Aggregate breakdown dynamics under rainfall compared with aggregate stability measurements - INSU - Institut national des sciences de l'Univers Access content directly
Journal Articles European Journal of Soil Science Year : 2005

Aggregate breakdown dynamics under rainfall compared with aggregate stability measurements

Cédric Legout
Sophie Leguédois
Yves Le Bissonnais
  • Function : Author
  • PersonId : 1128674


Aggregate breakdown due to rainfall action causes crusting and interrill erosion. Erodibility is seemingly determined by the capacity of surface aggregates to resist the effects of rainfall. In this paper, we evaluated the relevance of an aggregate stability measurement, which comprises three treatments, in order to characterize aggregate breakdown dynamics. Two cultivated soils were studied: a clay loam slightly sensitive to erosion and a more susceptible silt loam. We compared the size distributions of microaggregates produced by the three aggregate stability treatments with the results from a rainfall simulation. The behaviour of four initial aggregate size classes (< 3 mm, 3–5 mm, 5–10 mm and 10–20 mm) was also compared to study the influence of the initial aggregate size on the nature of resulting aggregates. The mean weight diameter was from 200 to 1400 µm for the silt loam and from 600 to 7000 µm for the clay loam. The two experiments – aggregate stability measurements and aggregate breakdown dynamics under rainfall – yielded similar results. Qualitative analysis showed that for both soils the sizes of fragments produced by breakdown with the aggregate stability tests and under rainfall were similar and seemed to be qualitatively independent of the size of initial aggregates. We first schematized the structural organization of aggregates in cultivated horizons with a simple hierarchical model at two levels: (i) < 250 µm microaggregates and (ii) > 250 µm macroaggregates made by the binding together of microaggregates. We then developed a model of aggregate breakdown dynamics under rainfall which gives, for various rainfall durations, the size distributions of resulting fragments on the basis of aggregate stability measurements. We obtained a correlation coefficient, r, of 0.87 for the silt loam and of 0.91 for the clay loam, showing that the experimental and predicted mass percentages were linearly related for each size fraction.


Fichier principal
Vignette du fichier
Breakdown1_1.pdf (960.73 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

insu-00383192 , version 1 (31-05-2020)



Cédric Legout, Sophie Leguédois, Yves Le Bissonnais. Aggregate breakdown dynamics under rainfall compared with aggregate stability measurements. European Journal of Soil Science, 2005, 56 (2), pp.225 à 238. ⟨10.1111/j.1365-2389.2004.00663.x⟩. ⟨insu-00383192⟩
92 View
286 Download



Gmail Facebook X LinkedIn More