The influence of synoptic circulations and local processes on temperature anomalies at three French observatories.
Résumé
The relative contribution of the synoptic-scale circulations to local and mesoscale processes was quantified in terms of the variability of middle latitude temperature anomalies from 2003 to 2013 using meteorological variables collected from three French observatories and reanalyses. Four weather regimes were defined from sea level pressure anomalies using National Center for Environmental Prediction (NCEP) reanalyses with a K-means algorithm. No correlation was found between daily temperature anomalies and weather regimes, and the variability of temperature anomalies within each regime was large. It was therefore not possible to evaluate the effect of large scales on temperature anomalies by this method. An alternative approach was found with the use of the analogues method: the principle being that for each day of the considered time series, a set of days which had a similar large-scale 500 hPa geopotential height field within a fixed domain were considered. The observed temperature anomalies were then compared to those observed during the analogue days: the closer the two types of series, the greater the mark of the large scale. This method highlights a widely predominant influence of the large-scale atmospheric circulation on the temperature anomalies. It showed a potentially larger influence of the Mediterranean Sea and orographic flow on the two southern observatories. Low-level cloud radiative effects substantially modulated the variability of the daily temperature anomalies.
Domaines
MétéorologieOrigine | Fichiers produits par l'(les) auteur(s) |
---|