme la magnétite (960 ppm) et l'hématite (1100 ppm).

II - Comportement de V dans les roches sédimentaires du Massif Armoricain.

Les concentrations varient entre 0 ppm et 140 ppm pour les grès et entre 900 ppm et 5600 ppm pour les schistes. Ces teneurs très élevées s'observent dans les séries d'ampélites siluriennes, Wedepohl (1974) avait signalé des concentrations aussi importantes en V dans des shales bitumineux du Kupfershiefer d'Allemagne de l'Ouest. Dans de nombreuses formations V est associé à la fraction alumineuse des roches, cependant cette association n'est pas systématique (Figure III-5), et il faut distinguer deux ensembles.

Figure III-5 : Diagramme V (ppm) en fonction d'Al (10^4 ppm) : ensemble des formations étudiées.

2.1. Roches ayant des concentrations en V inférieures à 300 ppm.

Dans cet ensemble V est lié à Al_2O_3 , la corrélation s'observe pour toutes les formations avec un rapport Al/V variant entre 650 et 840 (Figure III-6).

Figure III-6 : Diagramme V (ppm) en fonction d'Al (10⁴ ppm) pour les roches ayant moins de 300 ppm de V (même légende que dans la figure III-5).

Quelques roches se distinguent de la tendance générale soit par un appauvrissement relatif (HU₁₀, CN₈, TRON₆), soit par un enrichissement relatif. Ce dernier s'explique alors par la présence d'oxydes de fer (hématite, pyrite).

Les corrélations (V, Fe) et (V, Ti) sont sporadiques et ne s'observent pas sur le plan général.

Donc dans ces roches, V est présent dans les minéraux essentiellement par substitution à Al; aucun site préférentiel de substitution n'a pu être défini.

2.2. Roches ayant des concentrations en V supérieures à 300 ppm.

Les roches ayant de telles concentrations appartiennent aux formations d'ampélites siluriennes. L'origine du V est liée à la présence d'organismes dans le milieu originel. En effet on a observé que dans les roches particulièrement riches en Graptolites les teneurs en V étaient plus élevées. De telles associations ont été déjà décrites dans des pélites alumineuses à *Dyctionema* (2500 ppm à 2700 ppm) et à *Cératopyge* (1600 ppm à 2100 ppm) (Westergard, 1944, in Wedepohl, 1974). Lorsque la matière organique est abondante sa décomposition, qui absorbel'oxygène libre, dégage H₂S, et, s'il n'y a pas d'échange avec l'extérieur, il se créé alors un milieu réducteur. Les composants de moindre valence du V étant insolubles, ce métal pourra précipiter sous forme de vanadates. L'intervention de la matière organique peut se faire à deux niveaux :

- son abondance, conjuguée au fait que le milieu est plus ou moins fermé, va créer des conditions physico-chimiques favorables à la précipitation du V.

- sa constitution chimique va l'entrainer à fixer certains éléments dont le V.

En effet, on n'a observé aucune trace de minéral susceptible d'avoir apporté de telles quantités de V (hématite, magnétite). De plus il n'existe aucun lien entre son abondance et celle d'éléments tels que Ti ou Fe. Il est donc probable que ce sont les organismes euxmêmes qui ont apporté une partie du V.

Les variations d'abondance observées au cours du Silurien résultent dans ce cas d'une évolution des conditions d'oxydo-réduction et de l'augmentation des apports détritiques au Ludlow.

Dans les roches carbonatées, les concentrations sont assez homogènes, elles s'échelonnent entre 55 ppm et 124 ppm. Comparativement à leurs teneurs en Al_2O_3 , elles sont plus enrichies que la majorité des roches détritiques terrigènes, une partie du V est peut être liée aux débris carbonatés.

III - Conclusion.

Dans les formations étudiées,les concentrations de V sont très hétérogènes; inférieures à 300 ppm lorsqu'il est d'origine détritique, elles peuvent atteindre 5000 ppm dans les roches riches en matière organique.

Dans le premier ensemble V est associé aux minéraux alumineux par l'intermédiaire d'Al et dans une moindre mesure, de Fe et Ti. Mais dans le deuxième ensemble que constituent les ampélites siluriennes la grande abondance en V témoigne d'un milieu où les conditions physico-chimiques ont favorisé les phénomènes d'adsorption et de précipitation. La matière organique jouerait alors un rôle de catalyseur mais serait également un des porteurs du V.

LE CHROME

I - Géochimie de Cr.

Il peut avoir deux origines :

- une origine détritique: il se substitue à Al^{3+} (r = 0,56 Å) et Fe^{3+} (r = 0,67 Å) dans certains minéraux.

- une origine organique : alors que sous conditions oxydantes, le chrome tétravalent se présente sous forme d'anions CrO₂ très solubles, en milieu réducteur les chromates sont réduits en chrome trivalent qui a tendance à précipiter sous forme d'hydroxyde Cr (OH)₃. Selon Krauskopf (1967) et Hirst (1962), ce serait le principal mécanisme de concentration du Cr. L'adsorption se ferait ensuite soit sur les particules argileuses, soit sur la matière organique.

Cr est très abondant dans les roches ultramafiques sous forme de chromite (2000 ppm), les concentrations sont moins élevées dans les autres types de roches :

- . roches mafiques : 200 ppm
- . diorites, andésites : 50 à 100 ppm
- . granites, rhyolites : 1 à 20 ppm.

Dans les roches sédimentaires, la proportion de Cr diminue généralement lorsque la taille du grain augmente :

. pélites : 100 à 400 ppm (Wedepohl, 1974).

. grès : 10 à 60 ppm (Wedepohl, 1974).

L'étude effectuée sur des "black-shales" par Vine et Tourtelot (1970) a montré que l'on ne pouvait pas attribuer le Cr à une fraction spécifique des roches, bien qu'il se comporte généralement comme les éléments Co, V, Sc, N, qui vont préférentiellement dans la matière organique.

II - Comportement de Cr dans les roches sédimentaires du Massif Armoricain.

Les concentrations varient entre 20 ppm et 120 ppm dans les grès, entre 120 ppm et 590 ppm dans les schistes et entre 45 ppm et 78 ppm dans les calcaires.

Dans la majorité des formations détritiques Cr est lié à la fraction alumineuse des roches. Ceci est mis en évidence dans la figure III-7. Pour des concentrations d'Al supérieures à 5.10⁴ppm le rapport Al/Cr est relativement constant de l'ordre de 900. On constate cependant que l'ensemble des roches ampélitiques du Ménez Bélair se caractérise par un enrichissement en Cr, celui-ci sera évoqué plus tard.

Figure III-7 : Diagramme Cr (ppm) en fonction d'Al (10⁴ppm) (même légende que dans la figure III-5).

Lorsque la fraction alumineuse diminue, le Cr s'associe différemment, probablement avec les minéraux accessoires. Des corrélations avec le fer ou le titane ont été observées, mais elles ne sont pas systématiques.

2.1. Comportement dans les ampélites siluriennes .

On n'observe aucun enrichissement au niveau des roches provenant de la ^Presqu'île de Crozon et du Bassin de Laval, tandis que celles du Ménez Bélair ont un rapport Al/Cr variant entre 300 et 600 pour des concentrations d'Al supérieures à 5.10⁴ppm. Ces teneurs plus élevées ne sont liées ni à des concentrations particulières de Ti ou Fe, ni à une nature organique spécifique et il est difficile d'en trouver l'origine. Elle résulte peut être des conditions d'oxydoréduction différentes de celles de la Presqu'île de Crozon et du Bassin de Laval, mais rien ne permet de le vérifier.

2.2. Comportement dans les calcaires.

Le rapport Al/Cr diminue avec la concentration d'Al. Il n'existe donc pas de relation entre le Cr et la fraction alumineuse. Ceci s'observe très bien dans la formation de Sablé, où Cr est en moyenne de 57 ppm pour des concentrations d'Al₂O₃ inférieures à O,26%.

Pour expliquer ces teneurs on peut émettre deux hypothèses :

- le Cr est lié aux minéraux accessoires.
- il participe à la constitution des débris organiques calcaires.

III - Conclusion.

Le domaine Centre-Armoricain se caractérise par des teneurs en Cr relativement faibles, impliquant l'absence de minéraux chromifères abondants.

Dans la majorité des formations cet élément a une origine détritique, soit par l'intermédiaire des minéraux alumineux, dans les schistes principalement, soit lié aux minéraux accessoires, dans les grès. Il ne semble pas affecté par les facteurs de transformation, la seule anomalie observée se situe dans les ampélites du Ménez-Bélair et dans les roches calcaires où sa présence pourrait être liée aux organismes.

LE COBALT

I - Géochimie de Co.

De rayon ionique égal à 0,735 Å, il est associé aux roches ultramafiques dans les minéraux tels que l'oliviné et les pyroxènes (110 ppm en moyenne) (Stueber et Goles, 1967). Dans les roches acides la concentration diminue jusqu'à 3 ppm dans certains granites (Wedepohl, 1974).

Au cours des phénomènes d'altération il se solubilise facilement mais ne forme pas de minéraux résiduels; on le retrouve ensuite dans les roches sédimentaires substitué à Mg^{2^+} (r = 0,72 Å) et Fe²⁺ (r = 0,77 Å). Les concentrations sont en moyenne égales à 19 ppm dans les pélites, et 4 ppm dans les grès (Wedepohl, 1974).

Vine et Tourtelot (1970) ont recherché les abondances en Co de plus de 700 "black shales". La moyenne obtenue, de 10 ppm n'indique pas une affinité particulière de cet élément avec la matière organique.

II - Comportement de Co dans les roches sédimentaires du Massif Armoricain.

Les grès ont des concentrations variant entre 0 et 15 ppm et les schistes entre 0 et 25 ppm, on n'observe pas d'enrichissement dans les ampélites siluriennes. Les teneurs des roches carbonaté es peuvent atteindre 70 ppm.

Au sein des roches détritiques terrigènes, Co est lié plus particulièrement aux fractions ferromagnésiennes (Figure III-8), mais la substitution ne s'effectue pas avec un rapport constant.

Dans les roches carbonatées, il semble enrichi par rapport aux fractions détritiques, on observe notamment des teneurs élevées (48 ppm) dans des roches ayant plus de 90% de Ca CO₃ (Formation de Sablé), l'origine de ce Co est alors liée probablement aux débris coquilliers.

Figure III-8 : Diagramme Co (ppm) en fonction de Fe + Mg (10^4 ppm) (même légende que dans la figure III-5).

III - Conclusion.

Cet élément peu abondant dans les roches détritiques (\vec{M} = 13 ppm) est associé aux minéraux ferromagnésiens. L'augmentation des concentrations dans les calcaires pourrait résulter d'un apport organique.

LE NICKEL

I - Géochimie de Ni.

Il est surtout associé aux roches ultramafiques dans l'olivine, le clinopyroxène et le grenat (1000 à 1500 ppm). Dans les roches basaltiques il est moins abondant (50 à 500 ppm), et négligeable dans les roches acides (4 à 10 ppm).

Il se lie généralement au fer et au manganèse, mais si les conditions deviennent réductrices il peut précipiter sous forme de sulfure, on le retrouve alors dans la pyrite et ses dérivés.

Au cours des phénomènes d'altération il se mobilise facilement, les concentrations observées dans les roches sédimentaires sont de l'ordre de 2 à 40 ppm pour les grès et de 20 à 90 ppm pour les pélites. Il est également présent dans la matière organique mais celle-ci ne joue pas un rôle prépondérant et les "blacks-shales" ne montrent pas d'enrichissement particulier en Ni.

D'une façon générale les proportions de cet élément résultent de la contribution des roches ultramafiques dans les sédiments.

II - Comportement de Ni dans les roches sédimentaires du Massif Armoricain.

Les concentrations peuvent atteindre 20 ppm dans les grès et 70 ppm dans les schistes, elles s'intègrent parfaitement aux données mondiales. Certains échantillons d'ampélites siluriennes montrent un net enrichissement avec des teneurs supérieures à 100 ppm allant jusqu'à 340 ppm (LM₁), il est lié à la présence de pyrite.

Les concentrations dans les calcaires s'échelonnent entre quelques ppm et 50 ppm. Elles coincident avec les concentrations mondiales qui sont de l'ordre de 48 ppm (Honjo et Tabuchi, 1970, in Wedepohl, 1974).

Tout comme Co, Ni ne semble pas avoir un comportement très strict sur l'ensemble des formations détritiques, bien qu'il soit souvent rattaché à la fraction ferrifère. La comparaison avec les sédiments du Golfede Paria (Hirst, 1962) montre que les deux ensembles sont assez cohérents avec cependant une plus grande dispersion pour les roches du Massif Armoricain (Figure III-9).

Dans les calcaires Ni est lié à la fraction détritique des roches par l'intermédiaire d'Al ou Fe mais aucun comportement général ne se dessine et dans l'ensemble le rapport Ni/Al est nettement supérieur à celui des roches détritiques 10.10^{-4} à 20.10^{-4} contre 4.10^{-4} 5.10^{-4} . A noter que l'on observe une légère corrélation (Co, Ni) (Figure III-10).

Figure III-9 : Diagramme Ni (ppm) / Al (ppm). 10⁴ en fonction d'Al (10⁴ ppm). : roches du Golf de Paria (Hirst, 1962) (même légende que la figure III-5).

III - Conclusion.

Ni, peu abondant dans les formations étudiées a une origine détritique, il est associé aux minéraux alumineux ferrifères.

Figure III-10 : Diagramme Ni (ppm) en fonction de Co (ppm) (même légende que dans la figure III-5).

CONCLUSION A L'ETUDE DES ELEMENTS V, Cr, Co, Ni.

Les observations effectuées dans le Massif Armoricain mettent en évidence que les éléments V, Cr, Co et Ni ont une origine essentiellement détritique. Ils sont combinés structuralement aux minéraux alumineux et aux fractions de minéraux lourds présents dans les rocnes par substitution à Al, Fe, Ti ou Mg. Ces concentrations peu élevées se rapprochent de celles des roches acides.

La présence de matière organique et de débris coquilliers influence cependant certaines concentrations :

- par les conditions physico-chimiques qu'elle crée, ceci s'observe essentiellement pour le V.
- par la nature de leur constitution. On a observé en effet que la présence de débris calcaires entrainait une augmentation relative des teneurs en Cr, Co et Ni et celle de matière organique une augmentation des teneurs en V.

LE RUBIDIUM

I - Géochimie de Rb.

Cet élément lithophile, de rayon ionique, 1,33 Å et de valence $^{+1}$ ne forme pas de minéral propre mais se substitue à K(r = 1,34 Å) dans les minéraux tels que la muscovite (200 à 400 ppm), la biotite (200 à 1000 ppm) et le feldspath K (200 à 300 ppm).

Au cours des phénomènes d'altération Rb est moins soluble que K et les rapports K/Rb diminuent entre la roche fraîche et la roche altérée. Tableau III-5 (Wedepohl, 1974).

		Roches fraîches	Roches altérées
	RЬ	110	100
Pélites	K/Rb	240	200
	Rb	150	150
	K/Rb	250	225
C=>=	RЬ	180	150
Gres	K/Rb	200	160

Tableau III-5 : Comparaisons des concentrations et des rapports entre les roches fraîches et les roches altérées.

Dans les roches sédimentaires, les concentrations de Rb sont controlées par l'adsorption sur les minéraux argileux, principalement l'illite et la montmorillonite qui ont une grande capacité d'échange, et sur les débris clastiques non altérés, feldspath potassique et micas; elles sont assez variables. (Tableau III-6).

Roches	Concentrations		
Grès	80 à 120 ppm		
Silts	150 à 200 ppm		
Argilites	180 à 240 ppm		

Tableau III-6 : Concentrations en Rb des roches sédimentaires (Wedepohl, 1974).

Le rapport K/Rb est en moyenne de l'ordre de 240, mais il peut varier en fonction de la nature du sédiment. Hirst (1962) en étudiant les roches du Golfe de Paria a montré qu'il passait de 230 dans les sables à 140 dans les argilites.

Au cours des néoformations, Rb semble plus vite adsorbé que K. Cette adsorption se produit probablement avant le dépôt car on n'observe pas de variation du rapport en liaison avec les vitesses de précipitation des particules.

D'autres facteurs sont susceptibles d'influencer la concentration en Rb, parmi ceux-ci il faut signaler :

- la taille du grain

- la présence de matière organique

- l'intensité de l'altération subie par la roche-mère (Hirst, 1962 ; Wedepohl, 1974).

II - Comportement de Rb dans les roches sédimentaires du Massif Armoricain.

Les concentrations varient entre 0 ppm et 170 ppm dans les grès, entre 80 ppm et 340 ppm dans les schistes et entre 19 ppm et 46 ppm dans les calcaires.

Dans les roches détritiques, Rb est lié à la fraction alumineuse par l'internédiaire de K auquel il se substitue (Figure III-11). Cette corrélation se retrouve pour l'ensemble des formations étudiées.

Le rapport K/Rb varie entre 150 et 250, il est inférieur à la moyenne mondiale. Plusieurs facteurs sont susceptibles de le modifier.

- Taille des grains : La différence des rapports moyens entre les grès (M = 190, σ =27) et les schistes (M = 184, σ = 32) n'est pas significative, ce facteur ne joue donc aucun rôle dans les séries étudiées. Ceci résulte de l'homogénéité de la fraction alumineuse entre ces deux types de roches.

- Présence de matière organique : On a comparé la valeur moyenne du rapport K/Rb entre les ampélites siluriennes, riches en matière organique, et les schistes et grès des séries susjacentes. Les résultats obtenus sont notés dans le tableau III-7.

Figure III-ll : Diagramme Rb (ppm) en fonction de K (10⁴ppm) dans les roches détritiques terrigènes.

	Мี (K/Rb)	σ	Nombre d'échantillons
Ampélites	166	23	37
Schistes et Grès	187	21	46

Tableau III-7 : Comparaison du rapport K/Rb entre les ampélites et les schistes et grès.

La différence entre les deux rapports traduit l'influence de la matière organique qui semble favoriser l'adsorption du Rb en le fixant peut-être elle-même.

- Intensité de l'altération subie par la roche mère : La comparaison du rapport moyen K/Rb entre les échantillons du Wenlock (climat tempéré) et du Ludlow (climat chaud) met en évidence une évolution systématique (Tableau III-8).

Localisation	M (K/Rb) Wenlock	₩ (K/Rb) Ludlow
Laval	200	166
Ménez-Bélair	166	125 *
Crozon	191	172
Ensemble des trois coupes	174	139

Tableau III-8 : Comparaison du rapport K/Rb entre les roches du Wenlock et les roches du Ludlow.

Cette variation résulte de la différence d'intensité des hydrolyses subies par les minéraux. Lorsque celles-ci sont importantes (Ludlow), K très soluble est lessivé en premier, tandis qu'au cours des néoformations c'est Rb qui est adsorbé préférentiellement. Hirst (1962) avait fait la même observation sur les sédiments du Golfe de Paria.

- Localisation : Une évolution systématique du rapport K/Rb a été mise en évidence entre Laval et Crozon dans les Formations du Grès armoricain et des schistes à Calymènes. Tableau III-9. Elle disparaît ensuite dans les formations sus-jacentes.

Formations	M̄ (K/Rb) Grès	M̄ (K/Rb) Schistes
Grès	Laval 159	198
Armoricain	Crozon 230	246
Schistes	Laval	171
a Calymènes	Crozon	209

Tableau III-9 : Evolution du rapport K/Rb entre l'Arénig et le Llanvirn-Llandeilo.

Dans les roches carbonatées, Rb n'est pas associé à K, on observe une augmentation du rapport K/Rb avec les teneurs en K (Figure III-12). Elle résulte de la présence de débris d'organismes qui contiennent cet élément dans leurs squelettes.

Figure III-12 : Diagramme Rb (ppm) en fonction de K (10⁴ppm) dans les roches carbonatées.

III - Conclusion.

Dans les formations étudiées Rb a une origine détritique, il se substitue à K dans les minéraux porteurs. Le rapport K/Rb est de l'ordre de 180, inférieur aux rapports moyens des croûtes post-archéennes (Tableau III-10). (Taylor, 1979).

	K/Rb
Croûte supérieure	249
Croûte inférieure	250
Croûte totale	250

Tableau III-10 : Rapports moyens K/Rb dans les croûtes terrestes. (Taylor, 1979).

Les concentrations relatives et le comportement du Rb sont influencés par deux facteurs :

- l'intensité de l'altération subie par la roche mère et les néoformations.

- la présence de matière organique et de débris coquilliers qui peuvent favoriser sa concentration.

•

LE BARYUM

I - Géochimie de Bo.

C'est un élément lithophile de rayon ionique 1,34 Å. Il ne forme généralement pas de minéral dans les roches ignées mais se distribue dans la structure des silicates, feldspath K et micas, par substitution à Ca (0,99 Å). Il est contenu également dans la calcite et l'apatite.

Les concentrations de Ba des roches ignées augmentent avec la teneur en silice (Wedepohl, 1974) :

- roches ultramafiques : 0,4 ppm à 20 ppm (dunite et péridotite).

- roches basaltiques, gabbros : 250 ppm.

- roches granitiques : riches en Ca : 888 ppm

: pauvres en Ca : concentrations variables.

Dans la classification de Goldschmidt (1934) reprise par Millot (1964), Ba se situe dans le domaine des cations solubles caractérisés par un faible potentiel ionique z/ri(z : charge, ri : rayon) Figure III.-13. Il va donc former des ions solvatés migrateurs qui se déplaceront facilement lors de l'écoulement des eaux.

Au cours des phénomènes d'altération les teneurs en Ba diminuent entre la roche fraîche et la roche altérée. Dans les roches sédimentaires il est capté par les argiles, les hydroxydes et la matière organique. Les concentrations en Ba de ces roches sont très variables, de nombreux facteurs les influençant : nature de la roche mère, climat, abondance et nature de la matière organique, teneur en sulfures.

Dans les pélites elles s'échelonnent entre 250 ppm et 800 ppm et dans les grès entre 5 ppm et 900 ppm en moyenne.

Certains "black-shales" sont très riches en Ba. Cet enrichissement résulte de la présence d'organismes qui le fixent sur leur squelette. De même Turekian (1960) a remarqué une plus forte concentration de Ba dans des sédiments profonds où existe une présence organique.

Les teneurs des roches carbonatées varient entre 1 et 10 000 ppm, la moyenne est aux environs de 90 ppm (Wedepohl, 1974).

II - Comportement de Ba dans les roches sédimentaires du Massif Armoricain.

Les concentrations varient entre 0 ppm et 700 ppm dans les grès et entre 200 ppm et 1100 ppm dans les schistes. Trois roches ont des teneurs plus élevées : - AW 2 et AL 1 respectivement 2000 ppm et 1600 ppm, elles appartiennent aux formations d'ampé-

lites siluriennes.

- SI 14 avec 1600 ppm, elle appartient au Grès armoricain.

- Les roches carbonatées contiennent de 20 ppm à 177 ppm de 8a.

Dans les formations détritiques terrigènes, Ba est associé à la fraction alumineuse par l'intermédiaire des éléments K principalement et Na. Figure III-14, et III-15. Entre les séries de Laval et de Crozon, les rapports sont du même ordre de grandeur, on observe cependant une plus grande dispersion des roches provenant de la Presqu'île de Crozon et un enrichissement relatif en Ba des roches appartenant à la Formation de Gahard.

Figure III-14 : Diagramme Ba (ppm) / Al (ppm).10⁴ en fonction d'Al (10⁴ppm) (même légende que dans la figure III-11).

Figure III-15 : Diagramme Ba (ppm) / K (ppm).10⁴ en fonction de K (10⁴ppm) (même légende que dans la figure III-11).

2.1. Le Bassin de Laval.

Le rapport Ba/Al varie plus largement dans les grès $(10.10^{-4} \ge 100.10^{-4})$ que dans les schistes $(20.10^{-4} \ge 70.10^{-4})$. Ceci résulte probablement de la plus grande circulation des eaux dans le premier type de roches (Millot, 1964) qui entraine des destructions minéralogiques plus fréquentes et donc une plus grande mobilisation du Ba.

Certaines roches montrent un enrichissement relatif :

les grauwackes du Carbonifère dont la minéralogie se caractérise par la présence de feldspath
K, de plagioclase et de muscovite de grande taille, non hydrolysés pouvant contenir le Ba.

 les ampélites siluriennes dont une partie du Ba est certainement liée à la matière organique. Dans le diagramme Ba/K en fonction de K (figure III-14) on observe un enrichissement des roches des formations de Gahard et du Val. Son origine est difficile à déterminer d'autant plus que le phénomène n'existe pas dans les formations corrélées de la ^Presqu'île de Crozon. Rien au niveau des éléments majeurs et de la minéralogie n'explique ce comportement .

2.2. La Presqu'île de Crozon.

Les rapports Ba/Al et Ba/K varient largement au sein de chaque formation, ces évolutions sont indépendantes de la minéralogie et de la géochimie. On observe également un enrichissement en Ba dans les ampélites siluriennes.

III - Conclusion.

Les concentrations de Ba des roches du domaine Centre Armoricain (environ 600 ppm) sont cohérentes avec les données mondiales. Au cours de l'altération des roches-mères, Ba est mis rapidement en solution puis adsorbé par le matériel argileux détritique, il peut ensuite être redistribué pendant les processus diagénétiques sur les minéraux potassiques et carbonatés. Son accumulation peut être facilitée par un facteur biogénique.

LE STRONTIUM

I - Géochimie de Sr.

C'est un cation soluble de rayon ionique 1,12 Å. Il entre par substitution à Ca (r= 0,99 Å) dans le plagioclase et plus rarement par substitution à K dans le feldspath K. On le trouve également mais en moindre abondance au sein des micas, de l'amphibole et du pyroxène. Les concentrations moyennes dans les roches ignées sont les suivantes :

(Wedepohl, 1974) :

- roches ultramafiques : <65 ppm
- roches mafiques : 200 à 300 ppm
- roches intermédiaires: 450 ppm
- granites : 200 ppm

Au cours des phénomènes d'altération il est facilement mobilisé et les concentrations des roches sédimentaires sont très variables :

- grauwackes : 100 à 400 ppm
- grès : 40 à 150 ppm
- pélites : 140 ppm à 280 ppm

Elles sont controlées par de nombreux facteurs :

- la nature et la quantité des eaux de circulation
- la salinité et la température
- la minéralogie
- la présence d'organismes
- la diagenèse

Sr peut avoir une origine organique, il se concentre alors sur les carbonates biogènes. La corrélation (Sr, Ca) observée dans les sédiments récents disparaît rapidement dans les sédiments plus anciens. Cette disparition résulte des phénomènes de diagenèse qui modifient les concentrations.

.

II - Comportement de Sr dans les roches sédimentaires du Massif Armoricain.

Les concentrations varient entre 20 ppm et 280 ppm dans les grès et entre 3ppm et 650 ppm dans les schistes. Les roches carbonatées sont plus enrichies en Sr avec des teneurs qui s'échelonnent entre 217 ppm et 1200 ppm.

Dans la majorité des roches Sr est lié à la fraction alumineuse cependant il existe certaines formations (de Kermeur, de Lostmarc'het du Val) où il s'associe avec P_2O_5 et CaO dans l'apatite.

Dans la figure III-15 sont reportées les valeurs de Sr en fonction d'Al. La dispersion des points témoigne de la grande mobilité de cet élément. On observe en particulier un enrichissement en Sr de certaines formations du Bassin de Laval (Formations de Gahard, de Montauyon, du Buard et des Marollières) par rapport aux séries corrélées de la Presquîle de Crozon.

Bien que Sr ne soit pas systématiquement lié à Al₂O₃ c'est le rapport Sr/Al qui sera étudié afin de mettre en évidence l'évolution du comportement et des concentrations de cet élément.

2.1. Comparaison du rapport Sr/Al entre les grès et les schistes.

Cette comparaison ne montre pas de différence significative entre les rapports de ces deux types de roches (grès : $M=9.10^{-4}$, $\sigma = 9.10^{-4}$; schistes : $M=6.10^{-4}$, $\sigma = 2.10^{-4}$). Ceci résulte de l'identité minéralogique de leur fraction alumineuse.

Etages	10. ⁻⁴ M (Sr/Al)	σ.10 ⁻⁴	Nombre de roches
Cambro-Trémadocien	9,4	0,6	4
Arénig Llanvirn-Llandeilo	8,5	9,2	20
Caradoc-Ashgill (1)	9,1	6,9	5
Llandovery	54,4	60,5	14
Wenlock	25	27,6	14
Ludlow	13,3	4,2	9
Pridoli-Gédinnien de Laval (l)	45	26	11
Pridoli-Gédinnien de Crozon (1)	11,1	3,1	8
Siégénien inférieur	24,5	9,1	4
Dévonien moyen et supérieur	17	6	18

2.2. <u>Evolution du rapport Sr/Al au PaléozoIque dans les roches détritiques terri</u>gènes. tableau III-11.

Tableau III-11 : Evolution du rapport Sr/Al au cours du Paléczoïque dans le Massif Armoricain.

(1) Les formations du Val, de Lostmarc'h et de Kermeur ont été exclues du calcul.

Figure III-16 : Diagramme Sr (ppm) en fonction d'Al $(10^4 ppm)$ (même légende que dans la figure III-11).

Les variations du rapport Sr/Al sont très importantes sans lien avec CaO toujours peu abondant. De plus au sein d'une même formation, on observe que les écarts-types sont élevés, ce qui illustre bien la difficulté de définir un comportement général pour Sr. Quelques observations sont néanmoins possibles :

 a) Formations des ampélites siluriennes : L'origine des concentrations élevées doit être rapprochée de la présence abondante de matière organique.

b) Formation de Gahard : Elle se singularise par sa richesse relative en Sr et en Ba. L'origine de cette anomalie est difficile à déterminer, elle peut résulter de la présence d'organismes dans le sédiment originel dont la destruction aurait libéré Sr, celui-ci aurait ensuite été adsorbé par les phyllosilicates. Mais cette interprétation n'explique pas l'absence de ce phénomène dans les séries corrélées de la Presqu'île de Crozon (Formations de Plougastel et de Landévennec).

c) Formations du Siégenien inférieur : Elles sont constituées par des alternances de niveaux carbonatés riches en Sr et de niveaux schisteux. L'enrichissement relatif de ces derniers s'explique par une contamination interbancs dûe à la grande mobilité de cet élément.

2.3. Comparaison du rapport Sr/Al entre les formations du Bassin de Laval et celles de la Presqu'île de Crozon (Tableau III-12).

Périodes		M.10 ⁻⁴ (Sr/Al)	σ.10 -4	Nombre de roches
	CROZON	5,6	2	21
Ordovicien	LAVAL	11	11	12
Pridolì	CROZON	11	4	10
+ Gédinnien	LAVAL	34	26	15
Dévonien CRO moyen et supérieur LAV	CROZON	11	2	9
	LAVAL	21	2	9

Tableau III-12 : Comparaison du rapport Sr/Al entre les formations du Bassin de Laval et celles de la Presqu'île de Crozon.

On observe une diminution systématique du rapport Sr/Al dans les formations de la Presqu'île de Crozon par rapport à celles du Bassin de Laval. On ne peut l'attribuer ni à la roche mère, ni aux conditions d'altération de cette dernière qui sont les mêmes pour les deux bassins sédimentaires. Les transformations ont donc du se produire soit au moment du dépôt, soit après.

La profondeur d'enfouissement des sédiments est plus grande dans la ^Presqu'île de Crozon (3300 m environ) que sur le flanc nord du Bassin de Laval (1700 m environ). Les conditions thermodynamiques ont donc été plus poussées à Crozon entraînant au cours de la diagenèse des destructions minéralogiques plus intenses. Elles ont permis la libération des éléments les plus solubles tels que Sr et Ba. Ceci peut expliquer les différences de concentrations relatives de ces éléments.

2.4. Formations du Carbonifère.

En comparant la Formation de l'Huisserie et la Formation de Heurtebise du Bassin de Laval on constate une différence entre les concentrations. Tableau III-13.

	Formation	de l'Huisserie	Formation de	Heurtebise
	HU 2	HU 10	He 2	He 3
Ca ppm	1,42 10 ⁺²	4,29 10 ⁺²	1,5 10 ⁺⁴	1,95 10 ⁺⁴
Sr ppm	51	110	400	220
Sr/Al	4,5 10 ⁻⁴	9,4 10 ⁻⁴	358	153

Tableau III-13 : Rapport Sr/Al des formations du Carbonifère.

Cette différence s'explique par la minéralogie : les roches de l'Huisserie sont constituées par des minéraux très fins néoformés (chlorite, illite), tandis que celles de Heurtebise possèdent de grands minéraux détritiques (muscovite, plagioclase, feldspath K) dans lesquels Sr est inclus. La même observation avait été faite précédemment avec Ba.

2.5. Comportement de Sr dans les roches carbonatées.

Il est indépendant des concentrations de CaO et de la fraction alumineuse. Le facteur déterminant doit être la nature des débris carbonatés.

III - Conclusion.

La très grande mobilité du Sr est responsable des variations de concentration observées au cours du Paléozoïque. Il est dépendant de nombreux facteurs, les principaux observés dans les formations étudiées sont :

- les phénomènes de contamination interbancs.

- la présence de débris carbonatés.
- l'intensité de la diagenèse et des phénomènes de destruction minéralogique.

Il s'associe généralement à la fraction alumineuse des roches et parfois aux phosphates.

L'YTTRIUM

I - Géochimie de Y.

Cet élément de valence 3⁺ a un rayon ionique égal à 0,89 Å. Les concentrations des roches ignées sont assez constantes : 32 ppm pour les basaltes, 35 ppm pour les roches intermédiaires, 38 ppm pour les granites (Wedepohl, 1974), celles des roches sédimentaires sont plus variables :

> pélites : 17 ppm à 66 ppm grès : 30 ppm à 60 ppm calcaires : 4 ppm à 23 ppm

II - Comportement de Y dans les roches sédimentaires du Massif Armoricain.

Il est plus abondant dans les schistes (\vec{M} = 55 ppm, σ = 42) que dans les grès (\vec{M} = 34 ppm, σ = 16).

Il se comporte différemment suivant les formations, tantôt associé à la fraction alumineuse (Grès Armoricain, Formation de Kermeur), tantôt à la fraction phosphatée (Formation du Val) et tantôt à la fraction organique (ampélites siluriennes) avec V et Sr. Une association du même type que cette dernière a déjà été décrite par Arrehnius et Bonatti (1965) et par Kochenov et Zinover (1960) in Wedepohl(1974.)

Les évolutions des concentrations en Y au cours du PaléozoIque sont notées dans le tableau III-14.

Etages	Й (Ү)ррт	σ	Nombre d'échantillons.
Cambrien et Ordovicien	34	16	34
Llandovery	110	67	14
Wenlock	50	13	14
Ludlow	39	6	9
Pridoli Gédinnien Siégenien	39	20	30
Dévonien moyen et supérieur	41	6	18

Tableau III-14 : Moyennes des concentrations d'Y au cours du Paléozoïque.

Dans l'ensemble les teneurs varient peu et restent du même ordre de grandeur que les données mondiales, cependant au Llandovery on constate une forte augmentation avec 110 ppm en moyenne contre 40 ppm dans les autres séries. Cet Y est associé à la fraction biogénique; par ailleurs on peut noter que cette association disparaît au Wenlock et au Ludlow qui se caractérisent aussi par la présence de matière organique abondante. Il faut peut être-rechercher dans les conditions d'oxydo-réduction l'explication de ce comportement.

III - Conclusion.

Les concentrations d'Y sont assez homogènes, environ 40 ppm, dans l'ensemble des formations détritiques terrigènes du Massif Armoricain. Il ne semble pas avoir de site minéralogique préférentiel et est associé principalement aux fractions alumineuses et phosphatées. On le trouve parfois plus abondamment dans les séries riches en matière organique .

La comparaison avec la croûte post-archéenne montre un enrichissement dans le Massif Armoricain (Taylor, 1979). Tableau III-15.

	Мี (Y)ppm
Crôute supérieure	27
Croute inférieure	22
Croute totale	20

Tableau III-15 : Concentrations moyennes d'Y des croûtes terrestres (Taylor, 1979).

LE ZIRCONIUM

I - Géochimie de Zr.

C'est un élément lithophile, de valence 4^+ , susceptible de remplacer Nb, Ti, Fe ou Ca dans les minéraux porteurs : clinopyroxène, ilménite, rutile, amphibole, micas. On le trouve également dans certaines argiles où il se substitue à Al⁴⁺ : kaolinite (80 ppm), montmorillonite (140 ppm), illite (111 ppm) et enfin associé à SiO₂ pour former le zircon.

Les concentrations dans les roches ignées sont liées à la minéralogie et il est difficile de donner des teneurs moyennes :

- Roches ultramafiques : 1 à 120 ppm
- Roches mafiques :100 à 140 ppm
- Roches intermédiaires :200 à 500 ppm
- Roches granitiques : 50 à 500 ppm

Au cours des phénomènes d'altération, il tend à s'accumuler dans les profils d'altération. Sous forme de zircon il est très résistant et peut subir plusieurs cycles sédimentaires, on le rencontre alors dans les environnements de haute. énergie associé aux sédiments clastiques et disposé en lits avec les autres minéraux lourds, rutile et tourmaline.

Des identités de comportement avec d'autres éléments ont été mises en évidence : avec Ti (Il'ina et al., 1972) avec Cr et Y (Bremmer, 1977), in Wedepohl (1974).

Dans les roches sédimentaires les concentrations sont comprises en moyenne entre 180 et 220 ppm pour les grès et 120 à 200 ppm pour les schistes.

II - Comportement de Zr dans les roches sédimentaires du Massif Armoricain.

Les éventails de concentration sont très étendus :

- Grès : 46 ppm à 1200 ppm M = 368 ppm (σ = 228).

- Schistes : 80 ppm à 660 ppm \vec{M} = 222 ppm (σ = 120).

Zr est plus abondant dans les grès, les deux roches les plus riches Scp 12 (1200 ppm) et G I₃ (1086 ppm) étant des quartzites. Il apparaît principalement sous forme de zircon dans les lits de minéraux lourds.

Au cours de l'étude des formations paléozoīques aucun comportement général n'est apparu, cependant on a constaté qu'il s'associait parfois à SiO₂ lorsque celui-ci s'opposait, sous forme de quartz, à la fraction alumineuse. Mais dans la majorité des séries il est indépendant des autres éléments.

% SiO ₂	Ø (Zr)ppm	σ	Nombre d'échantillons
>90 %	400	316	16
90 % >75 %	364	173	20
75 % >60 %	289	167	27
60 % >	196	85	5

<u>Evolution des concentrations moyennes de Zr dans les roches détritigues terri-</u> <u>gènes en fonction du pourcentage de SiO</u>₂ (tableau III-16).

Tableau III-16 : Evolution des concentrations en Zr en fonction de la teneur en SiO₂ (%).

Bien que les écarts types soient grands on observe un enrichissement en Zr, lorsque la concentration de SiO₂ augmente, c'est à dire lorsque les teneurs en Quartz augmentent (cf. Chapitre 1). Cette observation est cohérente avec le comportement du zircon qui est un minéral très résistant pouvant subir plusieurs cycles sédimentaires. Les écarts-types élevés à l'intérieur de chacun des groupes indiquent que d'autres facteurs interviennent et en particulier l'environnement du milieu de dépôt. Des mesures comparatives de teneur en Zr ont été effectuées entre des schistes appartenant à deux formations, celle du Grès armoricain et celle des "Schistes à Calymènes". Les roches prises en considération sont constituées par les mêmes minéraux, de taille identique, et ont des concentrations d'Al₂O₃ comparables. Tableau III-17.

Formations	Concentrations moyennes de Zr	σ	Nombre d'échantillons
Grès Armoricain	412	172	5
"Schistes à Calymènes"	144	31	7

Tableau III-17 : Comparaison des concentrations en Zr des Schistes du Grès Armoricain avec ceux des Schistes à Calymènes.

Les différences entre les concentrations moyennes sont significatives. On sait que les Formations de "Schistes à Calymènes" correspondent à des dépôts en milieu calme, il faudrait alors peut être mettre en parallèle les faibles teneurs en Zr avec l'énergie basse du milieu et conjointement, les teneurs élevées des joints schisteux du Grès armoricain avec une énergie plus élevée. Cependant, de nombreux facteurs entrent en ligne de compte (force et sens des courants, morphologie de la surface de dépôt, nature des marées), et seule une étude sédimentologique de chacune des roches peut apporter des éléments de réponse.
III - Conclusion.

Dans les formations étudiées Zr se présente principalement sous forme de zircon lié aux apports détritiques. Il est plus abondant dans les roches ayant une bonne maturité de composition et sa concentration semble également être en fonction de l'énergie du milieu de dépôt.

La concentration moyenne de l'ensemble des séries étudiées 330 ppm est supérieure à la moyenne de la croûte supérieure post-archéenne 240 ppm (Taylor, 1979). ,

CHAPITRE 13

CONCLUSION

Cette étude a mis en évidence les principaux facteurs responsables des concentrations et du comportement des éléments-traces :

- la nature pétrographique et géochimique de la roche mère. Elle influence les concentrations de Cr, Co, Ni, et Ba et gouverne la valeur du rapport Nb/Ti. Les résultats obtenus s'accordent avec l'hypothèse d'une source unique, ou de sources de même nature, de type granitique ou granodioritique.
- l'intensité de l'altération et le tri minéralogique. Ces deux facteurs influencent l'action de l'hydrolyse et la taille des minéraux qui auront des répercutions sur la valeur des rapports TiO_2/Al_2O_3 et sur les concentrations de Zr, Ti et Nb.
- la nature des apports. L'abondance de matière organique permet l'accumulation de certains éléments V, Y, Sr et dans une moindre mesure du Rb.
- les contaminations volcaniques . Elles affectent les concentrations de TiO₂ et Nb et s'observent sur la valeur des rapports TiO₂/Al₂O₃ et Ti/Nb.
- l'intensité de la diagenèse . Elle conduit à des destructions minéralogiques qui facilitent le départ des éléments les plus solubles tels Ba et Sr.

La recherche des sites minéralogiques préférentiels de substitution n'a apporté aucun résultat concluant. Il semble que les substitutions se produisent indépendamment de la forme sous laquelle se présente l'élément majeur. Les éléments-traces V, Cr, Co, Ni se fixent plutôt sur les minéraux ferrifères : chlorite , oxydes de fer, alors que Rb, Sr, Ba se fixent plutôt sur les minéraux alumineux potassiques : muscovite, illite et feldspath K.

4^{ème} PARTIE

Estimation de la composition chimique moyenne de la croûte armoricaine (éléments majeurs).

La détermination de la composition chimique moyenne de la croûte est une méthode d'approche dans la recherche des mécanismes de genèse et de fractionnement crustaux. Elle permet de trancher entre l'hypothèse d'une différenciation précoce de la terre en noyau manteau - croûte et l'hypothèse d'une production évolutive de croûte au cours du temps à partir du manteau.

Ce type de calcul est une opération rendue difficile par l'extrême diversité des roches et par le fait que seule une partie de la croûte est accessible à l'observation directe. Actuellement quatre groupes de méthodes principales d'estimation ont été développées : (^parker, 1967).

- a) Calcul à partir de la moyenne des analyses chimiques disponibles (Clarke et Washington, 1924).
- b) Calcul en tenant compte des proportions respectives des roches (Ronov et Yaroshewsky, 1969, 1976).
- c) Calcul à partir de l'abondance des éléments déterminée par les modèles crustaux (géophysique) (Pakiser et Robinson, 1967).
- d) Estimation à partir de la composition moyenne du domaine sédimentaire (Horn, 1964, Sibley et Wilband, 1977).

Quelle que soit la méthode employée les résultats sont concordants entre eux.

Sur le plan régional la connaissance de la composition d'un segment de croûte apporte des éléments d'informations à la reconstitution du site géotectonique :Ronov et Yaroshewsky (1969, 1976), Ronov (1981) ont estimé la composition géochimique de la plateforme russe, Eade et Fahrig (1971), Cameroun et Ermanovic (1979), Shaw et al., (1967) celle du bouclier canadien. Les résultats ont permis de corréler la géochimie avec des subdivisions structurales et temporelles.

Cette partie de notre travail est consacrée à l'estimation de la composition géochimigue moyenne de la croûte supérieure du Massif Armoricain.

Les calculs ont été effectués à partir des données publiées en éléments majeurs des formations magmatiques, métamorphiques et sédimentaires.

L'objectif recherché est double :

- tout d'abord faire un premier bilan de la composition de la croûte continentale armoricaine,
- puis comparer cette composition avec celles d'autres régions et tenter de l'intégrer dans le schéma général évolutif de la croûte mondiale.

.

I - Méthode.

La proportion des différentes unités lithologiques a été estimée par pesée des surfaces affleurantes à partir de la carte au 320 000e (l'erreur relative est de 5%). La densité des roches n'a pas été prise en compte, une étude comparative (Dabard, 1980) ayant montré qu' elle pouvait être négligée dans ce cas.

Le Massif Armoricain a été divisé en trois zones sur la base des études géologiques classiques ; une zone Nord regroupant le domaine Domnonéen et le domaine de la Mancellia, une zone Centre constituée par le domaine Centre Armoricain et une zone Sud englobant le domaine de l'Anticlinal de Cornouaille, le domaine Ligérien et la zone Ouest-Vendéenne. Dans chacune des zones on a distingué les deux croûtes, cadomienne et paléozoïque.

Les formations géologiques présentes sont regroupées ainsi :

- les roches ignées : leucogranites, granodiorites, gabbros, volcanites acides et basiques.
- les roches sédimentaires : grès (sables, arkoses, grauwackes, conglomérats), schistes (pélites, argilites, siltites), calcaires.
- les roches métamorphiques : gneiss, migmatites, granites d'anatexie, micaschistes, amphibolites.

	Roches Ignées	Roches Métamorphiques	Roches Sédimentaires
Croûte Cadomienne	11 %	39 %	50 %
Croûte Paléozoïque	35 %	13 %	52 %
Ensemble du Massif Armoricain	23 %	26 %	51 %
Croûte * Terrestre	65 %	27 %	8 %

II - Résultats : Distribution des roches. Tableaux IV-1.

* Ronov et Yaroshewsky (1969).

Le Massif Armoricain se caractérise par une prédominance du domaine sédimentaire sur l'ensemble igné et métamorphique, contrairement à la croûte mondiale. Cet ensemble sédimentaire se compose de la façon suivant. Tableau IV-2.

Domaine	Schistes	Grès	Calcaires	autres
Ensemble dụ Massif Armoricain	55 %	38 _%	7 %	
Plateformes*	49 %	23 %	26 %	2 %
Geosynclinaux *	58 %	24 %	16 %	2 %

* Sibley et Wilband (1977).

Tableau IV-2 : Distribution des roches dans le domaine sédimentaire.

On observe la prédominance des schistes dans les trois ensembles et la pauvreté en calcaire du Massif Armoricain. Celle-ci résulte de l'évolution du volume relatif des différentes roches sédimentaires au cours des temps (Ronov, 1964) (Figure IV-1)

Figure IV-1 : Volume des roches sédimentaires en fonction de l'âge (Ronov, 1964).

Tandis que les lutites et arénites sont à peu près constantes, le matériel carbonaté se développe essentiellement à partir du Protérozoïque supérieur et au Phanérozoïque. La différence relative en calcaires du Massif Armoricain est imputable à la quasi-absence de terrains secondaires et tertiaires.

III - Compositions géochimiques moyennes.

	A			I	з ^і		c
	1	2		1	2	1	2
Si0 ₂	86,62	75,75		56,50	55,09	14,02	9,80
A1203	6,92	6,9		23,42	16,3	3,86	2,54
Fe ₂ D ₃	1,87	4,01		6,81	6,25	2,98	1,45
Mn0	0,02	0,06		0,03	0,05	0,09	0,06
MgO	0,46	1,43		1,15	2,46	0,99	6,83
CaO	0,13	3,40		0,23	4,75	40,76	38,93
Na ₂ 0	0,27	0,58		0,71	0,75	0,13	0,24
к,0	1,24	1,83		3,42	3,01	0,40	0,76
TiO ₂	0,57	0,49		1,16	0,86	0,23	0,18
P205	0,04	0,16		0,13	0,11	0,16	0,07
P.F.	1,83	5,54		6,38	10,62	35,22	39,22
Total	99,97	100,15		99,94	100,25	98,84	100,08

3.1. Roches sédimentaires. (Tableau IV-3).

Tableau IV-3 : Compositions géochimiques moyennes des roches sédimentaires du domaine Centre Armoricain (1) et sur les plateformes continentales (2) (Ronov et Yaroshewsky, 1969). A : Grès, B : Schistes, C : Calcaires.

On observe la pauvreté en CaO, Na_2^0 et MgO des sédiments détritiques armoricains, compensée par des teneurs en Al_2^{0} (schistes) et SiO₂ (grès) élevées. D'autre part les calcaires possèdent une fraction détritique non négligeable. La comparaison avec les données mondiales souligne ces observations : l'ensemble du domaine sédimentaire armoricain est enrichi en SiO₂, Al_2^{0} et appauvri en MgO, CaO, Na_2^{0} et P.F. par rapport aux moyennes des groupes géologiques mondiaux. Cette hétérogénéité résulte de l'absence de terrains post-paléozoīques qui joue à deux niveaux :

- distribution différente des roches,
- évolution géochimique plus restreinte, les âges variant seulement entre le Protérozoïque supérieur et le Carbonifère.

3.1.1. Evolution chimique dans le Massif Armoricain.

Remarque : Le Carbonifère a été dissocié du Paléozoīque compte tenu de ses spécificités géochimiques et minéralogiques.

On constate que le passage Briovérien - Paléozoïque s'effectue avec une évolution chimique marquée (Tableau IV-4).

	I	II	III	IV
SiO ₂	67,72	66,70	53,92	65,74
Al ₂ O ₃	14,86	15,44	17,50	15,78
Fe ₂ O ₃	6,43	4,54	5,32	4,66
MnO	0,045	0,03	0,06	0,03
MgO	1,65	0,81	1,08	0,87
CaO	0,27	2,50	7,12	3,14
Na ₂ O	1,38	0,41	1,19	0,43
K ₂ O	2,61	2,33	2,61	2,38
TiO ₂	0,74	0,86	0,95	0,88
P ₂ O ₅	0,115	0,10	0,13	0,10
P.F.	3,72	6,23	9,30	6,69
Total	99,54	99,95	99,18	100,07

Tableau IV-4 : Compositions géochimiques moyennes des roches sédimentaires du domaine Centre Armoricain.

I : Briovérien (370 éch.); II : Paléozoíque anté-Carbonifère (203 éch.);

III : Carbonifère (31 éch.); IV : ensemble du Paléozoïque (234 éch.).

- diminution de SiO₂, Fe₂O₃, MgO, Na₂O et K₂O. - augmentation d'Al₂O₃, CaO, TiO₂, et P.F.

a) Augmentation de CaO, P.F. (CO₂, SO₂, H₂O, Cl, ...). Cette observation rejoint celles faites par Nanz (1953) lorsqu'il a comparé la géochimie des shales précambriens, paléozoïques et mésozoïques et ainsi mis en évidence un enrichissement progressif en CaO, CO₂, SO₂ et P₂O₅ résultant probablement du développement de la vie sur terre.

De même dans le Massif Armoricain, tandis qu'au Briovérien les épisodes carbonatés sont sporadiques, au cours du Paléozoīque des formations calcaires importantes apparaissent (Formations de Rosan, St Cénéré), et plus particulièrement au Carbonifère avec le Formation de Sablé. La contribution des plagioclases calciques à l'augmentation des teneurs en CaO est négligeable.

b) Diminution de Fe₂O₃, MgO, K₂O, Na₂O et augmentation d'Al₂O₃.

L'origine de ces évolutions est liée aux variations de texture et de maturité des roches sédimentaires. Les principaux sites minéralogiques de ces éléments sont- K_20 :l'illite, la muscovite et le feldspath K - Fe₂0₃ et MgO: la chlorite et la biotite - Na₂O:l'albite. Or on sait que la sédimentation briovérienne est immature contrairement à la sédimentation paléozoïque caractérisée par la présence de grès matures et de schistes où les minéraux instables sont absents. Seules subsistent la chlorite, l'illite et parfois la muscovite, les éléments les plus mobiles ayant disparu au cours des destructions minéralogiques. Ceci se répercute au niveau géochimique par une diminution des concentrations en MgO, K_2O , Fe_2O_3 comparativement à Al_2O_3 qui augmente.

Les variations de Na₂O liées aux variations des teneurs en albite résultent de l'activité volcanique. Présente avant 570 M.A. elle diminue au Paléozoīque dans le domaine Centre Armoricain puis réapparait au Carbonifère.

3.1.2. Comparaison avec les évalutions mondiales.

Ronov (1981) en compilant plus de 90 000 analyses de roches sédimentaires a montré que le régime tectonique de sédimentation, qui contrôle l'activité volcanique, la composition minéralogique des régions sources et leur profondeur d'altération, influence l'évolution de la composition chimique des roches sédimentaires.

Son travail s'est orienté dans deux directions, d'une part étudier les évolutions entre les deux grandes zones structurales, les plateformes et les géosynclinaux et d'autre part, étudier l'évolution au cours des temps géologiques.

Dans les figures IV-2 et IV-3, on compare les concentrations entre le Massif Armoricain et les moyennes mondiales. Les schistes armoricains coincident avec les "clays" définis par Ronov (1981) pour les éléments K, Na, Fe, Ni et Co, tandis que les grès sont appauvris en K, Na et Fe. Ces roches sédimentaires ne s'apparentent pas à un domaine particulier, les concentrations et rapports oscillant entre ceux des géosynclinaux (Fe, Co et Ni des schistes) et ceux des plateformes (K, Na, Na $_20/K_20$ des schistes).

Figure IV-2 : Variations des teneurs en Fe (a), Ni (b) et Co (c) des argiles et en Fe (d) des sables au cours des temps géologiques et dans différentes structures tectoniques (**O**) Comparaison avec le Massif Armoricain (**A**)

I : eugéosynclinaux, II : miogéosynclinaux, III : jeunes plateformes, IV : boucliers.

Argilos, k, , _____: sables, Na;
 Comparaison avec le Massif Armoricain.
 ▲ : % K des pélites, △ : % K des grès
 ● : % Na des pélites, ○: % Na des grès

	I	II	III	IV	
SiO ₂	68,2	67,29	67,52	66,9	1
A1203	15,01	15,98	15,74	15,0	7
Fe203	4,53	3,99	4,13	4,23	3
MnO	0,05	0,03	0,035	0,05	Э
MgQ	1,48	1,88	1,78	1,78	8
CaO	1,38	2,68	2,36	3,34	4
Na ₂ 0	3,15	2,91	2,97	3,52	2
к ₂ 0	3,84	4,01	3,97	3,72	2
Ti02	0,61	0,57	0,58	0,5	
P205		0,29		0,19	ð
P.F.	1,23	1,06	1,1	0,93	5
Total	99,48	100,69	100,19	100,28	3
	1				

3.2. Roches ignées (Tableau IV-5).

Tableau IV-5 : Compositions chimiques moyennes des roches plutoniques du Cadomien (I) et du Paléozoïque (II) armoricain.((III) moyenne générale). Comparaison avec la moyenne mondiale des boucliers granitiques (IV). (Ronov et Yaroshewsky, 1969).

On n'observe pas de grande évolution entre les roches ignées cadomiennes et les roches ignées paléozoïques. Les variations les plus importantes se situent au niveau des éléments Al_2O_3 , MgO, CaO et K₂O qui augmentent au Paléozoïque, cependant les compositions moyennes sont toujours de type granitique à granodioritique (Figure IV-4).

La comparaison avec les données mondiales montre une grande similitude entre les roches ignées du Massif Armoricain et celles des boucliers granitiques (Ronov et Yaroshewsky, 1969), mis à part pour les éléments CaO et Na_2O moins abondants dans les roches armoricaines. La cause de ces hétérogénéités est liée à la différence de distribution du domaine plutonique des ensembles comparés (Tableau IV-6) et en particulier, à l'absence de gabbro et de syénite néphélinique dans le Massif Armoricain.

Les roches magmatiques mondiales tendent vers une composition de type granodioritique (Figure IV-4).

Roches	Croûte Mondiale	Croûte du Massif Armoricain
Granite	43 %	45 %
Granodiorite	47 %	54 %
• Syénite néphélinique	1 %	0 %
Gabbro	9 %	1 %

Tableau IV-6 : Distributions des roches plutoniques.

3.3. Roches métamorphiques (Tableau IV-7)

L'insuffisance des données ne permet pas d'interpréter ces résultats.

	I	II	III	IV
SiO ₂	66,88	71,13	70,11	63,72
Al ₂ O ₃	16,18	14,9	15,21	15,12
Fe ₂ O ₃	5,64	2,57	3,31	6,00
MnO	0,12	0,05	0,07	0,11
MgO	1,59	0,88	1,05	2,91
CaO	1,49	1,37	1,40	3,88
Na ₂ O	2,30	3,08	2,89	2,87
K ₂ 0	3,09	4,42	4,10	3,21
TiO ₂	0,62	0,36	0,42	0,74
P ₂ O ₅	0,20	0,22	0,21	0,22
P.F.	1,84	0,99	1,19	1,61
Total	99,95	99,97	99,96	100,39

Tableau IV-7 : Compositions moyennes des roches métamorphiques cadomiennes (I), et paléozoïques (II). ((III): moyenne générale). Comparaison avec la moyenne des boucliers granitiques continentaux et subcontinentaux (Ronov et Yaroshewsky, 1969).

IV - Composition géochimique moyenne de la croûte du Massif Armoricain.

4.1. Comparaison entre les trois régions :

On observe une assez bonne homogénéité entre les trois zones au Cadomien et au Paléozoïque (Tableau IV-8).

		I			II		1	II
	А	в	С	A	в	c		
Si0 ₂	68,13	67,97	66,19	67,25	67,54	66,94	67,45	66,96
A1203	14,97	14,87	16,36	14,9	15,06	16,11	15,39	15,47
Fe ₂ 03	5,29	6,24	6,18	4,74	4,11	3,67	5,91	4,09
MnU	0,05	0,05	0,13	0,03	0,02	0,045	0,07	0,03
MgO	1,52	1,63	1,67	1,58	0,96	1,24	1,61	1,22
CaO	1,19	0,34	1,15	3,18	2,58	2,42	0,87	2,76
Na ₂ 0	2,18	1,51	2,16	1,34	1,05	2,55	1,93	1,64
к,0	2,99	2,74	3,11	2,69	2,73	3,89	2,93	3,17
TiO ₂	0,65	0,72	0,67	0,8	0,75	0,52	0,68	0,68
P,05	0,08	0,12	0,22	0,14	0,15	0,24	0,15	0,18
P.F.	2,48	3,43	2,14	4,22	4,88	2,68	2,71	3,98
Total	99,53	99,62	99,98	100,87	99,83	100,31	99,70	100,18

Tableau IV-8 : Compositions moyennes des trois régions armoricains.

A = Nord, B = Centre, C = Sud. I : Cadomien, II : Paléozoīque.

Les moyennes évoluent entre une composition d'adamellite et une composition de granite. (Figure IV-5).

Figure IV-5 : Diagramme K₂O (%) en fonction de Na₂O (%) Massif Armoricain A B C D E : moyennes des croûtes (Tableau IV-11).

4.2. Evolution de la composition entre le Cadomien et le PaléozoIgue. Tableau IV-8

Une évolution existe entre les deux croûtes, elle se marque par une diminution des concentrations en Fe_2^{0} , MgO et Na₂O et une augmentation des concentrations en CaO, K₂O, P₂O₅ et P.F. Ces variations coïncident avec celles du domaine sédimentaire, seul K₂O a un comportement guidé par les roches plutoniques.

4.3. Comparaison de la croûte armoricain avec les données de la littérature. (Tableau IV-9).

	I	•	A	ß	С	D	E
Si0,	69,56		68,4	63,9	66,7	65,6	66,0
A1,0,	15,97		14,8	17,0	15,0	15,6	15,3
Fe ₂ 0 ₃	5,17		4,86	5,73	4,51	5,32	5,35
MnÔ	0,05				0,1	0,1	0,1
MgO	1,47		1,7	1,8	2,3	2,3	2,4
CaO	1,88		3,4	4,1	4,2	4,1	3,7
Na ₂ 0	1,85		3,1	3,7	3,6	3,1	3,2
K,0	3,16		3,6	3,1	3,2	3,4	3,5
Ti0,	0,70		0,4	0,8	0,5	0,6	0,6
P205	0,18		0,1		0,2	0,2	0,2

Tableau IV-9 : Comparaison entre les compositions moyennes des boucliers et

et celle de la croûte armoricaine(I). (Analyses en anhydre).

- A : Bouclier baltique (Sederholm, 1925 , in Ronov et Yaroshewsky, 1969).
- B : Bouclier canadien (Grout, 1938 , in Ronov et Yaroshewsky, 1969).
- C : Bouclier canadien (Shaw et al., 1967).
- D : Bouclier baltique } (Ronov et Yaroshewsky, 1969).
- E : Bouclier ukrainien}

Dans le tableau IV-9 sont notées les compositions moyennes des boucliers, elles sont homogènes et coïncident avec une composition de type granodioritique (SiO₂ > 64% , Na₂O = 3,3% ; K₂O % = 3,3%). Le Massif Armoricain montre un enrichissement en SiO₂ compensé par des teneurs plus faibles en MgO, CaO et Na₂O.

La comparaison avec les croûtes mondiales vérifie bien que le Massif Armoricain s'apparente aux croûtes continentales avec cependant une plus forte concentration de SiO₂ (Tableau IV-10).

	A	ß	С	D	E	F	Massif Armoricain
Si02	63,94	61,90	60,22	59,45	48,65	57.,64	67,21
A1,03	15,18	15,6	15,18	15,08	16,52	15,45	15,43
Fe,03	5,18	6,93	6,67	6,81	9,21	7,21	5,00
MnO	0,1	0,1	0,14	0,16	0,18	0,15	0,05
MgO	2,21	3,1	3,06	3,17	6,79	3,87	1,42
Ca0	3,98	5,7	5,51	5,91	12,28	7,01	1,82
Na ₂ 0	3,06	3,1	2,97	2,89	2,57	2,87	1,79
K20	3,29	2,90	2,86	2,79	0,37	2,32	3,05
Ti0,	0,57	0,8	0,73	0,74	1,4	0,88	0,68
P205	0,2	0,3	0,24	0,26	0,15	0,23	0,17
P.F. '	2,63		2,84	3,2	2,54	3,31	3,35

Tableau IV-10 : Comparaison entre les compositions moyennes de croûtes :

Ronov et Yaroshewsky, 1969 ; A = Croute granitique continentale, C = Croûte continentale, D = Croûte subcontinentale, E = Croûte océanique, F = Croûte totale.

Harris 1971 ; B = Croûte continentale.

4.4. <u>Intégration de la croûte supérieure armoricaine dans l'évolution générale des</u> croûtes mondiales.

Rogers (1978), au cours de son étude sur les variations de la composition crustale avec le temps, a mis en évidence des tendances très nettes entre la croûte archéenne et la croûte à 1 000 M.A., elles sont résumées dans la figure IV-6. Il paraît donc intéressant de voir si le Massif Armoricain s'intègre à l'évolution générale. Ceci se vérifie bien pour les oxydes Ca0, Na₂O et MgO, mais les concentrations armoricaines en K₂O, SiO₂, Al₂O₃ et peut être Fe₂O₃ sont plus proches de celles de la croûte à 1 750 M.A.

Figure IV-6 : Compositions des boucliers en fonction de l'âge. In Rogers, J.J.W., 1978. Massif Armoricain.

V - Bilan Géochimique.

Après avoir estimé les compositions chimiques moyennes des différentes structures constituant le Massif Armoricain, il semble intéressant de faire un bilan chimique : le postulat de base est que l'ensemble sédimentaire, roches et ions en solution, est représentatif de la croûte supérieure. Etablir un bilan consiste donc à comparer la chimie du domaine sédimentaire avec celle de la région source présumée, afin d'en ressortir les différences et les similitudes. Dans le cas du Massif Armoricain, la composition moyenne de la croûte cadomienne va

être comparée à celle de l'ensemble sédimentaire paléozoïque. (Tableau IV-ll).

	I	II
SiO ₂	67,45	65,74
A1203	15,39	15,78
Fe ₂ 0 ₃	5,91	4,66
MnO	0,07	0,03
MgO	1,61	0,87
Ca0	0,87	3,14
Na ₂ 0	1,93	0,43
κ ₂ ο	2,93	2,38
TiO ₂	0,68	0,88
P205	0,15	0,10
P.F.	2,71	6,69
Total	99,70	100,70

Tableau IV-11 : Comparaison entre la croûte cadomienne (I) et l'ensemble sédimentaire paléozoïque (II).

L'observation de ce tableau met en évidence des variations importantes : - diminution de MnO, MgO, K_2O , Fe_2O_3 , P_2O_5 et Na₂O.

- augmentation de TiO,, CaO et de la perte au feu (Co,, So,, Cl, H,O, ...).

Pour la majorité des éléments ces variations ne sont pas très significatives et peuvent résulter d'erreurs d'estimation. Cependant les oxydes CaO, Na₂O et MgO ainsi que la perte au feu montrent une très nette évolution.

5.1. Excès de CaO.

Le calcium pose un très grand problème dans les estimations de bilans géochimiques et de nombreux auteurs signalent cette anomalie (Horn, 1964 ; Ronov et Yaroshewsky, 1969). Pour L'expliquer de multiples hypothèses ont été émises. Pour Humphris (1978), le calcium proviendrait de l'altération hydrothermale des basaltes océaniques. Loewengart (1975) fait également intervenir les croûtes océaniques riches en MgO et CaO ; au cours de leurs altérations ces éléments très solubles sont lessivés et se retrouvent en solution dans l'eau. Le calcium est alors capté par les organismes et se retrouve dans les accumulations de tests. Le magnesium reste dans l'eau de mer sous forme de sel de magnésium plus soluble que son homologue de calcium.

D'autres hypothèses ont été avancées faisant intervenir des échanges de plagioclase avec le manteau (Pyzkowez, 1979) mais la contribution des basaltes océaniques semble plus réaliste.

5.2. Défaut de MgO.

Le magnésium des régions sources altérées a pu rester dans l'eau de mer sous forme de sels.

5.3. <u>Défaut de Na₂O</u>.

Cette anomalie relevée également par Ronov et Yarosheswky (1969), et Garrels et Mc Kenzie (1971) peut s'expliquer par le transfert du sodium dans l'eau de mer sous forme de Na Cl.

5.4. Remarque.

A ce niveau il paraît intéressant de revenir sur l'hypothèse de départ qui consistait à considérer le domaine sédimentaire comme représentatif de la croûte supérieure.

En étudiant les données de la littérature, il est apparu que la principale caractéristique des croûtes continentales calculées, régionales ou mondiales, était leur homogénéité chimique. Certaines variations ont été observées mais elles ne sont pas très significatives. Il faut donc admettre que les produits extrêmes de différenciation magmatique et leurs produits d'altération ne jouent pas un rôle prépondérant sur la composition moyenne. Les raisons en sont d'une part leur faible importance volumétrique et d'autre part les phénomènes d'homogénéisation, de diagenèse et de métamorphisme.

Donc une estimation de composition moyenne effectuée sur une très grande échelle (Bouclier Canadien, Plateforme Russe), ou sur une échelle plus petite comme le Massif Armoricain aboutità une composition de même nature. Pour avoir une meilleure représentativité il sera nécessaire de travailler sur une échelle plus fine comme il a été fait dans le Massif Armoricain où les phénomènes de réhomogénéisation ne sont pas très intenses, on l'a vu au niveau des éléments traces.

On peut donc espérer pouvoir approcher le domaine igné grâce au domaine sédimentaire, ceci rejoint les conclusions de Schwab (1978) sur la bonne représentativité de l'ensemble igné par l'ensemble sédimentaire.

VI - Conclusion.

Les principaux points qui ressortent de cette étude sont :

- la prédominance du domaine sédimentaire dans le Massif Armoricain qui représente 50% de l'ensemble.
- l(évolution de ce domaine au cours des temps géologiques due au développement de la vie (CaO, P.F.) et aux variations de texture (Fe₂O₃, MgO, K₂O, Na₂O, Al₂O₃).
- la composition moyenne du domaine igné de type granitique.
- l'absence d'évolution significative du domaine igné entre le Cadomien et le Paléozoïque.
- la bonne homogénéité entre les trois zones distinguées, l'ensemble ayant une composition de type granitique,
- l'intégration non systématique de la croûte armoricaine dans l'évolution générale de la croûte mondiale.
- l'excès de CaO et le défaut de MgO et Na₂O dans le domaine sédimentaire par rapport à la région source, résultant de l'intervention de la croûte océanique (CaO, MgO) par l'intermédiaire des organismes (CaO) et de l'eau de mer à la constitution du domaine sédimentaire.

CONCLUSIONS GENERALES

•

\$.

La sédimentation paléozoïque du domaine Centre-Armoricain est constituée par une succession de formations détritiques terrigènes comprenant des alternances de niveaux gréseux et de niveaux schisteux dans lesquels s'intercalent quelques épisodes carbonatés et volcaniques. Elle correspond aux dépôts de sables quartzeux et de vases argileuses.

L'étude pétrographique et géochimique effectuée dans la presqu'île de Crozon et sur le flanc nord du bassin de Laval a montré qu'il existait une bonne homogénéité de composition pour l'ensemble des formations actuelles entre les deux coupes. La reconstitution de la minéralogie primitive a mis en évidence l'omni-présence d'une association minérale comprenant le quartz, l'illite et la chlorite. A celle-ci viennent se joindre d'autres minéraux, soit des argiles alumineuses, kaolinite ou montmorillonite, soit des minéraux détritiques, muscovite feldspath K et plagioclase. Leurs répartitions entre les formations a permis de déceler les alternances paléoclimatiques ayant conditionné l'altération des roches mères.

La composition géochimique de ces roches sédimentaires se caractérise par de faibles teneurs en CaO, Na₂O et MgO et des teneurs relativement élevées en Fe_2O_3 et K₂O. Au niveau des éléments traces on observe la pauvreté en Ni, Co et Cr.

Les changements de faciès résultent de variations dans la nature des apports ou d'énergie du milieu plutôt que de phénomènes importants d'approfondissement : le milieu de dépôt est un milieu marin de type épicontinental.

L'origine de ces sédiments est à rechercher dans les terres émergées voisines. C'est l'érosion du socle cadomien (sédiments briovériens et granites mancelliens) qui a alimenté la majorité des formations anté-carbonifères. Seule la sédimentation du Grès armoricain a du s'effectuer à partir de roches ayant une origine plus lointaine. Le Carbonifère correspond à un mélange entre un remaniement des formations sous-jacentes, en particulier du Dévonien, et les débris d'origine cadomienne. La composition chimique de ces roches coîncide avec celles des roches ignées acides (rhyolites à granodiorites).

L'étude de quelques éléments-traces confirme la nature acide des sédiments paléozoïques et apporte des informations complémentaires sur ces roches. Elle souligne le rôle important joué par la matière organique dans l'accumulation de certains éléments, soit par sa nature propre, soit par les conditions physico-chimiques que sa présence crée (Sr, V, Y).

La majorité des éléments-traces a cependant une origine détritique, ils sont liés principalement aux minéraux alumineux par substitution à Al, Fe, Ti ou K, mais également aux minéraux accessoires, zircon, rutile, apatite. De multiples facteurs conditionnent les concentrations les plus déterminants semblent être la nature de la roche originelle, les contaminations par du volcanisme, la maturité du sédiment et les phénomènes de diagenèse.

La dernière partie consacrée au modèle de croûte a permis d'établir un premier bilan géochimique de la composition de la croûte supérieure du Massif Armoricain. Les résultats vérifient sa nature continentale avec une composition acide évoluant entre le Cadomien granodioritique et le Paléozoīque à tendance granitique. La comparaison avec les autres croûtes continentales met en évidence une légère déficience en CaO, Na₂O et MgO résultant de l'influence importante du domaine sédimentaire. Son intégration non systématique au schéma évolutif de l'ensemble des croûtes archéennes, protérozoîques et paléozoîques montre son originalité.

La comparaison entre le domaine igné et le domaine sédimentaire souligne l'intervention négative de l'eau de mer (Na₂O, MgO) et positive des croûtes océaniques (CaO) par l'intermédiaire des organismes, à l'élaboration du domaine sédimentaire.

BIBLIOGRAPHIE

ALTHAUS, E., et WINKLER, H.G.F., (1962). - Experimentelle Gesteins metamorphe VI. Einfluss von Anionen auf metamorphe Minersbreaktonen. Geochim. Cosmochim. Acta, 26 :145-180. ARRHENIUS, G., et BONATTI, E., (1965) - Neptinusm and vulcanism in the Ocean. Progress in Oceanography, Sears M. (ed.), Pergamon Press. vol. 3 : 7-22. BABIN, C., CAVET, P., LARDEUX, H., MORZADEC, P., PARIS, F., PONCET, J., et RACHEBOEUF, P., (1972) -Le Dévonien du Massif Armoricain. Bull. Soc. géol. France, (7), 14 : 94-109 . BABIN, C., et al., (1975). -The Ordovician of the Armorican Massif (France) . In, The Ordovician System, Proc. Palaeont. Ass. Symposium, Birmingham, Sept: 1974(M.G. Basset, Ed.) : 359-385. BABIN, C., CHAUVEL, J.J., LARDEUX, H., PARIS, F., et ROBARDET, M., (1976) - Lexiques des formations de l'Ordovicien armoricain. Bull. Soc. Géol. minéral. Bret., n° spécial : 31 p. BABIN, C., DEUNFF, J., MELOU, M., PARIS, F., PLEHATE, A., PLUSQUELLEC, Y., et RACHEBOEUF, P., (1979) -La coupe de Pors-ar-Vouden (Pridoli de la presqu'île de Crozon). Massif Armoricain, France. Lithologie et Biostratigraphie. Palaeontolographica, Abt.A, 164, 1-3 : 52-84. Average Chemical Composition of Rocks and Layer in the Lithos-BEUSS, A.A., (1976) phere. In, Geochemistry of the Lithosphere, Mir Publishers: 300-350. BRIL, H., (1975) -La minéralisation à cuivre, plomb, zinc de Bodennec en Bolazec (Finistère) dans son cadre géologique. Thèse 3ème cycle, Paris; 147 p. Les formations paléozoïques de la région de Morlaix; leur évolu-CABANIS, B., (1972) tion sédimentaire et orogénique. Thèse 3ème cycle, Paris : 1-127. CALVERT, S.E., (1976) -The mineralogy and geochemistry of near(shore sediments). In, Chemical Oceanography, 2nd ed. Riley J.P. et Chester R., (ed .), Academic Press, 6 :187-280. CAMERON, E.M., ERMANOVICS, I.F., et GOSS, T.T., (1979) - Sampling methods and geochemical composition of archean rocks in southeastern Manitoba, Canada. Precam. Res., 9 : 35-55. CHANTRAINE, J., et al., (1982) - Inventaire lithologique et structural du Briovérien (Protérozoique supérieur) de la Bretagne Centrale et du Bocage normand. Bull. B.R.G.M. (2), I, 1 et 2 : 3-18. CHAUVEL, J.J., et LE CORRE, C., (1971) - La transgression paléozoïque et l'Ordovicien inférieur de la presqu'île de Crozon (Finistère). Mem. B.R.G.M., 73 : 109-117. CHAUVEL, J.J., et ROBARDET, M., (1980) - France. Introduction à la Géologie de l'Ouest. Livret guide. 26° C.G.I. - G 18-2. CLARKE, F.W., et WASHINGTON, H.S., (1924) - The composition of the earth's crust. U.S. Geol. Surv. Prof. Pap., 127 :177 p. COGNE, J., (1974) -Le Massif Armoricain. In, Géologie de la France, par J. Debelmas, Doin, V. 1 : 105-161.

COGNE, J., et WRIGHT, A.E., (1980) - L'orogene cadomien : vers un essai d'interprétation paléogéodynamique unitaire des phénomènes orogéniques fini-précambriens d'Europe moyenne et occidentale, et leur signification à l'origine de la croûte et du mobilisme varisque puis alpin. 26° C.G.I., Colloque C6, Géologie de l'Europe : 29-55. COX, K.G., JOHNSON, R.L., MONKMAN, L.J., STILLMAN, G.J., VAIL, J.R., et WOOD, D.N., (1965) - The Geology of the Nuanetsi igneous province. Phil. Trans. Roy. Soc. London, Ser. 1,257 : 71-80. DABARD, M.P., (1980) -Recherche d'un modèle géodynamique pour le Massif Armoricain. D.E.A., Rennes : 43 p. DEER, W.A., HOWIE, R.A., et ZUSSMAN, J., (1966) - Rock forming minerals. Longmans, (ed.), London, 5 vol. DORE, F., (1971) -A propos du détritisme ordovicien en Normandie, réflexions basées sur la composition du cortège de minéraux lourds. Bull. Soc. Linn. Normandie. 102 : 42-50. DUNOYER de SEGONZAC, G., (1969) - Les minéraux argileux dans la diagenèse. Passage au métamorphisme. Mem. Serv. Carte. géol. Als. Lorr., 29 : 320 p. DUNOYER de SEGONZAC, G., et MILLOT, G., (1962) - Pyrophyllite de diagenèse dans le Dévonien inférieur du synclinal de Laval (Massif Armoricain). C.R. Acad. Sc., 255 : 3438-3440. DUNOYER de SEGONZAC, G., et HEDDEBAULT, C., (1971) - Paléozoïque anchi-métamorphique à illite, chlorite, pyrophyllite, allevardite et paragonite dans les Pyrénées basques. Bull. Serv. Carte géol. Als. Lorr., 24, 4 : 277-290. EADE, K.E., et FAHRIG, W.F., (1971) - Geochemical evolutionary trends of continental plates a preliminary study of the Canadia Shield. Geol. Surv. Can. Bull. 179 : 1-51. FAURE, P.P., (1978) -Les grès à rutile et zircon du Massif Armoricain. Thèse Ecole Nat. Sup. Mines, Paris : 293 p. FISCHER, D.E., JOENSUU, O., et BOSTROM, K., (1969) - Elemental abundances in ultramafic rocks and their relation to the upper mantle. J. Geophys. Res., 74: 3865 -3872. Contribution à l'étude de l'Ordovicien moyen et supérieur et FOURMOND, E., (1964), du Gothlandien du Cap de la Chève. D.E.S., Paris :40 p. FREY, M., (1978) -Progressive low-grade Metamorphism of a black shale formation, Central. Swiss Alps, with special reference to pyrophyllite and margarite bearing assemblages. Journ. Petrol., 19 : 95-135. GARRELS, R.M., et MAC KENZIE, F.T., (1971) - Evolution of sedimentary rocks. W.W. Norton et Compagny Inc: 397 p. Handbuch der Anorganischen Gremie. Achte Aulfage : Vanadium, GMELINS. Teil A, Lieferung 1. System Nummer 48, 43, 48u. 49. Weinsheim : Verlag Chemie 1965. GOLDSCHMIDT, V.M., (1934) -Drei Verträge über Geochemie Geol. Fören. Förhandl., 56 : 385-427. GOLDSCHMIDT, V.M., (1937) -Geochemische Verteilungsge steze der Elemente. 9. Die Mendenverhältnisse der Elemente und der Atomarten. Norske. Vidensk Akad. Olso, Math. Naturw. K.L., 4, 1.

HAMILTON, W., (1966) -Geology and petrogenesis of the Island Park Caldera of rhyolite and basalt, eastern Idaho. U.S. Geol. Surv. Prof. Pap . 504 C. HAMOUMI, N., (1981) -Analyse sédimentologique des formations de l'Ordovicien supérieur en Presqu'île de Crozon (Massif Armoricain). Thèse 3ème cycle, Brest : 224 p. HARRIS, P., (1971) -The composition of the Earth. In, Understanding the Earth, I.G. Gass, P.J. Smith et R.C.L. Wilson (ed.). The Open Univ. press., 1971 : 53-68. HENDERSON, P., (1982) -Inorganic geochemistry. Pergamon Press: 353 p. HIRST, D.A., (1962) -The Geochemistry of modern sediments from the Gulf de Paria I. Geochim. Cosmochim. Acta., 26 :309-334. II. Geochim. Cosmochim. Acta, 26 :1147-1187. HOLFMEYR, P.K., (1971) -The abundances and distribution of some trace elements in some selected South African Shales. Ph. D. Thesis, Capetown. HORN, M.K., (1964) -A computer method for the geochemical balance of the elements. Ph. D. Dissertation, Rice University. HOSCHEK, G., (1969) -The stability of staurolite and chloritoid and their significance in metamorphism of pelitic rocks. Contr. Miner. Petrol., 22 : 208-234. HUMPHRIS, S.E., et THOMPSON, G., (1978) - Hydrothermal alteration of oceanic basalts by seawater. Geochim, Cosmochim, Acta, 42 :107-125. IL'INA, N.S., KARCHENKOV, S.M., et FRUKHT, D.L., (1970) - Distribution of Ti and Zr in the Predevonian and Devonian sediments of the Moscou syncline. Geochem. Int., 7, 677. KERFORNE, F., (1899) -Sur l'Ordovicien de la Presqu'île de Crozon, Finistère. C.R. Acad. Sc., 128 : 187-189. KOCHENOV, A.V., et ZINOV., et V.V., (1960) - Distribution of rare earth elements in phosphatic remains of fisy from the markop deposits. Geochem. Int.: 860-873. KRAUSKOPF, K.B., (1967) -Introduction to geochemistry. Mc Graw-Hill Book Compagny. Les schistes et calcaires éodévoniens de Saint-Cénéré (Massif LARDEUX, H., (ed.,), (1976) -Armoricain). Sédimentologie, Paléontologie, Stratigraphie. Mem. Soc. Géol. mineral. Bret ., 24 : 293-304. LARDEUX, H., CHAUVEL, J.J., HENRY, J.L., MORZADEC, P., PARIS, F., RACHEBOEUF, P., et ROBARDET, M., (1977) - Evolution géologique du Massif Armoricain aux cours des temps ordoviciens, siluriens et dévoniens. In, La Chaîne varisque d'Europe moyenne et occidentale. Coll. intern. C.N.R.S., 243 : 181-192. Revue sommaire de quelques diagrammes chimico-minéralogiques pour LA ROCHE H., (de)., (1972) l'étude des associations ignées ou sédimentaires et de leurs dérivés métamorphiques. Sc. de la Terre, 15, 1-2 : 31-46. Approche quantitative des processus synchisteux ; l'exemple du LE CORRE, C., (1978) segment hercynien de Bretagne Centrale : Thèse, Rennes : 381 p. LE CORRE, C., et CHAUVEL, J.J., (1969) - Etude des relations entre le Briovérien et le Paléozoïque dans la presqu'ile de Crozon. Bull. Soc. Geol. minéral. Bret., 1 : 85-92.

LE MAITRE, R.W., (1976) -The chemical variability of some common igneous rocks. Journ. Petrol., 17 : 589-637. LE MENN, J., et RACHEBOEUF, P., (1977) - Brachiopodes Chonetacea et CrinoIdes des formations du Faou et de Montguyon (Dévonien inférieur du Massif Armoricain). Ann. Soc. géol. Nord. 96, 4 : 283-323. The abnormale distribution of calcium between the crust as a LOEWENGART, S., (1975) wholes and the sediments. Israel J. Earth. Sci. 24 : 15-18. LORING, D.H., (1982) -Geochemical factors controlling the accumulation and dispersal of heavy metals in the Bay of Findy Sediments. Can. J. Earth Sci. 19 : 930-944. LUCAS, G., COLLOMB, P., et BEAUDOU, A., (1967) - Contribution à l'étude pétrographique de la montagne d'Arrée. Bull. Soc. Géol. France, (7), 9 : 170-176. MELOU, M., et PLUSQUELLEC, Y., (1967) - Répartition de la pyrophyllite dans quelques niveaux briovériens et primaires armoricains. C.R. Acad. Sc, 265 : 14-16. MIGDISOV, A.A., (1960) -On the titanium/aluminium ratio in sedimentary rocks. Geochem. Int., 178-194. MILLOT, G., (1964) -Géologie des argiles. Masson et Cie. 499 p. MIYASHIRO, A., (1973) -Metamorphism and metamorphic belts. G. Allen et Unwin Ltd., : 492 p. MORZADEC, P., (1982) -Le Dévonien, Emsien-Famennien de la rade de Brest (Massif Armoricain) et ses faunes de trilobites : Thèse, Rennes : 183 p. MORZADEC, P., et WEYANT, M., (1978) - Succession des faunes de Conodontes et d'Ostracodes de l'Emsien supérieur au Famennien inférieur, dans la rade de NANZ, J.R., (1953) -Chemical composition of the Precambrien slates with notes on the Geochemical evolution of lutites. Journal of Geology, 61 : 51-64. Geochemistry of Niobium and Tantalum in clays. Geochem. Int., PACHADZHANOV, D.N., (1963) -963.-971. PAKISER, L.C., et ROBINSON, R., (1967) - Composition of the continental crust as estimated from seismic observations. In, The Earth's Beneath the Continents. Am. Geophys. Union, Geophys. Mon. 10 : 620-626. Le métamorphisme hercynien dans le domaine Centre Armoricain PARADIS, S., (1981) occidental : Essai de caractérisation par l'étude des phyllites des formations gréso-pélitiques. Thèse 3ème cycle, Brest : 167 p. Etude géologique de la terminaison orientale du Ménez-Bélair PARIS, F., (1971) -(synclinorium médian armoricain). Thèse 3ème cycle, Rennes : 1-141. Les formations siluriennes du synclinorium du Ménez-Bélair; compa-PARIS, F., (1977) raison avec d'autres formations siluriennes du Massif Armoricain. B.R.G.M., 1 et 2 : 75-87. Les Chitinozoaïres dans le Paléozoïque du Sud-Ouest de l'Europe PARIS, F., (1980) -(Cadre géologique - Etude systématique - Biostratigraphique). Mém. Soc. Géol. minéral. Bret., 26 : 412 p. PARKER, R.L., (1967) -Composition of the Earth's crust. In, Data of Geochemistry. U.S. Geol. Sruv. Prof. Pap., 440-D.:19 p. Le Carbonifère inférieur du bassin de Laval, Massif Armoricain. PELHATE, A., (1971) -Stratigraphie, sédimentologie, évolution paléogéographique. Thèse, Rennes. Mém. Soc. Géol. minéral. Bret., 15 : 315 p.

```
Chemical composition of sandstones. Excluding carbonate and
PETTIJOHN, F.J., (1963) -
                                 volcanic sands. Data of Geochemistry - Fleischer ed. Chapter S.
PETTIJOHN, F.J., POTTER, E., et SIEVER, R., (1973) - Sand and Sandstones. Springer Verlag, ed. 618 p.
                                 Remarques sur la sédimentation de l'Ordovicien supérieur et
PHILIPPOT, A., (1963) -
                                 moyen dans la presqu'île de Crozon (Finistère). Bull. Soc. Géol.
                                 minéral. Bret., 1-2 : 134-143.
                                 La bordure sud du synclinorium paléozoïque de Laval (Massif
PLAINE, J., (1976) -
                                 Armoricain). Stratigraphie, volcanisme, structure. Thèse 3ème
                                 cycle, Rennes : 229 p.
PLUSQUELLEC, Y., et RACHEBOEUF, P., (1980) - Conclusions stratigraphiques. In, Les schistes et
                                 calcaires de l'Armorique (Dévonien inférieur, Massif Armoricain).
                                 Sédimentologie, paléontologie, stratigraphie. Mém. Soc. Géol.
                                 minéral. Bret., 23 :317 p.
PLUSOUELLEC, Y., et al., (1980) - Carte géologique de la France à 1/50.000e. Feuille de Brest
                                 et notice B.R.G.M.
PRUVOST, P., et LE MAITRE, D., (1943) - Observation sur la région orientale du bassin de Châteaulin.
                                Bull. Serv. Carte géol. Fr., 44, 212 : 81-94.
PYZKOWER, R.M., (1979) -
                                  Excess crustal calcium problem. Geochem. J., 13 : 15-17.
RACHEBOEUF, P., (1976) -
                                 Chonetacea (Brachiopodes) du Dévonien inférieur du bassin de Laval
                                 (Massif Armoricain). Palaeontographica, Abt. A, 152 : 14-89.
ROBARDET, M., (1973) -
                                 Evolution géodynamique du Nord-Est du Massif Armoricain au
                                 Paléozoïque. Thèse, Paris. Mém. Soc. géol. minéral. Bretagne,
                                 20 : 553 p.
ROBARDET, M., et STEINBERG, M., (1972) - Etude de la fraction argileuse de roches sédimentaires du
                                PaléozoIque normand : contribution à la connaissance de la série
                                 "Siluro-dévonienne". Bull. Soc. géol. France, (7), 14 : 212-217.
RONOV, A.B., (1964) -
                                 Common tendencies in the chemical evolution of the earthcrust, ocean
                                 and atmosphere. Geochem. Int., 4 : 713-737.
RONOV, A.B., (1981) -
                                 Composition and evolution of the sediments in major continental struc-
                                 tural zones. Geochem. Int., 6 : 13-23.
RONOV, A.B., et YAROSHENSKY, A.A., (1969) - Chemical composition of the earth's crust. In, The Earth's
                                 Crust and Upper Mantle (P.J. Hart, ed.). Amer. Geophys. Union,
                                 Washingoton, D.C. : 37-57.
                                  (1976) - A new model for the chemical structure of the Earth's
                                  crust. Geochem. Int. 13, n°6 : 89-121.
ROGER, J.J.W., (1978) -
                                 Inferred composition of Early Archean Crust and variation in crustal
                                 Geochemistry, B.F. Windley et S.M. Naqvi (eds), Elsevier : 25-39.
SABINE, P.A., GUPPY, E.M., et SERJEANT, G.A., (1969) - Geochemistry of sedimentary rocks. Petrography
                                 and chemistry of arenaceous rocks. Rep. No. 69/1, Inst. Geol. Sci.
SAGON, J.P., (1976) -
                                 Contribution à l'étude géologique de la partie orientale du bassin
                                 de Châteaulin (Massif Armoricain) : stratigraphie, volcanisme, méta-
                                 morphisme, tectonique. Thèse, Paris : 671 p.
 SCHWAB, F.L., (1978) -
                                  Secular trends in the composition of sedimentary rock assem-
                                  blages. Archean through Phanerozoic time. Geology, 6 : 532-536.
SHAW, D.M., REILLY, G.A., MUYSSON, J.R., PATTEN DEN G.E., et CAMPBELL, F.E., (1967) - An estimate of
                                 the chemical composition of the Canadian Precambrian Shield. Can. J.
                                 Earth Sci. 4 : 829-853.
```

```
195
```

SIBDEY, D.F., et WILBAND, J.T.,	(1977) - Chemical balance of the Earth's Crust. Geochim. Cosmochim.
	Acta, 41: 545-554.
SPEARS, D.A., et KANARIS-SOTIRIO	U, R., (1976) - Titanium in some Carboniferous sediments. Geochim.
	Cosmochim. Acta, 40:345-351.
TARNEY, J., (1976) -	Geochemistry of Archean High-grade gneisses, with implications as
	to the Origin and Evolution of the Precambrian Crust. In, the
	Early History of the Earth, Brian F. Windley (ed.), Wiley and
	Sons : 405-417.
TAYLOR, S.R., (1979) -	Chemical composition and evolution of the continental crust : The
	Rare Earth Element Evidence. In, the Earth : its Origin, structure
	and evolution. M.W. Mc Elhinny (ed.), Academic Press : 353-376.
THOMPSON, A.B., (1970) -	A note on the kaolinite-pyrophyllite equilibrium. Am. J. Sc.,
	268 : 454-458.
VINE, J.D., (1969) -	Element distribution in some Paleozoic black shales and associated
	rocks. U.S. Geol. Surv. Bull. 1214, p. Gl - P G32.
VINE, J.D., et TOURTELOT, E.B.,	(1970) - Geochemistry of black shale deposits. A Summary Report.
	Economic Geology, 65 : 253-272.
WEDEPOHL, K.H., (1964) -	Unter shuchungen am Kupfershiefer in Nordwestdeutschland. Ein
	Beitrag zur Deutung bituminöser Sedimente. Geochim. Cosmochim.
	Acta, 28:305-364.
WEDEPOHL, K.H., (1974) -	Handbook of Geochemistry Springer-Verlag Berlin. Heidelberg
	New-York, 5 vol.
WINKLER, H.G.F., (1979) -	Petrogenesis of metamorphic rocks. 5ème ed. Springer Verlag.
	New-York. Heidelberg. Berlin : 344 p.

•

ANNEXE

٠ •

Nom	Puissances Moyennes	Lieux d'échantillonnage
Schistes rouges	25 m à 150 m (Chauvel et Le Corre, 1971).	Cap de la Chèvre Pointe du Guern
Grès Armoricain	1100 m (Chauvel et Le Corre, 1971)	Coupe de Porzen
Formation de Postolonnec	350 m à 450 m (Babin et al., 1976)	Plage de Postolonnec
Grès de Kermeur	300 m (Paris, 1980)	Plage de Veryach
Schistes du Cosquer	50 m (Hamoumi, 1981)	Plage de Veryach
Tuffs et calcaires de Rosan	150 m	Pointe de Lostmarc'h Lieu dit Rosan
Formation de la Tavelle	100 m (Paris, 1980)	Plage de Veryach Pointe de Lostmarc'h
Formation de Lostmarch	100 m à 120 m (Paris, 1980)	Pointe de Losrmarc'h
Fcrmation de Plougastel	Jusqu'à 500 m (Babin et al., 1972)	Pointe de Lostmarc'h
Formation de Landevennec	140 m (Babin et al., 1972)	Pointe de Lanveoc
Formation de l'Armorique	120 m (Plusquellec et al., 1980)	Pointe de l'Armorique
Formation du Faou	140 m (Plusquellec et al., 1980)	Anse du Frêt
Formation de Reun- ar-Chrank	60 m (Plusquellec et al., 1980)	Anse du Frêt
Groupe du Troaon	500 m (Plusquellec et al., 1980)	Roscanvel Ile du Renard
Formation de Traonliors	60 m minimum (Plusquellec et al., 1980)	Port de Rostellec

Figure F : Localisation des analyses chimiques des roches sédimentaires dans la presqu'île de Crozon.
Nom	Puissances moyennes	Lieux d'échantillonnage
Grès Armoricain	80 m	Carrière de Camp Français au Sud de Montflours
Formation d'Andouillé	200 m (Babin et al., 1976)	Sud d'Andouillé : côté de Bel-Air Sud de Montflours : Bois de Gondin
Formation de Saint- Germain-sur-Ille	250 m (Paris, 1971)	Carrière de Saint-Germain- sur-Ille
Formation de la Lande-Murée	70 m (Paris, 1977)	Autoroute le Mans-Laval (km 219).
Formation du Val	150 m (Paris, 1977)	Autoroute Le Mans-Laval (km 214)
Formation de Gahard	100 m à 400 m (Babin et al., 1972)	Saint-Cénéré (sortie).
Formation de St- Cénéré	150 m à 200 m (Lardeux et al., 1977)	Saint-Cénéré (sortie).
Formation de Mont- Guyon	200 m (Le Menn et Racheboeuf, 1977)	Montguyon Saint-Pierre-sur-Erve
Formation du Buard	150 m (Babin, 1972)	Saint-Jean-sur-Mayenne
Formation des Marollières	Plusieurs centaines de mètres (Paris, 1980)	Lieu dit "Les Marollières" à St-Jean-sur-Mayenne
Formation de L'Huisserie		L'Huisserie au Sud de Laval
Formation de Laval	500 m (Plaine, 1976)	Carrière des Fourneaux Saint-Pierre-sur-Erve
Formation de Heurtebise	environ 500 m (Plaine, 1976)	Environs de Changé

Figure G : Localisation des analyses chimiques des roches sédimentaires sur le flanc nord du Bassin de Laval.

ANNEXE : LOCALISATION GEOGRAPHIQUE ET STRATIGRAPHIQUE DES ECHANTILLONS ANALYSES.

I) Flanc Nord du Bassin de Laval

A) Arenig : Formation du Gres armoricain,echantillonnage dans la coupe de Camp Français.

Fig. a : Emplacement des echantillons dans la coupe

B)Llanvirn-Llandeillo : Formation d'Andouillé, échantillonnage éffectué en deux endroits:

1)Sud-Est de Montflours (Mayenne) dans le bois de Gondin,le long de la route menant à la N162,partie inferieure de la formation : AN2,AN4,AN6.

2)Sud d'Andouillé (Mayenne) dans la cote de Bel Air, partie supérieure de la formation: AN1

C)Caradoc-Ashgill : Formation de Saint Germain sur Ille, échantillonnage éffectué dans la carrière de Saint Germain

D)Llandovery-Wenlock-Ludlow : Formation de la Lande Murée, échantillonnage éffectué sur l'autoroute LeMans-Laval(Km 219) : LM1,LM2,LM3,LM4,LM5.

E)Pridoli :Formation du Val, échantillonnage éffectué sur l'autoroute LeMans-Laval (Km 214): VA1,VA2,VA3,VA4,VA5. F) Gedinnien : Formation de Gahard , échantillonnage éffectué dans la coupe de Saint-Cénéré au Sud de Saint Cénéré sur la D 32. Fig.b

 G) Siegenien : Formation de Saint Cénéré , echantillonnage dans la coupe de Saint Cénéré Fig.c

H)Siegenien supérieur: Formation de Montguyon,échantillonnage éffectué en deux endroits :

- au lieu dit Montguyon pres de Saulges (MO B) Fig.dl

- à Saint Pierre sur Erve (MO 8,MO 9,MO 6)Fig. d2

I)Emsien

-Formation du Buard,échantillonnage éffectué à Saint Jean sur Mayenne aux pieds de la Chapelle Saint Trèche

-Formation des Marollières , échantillonnage éffectué au lieu dit les Marollières pres de Saint Jean sur Mayenne

J) Carbonifère (Plaine, 1976)

-Tournaisien:Formation de l'Huisserie,échantillonnage éffectué à l'Huisserie au sud de Laval.

-Viséen:Formation de Laval,échantillonnage éffectue à la carriere des Fourneaux à Saint Pierre sur Erve

SA 1:calcaire noir à Polypiers

SA 2:calcaire oolithique

SA 3:calcaire gris blanc

-Namurien: Formation de Heurtebise , échantillonnage éffectué dans les environs de Changé.

II) Presqu'ile de Crozon

A)Cambro-Trémadocien: Formation des schistes rouges ,échantillonnage éffectué :

-au Cap de la Chèvre (SR 5,SR 8)

-à la pointe de Guern (SR 10,SR 13)

Succéssion dans la série : SR 10(au dessus du niveau de conglomérats),SR 8,SR 5, SR 13(dernier banc)

B)Arenig : Formation du Gres armoricain ,échantillonnage éffectue à la pointe de Porzen dans le membre intermédiaire Succéssion dans la série: Si 14,Si 13,Si 11,Si 6.

C) Llanvirn-Llandeillo :Formation de Postolonnec, échantillonnage éffectue dans la coupe de Postolonnec

SCP 4 :niveau schisteux au dessus du niveau de galets phosphates SCP 7 :gres de la lè alternance greseuse SCP 8:niveau schisteux sous le membre de Kerarvail SCP 12:gres de Kerarvail SCP 14 :niveau schisteux au dessus du membre de Kerarvail D) Caradoc :Formation de Kermeur, échantillonnage éffectué dans la coupe du Veryach. La succession stratigraphique est la suivante :GK 2,GK 4(lè banc de gres blancs) GK 7(sous le banc 47) ,GK 10(banc 87) ,GK 12(dernier banc de gres).

E)Ashgill

-Formation du Cosquer ,échantillonnage éffectué dans la coupe du Veryach SCO 1:début de la formation

SCO 2:dépot à dropstones

SCO 3:schistes entourant les slumps

-Formation de Rosan ,échantillonnage éffectué en deux endroits: à la pointe de Lostmarc'h (CAL 1,il correspond à un niveau élevé de la série) ,au lieu dit Rosan pres de la plage de l'Aber (CAR 1,CAR 2,ils correspondent à des niveaux plus bas dans la série)

F)Wenlock-Ludlow :Formation de la Tavelle ,ëchantillonnage éffectué au Véryach (AW2:Wenlock ,AL1 :Ludlow) et à la pointe de Lostmarc'h (AMS 1,AMS 2:Wenlock, AMS 3,AMS 6:Ludlow)

Les échantillons AW 2,AL 1,AMS 3,AMS 6 ont été prélevés dans des niveaux à Graptolithes.

G)Pridoli :Formation de Lostmarc'h ,échantillonnage éffectué à la pointe de Lostmarc'h

H)Pridoli supérieur :Formation de Plougastel , échantillonnage éffectué à la pointe de Lostmarc'h .La succession stratigraphique est la suivante : SCPL 2 SCPL 5(banc de quartzite séparant les criques) ,SCPL 7,SCPL 9,SCPL 12.

I)Gédinnien :Formation de Landevennec ,échantillonnage éffectué dans la coupe de Lanvéoc ,GLA 1(banc 9), GLA 4(banc 20) ,GLA 6(banc 26).

J)Siegenien :Formation de l'Armorique ,échantillonnage éffectué dans la coupe Nord de l'Armorique Fig.e

K)Siegenien superieur-Emsien-Eifelien

-Formation du Faou ,échantillonnage éffectué au Fret au nord de Crozon

-Formation de Reun ar C'Hrank ,échantillonnage éffectué au Fret

RAS 1 :banc 1

RAS 3 :banc 14

RAS 5 :banc 26

RAS 7 :niveau calcaire intercalé dans le banc 32

-Groupe de Troaon ,échantillonnage éffectué à Roscanvel (TRON 2) et à l'ile du Renard (TRON 5,TRON 6).

L)Givetien supérieur-frasnien :Formation des Traonliors ,échantillonnage éffectué au Port de Rostellec.

Fig.e :localisation des prelevements

.

·

. .